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Abstract 

 

Steel Fibre Reinforced Concrete (SFRC) brings favourable properties to concrete ground slabs. 

The use of the material is limited by the lack of an appropriate analysis method. This paper is the 

first in a series of two regarding research aimed at providing a modelling approach, which can 

be used to model the behaviour of SFRC concrete and SFRC ground slabs. Here, an improved 

generalized analytical method is presented to determine the tensile stress-strain (σ-ε) response 

using an inverse analysis. The tensile σ-ε response is determined using either the experimental 

moment-curvature (M-φ) or load-deflection (P-δ) responses. The validity of the inverse analysis 

is evaluated by comparing calculated and measured tensile σ-ε responses. The tensile σ-ε 

response is subsequently utilized in nonlinear finite element analysis of a SFRC beam with the 

purpose of examining the tensile σ-ε relationship. The calculated results compare well with the 

experimental observations.  
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Introduction 

Steel Fibre Reinforced Concrete (SFRC) is a composite material consisting of a concrete matrix 

containing a random dispersion of steel fibres. A comparison between SFRC and counterpart 

plain concrete shows that SFRC exhibits superior mechanical properties, such as increase in 

total energy absorption prior to complete separation (Johnston, 1985), improved fatigue 

resistance (Johnston and Zemp, 1991), larger impact strength (Banthia et al., 1995) and higher 

shear strength (Jindal, 1984, Minelli and Vecchio, 2006). The improvement of the mechanical 

properties of SFRC can be attributed to the localized reinforcing effect of steel fibres, enhanced 

by either (a) resistance to crack extension provided near a crack tip as steel fibres possess much 

higher strength compared to their surrounding concrete (Parker, 1974), or (b) crack bridging 

effect due to steel fibres transmitting stresses across the crack (Bekaert, 1999). Consequently, 

the localized reinforcing capability of steel fibres is greatly dependent on fibre-matrix 

interaction as well as the steel fibre properties (i.e., texture, strength and end shape), content, and 

orientation with respect to the direction of crack propagation. 

 

Since steel fibres are mostly effective upon cracking, analysis aiming at ultimate load-carrying 

capacity needs to proceed beyond the initial cracking stress of the material. Such an analysis 

may be performed by utilizing non-linear finite element methods (NLFEM). A proper 

representation of concrete cracking behaviour and an appropriate constitutive material law are 

the most essential aspects for a successful non-linear finite element analysis (NLFEA). The 

smeared crack approach, widely used to study the cracking behaviour of conventionally 

reinforced concrete, can effectively be incorporated to analyze SFRC. In the smeared crack 

approach, a crack is considered as an infinite number of parallel fissures across a specified part 

of the finite element (FE). Based on the state of the crack, different formulations are available 

for the smeared crack approach including: single-fixed crack, rotating crack and multiple fixed 

crack.  

 

Several methods were proposed in literature to determine the tensile stress-strain (σ-ε) response 

of the SFRC. Lim et al. (1987a and b) developed a tensile σ-ε  response using laws of mixture 

and results from steel fibre pullout tests. The response of a volume-weighted sum of concrete 

and steel fibres was used to determine the SFRC behaviour. The post-cracking strength was 
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determined using the ultimate pullout bond strength. Using laws of mixture to determine the pre-

peak behaviour for concrete with relatively low steel fibre contents have been criticized by 

Soroushian and Bayasi (1987) who considered the effect of steel fibres at this stage to be 

negligible. A kin method, with some modification, was also adopted by Lok and Xiao (1998). 

Nemegeer (1996) and RILEM TC 162-TDF (2002) proposed a tensile σ-ε response that uses 

results from a deformation-controlled beam-bending test to determine the peak and post-

cracking stresses. In the RILEM TC 162-TDF (2002) method, strains corresponding to these 

stresses were empirically estimated as fixed values. The main shortcoming of the RILEM tensile 

σ-ε response lies in the accuracy of the procedure used to determine the load at initiation of the 

crack on a measured load-deflection (P-δ) response, not to mention, the assumptions made for 

the calculation of the post-cracking strength (Tlemat et al., 2006).  

