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pressure, we refer to this 2D equivalent as the layer modulus91

(symbol γ ). This property has many analogies in other fields92

of study such as the “membrane stretching modulus” (also93

known as the “area-stretching elastic constant”) used in the94

study of lipid bilayer membranes21 and other soft materials.95

We use the EOS to extract fit parameters, including the layer96

modulus, for the monolayer systems of graphene (which we97

refer to as C) and boronitrene (also know as single-layer boron98

nitride, which we refer to as BN), and we also include results99

for Si, Ge, GeC, and SiC in the isostructural honeycomb struc-100

ture for comparison. We consider four graphene allotropes101

to test the possibility of 2D phase transitions from graphene.102

We also consider bilayer, trilayer, and four-layered graphene103

(henceforth denoted as two-graphene, three-graphene, and104

four-graphene) to discover if the EOS can indicate any trends.105

In all cases, the elastic properties are calculated and the EOS106

is used to predict intrinsic strength.107

In Sec. II, we present the theoretical concepts and equation108

of state used to investigate the two-dimensional systems as109

well as the computational parameters. In Sec. III we apply our110

methods to various 2D systems, and we present and discuss111

our findings. Lastly, in Sec. IV, we give our conclusions and112

suggest possible future work.113

II. THEORETICAL FRAMEWORK114

A. Two-dimensional equation of state115

The two-dimensional equivalent of bulk pressure is force116

per unit length (denotedF) where an in-plane hydrostatic force117

causes a uniform change in area of the two-dimensional lattice.118

Force per unit length is expressed as the first derivative of the119

energy with respect to surface area:120

F = −∂E

∂A
(1)

and has units N m−1. Positive F represents a hydrostatic 2D121

compression while negativeF represents a uniform stretching.122

The two-dimensional equivalent of the bulk modulus, which123

we refer to as the layer modulus, is then defined as124

γ = −A
∂F
∂A

. (2)

The bulk modulus represents the resistance of a bulk material125

to compression, whereas the layer modulus represents the126

resistance of a 2D material to stretching.127

In 1989, Hanfland et al. proposed a one-dimensional linear128

Murnaghan EOS22 to experimentally study the effect of bulk129

pressure on graphite. The equation related the change in lattice130

parameter r to the pressure as follows:131

r/r0 = [(β ′
0/β0) P + 1]−β ′

0 , (3)

where r could either be the in-plane parameter a or the out-of-132

plane parameter c and where133

β0 = −
(

∂P

∂ ln r

)
P=0

(4)

is the linear modulus with respect to bulk pressure and β ′
0134

is its pressure derivative. The layer modulus for a monolayer135

of graphitic material can be estimated by the in-plane linear 136

modulus using 137

γ0 � t β0

2
, (5)

where t is the layer thickness. 138

Using the procedure described by Birch in Ref. 23, one can 139

derive a similar two-dimensional EOS relating the applied F 140

to the surface area for any 2D material: 141

F = −2 γ0
{
ε + (1 − γ ′

0) ε2

+ 2
3 [(1 − γ ′

0)(2 − γ ′
0) + γ0 γ ′′

0 ] ε3
}
, (6)

where the equibiaxial Eulerian strain is given by 142

ε = 1

2

[
1 − A0

A

]
, (7)

and A0, γ0, γ ′
0, and γ ′′

0 are the equilibrium values for 143

the unit-cell area, layer modulus, the force per unit length 144

derivative, and the second derivative of the layer modulus at 145

F = 0. Integrating Eq. (6) with respect to A, we obtain the 146

energy EOS: 147

E(A) = E0 + 4 A0 γ0
{

1
2 ε2 + 1

3 (5 − γ ′
0) ε3

+ 1
6 [(1 − γ ′

0) (8 − γ ′
0) + γ0 γ ′′

0 + 18] ε4
}
, (8)

which can be fitted to hydrostatic expansion and compression 148

data to extract A0, γ0, γ ′
0, and γ ′′

0 . The resulting γ versus F 149

curve is then given by 150

γ (F) = γ0 + γ ′
0 F + 1

2 γ ′′
0 F2. (9)

