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INTRODUCTION
Since the introduction of computer-based 
analysis programs for timber roofs, the pre- 
and post-processing parts of the software 
have changed and improved to the extent 
that the designer is no longer aware of the 
design process, even though forces, displace-
ments, sizes and assumed effective lengths 
may be printed for checking by a competent 
person. Loads are calculated from the layout 

and these are applied to a two-dimensional 
analysis of the truss, even though a timber 
roof structure is a three-dimensional prob-
lem constructed out of a brittle material 
with limited ductility in the connections. 
Limited ductility can be a problem in cases 
where construction errors have been made 
and force-fitting is applied. Assumptions are 
made about the member sizes and sometimes 
the connector plate stiffness for an initial 
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In South Africa, timber-trussed roofs supporting concrete tiles have for many years often been 
braced solely by means of diagonal braces. Failures have shown that the diagonal brace was 
inadequate for larger span roofs, and the use of diagonal bracing has subsequently been limited to 
spans of less or equal to 10 m. When designing the compression chords of a timber truss in a braced 
roof, SANS 10163:1 (2003) recommends a minimum effective length for out-of-plane buckling of not 
less than 15 × b, which is 540 mm for a 36 mm wide member. This effective or out-of-plane buckling 
length of the top chord was later assumed to be equal to the spacing of the trusses. With the 
availability of PC-based packages that are able to perform three-dimensional buckling analyses, it is 
perhaps useful to investigate the validity of using the effective length equal to the truss spacing, and 
then also the 10 m limit on span for roofs braced by means of diagonal braces.
	 A common error made when analysing three-dimensional buckling problems is to assume 
connectivity on the centreline of the members, thereby neglecting eccentricity between the 
centreline of the bracing and the centreline of the member being braced (see Figure 1). In timber-
trussed roofs, the diagonal brace is nailed to the underside of the top chord of a number of adjacent 
trusses. The brace runs at more or less 45° and triangulation appears to be complete when viewed 
on plan, as the battens form the other elements of the bracing system triangulation. Trusses some 
distance from the trusses that are connected to the diagonal brace can, however, only obtain lateral 
support via the battens that are connected to the top of the compression chords. The authors feel 
that a more correct way of analysing a timber-trussed roof, braced by means of a diagonal brace, 
requires that the eccentricity between the centreline of the battens on top of the compression 
chords and the centreline of the braced points on the underside of the compression chords be taken 
into account. Furthermore, the connections between the battens and the top chord are not infinitely 
stiff and this stiffness, together with the low torsional rigidity of the timber members, should be 
taken into account in the buckling analysis. The analysis can be further improved by taking the out-
of-plane bending stiffness of the web members into account. All these factors will influence the 
buckling length of the compression chords to some degree.
	 In this paper, the authors show how incorrect assumptions may mislead the designer into 
believing that the buckling length is equal to or less than the spacing of the trusses. They also show 
that, even though the bracing members have been placed on the correct sides of the top chord 
in the analysis, incorrect assumptions about the torsional stiffness of the top chords can lead to 
buckling lengths that are slightly less than when a more realistic torsional stiffness is used.
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analysis. More often than not, a centreline 
analysis using beam elements is used and the 
forces so obtained are used to size the mem-
bers in accordance with SANS 10163: Part 1 
(2003) or Part 2 (2001). At this stage of the 
design, assumptions are made about the type 
of bracing to be used, as well as the effective 
or buckling length of the compression chord 
that would result from using that specific 
type of bracing. In most cases the trusses 
are re-analysed with the correct sizes once 
these have been calculated to ensure that the 
sizing is adequate for the load and that the 
deflection is not excessive.

SANS 10163: Part 2 (2001) has a rule of 
thumb for the minimum slenderness, Le/b, 
equal to 15 for tiled roofs or the spacing of 
the purlin for sheeted roofs. Many believed, 
and some still believe, that the effective or 
buckling length of the top chord is equal to 
the spacing of the battens. This assumption 
would perhaps be correct if the tiles could 
be relied on to supply diaphragm action, and 

that the battens were rigidly connected to 
the compression member. In such a case, any 
further bracing would only be required for 
erection purposes. The authors accept that 
diaphragm bracing by the tiles will initially 
be active, but with time the friction between 
the tiles seems to break and movement does 
occur. This eventual movement of the tiles 
has led to failures of roofs.