 

The availability of steel fibres with a variety of physical and mechanical properties, as well as 

the use of a range of fibre contents, tend to complicate the determination of the tensile σ-ε 

response of SFRC. The further complexities of testing concrete in direct tension and measuring 

stresses and strains may be the reasons for the many proposed material models. The current 

international drive for establishing tensile σ-ε relationships for SFRC has, however, shifted 

towards inverse analysis, i.e., backcalculation, techniques. In these techniques the flexural 

response obtained from beam-bending tests is used to backcalculate the tensile σ-ε relationship. 

Elsaigh et al. (2004) proposed a method to determine the tensile σ-ε relationship for SFRC 

utilising experimental results obtained from beam third-point tests. Alena et al. (2004) have 

concurrently proposed a similar method. Østergaard and Olesen (2005) and Østergaard et al. 

(2005) have also proposed an inverse analysis method based on the so called “non-linear hinge 

concept” initially described by Olesen (2001).  The merit of the inverse analysis procedures is 

that they require measured M-φ or P-δ responses obtainable with minimal testing complexities 

compared to procedures requiring results from direct tensile tests. In addition, these methods 

adopt a macro approach since the influence of the steel fibre parameters and the concrete matrix 

are reflected in the measured M-φ or P-δ responses. This is an advantage compared to 

procedures utilising a micro approach in which the fibre properties, the concrete matrix 

characteristics and the fibre-matrix interaction have to be known.  
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This paper is the first in a series of two regarding research conducted by Elsaigh (2007) aimed at 

providing a modelling approach that can be used to analyze SFRC ground slabs and eventually 

promote the material use in concrete pavements. The main objective of this paper is to propose 

and verify a modified inverse analysis method that can be used to determine the tensile σ-ε 

response for SFRC. In the method, proposed by Elsaigh et al. (2004), it was postulated that the 

deflection of a simply supported beam is only due to bending stresses and the effect of shear 

stresses was not considered. This is because their effect on deflection of beams is usually 

relatively small compared to the effects of flexural deformations. However, for beam specimens 

of the type normally specified for laboratory testing, the span-depth ratio lies in the range of 3 to 

4 and therefore shear stresses will contribute significantly to the total deflections of the beam. 

The modified method, taking the effect of shear stresses into account, will be briefly described 

here while the back-calculated tensile σ-ε response and results obtained from NLFEA of the 

beam will be used in a subsequent analysis involving a SFRC ground slab manufactured using 

similar material as in the beam. The analyzes of the SFRC ground slab will be presented in a 

separate paper. 

 

Inverse Analysis method 

In the analysis the M-φ and the P-δ responses are derived by assuming a σ-ε response. A trial 

and error technique is followed, by adjusting the σ-ε relationship until the analytical results fit 

the experimental results for either M-φ or P-δ. In the analysis, the following three-step procedure 

is used to calculate the P-δ response of SFRC beams:  

(1) Assume a σ-ε relationship for the SFRC. 

(2) Calculate the M-φ response for a section; and  

(3) Calculate the P-δ response for an element.  

At the end of either steps (2) or (3) the results from the analysis are compared to experimental 

results and adjustments are made to the σ-ε response until the analytical and experimental 

results agree within acceptable limits.  
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Proposed stress-strain relationship  

The shape of the proposed σ-ε relationship used in this analysis is shown in Fig. 1. σt0 and εt0 

represents the cracking strength and the corresponding elastic strain. σtu and εt1 represents the 

residual stress and the residual strain at a point where the slope of softening tensile curve 

changes. εtu is the ultimate tensile strain. E is Young’s modulus for the SFRC. σcu and εco are the 

compressive strength and the analogous elastic strain. εcu is the ultimate compressive strain. The 

proposed tensile response is similar in shape to that proposed by RILEM TC 162-TDF (2002) 

while the compression response is assumed linear elastic up to a limiting strain εc0 while 

assumed ideally plastic beyond this value. The mathematical form of the σ-ε relationship is 

expressed as follows: 
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Moment-curvature response 

The M-φ relationship at a section is calculated by assuming (a) the σ-ε relationship of the 

material is known; (b) plane sections perpendicular to the centre plane in the reference state 

remain plane during bending; and (c) internal stress resultants are in equilibrium with the 

externally applied loads. 