151

The fitted energy versus area curves of various candidate 152

allotropes will give an indication of the presence of phase 153

transitions between structures. 154

B. Elastic theory 155

The four nonzero 2D elastic constants for square, rectan- 156

gular, or hexagonal lattices are c11, c22, c12, and c66 (using 157

the standard Voigt notation: 1-xx, 2-yy, 6-xy) where, due to 158

symmetry, the square and hexagonal structures have c11 = c22 159

and hexagonal structures have the additional relation that 160

c66 = 1
2 (c11 − c12). The units for the elastic constants are the 161

same as F . 162

In terms of these elastic constants, the layer modulus is 163

γ = 1
4 (c11 + c22 + 2 c12), (10)

the 2D Young’s moduli (in-plane stiffness) for strains in the 164

Cartesian [10] and [01] directions are 165

Y 2D
[10] = c11 c22 − c2

12

c22
and Y 2D

[01] = c11 c22 − c2
12

c11
, (11)

the corresponding Poisson’s ratios are 166

ν2D
[10] = c12/c22 and ν2D

[01] = c12/c11, (12)

and the 2D shear modulus is 167

G2D = c66. (13)

168
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Since these equations apply only to the underlying 2D169

lattice of the material, they ignore the fact that the material170

has an out-of-plane thickness t . They can be reexpressed in171

the bulk units of N m−2 by dividing the desired modulus by172

the material thickness.173

C. Computational details174

All calculations were done within the framework of175

density-functional theory24 using the projector augmented176

wave25 formalism as implemented in VASP.26 We used the177

Perdew-Burke-Ernzerhof (PBE) generalized gradient approx-178

imation (GGA) exchange-correlation functional27 except for179

multilayer graphene where the local-density approximation180

(LDA) was used since it better incorporates the bonding181

between layers. The k-point sampling was done on a 10×10×1182

Monkhorst-Pack28 grid for honeycomb and layered graphene183

structures. A grid of 4×4×1 was used for structures with 4 or184

8 atom unit cells and 2×2×1 for 18 atom unit cells. The total-185

energy calculations were converged to within 10−5 eV and186

the Fermi distribution function with a smearing parameter of187

0.2 eV was used to integrate the bands at the Fermi level. Each188

structure was relaxed so that the forces converged to within189

0.01 eV Å−1.190

In all cases, a kinetic-energy cutoff of 500 eV was used. For191

the monolayer materials and two-graphene, the unit-cell height192

was set to c = 15 Å in order to prevent spurious interactions 193

between unit cells repeating perpendicular to the layer plane. 194

A height of 20 Å was used for three-graphene and a height 195

of 30 Å was used for four-graphene to incorporate the extra 196

layers while still preventing these interactions. 197

Elastic constants were obtained using the method of least- 198

squares fit29 as implemented in the MedeA-MT module. 199

Phonon dispersions were obtained using the direct method 200

as implemented in the MedeA-PHONON30 module. 201

III. RESULTS AND DISCUSSION 202

A. Structures considered 203

In this study, we considered C, BN, SiC, GeC, Si, and Ge 204

in the honeycomb structure as well as the four allotropes of 205

graphene shown in Fig. 1. Multilayered graphene was also 206

studied to investigate layer effects. 207

The relaxed honeycomb structures gave lattice constants 208

calculated in GGA of 2.47, 2.51, 3.10, 3.24, 3.87, and 4.04 Å 209

for C, BN, SiC, GeC, Si, and Ge, respectively. These values are 210

in good agreement with the LDA results of 2.46, 2.51, 3.07, 211

3.22, 3.83, and 3.97 Å given by Ref. 12 with our values being 212

slightly higher as is expected with GGA. Graphene, BN, GeC, 213

and SiC are planar structures, whereas Si and Ge are buckled. 214

Sahin et al.12 calculated buckling parameters of �Si = 0.44 Å 215

(a) 2x2 supercell (b) 2x2 supercell

(c) 2x2 supercell (d) 2x2 supercell

FIG. 1. The four graphene allotropes: (a) C1 (pentaheptite) consisting of pentagons and heptagons, (b) C2 consisting of squares and
octagons, (c) C3 consisting of triangles and enneagons, and (d) C4 (graphdiyne) consisting of two acetylenic linkages between hexagons.
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and �Ge = 0.64 Å for Si and Ge which are similar to our216