The assumption of the buckling length 
equal to 15 × b, with b = 36 mm, may not be 
a problem when the spacing of the trusses 
is equal to 640 mm as is commonly used in 
Australia, but could become a problem where 
the spacing of the trusses is as much as 
1 050 mm, as is often found in South Africa. 
The minimum slenderness of Le/b = 15 was 
later changed by the South African Institute 
for Timber Construction to an in-house 
rule which suggests, the operative word 
being suggests, an effective buckling length 
of the spacing of the trusses, i.e. 750 mm to 
1 050 mm. The authors believe that a blanket 

rule such as effective length = 15 × b or 
even buckling length equal to the spacing of 
the trusses may not be conservative, as the 
buckling length depends on the boundary 
conditions, the stiffness of the bracing and 
the method of transferring loads once buck-
ling is initiated.

For small span timber trusses, i.e. up to 
10 m, a diagonal brace is the norm in South 
Africa. As the limit on the span for the use 
of a diagonal brace is less than 10 m, only 
the 10 m span and 7.5 m spans were inves-
tigated. Timber sizes for 10 m span roofs 
would typically be 36 mm × 111 mm top and 
bottom chords with 36 mm × 73 mm web 
members. When bracing a 10 m span trussed 
roof, a 36 mm × 111 mm timber member is 
fixed to the underside of the compression 
chords and runs at about 45° when seen 
in plan. Three 100 mm long nails are used 
to fix the brace to the underside of the top 
chord (see Figure 1). Maximum spacing 
rules are used to ensure that trusses are not 
too far from the brace. Battens, the smallest 
nominally being 36 mm × 36 mm, are placed 
on top of the compression chord and these 
are then fixed with one 75 mm long nail to 
the compression chord.

In this paper it is the intention of the 
authors to only investigate diagonal bracing, 
and not all forms of bracing that are cur-
rently used by the South African timber roof 
truss industry. Although this investigation 
is a theoretical exercise and cannot, at this 
stage, be validated by test results, the authors 
are of the opinion that a three-dimensional 
buckling analysis is an acceptable way of 
determining the buckling length of a com-
pression chord in a timber roof structure. 
Buckling and finite element analyses are 
widely used for many structural systems 
and materials as the analyses are based on 
theories that have historically been proven to 
work for structures.

EFFECTIVE LENGTH FACTORS IN 
SIMPLE LATTICE STRUCTURES

In-plane and out-of-plane buckling
The effective length factor, or K- factor, is 
used to adjust the actual unrestrained length 
of a compression member to account for pre-
vailing boundary conditions. Many software 
packages use a default out-of-plane effective 
length factor of 0.85, implying some form of 
rotational joint restraint by adjacent mem-
bers. This is only possible where adjacent 
members have high out-of-plane bending or 
torsional stiffness and they themselves are 
not compression members that could buckle. 
Some design codes specify effective length 
factors for compression members in lattice 

Figure 1 Positioning of diagonal braces

Truss spacing

Batten spacing
Plan

Top chord

Detail A

Battens

Brace

Span

Section

Detail A

Centreline member

Centreline 
diagonal brace

Centreline 
batten

Eccentricity

Eccentricity

45°



Journal of the South African Institution of Civil Engineering  •  Volume 54  Number 1  April 2012 83

trusses. BS 5400 Part 3 (BSI 2000), in its 
Table 11, specifies effective length factors for 
buckling in the plane of the truss, as well as 
out of the plane of the truss. In all cases the 
values given in Table 11 of BS 5400 Part 3 
(BSI 2000) are less than or equal to 0.85. 
Eurocode 5 (CEN 1995) gives the effective 
column length for members of triangulated 
trusses with loading at the nodes as the bay 
length. For strength verification, Eurocode 5 
(CEN 1995) states that the calculated force 
should be increased by 10%.

SANS 10163 Part 1 (2003) has non-
mandatory clauses for the calculation of the 
effective length factor:
1.	 With regard to the effective length for “ in-

plane” buckling, in a continuous compres-
sion member such as a chord of a truss, 
take the effective length for “ in-plane” 
buckling as the distance between the node 
points multiplied by a factor of between 
0.85 and 1.0, depending on the degree of 
fixity and the distribution of the load. In 
a non-continuous compression member 
such as the web of a truss, take the effec-
tive length for “ in-plane” buckling as the 
actual length of the member multiplied by 
a factor of between 0.85 and 1.0, depend-
ing on the degree of end fixity.

2.	 With regard to effective length for “out-of-
plane” buckling, the following apply:
a)	� take the effective length of the compres-

sion chords to be equal to the purlin 
or batten spacing, provided that the 
purlins or battens are adequately fixed 
to the chords, properly spliced to trans-
mit the forces and adequately braced 
against longitudinal movement;

b)	� in the case of tiles supported on bat-
tens, the battens being spaced less than 
400 mm apart and fixed to the chords 
with one or two plain wire nails, 
use a minimum slenderness value of 
Le/b = 15 for calculating the ultimate 
compressive stresses for the chords;

c)	� if the compression chords are braced 
by means of a bracing frame or a truss 
that restrains the longitudinal move-
ment of all battens, use the minimum 
slenderness value given in (b) above; 
and

d)	� in the case of web members, use the 
distance between the intersection of the 
centrelines of connecting members.