As part of the first assumption, the σ-ε relationship proposed in equations (1) is used and initial 

values are assumed for the parameters. The second assumption applies to slender beams and 

implies a linear distribution of strain so that the following relationships exist at a section (see 

Fig.2b): 

   bottop ah
y

a
yy εεε 








−
==)(                                                                                                (2) 

The final assumption is used to find the axial force F (which is equal to zero) and moment M 

(which is equal to the applied moment): 
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At a typical section there are two unknowns necessary to describe the strain distribution. For a 

given strain distribution the stresses at a section (see Fig.2c) can be calculated using the σ-ε 

relationship and equations (3) and (4) can be used to solve the two unknowns. The curvature at a 

section is given by: 
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The following procedure is followed to obtain the M-φ relationship: 

(1) A value is selected for the bottom strain εbot. 

(2) The top strain εtop is solved from equation (3) by following an iterative procedure in which 

εtop is changed until F = 0. 

(3) M and φ is calculated from equations (4) and (5), respectively. This produces one point on 

the   M-φ diagram. 

(4) A new εbot is selected and steps (1) to (3) are repeated to until sufficient points have been 

generated to describe the complete M-φ relationship. 

 

Load-deflection response 

The total deformation of a beam consists of two components: extension caused by the moments 

(ε.dx) and shear distortion (γ.dx) caused by the shear force (Refer to Fig.3). At any loading point 

during the loading process, the total deflection of a beam (δ ) is estimated as the sum of the 

deflection due to moments ( mδ ) and the deflection due to shear forces ( Vδ ). The unit-load 

method is used to obtain the total deflection by integrating curvature ( EIM=φ ) and shear 

strain ( GAshfV .=γ ) along the beam (Refer to equation 6). EI  is the flexural rigidity 

and shfGA  is the shearing rigidity of the beam (Gere and Timoshenko, 1991).  
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The deflections ( mδ ) due to moments are calculated from the distribution of the curvature (φ ) 

due to moment along the beam, where φ  replaces 
EI
Mu  in equation (6). Consider the beam in 

Fig.4b subjected to a variable load P. For moments up to the maximum moment Mm the 

curvature is obtained from the M-φ relationship in Fig.4a yielding the dashed line in Fig.4b. 

Beyond this point the analysis effectively switches to displacement control. It is assumed that 

material having reached Mm (part BC of the beam) will follow the softening portion of the M-φ 

relationship. For example; if the curvature in BC increases to φc, the moment will reduce to Mc. 

Equilibrium requires the moments in parts AB and CD of the beam to reduce and the material 

here is assumed to unload elastically, producing smaller curvatures for these parts. This is 

because tensile stresses on the end thirds of the beam decrease as the crack width in the middle 

third increases. 

 
The deflections ( Vδ ) due to shear forces were calculated from the distribution of shear strain 

(γ ) along the beam. Referring to the load configurations shown in Fig.5b, the shear deflection in 

the beam is due to the shear forces in part AB and CD.  The fact that these two parts unload 

elastically at the onset of the flexural cracks in part BC has resulted in less complexities 

compared to that followed for the M-φ analysis. At any stage throughout the loading process of 

the beam, shear strains on the γ−V  response shown in Fig.5a were calculated using the 

measured P-δ response by dividing the shear force by the shearing rigidity. This means that the 

effect of shear forces on deflection increases to reach the maximum at the peak load and 

decreases with increasing displacement beyond this peak load. The distribution of elastic shear 

strain (γ) through the depth of beams with uncracked rectangular sections is parabolic. As a 

result of shear strains, cross-sections of the beam that were originally plane surfaces become 

warped. For the beam setup in Fig.4b and Fig.5b, the shear deformation is zero in the constant 

moment zone (BC). For this reason, it is justifiable to use the bending formula derived for pure 

bending. The effects due to shear and moment were calculated separately. The superposition 

concept was used to calculate the total deflection as the sum of both effects.  
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It is generally accepted that the area under the tensile σ-ε curve represents the fracture energy. 