values of 0.45 and 0.68 Å , respectively.217

Figure 1(a) shows the structure for C1 where the planar218

surface consists of distorted heptagons and pentagons with219

eight atoms per unit cell and cmm symmetry. This struc-220

ture, called pentaheptite, has been previously studied using221

tight-binding methods which predict it to be metallic.17,20
222

The relaxed optimized structure has unit-cell parameters of223

a = 7.48 Å and b = 4.75 Å with an internal angle of224

38.05◦ which corresponds to a rectangular conventional cell225

of a = 7.48 Å and b = 5.86 Å. This compares well with the226

values of a = 7.54 Å and b = 4.78 Å obtained by Ref. 17 and227

the conventional cell values of a = 7.56 Å and b = 5.70 Å228

obtained by Ref. 20. Each pentagon is symmetrical about a229

midline that bisects an angle of 105.4◦. The angles in circular230

order are 105.4, 106.9, 110.4, 110.4, and 106.9◦, all which231

are distorted from the ideal value of 108◦. Each heptagon is232

symmetrical about a midline bisecting an angle of 139.2◦ with233

angles in circular order of 139.2, 122.7, 130.4, 127.3, 127.3,234

130.4, and 122.7◦, all distorted from the ideal value of 128.6◦.235

The average bond distance is dC−C = 1.43 Å.236

The graphene allotrope C2 shown in Fig. 1(b) is predicted237

to be a planar metallic20 structure composed of squares238

connecting distorted octagons with four atoms per unit cell239

and p4m symmetry. The relaxed unit-cell lattice parameter of240

a = 3.45 Å compares well with the value of 3.47 Å obtained241

by Ref. 20. The internal angles for the octagons all have the242

same ideal value of 135◦ and the squares have dC−C = 1.46 Å.243

The average bond distance is dC−C = 1.44 Å.244

The graphene allotrope C3, shown in Fig. 1(c), is obtained245

from the honeycomb structure by replacing the second atom246

in the unit cell by a group of three atoms in an equilateral247

triangular cluster giving four atoms per unit cell with p3m1248

symmetry. The relaxed planar structure has a cell parameter249

of a = 3.84 Å with the triangle having dC−C = 1.40 Å. The250

average bond length is dC−C = 1.41 Å.251

The C4 shown in Fig. 1(d) is known as graphdiyne31 and252

consists of hexagons connected together by two acytylenic253

linkages in p6m symmetry forming a planar structure with an254

18 atom unit cell. This allotrope is predicted to be metallic20,32
255

and has recently been synthesized using a cross-coupling256

reaction.33 The relaxed structure has a lattice parameter257

of a = 9.47 Å which compares well with the value of258

9.44 Å obtained by Ref. 32 using a full-potential LDA linear259

combination of atomic orbitals method. Each hexagon has260

dC−C = 1.43 Å while the acytylenic linkages have C-C bond261

lengths going between each hexagon of 1.40, 1.23, 1.34, 1.23,262

and 1.40 Å.263

The monolayer and multilayered graphene structures used264

to study layer effects all had the same LDA calculated lattice265

parameter of a = 2.45 Å with the multilayered structures266

having a layer thickness of 3.33 Å in the conventional Bernal267

stacking arrangement.268

B. Mechanical properties269

Bulk equations of state such as the Birch equation are only270

valid for expansions and compressions in a range of ±10%271

about the equilibrium volume. The range of validity for our272

energy EOS was found by fitting energy versus unit-cell area273
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FIG. 2. EOS fit for graphene under hydrostatic strain showing
total energy vs relative area A/A0. Solid line shows the fit for all
14 calculated points in the range 0.9 < A/A0 < 1.7 (inset shows
detail), and dashed line shows the fit for the first nine points in the
range 0.9 < A/A0 < 1.1 extended to 1.7.

points for graphene. Calculations were done for 14 points in 274

the range of 90 to 170% of the expected equilibrium area. One 275

fit used nine points within 10% on either side of the expected 276

equilibrium point while a second fit used the entire range. 277

These are shown in Fig. 2 with the first fit shown as a dashed 278

line and the second shown as a solid line. Although both fits 279

overlap within the ±10% range, as shown by the inset plot 280

for this range, it is clear that the narrower fit deviates from 281

the calculated data points for predicted expansions beyond 282

about 130–140% of the equilibrium area. The first fit gave 283

EOS fit parameters of equilibrium lattice constant a = 2.47 Å, 284

layer modulus γ = 206.7 N m−1, force per unit length 285

derivative γ ′ = 4.33, double force per unit length derivative 286

γ ′′ = −0.0306 m N−1, and a cohesive energy per atom 287

pair of 15.2 eV while the second fit gave a = 2.47 Å, 288

γ = 207.1 N m−1, γ ′ = 3.93, γ ′′ = −0.0670 m N−1, and the 289
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FIG. 3. Force per unit length vs relative area (A/A0) for graphene
showing a dashed line for the curve predicted by the 0.9 < A/A0 <