Boundary conditions influencing the degree 
of restraint exercised on a compression 
member, are not merely a function of con-
nection details and continuity, but are influ-
enced by the capacity of adjacent members at 
the node. Consider the example of a simple 
lattice truss with a constant section, shown 
in Figure 2, where lateral supports are pro-
vided at nodes, A, B, C, D, E, F and G:

The compression chord ABCDEFG is divided 
into equal portions. The basic principle that 
the buckling load for member ABCDEFG is 
unique shows that an effective length factor 
of less than one for a particular member is 
consistent with an effective length factor of 
greater than one in the adjacent members, 
albeit with a smaller force, as shown in 
Equation 1:

π2EI
(kABL)2 ∙ PAB

 �= 
π2EI

(kBCL)2 ∙ PBC
 = 

π2EI
(kCDL)2 ∙ PCD

 � (1)

If the member is of constant section 
with a constant force, Equation 1 will be 
satisfied if the buckling length is taken as 
L = LAB = LBC = LCD. If the torsional stiff-
ness of the lacing elements is ignored, an 
effective length factor of less than one is 
clearly incorrect. For the loading as shown, 
the force in ABCDEF will vary over the 
length of the truss. Once again, the buckling 
strength of the chord ABCDEF is unique. In 
order to still satisfy Equation 1, the effective 
length factors for the members with the 
lower forces are greater than for those mem-
bers with the higher forces.

It is significant that the Eurocodes for steel 
design specifically have discarded the practice 
of using tabulated effective length factors in 
the design of both compression and flexural 
members. Elastic buckling loads are used as a 
basis of design, and such loads are commonly 
calculated using computer programs.

Stanway, Chapman & Dowling (1992) 
have discussed the influence of elastic sup-
ports at any position of the length of the 
strut, thereby considering the influence 
of unequal bay lengths and the beneficial 
restraint offered by adjacent subcritical ele-
ments having a shorter buckling length. The 
basis of elastic buckling analysis is subse-
quently discussed.

Most PC-based analysis packages are 
capable of performing buckling analyses on 

framed structures using beam elements, and 
individual members using shell elements. It is 
important that the user be aware of the actu-
al process and the premises on which such 
analyses are based. The method of buckling 
analysis of a frame structure is presented in 
Coates et al (1988), as described below.

In the case of a linear elastic analysis of 
a framed structure, deformation is linearly 
related to load, or, expressed in matrix form:

P = Ks∆� (2)

where:
	 P	 is the force or load matrix,
	 ∆	 is the displacement matrix,
	Ks	 is the stiffness matrix.

The terms of Ks are constant for a given 
structure, provided that second order effects 
are neglected, therefore Ks is independent of 
P. If, however, the influence of axial forces on 
member stiffness is included, Ks becomes a 
function of P, or Ks = Ks(P).

In the case where axial loads are not 
neglected, Equation 2 becomes non-linear, 
but if the axial loads are known, the deflec-
tions may be calculated.

λP = Ks(λP)∆� (3)

In Equation 3 the term λ has been inserted 
as a load multiplier. As the loads are pro-
gressively increased, a state of neutral 
equilibrium is achieved where any deflection 
is possible for a given load level. This state 
defines instability and may be referred to as 
λ = λcr. The critical state is consistent with 
the matrix Ks(λP) becoming singular.

A test of the singularity of the matrix Ks 
can therefore be used as a check on stability. 
If it is non-singular and positive definite, 
the structure is stable; if it is singular, the 
structure is on the point of collapse. The 
value of λcr is therefore a multiple whereby 
an arbitrarily chosen load can be multiplied 

Figure 2 �This figure shows the possible buckled shape of the top chord
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to achieve a state of collapse. The following 
comments regarding the value of λcr should 
be clearly noted:

■■ λcr is not a safety factor. Even if P is cho-
sen to represent load effects at working 
loads, the influence of inelastic buckling 
is not taken into account in an elastic 
buckling analysis.

■■ In the case where buckling modes are 
de-coupled, for example lattice structures 
consisting of pin-ended members, the 
value of λcr applies to the member most 
susceptible to buckling, and has no appli-
cation to other members.

■■ If a two-dimensional analysis were to be 
carried out to determine λcr, the value 
of λcr applies to in-plane and not out-of-
plane buckling.