The characteristics of the softening part of the tensile σ-ε curve is largely dependent on the size 

of the element in which the crack occurs. When calculating the P-δ response using the method 

presented here, the beam was divided into three elements and the crack was smeared over the 

constant moment zone (part BC of the beam). It was also assumed that an infinite number of 

layers (elements) exist through the depth of the beam. Therefore element size should carefully 

be selected when using the calculated tensile σ-ε curve in FEA. The proposed method is 

numerically demanding and therefore most suitable for computer applications. The numerical 

solution capabilities of programs such as Mathcad (2001) can greatly assist in the 

implementation of the method. 

 

Validation of the analysis method 

 The experimental results obtained by Lim et al. (1987 a and b) are used to test the proposed 

analysis method. In their experimental work, they tested SFRC specimens in compression, direct 

tension and flexure. Results of specimens containing 0.5 percent by volume (40 kg/m3) of 

hooked-end steel fibres, with 0.5 mm diameter and 30 mm length, are discussed here. The 

average compressive strength and Young’s modulus for the SFRC were determined as 34 MPa 

and 25.4 GPa, respectively. 

 

The shape of the tensile σ-ε relationship is assumed as in Fig.1. The first estimation of for σt0, 

εt0, σtu, εt1, and εtu is made based on the results of parameter study conducted by Elsaigh et al. 

(2004). A trial-and-error procedure is followed to adjust these parameters until the calculated M-

φ and P-δ responses match the experimental responses. Fig.6 shows the tensile σ-ε relationships 

determined using the analysis method compared to measured response from a direct tension test. 

It is worth noting that no experimental data were recorded immediately beyond the maximum 

tensile stress. 

 

Fig.7 shows the correlations between calculated and experimental M-φ and P-δ responses. The 

point where the maximum tensile stress (2.8 MPa) in the material is first reached occurs in the 

pre-peak regions of both the M-φ and P-δ responses (see the arrows of Fig.7). This means that to 
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utilize the full tensile capacity of the material, the analysis should incorporate the non-linear 

material properties.  

 

Fig.8 shows the comparison between tensile σ-ε relationships, developed using the various 

models proposed by Lim et al. (1987 a), Nemegeer (1996) and Lok and Xiao (1998), to 

determine the tensile σ-ε relationship for the SFRC tested by Lim et al. (1987a). The comparison 

excluded the models developed by Vandewalle (2003) and Dupont and Vandewalle (2003), as 

they require results from notched beams test. The main difference between these four models is 

the value of the residual strain (εt1). The assumption made in the model of Lim et al. (1987 a) 

where εt1 is equal to the cracking strain (εt0) resulted in a larger divergence between the 

experimental and calculated M-φ response in the region immediately beyond the maximum 

moment. The higher value for σtu determined using the model developed by Nemegeer (1996) 

resulted in an increased moment for the last part of the M-φ response. The results indicate 

improved correlation between measured and backcalculated tensile σ-ε  and M-φ responses. 

 

Finite element analysis of the beam  

The analyzes carried out in this section utilize the experimental results for SFRC beams obtained 

by Elsaigh (2001). SFRC was manufactured by adding 15 kg/m3 of steel fibres to the concrete. 

The steel fibres used in this investigation were hooked-end wires with an aspect ratio 

(length/diameter) of 80, a length of 60 mm and a tensile strength of 1100 MPa. The average 

Young’s modulus and cube strength for the concrete were 28 GPa and 45 MPa, respectively. 