1.1 EOS fit and a solid line for the 0.9 < A/A0 < 1.7 prediction.
Solid circles indicate calculated F .
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same cohesive energy. These fit parameters can be used in290

Eq. (6) to predict the F(A) curves for each fit. Figure 3 shows291

these curves for graphene using the two different sets of EOS fit292

parameters. The dashed line is the curve predicted by the first293

fit while the solid line is that for the larger fit. The solid data294

points are the force per unit length values calculated by VASP at295

each unit-cell area point. The figure shows that the two curves296

pass through the calculated F points up to A/A0 ∼ 1.10 but297

that the curve based on the larger fit deviates from the points298

beyond A/A0 ∼ 1.15. For this reason, it was decided to use299

the shorter range of ±10% to obtain EOS fit parameters for all300

materials.301

The EOS fits in the upper section of Table I for the mono-302

layer honeycomb structures are listed in order of decreasing303

layer modulus. They give lattice constant values that are304

identical to those obtained by structural relaxation. Our results305

show that graphene is the most resilient to stretching with306

a value of γC = 206.6 N m−1. This is in agreement with the307

estimated average value of 209.4 N m−1 derived from the value308

of β0 for graphite measured by Hanfland et al. with their linear309

Murnaghan EOS. Second is BN with γBN = 177.0 N m−1,310

which is about ∼85% of the value of graphene, which is the re-311

sult reflected in the values by Michel and Verberck.15,16 The re-312

sults for SiC and GeC are γSiC = 116.5 N m−1 and γGeC = 101.0313

N m−1, being 56 and 49% that of graphene, respectively.314

The values for the buckled materials are γSi = 44.5 N m−1
315

and γGe = 29.6 N m−1, which are substantially lower than316

the results for graphene and boronitrene. This establishes the317

relative expandability of these isostructural materials, with318

Ge being the most expandable and graphene the least, and it319

verifies that graphene and boronitrene are ideal materials to320

use in applications that require structural integrity and a rigid321

membrane.322

The results for the graphene allotropes are shown in323

the middle section of Table I and indicate that the layer324
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FIG. 4. Stress vs relative area (A/A0) for graphene showing a
dashed line for the 0.9 < A/A0 < 1.1 fit and a solid line for the
0.9 < A/A0 < 1.477 fit. Dotted and dash-dotted lines show predicted
maximum values for each fit, while the solid vertical line is the value
at which the phonon dispersion has an onset of a soft mode at K.

modulus decreases from C→C1→C2→C3→C4 with values 325

of γC1 = 192.3 N m−1, γC2 = 174.7 N m−1, γC3 = 326

153.2 N m−1, and γC4 = 110.2 N m−1. This establishes the 327

relative expandability of these graphene allotropes, with C4 328

being the most expandable and graphene the least. The EOS 329

fits shown in Fig. 5 show graphene as the most energetically 330

stable 2D carbon allotrope with a phase transition existing 331

from graphene to C4 at F = −7.0 N m−1. 332

The force per unit length derivatives of γ for the planar 333

structures have 4.33 � γ ′ � 5.33 and |γ ′′| < 0.075 m N−1. 334

This means that according to Eq. (9) the layer moduli for these 335

materials change in a similar near-linear manner in response 336

TABLE I. EOS fit parameters for honeycomb structures, graphene allotropes, and layered graphene (equilibrium area per atom pair A0 in
Å2, lattice constants a and b, relaxed interlayer distance t and buckling parameter � in Å, layer modulus γ0 in N m−1, γ ′

0 dimensionless, γ ′′
0 in

m N−1, and cohesive energy per atom pair Ecoh in eV).

A0 a b γ0 γ ′
0 γ ′′

0 Ecoh

C 5.277 2.47 206.6 4.33 − 0.0306 15.2
BN 5.468 2.51 177.0 4.37 − 0.0454 13.8
SiC 8.303 3.10 116.5 4.79 − 0.0688 11.2
GeC 9.068 3.24 101.0 5.33 − 0.0722 9.3
Si 12.959 3.87a 44.5 1.79 − 0.6826 7.2
Ge 14.171 4.04b 29.6 4.23 − 1.5710 5.8

C1 5.480 7.48 4.75 192.3 4.35 − 0.0338 14.7
C2 5.944 3.45 174.7 4.33 − 0.0361 14.2
C3 6.399 3.84 153.2 4.55 − 0.0511 13.8
C4 8.629 9.47 110.2 4.51 − 0.0742 13.7