The significance of an elastic buckling 
analysis is that the value of λcrP is the elastic 
buckling load of the critical member or 
portion of a structure, or of the structure 
as a whole. Dekker and Burdzik (2000) have 
shown that, in order to calculate the inelastic 
buckling load, and therefore the factored 
resistance of the critical member, Cr, the fol-
lowing procedure may be followed:

Calculate the equivalent effective un-
braced length from the relationship:

λcrP = π2EI
(KL)2 � (4)

Therefore:

KL = π2EI
λcrP

� (5)

or

KL = Pe
λcr  ∙ P

� (6)

where:
	Pe	 = �Euler buckling load for a compression 

member hinged at both ends
	P	 = �applied load
	K	 = �effective un-braced length factor

Calculate the compressive resistance 
Cr using the value of KL obtained from 
Equation 5 for the appropriate member 
size. The resistance equation is given by 
SANS 10163:1 (2003):

Cr = φ × βb × Ag × fc
γm1 × γm2 × γm3 × γm4 × γm5

 � (7)

The appropriate slenderness ratio is given in 
SANS 10163:1 (2003) 

λ = K × L 
r

 × fc
π2 × E*0.05

or for a rectangular section

λ = √ 12 × K × L
b

 × fc
π2 × E*0.05

� (8)

and the buckling factor, βb is given by:

βb = (1 + λ2n)–1/n� (9)

with n = 1.8 and

where:
	E0.05	 = �fifth percentile modulus of elasticity 

for members working in isolation.
	 KxL	 = �effective length or buckling length

	 r	 = �radius of gyration, 
I
A

	 fc	 = �compressive stress parallel to the 
grain.

STIFFNESS OF CONNECTORS
When a stiffness matrix method with beam 
elements is used to analyse a structure, 
there are a number of ways of modelling the 
connection between, for instance, the bat-
ten and the top chord. One of the methods 
is the use of a spring as a connector. This, 
however, does not adequately address the 
possible rotation of the top chord, as the 
chord, the spring and the batten are in the 
same plane. Rotation of the chord will then 
‘soften’ the stiffness of the connection. If 
a beam element analysis is applied to the 
three-dimensional model, the authors are of 
the opinion that it is better to model the nail 
with an element that has the same bending 
stiffness as the transverse stiffness of the nail 
in double curvature, than to use a spring. 
The spring will not have the necessary 
eccentricity to allow the torsional displace-
ment of the chord.

Eurocode 5 (1995) allows a method 
whereby the long-term stiffness of nails, that 
connect two pieces of timber together, may 
be calculated. The long-term stiffness of a 
nail without pre-drilling is given by:

Kser = ρ1
m
.5 × d0.8

30
� (10)

where:
	Kser	 = connector stiffness in kN/m
	 ρm	 = �average density of the timber in kg/m3

	 d	 = �diameter of the nail in mm.

This equation has been found, by a number 
of tests performed at the University of 
Pretoria, to represent the stiffness of nails in 
South African pine fairly well.

Using the Eurocode 5 (CEN 1995) 
equation for long-term nail stiffness, the 
stiffness of a connection using a 3.2 mm 
nail in timber with an average density of 
450 kg/m3 can be calculated and a value of 
807 kN/m is obtained. A stiffness for the 

nailed connection of 800 kN/m was used 
in all the analyses. Typical trusses that 
are braced by a diagonal brace are usually 
spaced at about 750 mm, will have a top 
and chord with a depth of 111 mm, webs 
with a depth of 73 mm and battens with 
a depth of 36 mm. The distance between 
the centrelines of the top chord and the 
batten is then = 73.5 mm. It would not 
be out of place to assume that the nail is 
initially placed in double flexure, as this 
is the most likely form of failure for a thin 
timber-to-timber dowel-type connector 
(Eurocode 5, i.e. CEN 1995). Basic slope 
deflection equations (Coates et al 1988) 
allow one to determine the flexural stiffness 
of a member in double curvature that has 
the same stiffness as the nail. See Figure 3 
for forces involved.

VBA	� = –MAB – MBA
LAB

 

	 = 6EIAB × ∆ + 6EIAB × ∆
L3

AB
� (11)

But VAB/∆ is equal to the stiffness of the nail, 
Kser.