Three SFRC beam specimens, measuring 150 x 150 x 750 mm, were cast and water cured for 28 

days before testing. The beams were supported to span 450 mm and subjected to a third-point 

displacement-controlled load. The beam dimensions and the supported span length results in a 

span to depth ration of 3, consequently, the contribution of shear stresses, analogous to 

maximum load, is approximately 18 percent of the total deflection. MSC.Marc (2003), a 

general-purpose FEA programme, was used to analyze a SFRC beam with material properties 

and P-δ  responses as experimentally established. The FEA programme has the capability to 

analyze SFRC structures by utilising the cracking model for low-tension materials. This 

cracking model adopts single fixed crack formulations. A cracking subroutine is used to enable 

the input of a bilinear softening curve.  
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Geometry and boundary conditions 

Because of symmetry, only a half of the beam is analyzed. Element type 75 of MSC.Marc 

(2003) is used. It is a four-node thick shell element with six degrees of freedom per node: those 

are three displacements (∆X, ∆Y and ∆Z) and three rotations (θX, θY and θZ). The thickness is 

divided into an odd number of layers, with stress and stiffness states calculated at representative 

points through the thickness. Eleven layers were used for this analysis based on results from 

preliminary runs of the model. The boundary conditions and the geometry are shown in Fig.9. 

The geometry of the beam is generated using an element size of 150 x 150 mm and 150 x 75 

mm in the left and right sides of the applied load, respectively.  

 

The displacement-controlled loading was simulated by applying incremental displacements. The 

“time curve” concept available in MSC.Marc (2003) was used to ramp the applied displacement 

from zero to -5 mm in one time unit. The time unit was subdivided into a number of time steps, 

which determine the magnitude of the applied displacement increment. The magnitude of the 

time step was varied during the analysis to ensure that the resulting P-δ response in the post-

cracking region is captured sufficiently. For example: smaller displacement increments were 

specified at points in the σ-ε response where the slope changes. 

 

 Material model  

The average (or smeared) σ-ε response is determined for an element size of 150 x 150 mm (i.e. 

the crack is smeared over the middle part of the beam). The crack initiation is governed by the 

maximum tensile stress criterion, i.e, when the maximum principal tensile stress exceeds the 

cracking strength, a crack is formed. The occurrence of a crack in a particular direction is 

assumed not to affect the tensile strength of the material for stresses parallel to the crack. The 

tensile strength in a particular direction reduces based on the softening part of the tensile σ-ε 

response. Based on the single-fixed crack formulations provided in the MSC.Marc (2003), the 

orientation of the crack will be fixed throughout the analysis as soon as the material reaches the 

value of σt0. The adopted σ-ε relationship as well as the calculated P-δ responses are shown in 

Fig.10. Close agreement is found between the analytical and experimental P-δ responses.  
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The fracture energy for the elements having a width of 150 mm is the product of the area under 

the softening part of the tensile σ-ε curve and the crack smearing width (150 mm). If a smaller 

or larger FE size is to be used, the softening part of the σ-ε response will require some 

adjustment, as the fracture energy should remain unchanged. For example: for a smaller element 

size the area under the softening part of the σ-ε response needs to be increased until the product 

of the element width and the calculated area equals the fracture energy for element size of 150 x 

150 mm. An element size of 150 x 75 mm, i.e., the element to the right of the loads in Fig.9, 

would dissipate double of the fracture energy upon complete cracking compared to 150 x 150 

mm element. Since half of the beam is modelled, only half of its energy will be dissipated 

during the analysis, therefore, the use of an element size of 150 x 75 mm with the tensile σ-ε 

response of Fig.10 is justifiable. The appropriateness of finer mesh is investigated by using finite 

elements measuring 37.5 x 37.5 mm and the tensile σ-ε response shown in Fig. 10. The results 

indicated a relatively large discrepancy between experimental and calculated P-δ responses 

especially beyond the crack point (refer to Fig.11). 

  

The inverse analysis showed that compressive strains exceeded the elastic limit (εc0=1.6 × 10–3) 

only for deflections greater than 3 mm, i.e., a serviceability limit prescribed by the Japanese 

Institute of Concrete procedure (1983). Accordingly, within the desired practical part of the P-δ 

response, the behaviour was dominated by cracking while the compression side remained 

elastic. A linear elastic compressive σ-ε response is deemed to be sufficient for the FEA of this 

beam.  