Four-graphene (LDA) 5.187 2.45c 863.4 4.29 − 0.0072 17.0
Three-graphene (LDA) 5.187 2.45c 647.6 4.29 − 0.0096 17.0
Two-graphene (LDA) 5.187 2.45c 431.8 4.28 − 0.0146 17.0
Graphene (LDA) 5.186 2.45 215.9 4.28 − 0.0286 17.0

a� = 0.45.
b� = 0.68.
cAtom relaxation for 2D EOS gave t = 3.33.
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FIG. 5. EOS for graphene and four allotropes showing a phase
transition from graphene to C4 at F = −7.0 N m−1.

to small changes in F around their equilibrium structures.337

The buckled structures of Ge and Si react in a more parabolic338

manner with the layer modulus for Ge having more curvature339

than Si, since |γ ′′
Si| < |γ ′′

Ge|. This could be the result of the340

greater buckling in the structure for Ge.341

The lower section of Table I shows the LDA EOS fits342

for one-, two-, three-, and four-layered graphene. The layer343

modulus for two-graphene is exactly twice that of monolayer344

graphene with a value of 431.8 N m−1, while three-graphene345

and four-graphene have values exactly three times and four346

times as much, respectively. This establishes γ as a true347

property of layered structures with its value scaling with348

the number of atomic layers n as γ = 215.9 n. The material349

becomes more resilient to stretching with the addition of extra 350

layers as would be expected. All have values for γ ′ are around 351

4.28, indicating that to first order the layer moduli for these 352

layered structures all change by the same amount for the same 353

change inF . The values for γ ′′ are inversely proportional to the 354

number of layers scaling as γ ′′ = −0.0286/n. This indicates 355

that γ (F) becomes increasingly linear around the equilibrium 356

value with an increase in the number of layers. 357

The calculated cohesive energies per atom pair show a 358

general decreasing trend going down the column, with C 359

having the largest value and Si the lowest. Our values for 360

honeycomb C, BN, SiC, GeC, Si, and Ge are lower than the 361

values of 20.08, 17.65, 15.25, 13.23, 10.32, and 8.30 eV given 362

by Ref. 12 due to the underbinding nature of GGA. The C 363

allotropes have similar cohesive energies, as do the layered 364

graphenes. 365

C. Elastic properties 366

The two-dimensional elastic constants cij were obtained 367

by first doing a least-squares fit on various ab initio stress 368

calculations for carefully chosen strain states on the volume 369

unit cell to extract the bulk elastic constants.29 These were then 370

multiplied by the unit-cell height to obtain the corresponding 371

2D values. Due to the size of the unit-cell heights, all bulk 372

elastic constants containing 4 or 5 in their subscripts equated 373

to zero within the numerical error of the fit. Monolayer 374

materials also had all elastic constants containing 3 in their 375

subscripts calculated to zero. The elastic constants for the 376

various structures and other derived elastic properties are listed 377

in Table II. 378

TABLE II. Elastic properties for honeycomb structures, graphene allotropes, and layered graphene (elastic constants cij , shear modulus
G2D, calculated layer modulus γcalc, EOS-derived layer modulus given in brackets, Young’s modulus Y 2D in N m−1, and Poisson’s ratio ν

dimensionless).

c11 c22 c12 c66 = G2D γcalc Y 2D
[10] Y 2D

[01] ν[10] ν[01]

C This work 352.7 352.7 60.9 145.9 206.8 (206.6) 342.2 342.2 0.173 0.173
VASP (PBE)34 358.1 358.1 60.4 148.9a 209.3a 348 348 0.169 0.169
Estimated35 372.2 372.2 46.6 162.8 209.4 366.4 366.4 0.125 0.125

BN This work 289.8 289.8 63.7 113.1 176.8 (177.0) 275.8 275.8 0.220 0.220
Estimated36 270.0 270.0 56.2 106.9 163.1 258.3 258.3 0.208 0.208

SiC This work 179.7 179.7 53.9 62.9 116.8 (116.5) 163.5 163.5 0.300 0.300
GeC This work 154.7 154.7 47.5 53.6 101.1 (101.0) 140.1 140.1 0.307 0.307
Si This work 68.3 68.3 23.3 22.5 45.8 (44.5) 60.6 60.6 0.341 0.341

VASP (LDA)37 68.9 68.9 23.3 22.8a 46.1a 61.0 61.0 0.33 0.33
Ge This work 46.4 46.4 13.1 16.7 29.8 (29.6) 42.7 42.7 0.282 0.282