The required flexural stiffness EI can be 
calculated as follows:

EIAB = Kser × L3
AB

12
� (12)

The equivalent diameter of a steel nail that 
now connects the batten to the top chord 
can be determined from this equation. If the 
modulus of elasticity of the steel is 206 GPa 
and Equation 12 is applied:

IAB	= Kser × L3
AB

E × 12
 = 800 × 0.07353

206 × 106 × 12
 

	 = 1.285 × 10–10 m4� (13)

The diameter of the equivalent round nail 
with the required second moment of area 
is 7.2 mm. It may be prudent to remember 
that the theoretical stiffness of the nails is 
based on tests where the nail is forced into 
double curvature by longitudinal displace-
ment of the connected members. However, 
if the chord is free to rotate, this stiffness 
will be reduced, i.e. ‘soften’, and it would 

Figure 3 �Deflected shape of connector used to 
calculate an equivalent stiff member
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no longer be correct to assume a spring 
stiffness of 800 kN/m when using springs 
in the analyses. It would be more correct in 
the authors’ opinion to have a stiffness of 
something between fully fixed on both ends 
and a cantilever. For a cantilever the stiffness 
is a quarter of that of a fully fixed member, 
i.e. 200 kN/m.

As an illustration of how the con-
nection ‘softens’ with relative rotation 
between two connected members, two 
analyses were undertaken. A 3.75 m 
long, 36 mm × 225 mm, grade 5 timber, 
modulus of elasticity = 7 800 MPa, with 
36 mm × 36 mm, grade 4 battens spaced at 
250 mm with the battens having a length of 
750 mm, was subjected to unit axial loading 
(see Figure 4). In the first analysis, the eccen-
tricity between the centreline of the battens 
and the compression element was taken into 
account, with the nails being modelled by 
bending elements. No account was taken 
of the possible lower shear modulus of the 
compression member. A buckling load factor 
of 174 and an out-of-plane buckling length of 
622 mm resulted.

In the second analysis, the member was 
analysed using shell elements with springs 
connecting it to the battens. The spring 
stiffness was reduced until the same 
buckling factor, i.e. 174, was obtained as in 
the first analysis. The spring stiffness that 
was required to achieve this was 267 kN/m 
and no longer 800 kN/m. This shows that, 
when using shell or plate elements that are 
connected to the bracing battens by way of 
springs, great care should be taken as it may 
result in misleading answers. If the spring 
stiffness of 800 kN/m is used, the buckling 
load factor, λ, was 293 with a buckling length 
of 480 mm. Both the buckling lengths are 
substantially greater than the spacing of 
the battens.

It is perhaps of interest to note that 
when this technique is used to determine 
the buckling length of a 2.1 m long, 
36 mm × 111 mm, Grade 5 SA pine member 
that is braced by means of 750 mm long, 
36 mm × 36 mm Grade 5 battens, spaced 
at 300 mm, a buckling length of 454 mm 
results. If the member length is increased 
to 3.0 m with the battens still at 300 mm 

spacing, the buckling length decreases 
slightly to 446 mm. This may explain why 
a minimum slenderness of 15 × b was writ-
ten into SANS 10163: Part 2 (2001), as that 
particular clause was based on work done by 
Pienaar (1984) who tested 36 mm × 111 mm 
compression members that were braced by 
battens nailed to one side.

SHEAR MODULUS
It is accepted that the shear modulus of 
South African pine is about equal to MOE/13 
(Burdzik & Nkwera 2003). Not all software 
packages have the facility to input the shear 
modulus. Prokon (2011), the package used in 
the following analyses uses a Poisson Ratio, v, 
of 0.2. The shear modulus is then calculated 
from the following equation:

G = E
2(1 + v)

 = E
2.4

� (14)

This shortcoming can be overcome by reduc-
ing the St Venant torsional constant of the 
relevant members by 13/2.4 = 5.42.

ANALYSES
In order to demonstrate the principles 
discussed above, a commonly available 
PC-based analysis package, Prokon (2011), 
was used to calculate the effective length 
factors of the top chord of gable to gable 
timber-trussed roofs with spans of 7.5 m and 
10 m, with pitches of 17.5°, 25° and 35°. The 
batten spacing was taken as 262 mm and 
305 mm respectively in order to simplify 
the input of the truss and batten geometry. 
Only the tile weight and the self weight 
of the timber were used to determine the 
buckling length of the top chords, as the 
buckling is a long-term problem, rather than 
a problem that occurs when imposed load 
is applied, as imposed load will increase 
the friction between the tiles, leading to 
bracing by diaphragm action. Tile mass was 
taken as being 55 kg/m2, although the actual 
mass is not that important, as the buckling 
analysis is only used to calculate buckling 
lengths. The different configurations (see 
Figures 5 and 6) were used to ascertain 
whether the configuration would play a 
significant part in the buckling length of the 
compression chord.