 

Results of the finite element analysis 

In Fig.11 the computed P-δ response obtained using the developed FE model is compared to the 

experimental results. The computed P-δ response is generated by plotting double the sum of the 

reactions at loading points versus the vertical (Z-direction) deflection at the nodes of the 

symmetry line for the consecutive increments. The computed and the measured P-δ responses 

show a reasonable correlation.  
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Fig.12 shows the distribution of the strains and stresses through the depth of the analyzed SFRC 

beam. The linear strain distribution correlates well with the assumption made for the numerical 

method used to back-calculate the tensile σ-ε relationship. The stress distribution shows that the 

σ-ε relationship is reasonably represented through the depth of the beam. The analysis also 

shows that no plastic deformation has taken place in the compression side of the beam as the 

compressive strain and stress values are below the limits of 1.6 x 10-3 and 45 MPa, respectively. 

This affirms the result obtained from the inverse analysis and correlates well with the findings of 

the study conducted by Robins et al. (2001). 

 

Fig.13 shows the comparison between the input and the output tensile σ-ε responses extracted at 

the integration point (Ia) with respect to the layers 11 and 10 through the depth of the beam 

(refer to Fig.9). At the integration point, the output and the input responses are found to correlate 

well up to a point. For the layer 11 in the part of the curve beyond tensile strains of 0.004, the 

input and output tensile σ-ε response diverge. This seems to be caused by the numerical 

simulation used in which the direction of the crack is fixed once the crack initiates (single-fixed 

crack approach). It is worth noting that the peak load on the P-δ response corresponds to a 

tensile stress located in the softening part of the σ-ε relationship between εt0 and εt1. This 

supports the findings described in Fig.7 and Fig.10.  

 

The tensile stress in the elements to the left of the loading point were found to be less than the 

cracking stress at integration points named as (Ib) and (Ic). This indicates that the boundary value 

problem has enforced localisation of the crack in a single column of elements; therefore, the 

prescribed fracture energy is indeed dissipated computationally. 

 

Summary and conclusions  

The method presented here can be used to back-calculate tensile σ-ε using measured M-φ or P-δ 

responses obtainable with minimal testing complexities compared to stresses and strains. In 

addition, the method utilizes a macro approach, whereby, the influence of the steel fibre 

parameters and the concrete matrix are reflected in the measured M-φ or P-δ responses. This is 

of a considerable advantage compared to procedures utilizing a micro approach in which the 
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fibre properties, the concrete matrix properties and the fibre-matrix interaction have to be 

known.  

 

The back-calculated σ-ε response can be utilized in a NLFEA to model the behaviour of SFRC 

beams. The σ-ε response calculated using the developed numerical method is mesh size 

dependent. The area under the softening part of the σ-ε response is mostly dependent on the 

width of the element that lies between the applied loads in the third-point beam test used in the 

analysis. For NLFEA, the size of the FE should be selected based on this width, however, 

adjustments to the softening part are necessary if a smaller or larger FE size is used.  

 

The single fixed crack approach is found to be sufficiently accurate to model the cracking 

behaviour of the SFRC beams up to a serviceability deflection limit. 

 

The analysis confirmed that the point where the material first reaches its maximum tensile stress 

occurs in the pre-peak regions of both the M-φ  and  P-δ  responses. Hence, the analysis should 

proceed beyond the cracking stress in order to appropriately evaluate the load-carrying capacity 

of the SFRC structures.  

 

The maximum compressive stress in the beam falls within the linear elastic zone. The 

assumption of a linear-elastic compression σ-ε response is adequate for these SFRC structural 

members subject to flexure.  

 

Notations 

The following symbols are used in this paper: 

 A                    =        Area of beam cross-section. 

cE                   =        Young’s modulus for of the SFRC. 

 F                    =        Total force on a beam cross-section. 

 G                    =         Shear modulus. 

I                     =        Second moment. 