VASP (LDA)37 47.3 47.3 16.7 15.3a 32.0a 41.4 41.4 0.35 0.35

C1 This work 309.6 325.2 67.6 117.8 192.5 (192.3) 295.5 310.4 0.208 0.218
C2 This work 295.3 295.3 54.5 49.1 174.9 (174.7) 285.2 285.2 0.185 0.185
C3 This work 219.4 219.4 87.7 65.9 153.6 (153.2) 184.3 184.3 0.400 0.400
C4 This work 152.1 152.1 69.0 41.6 110.6 (110.2) 120.8 120.8 0.454 0.454

Four-graphene (LDA) This work 1456.2 1456.2 273.8 591.2 865.0 (863.4) 1404.7 1404.7 0.188 0.188
Three-graphene (LDA) This work 1091.9 1091.9 204.7 443.9 648.3 (647.6) 1053.5 1053.5 0.187 0.187
Two-graphene (LDA) This work 728.5 728.5 135.9 296.3 432.2 (431.8) 703.1 703.1 0.186 0.186
Graphene (LDA) This work 364.6 364.6 67.3 148.7 216.0 (215.9) 352.2 352.2 0.185 0.185

aCalculated from given elastic constants.
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In order to validate our method, we compared our results for379

C, BN, Si, and Ge to previous calculations and results based on380

available experimental data. The results for graphene compare381

very well with those of Ref. 34, which used a least-squares382

fit of Cauchy stress calculations done in VASP using the PBE383

GGA functional. As with our method, Ref. 34 converted bulk384

volume unit-cell values to planar values by multiplying by the385

cell height. As can be seen in Table II, the values in Ref. 34386

for the elastic constants, the moduli, and the Poisson ratio are387

very close to our results. Our values also compare reasonably388

well with those derived from elastic constant estimates taken389

from inelastic x-ray data for graphite,35 and our value of390

342.2 N m−1 for the 2D Young’s modulus compares well to the391

experimental value of 340 ± 50 N m−1 measured by Lee et al.13
392

The results for BN compare reasonably well with those derived393

from elastic constant estimates from inelastic x-ray data for394

hexagonal boron nitride.36 Our value of 275.8 N m−1 for the395

2D Young’s modulus is within the range of 200–500 N m−1
396

determined by Song et al.14 For the two nonplanar materials397

Si and Ge, the values for the elastic constants, moduli, and398

Poisson’s ratio compare very well with those calculated by399

Ref. 37, which used various strain-energy LDA calculations to400

obtain their elastic constants.401

What is immediately apparent about the values in Table II402

is that the γcalc values derived from the elastic constants are403

almost exactly the same as the layer modulus values obtained404

from the EOS fits (shown in brackets). This independently405

establishes that our EOS correctly determines the layer406

modulus for planar 2D materials as well as buckled and layered407

quasi-two-dimensional systems.408

The elastic properties for the six honeycomb systems409

are shown in the top section of Table II. All the moduli410

show a decreasing trend going down the columns from411

C→BN→SiC→GeC→Ge→Si. The Young’s moduli values412

of 342.2, 275.8, 163.5, 140.1, 60.6, and 42.7 N m−1 are in413

general agreement with the LDA values of 335, 267, 166,414

142, 62, and 48 N m−1 given by Ref. 12. The Poisson’s ratios415

show an increasing trend except where Ge and Si are switched416

due to Ge being more buckled. Since these structures are417

isostructural, these trends are indicative of the relative bonding418

strengths between the atoms, and not of the geometry of the419

materials, except in the case of Si and Ge where the added420

effect of surface buckling further reduces their elastic moduli.421

The elastic properties of the graphene allotropes are shown422

in the middle section. There is a clear decrease in Young’s423

modulus going down the columns, with C1 having the highest424

anisotropic values of Y 2D
[10] = 295.5 N m−1 and Y 2D

[01] =425

310.4 N m−1. Due to the fact that the pentagons are symmetri-426

cal about their y axis and the enneagons are symmetrical about427

their x axis, C1 is slightly more structurally rigid to elongations428

along the [01] direction. The averaged Young’s modulus of429

303.0 N m−1 is 88% that of graphene. Next is C2 with an430

isotropic value of 83% that of graphene. C1 and C2 have431

comparable Young’s moduli with C2 having a value 94% that432

of the averaged value for C1, indicating that they have a similar433

resilience to linear strain. C3 has a value 54% that of graphene434

and 65% that of C2. This is due to increased bond bending as435

compared to the previous structures. C4 has the lowest value,436