Results of the analyses
In all cases the top and bottom chords 
were assumed to have dimensions of 
36 mm × 111 mm with web members being 
36 mm × 73 mm with a 36 mm × 111 mm 
diagonal brace, although in practice the top 
and bottom chords may be 36 mm × 73 mm 
and the diagonal bracing member a 

Figure 4 �Theoretical setup to investigate softening of the stiffness of the connections between 
battens and the braced member
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36 mm × 73 mm for small span roofs. A 
full span, complete roof (see Figure 7) was 
analysed to ascertain the buckled shape of the 
roof so that a half-structure, with the correct 
boundary conditions, could be analysed. From 
the buckled shape, one can deduce that the 
apex moves as the brace is flexible and it then 
becomes apparent that one cannot assume an 
inflection point at the apex. This then makes 
it possible to define the boundary conditions 
for a structure where only the half structure 
is investigated. If the half structure with the 
correct boundary conditions is used, it simpli-
fies the input and speeds up the analyses of 
the various truss layouts and spans. Assume 
that the truss lies in the X-Y plane and that 
the Z axis is perpendicular to that plane. The 
eaves of the truss is supported in Y and Z 
directions, whereas the apex and the bottom 
chord of the half truss are supported in the X 
direction and fixed against rotation about the 
Y axis. Figure 8 shows the buckled shape of 
the half-structure with a span of 10 m.

It is noteworthy to see how the top chords 
of the trusses will buckle, as this buckling 
shape is sometimes visible on the tile lines 
of some of the older houses in South Africa. 
The battens force sympathetic buckling, i.e. 
all top chords move in the same direction, 
as all the top chords are tied together by the 
battens. It is also apparent from the buckled 
shape that the low torsional rigidity of the 
top chord and the stiffness of the nails all 
play a part in the final buckled shape. A 
buckling analysis of a trussed roof, where 
centreline connectivity of chords, battens 
and diagonal brace is assumed, is shown in 
Figure 9. Note the difference in the buckled 
shape of the roof shown in Figure 8, where 
the actual relative position of the members is 
taken into account, and Figures 9, where cen-
treline connectivity is assumed. The effect of 
the difference in the buckled shape leads to 
a difference in the buckling length of the top 
chord as is given in Table 2.

This difference in the buckled shape and 
the buckling load factor between centreline 
connectivity and the buckled shape of the 
trussed roof where the relative distances 
between the centreline of the battens, top 
chord and diagonal brace are taken into 
account, shows how important it is to take 
the actual position into account. Even if one 
allows for the stiffness of the nails in the 
centreline analysis, one may still land up 
with what the authors believe to be an incor-
rect evaluation of the buckling length of the 
top chord.

The results of the analysis for the differ-
ent configurations of the 7.5 m span trusses 
are given in tabular form in Tables 1, 2 and 3.

By considering the results shown in 
Tables 1 to 3 it is clear that the actual 

Figure 8 �Typical buckled shape of a 10 m span double-W trussed roof – only the half structure investigated

Figure 9 �Typical buckled shape of a 7.5 m span Fink trussed roof with centreline connectivity 
between top chord, battens and diagonal brace – only half structure investigated

Figure 7 �Typical buckled shape of a complete 7.5 m span Fink trussed roof

X

Y
Z
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buckling length exceeds the purlin spacing 
by a factor of between 3.8 and 4.4. The error 
caused by centreline modelling is shown 
to be significant in Table 2. No further 
centreline modelling was undertaken as the 
authors were convinced that the difference in 
the buckling factors for the different layouts 
would not be significant.

The results of the analysis for the differ-
ent configurations of the 10.0 m span trusses 
are given in tabular form in Tables 4, 5 and 6.

ULTIMATE STRENGTH OF TRUSSES
To see whether the theoretical increased 
buckling length will negatively influence 
the design of timber trusses, one each of the 
7.5 m and 10 m trusses will be used to illus-
trate the code requirements between using 
the effective buckling length based on the 
truss spacing, and the theoretical buckling 
length of 1.2 m.

Fink truss layout at 7.5 m 
span with 25° pitch
If one includes the imposed load, the 
imposed load on a tributary area of 5.63 m2 
is 0.46 kN/m2. A frame analysis on the truss 
with pin joints between the web members 
and the chords, but with continuity of the 
top and bottom chords, was applied. With 
a total load that includes all self-weight and 
imposed load, the ultimate axial force in 
the top chord = 8.96 kN and the ultimate 
moment in the chord = 0.24 kN.m.