 Ia                              =        Integration point of a finite element. 

L                    =        Span of the beam. 
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 M                   =        Moment. 

 Mc                  =       Moment on the descending part of the moment-curvature relationship. 

LM                  =       Moments due to actual load. 

Mm                  =       Maximum moment. 

uM                 =        Moment due to a unit load. 

 P                   =        Vertical load. 

V                     =        Shear force. 

 Vc                            =        Shear force at any point on the shear force-shear strain relationship. 

LV                   =        Shear forces due actual load.      

 Vm                           =        Maximum shear force. 

uV                    =       Shear force due to a unit load. 

 X , Y, and Z   =       Orthogonal directions. 

 a                     =       Depth of neutral axis. 

b                      =       Width of a beam.  

 dx, dy             =       Length and width of differential element. 

shf                  =        Form factor for shear (equals 6/5 for rectangular section). 

 h                    =       Depth of a beam. 

 y                     =       Variable representing the depth from neutral axis. 

∆X, ∆Y and ∆Z  =       Displacement in the X, Y, and Z directions, respectively. 

 γ                      =       Shear strain.    

γc                     =        Shear strain at any point on the shear force-shear strain relationship. 

 γm                   =        Maximum shear strain. 

δ                      =       Deflection of elevated beam or slab. 

mδ                    =        Deflection due to moment. 

Vδ                    =       Deflection due to shear. 

 ε                     =       Strain. 

εbot                   =       Tensile strain at bottom ligament of the beam cross-section. 

 εc0                             =       Elastic limit for compressive strain. 

cuε                   =       Ultimate compressive strain. 
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0εt                   =       Cracking strain. 

 εt1                              =       Residual strain. 

εtop                             =       Compressive strain at top ligament of the beam cross-section.    

εtu                     =       Ultimate tensile strain. 

 θX, θY and θZ  =       Rotation in the X, Y and Z directions, respectively. 

λ                      =       Slope of the second softening part of the tensile stress-strain curve. 

 σ                     =       Stress. 

 σcu                  =        Compressive strength of SFRC. 

t0σ                   =       Cracking strength of a composite material.  

 σtu                  =       Residual stress.              

φ                   =      Curvature. 

φc                     =       Curvature on the descending part of the moment-curvature relationship. 

φm                    =        Curvature corresponding to the maximum moment (Mm).                           

ψ                     =        Slope of first softening part of the tensile stress-strain curve. 
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Fig.1: Proposed σ-ε response. 
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Fig.2: Stress and strain distributions at a section. 
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  Fig.3: Differential element from the beam. 



16/01/2011 01:09                                            22                                                                   

 
 
 

 m  c

 m

 c

M m

M m

M

M c

M c

P /2 P /2

(a) Moment-curvature relationship

(b) Moment and curvatures distributions 
for an applied load P

A DB C

M
P L


6

L /3 L /3 L /3

 
 
 Fig.4: Determination of the M-φ distribution along the beam. 



16/01/2011 01:09                                            23                                                                   

 
 
 
 

 

γγ mγ c

γ
γ

Vm

Vm

V

Vc

V c

P /2 P /2

(a) Shear force - shear strain relationship

(b) Shear forces and shear strain distributions 
for an applied load P

A DB C

V P
2

L /3 L /3 L /3

 
Fig.5: Determination of the shear-shear strain distribution along the beam. 
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       Fig.6: Calculated tensile σ-ε response to experimental results of Lim et al. (1987 b). 
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Fig.7: Experimental (Lim et al., 1987 a) and calculated M-φ and P-δ responses. 
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Fig.8: Correlation between tensile σ-ε responses determined using various models. 
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Fig.9: Mesh and boundary conditions for beam. 
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Fig.10: σ-ε and P-δ  responses for SFRC containing 15 kg/m3 hooked-end steel fibres. 
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Fig.11: Comparison between NLFEA and measured P-δ  responses. 
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Fig.12: Distribution of the strains and stresses through the depth of the beam. 
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 Fig.13: Comparison between input and output tensile σ-ε responses. 
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