being 35% that of graphene and 66% that of C3. The long437

acetylenic linkages cause structural weakness compared with 438

the more compact structures. Graphene has the highest shear 439

modulus due to the fact that its honeycomb structure is very 440

rigid. The shear modulus of C1 is ∼81% that of graphene due 441

to its strong network of slightly distorted polygons. The shear 442

moduli of C2 and C3 are more than half that of graphene, 443

showing them to be more prone to bond bending under shear 444

strain. Even through C4 has a generalized honeycomb structure 445

similar to graphene, it has a shear modulus ∼30% that of 446

graphene due to the long acetylenic chains making up this 447

structure. The Poisson’s ratios for C3 and C4 are significantly 448

higher than C1 and C2 due to their structures lending more to 449

bond bending under uniaxial strain. These results show that of 450

all the allotropes metallic C1 would best compliment graphene 451

for nanoapplications since both have comparable moduli and 452

therefore similar hardness properties. 453

The last section of Table II shows the results for the layered 454

graphene structures. The elastic constants c11, c22, c12, and 455

c66 (and therefore all derived elastic moduli) scale in the 456

same manner as found for γ . This is seen in the experimental 457

results of Song et al.,14 who gave Young’s modulus values of 458

503 ± 30, 431 ± 21, and 223 ± 16 N m−1 for BN samples with 459

possible layer numbers of 5, 4, and 2. The moduli reflect this 460

scaling by having possible ratios of 5/4, 5/2, and 2 within the 461

experimental error. The Poisson ratios for the layered materials 462

are in the range 0.185� ν � 0.188, showing that the widths of 463

the materials all decrease the same with the same amount of 464

linear strain. 465

In general, the Young’s and shear moduli rank in the same 466

order as the layer modulus, showing that it is a good indication 467

of relative hardness. 468

D. Intrinsic strength 469

When a 2D material is stretched, the applied stress increases 470

with the strain until it reaches a maximum beyond which the 471

stress decreases. This extremum point indicates the isotropic 472

intrinsic stress and strain for the material at which point the 473

material fails. These values can be obtained by using Eq. (6) 474

with the fit parameters from the 2D EOS fit for a given material. 475

Figure 4 shows the stress (negative F) versus relative area 476

(A/A0) curves for graphene using two different EOS fits. The 477

dashed curve is from a fit over the range 0.9 < A/A0 < 1.1 and 478

predicts a breaking stress of 32.5 N m−1 at an area 47.7% larger 479

than the equilibrium value. The actual onset of a soft mode in 480

the phonon dispersion occurs when A/A0 = 1.340 (the solid 481

vertical line in Fig. 4), showing that this curve overestimates 482

A/A0 by 10.2%. The solid curve in Fig. 4 uses an EOS fit that 483

has the previously predicted relative area of 1.477 as an upper 484

bound. It predicts a slightly lower failure stress of 29.4 N m−1
485

at a relative area of 1.372. This predicted area is closer to the 486

phonon prediction, being only 2.4% higher. 487

The predicted results for our materials using this method are 488

summarized in Table III. The materials in the upper section are 489

listed in order of decreasing layer modulus. The relative area 490

and breaking stress xA and σA are based on a ±10% EOS fit 491

while xB and σB use the extended range. The predicted phonon 492

results for selected examples of planar, buckled, and layered 493
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TABLE III. Intrinsic strength based on EOS fits for honeycomb structures, graphene allotropes, and layered graphene (xA is the relative
area at failure from the EOS fit over 0.9 < A/A0 < 1.1, σA is the hydrostatic stress at failure from the same fit in N m−1, xB is the relative area
at failure from the EOS fit over 0.9 < A/A0 < xA, σB is the hydrostatic stress at failure from the same fit in N m−1, xphonon is the relative area
where the first onset of a soft mode occurs in the phonon dispersion, and RD is the relative percentage difference between xB and xphonon).

xA σA xB σB xphonon RD (%)a

C 1.477 32.5 1.372 29.4 1.340 2.4
BN 1.487 28.0 1.407 26.0 1.365 3.1
SiC 1.414 16.4 1.253 13.3 1.427 − 12.2
GeC 1.449 13.9 1.244 10.5 1.386 − 10.2
Si 1.301 6.6 1.201 4.9 1.420 − 15.4
Ge 1.200 2.9 1.239 3.2 1.430 − 12.7