The axial resistance using a buckling 
length of 750 mm can be calculated from 
Equation 8:

λ	= K × L 
r

 × fc
π2 × Emean 

	
= √ 12 × K × L

b
 × fc

π2 × Emean

	 = √ 12 × 750
36

 × 18
π2 × 7 800

	 = 1.104

and the buckling factor βb is given by 
Equation 9:

 βb	= (1 + λ2n)–1/n

βb	 = (1 + 1.1042 × 1.8)–1/1.8

	 = 0.611

The resistance of a 36 mm × 111 mm Grade 5 
member is therefore (Equation 7):

Resistance Cr = φ × A × βb × fc
γm

γm1 = �0.60 + 0.63 wDS = 0.6 + 0.63 × 0.54 = 0.94

Table 1 �Results of analysis: 7.5 m span, 17.5° pitch, 11 trusses braced by the diagonal

Truss Type Buckling 
Factor, λ

Force in first 
section of top 

chord, P 
(kN)

K based on 
length of 
262 mm, 

Pe = 484 kN

Buckling 
Length 
(mm)

Passumed/
Pactual

Fink 4.84 5.17 4.40 1 153 1.90

Howe 5.42 5.17 4.16 1 090 1.73

Queen post 4.98 5.17 4.34 1 137 1.86

Table 2 �Results of analysis: 7.5 m span, 25° pitch, 11 trusses braced by the diagonal

Truss Type Buckling 
Factor, λ

Force in first 
section of top 

chord, P 
(kN)

K based on 
length of 
276 mm, 

Pe = 436 kN

Buckling 
Length 
(mm)

Passumed/
Pactual

Fink 5.59 4.16 4.33 1 195 2.02

Fink* 6.49 4.16 4.02 1 109 1.78

Fink# 16.75 4.16 2.50 690

Howe 6.40 4.16 4.05 1 118 1.80

Queen post 5.95 4.16 4.20 1 159 1.92

* with incorrect torsional stiffness of the top and bottom chords
# with centreline analysis

Table 3 Results of analysis: 7.5 m span, 35° pitch, 11 trusses braced by the diagonal

Truss Type Buckling 
Factor, λ

Force in first 
section of top 

chord, P 
(kN)

K based on 
length of 
305 mm, 

Pe = 357 kN

Buckling 
Length 
(mm)

Passumed/
Pactual

Fink 7.43 3.34 3.79 1 156 1.91

Howe 7.10 3.34 3.88 1 183 1.99

Queen post 7.07 3.34 3.89 1 186 2.00

Table 4 Results of analysis: 10 m span, 17.5° pitch, 11 trusses braced by the diagonal

Truss Type Buckling 
Factor, λ

Force in first 
section of top 

chord, P 
(kN)

K based on 
length of 
262 mm, 

Pe = 484 kN

Buckling 
Length 
(mm)

Passumed/
Pactual

Double-W 4.15 7.43 3.96 1 038 1.71

Howe 4.42 7.43 3.84 1 007 1.51

Fan 3.47 7.43 4.33 1 134 1.85

Passumed is based on a buckling length of 750 mm

Table 5 Results of analysis: 10 m span, 25° pitch, 11 trusses braced by the diagonal

Truss Type Buckling 
Factor, λ

Force in first 
section of top 

chord, P 
(kN)

K based on 
length of 
276 mm, 

Pe = 436 kN

Buckling 
Length 
(mm)

Passumed/
Pactual

Double-W 4.57 5.70 4.09 1 129 1.83

Howe 5.45 5.70 3.75 1 035 1.58

Fan 4.34 5.70 4.20 1 159 1.92

Table 6 Results of analysis: 10 m span, 35° pitch, 11 trusses braced by the diagonal

Truss Type Buckling 
Factor, λ

Force in first 
section of top 

chord, P 
(kN)

K based on 
length of 
305 mm, 

Pe = 357 kN

Buckling 
Length 
(mm)

Passumed/
Pactual

Double-W 4.74 4.75 3.98 1 214 2.08

Howe 5.03 4.75 3.86 1 177 1.97

Fan 4.97 4.75 3.89 1 186 2.00
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γm3 �= 0.82 + 0.023 L = 0.82 + 0.023 × 7.5
= 0.993 for 7.5 m span

The product of the γ factors is equal to 0.93.

Cr = 0.67 × 36 × 111 × 0.611 × 18
0.93  

=31.66 kN

The moment of resistance,

Mr = φ × Ze × fb
γm

� (15)

Mr = 0.67 × 36 × 1112

6
 × 11.5

0.93
 = 0.61 kN.m

The interaction equation, i.e. Interaction Index:

Cu
Cr

 + Mu
Mr

 ≤ 1.0� (16)

Interaction Index = 8.96
31.66

 + 0.24
0.61

 = 0.676

Using a buckling length of 1.20 m the slen-
derness and the buckling factor are:

λ	 = K × L 
r

 × fc
π2 × Emean

 

	 = √ 12 × K × L
b

 × fc
π2 × Emean

	 = √ 12 × 1 200
36

 × 18
π2 × 7 800

	 = 1.766

and the buckling factor βb is given by:

βb	 = (1 + λ2n)–1/n

βb	 = (1 + 1.7662 × 1.8)–1/1.8

	 = 0.30

Cr = 0.67 × 36 × 111 × 0.30 × 18
0.93

 = 15.55 kN

The moment of resistance,

Mr	= φ × Ze × fb
γm

	 = 0.67 × 36 × 1112

6
 × 11.5

0.93

	 = 0.61 kN.m

The Interaction Index:

Cu
Cr

 + Mu
Mr

 = 8.96
15.55

 + 0.24
0.61

 = 0.97

In both cases the interaction equation is sat-
isfied and the truss satisfies the requirements 
of SANS 10163: Part1 (2003).

Double-W truss layout at 10 m span
If one includes the imposed load, the 
imposed load on a tributary area of 7.5 m2 is 
0.425 kN/m2. With a total load that includes 
all self-weight and imposed load, the ulti-
mate force and bending moment in the top 

chord was found to be Cu = 13.24 kN and 
Mu = 0.23 kN.m.

γm1 = 0.60 + 0.63 wDS = 0.6 + 0.63 × 0.54 = 0.94

γm3 �= 0.82 + 0.023 L = 0.82 + 0.023 × 10.0 
= 1.05 for 10 m span

The product of the γm factors = 0.987

With an assumed buckling length of 
0.75 m and an assumed top chord size of 
36 mm × 111 mm in a Grade 5 timber, the 
resistances become:

Cr = 0.67 × 36 × 111 × 0.611 × 18
0.987

 = 29.83 kN

The moment of resistance,

Mr	= φ × Ze × fb
γm

	 = 0.67 × 36 × 1112

6
 × 11.5

0.987

	 = 0.577 kN.m

The interaction equation:

Cu
Cr

 + Mu
Mr

 = 8.96
29.83

 + 0.24
0.577

 = 0.716

Whereas, if a theoretical buckling length of 
1.2 m is used:

Cr = 0.67 × 36 × 111 × 0.30 × 18
0.987

 = 14.65 kN

The Interaction Index:

Cu
Cr

 + Mu
Mr

 = 13.24
14.65

 + 0.23
0.577

 = 1.30

The interaction equation indicates that the 
36 mm × 111 mm, Grade 5 SA pine member 
fails the interaction equation with the 
increased buckling length of 1.2 m. As the 
imposed load would increase the friction 
between the tiles, the buckling length would 
be substantially reduced. The increase of the 
interaction equation to 1.3 would not, in the 
opinion of the authors, increase the probabi
lity of failure substantially. It is therefore not 
surprising that very few failures of timber 
trussed roofs of spans less than 10 m that are 
braced by means of a diagonal brace, have 
been noted.

CONCLUSION
The theoretical buckling lengths of the com-
pression chords, of trusses in a roof braced 
by means of a diagonal brace, are shown to 
be in the region of between 1 m and 1.2 m for 
a gable-to-gable timber roof structure. This 
increase in the buckling length from 0.76 m 
to over 1.0 m may not be critical for roofs that 
have been designed for a buckling length of 

0.76 m, or the spacing of the trusses, as the 
imposed load is very seldom applied to the full 
roof. Furthermore, the imposed load would 
increase the friction between the tiles, thereby 
perhaps leading to diaphragm bracing. The 
30% shortfall in capacity should not impact 
significantly on the probability of failure of 
the compression chords, provided that the 
integrity of the connections between the 
trusses and the battens is maintained.

Ignoring the lack of torsional stiffness of the 
top chord also has a small effect on the buck-
ling length obtained from the analysis. This 
may not be true for sections that have a greater 
depth, i.e. depth of 149 mm and 225 mm. 
However, a centreline analysis neglecting to 
consider the distance between the centrelines 
of the brace, the chords and the battens is 
shown to under-estimate the theoretical buck-
ling length by a dangerous margin, possibly 
leading to unsafe member sizes.

The buckling analyses and calculations 
would appear to justify limiting the span of 
trusses that are braced by means of a diago-
nal brace to less than 10 m, as the capacity of 
the nailed connections between the battens 
and the braced trusses may be exceeded 
once buckling is initiated. Owing to the 
many uncertainties involved, as well as the 
number of failures noted, it is proposed that 
the buckling length should be increased to 
1.2 m or 30 × b for timber-trussed roofs that 
are braced solely by means of diagonal bra
cing. Perhaps there should be two interaction 
equations for checking the lateral buckling 
strength of the roof trusses. The first check 
should be to ascertain whether the truss 
strength is adequate for permanent load with 
the increased buckling length, and the sec-
ond for total load, with the buckling length, 
however, reduced to 15 × b.
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