C1 1.469 30.0 1.278 24.3 1.309 − 2.4
C2 1.464 27.5 1.298 22.7 1.309 − 0.8
C3 1.422 22.3 1.304 19.4 1.308 − 0.3
C4 1.414 16.0 1.307 14.0

Four-graphene (LDA) 1.481 137.0 1.381 125.0
Three-graphene (LDA) 1.481 102.8 1.381 93.8 1.32 4.6
Two-graphene (LDA) 1.478 68.4 1.381 62.5 1.363 1.3
Graphene (LDA) 1.483 34.4 1.383 31.3 1.363 1.5

aRelative difference,
xB−xphonon

xphonon
× 100%.

materials are compared to the EOS predictions by calculating494

the relative percentage difference between the two.495

The results in the upper two sections of Table III show496

that C, BN, C1, C2, and C3 give predictions no greater than497

∼3% off the phonon results while the results for SiC, GeC, Si,498

and Ge are more than 10% off. Of the elemental honeycomb499

structures C, Si, and Ge, only the buckled structures show500

a vast discrepancy between the EOS predictions and phonon501

results. Of the binary structures, only SiC and GeC have vast502

discrepancies between EOS and phonon predictions. Whereas503

BN contains atoms of comparable mass, SiC and GeC contain504

atoms with large mass differences. The layered materials of505

two-graphene and three-graphene show predicted EOS values506

no more than 5% off the phonon values. We suggest that507

the discrepancies are due to anharmonic effects that are not508

accounted for by the phonon calculations when the structures509

are extended too far from their equilibrium states.510

The honeycomb structures in the upper section of511

Table III show decreasing intrinsic stress σB in the same512

ranking order as their layer moduli, with graphene having513

the highest value of 29.4 N m−1. Boronitrene is second with a514

comparable breaking stress of 26.0 N m−1. The values for SiC515

and GeC are 45 and 36% that of C. Si and Ge have the lowest516

values of 17 and 11% that of graphene.517

The ordering of the intrinsic relative area xB goes in518

decreasing order from BN→C→SiC→GeC→Ge→Si. BN519

and graphene both fail at areas ∼40% greater than their520

equilibrium values though at different stresses. SiC, GeC, and521

Ge fail at areas 24–25% greater while Si fails at a relative522

area 20% higher than its equilibrium value, about half that523

of BN and C. Ge has a higher intrinsic strain than Si even524

though it fails at a lower stress since it is more buckled. These525

results indicate that C and BN are able to withstand greater526

isotropic strains than the other honeycomb materials at higher527

stresses, a result reflected by their relatively high layer modulus528

values.529

The intrinsic stress values of the four graphene allotropes, 530

shown in the middle section of Table III, decrease from 531

C1→C2→C3→C4, with C1 having a value 83% that of 532

graphene, C2 (77%), C3 (66%), and C4 (48%). This correlates 533

well with the ordering of their layer moduli. All of the 534

structures fail at approximately the same strain with an area 535

∼30% higher than their equilibrium values. This is slightly 536

lower than graphene, once again showing the honeycomb 537

structure to be the strongest. 538

As with the elastic moduli, the intrinsic stress values of 539

the layered graphene structures, shown in the lower section 540

of Table III, scale with the number of layers. The values 541

scale on average as σ = 31.2 n where n is the number of 542

layers present while the relative area at failure remains fixed 543

at ∼1.38, indicating that these structures all fail at the same 544

lattice parameter of a = 2.88 Å. This shows that each added 545

layer increases the strength of the multilayered structure but 546

does not increase the amount of stretching the structure can 547

withstand. 548

IV. CONCLUSIONS 549

In this paper we proposed an equation of state (EOS) 550

for 2D materials that equates 2D pressure (force per unit 551

length F) with a change in surface area. This was then used to 552

fit energy versus area data to extract equilibrium fit parameters 553

including the layer modulus (symbol γ ), which measures a 554

material’s resilience to hydrostatic stretching. We give results 555

for the monolayer systems of graphene and boronitrene, and 556

we also include results for Si, Ge, GeC, and SiC in the 557

isostructural honeycomb structure for comparison. For these 558

structures, the layer moduli were ranked, showing graphene 559

to be the most resilient to stretching with γC = 206.6 N m−1
560

followed by boronitrene with a value of γBN = 177.0 N m−1. 561

The buckled structures of Si and Ge were found to be the 562

least resilient. It was found that γ (F) around F= 0 is more 563
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linear for planar structures and more parabolic for buckled564

structures. We considered four graphene allotropes including565

pentaheptite and graphdiyne. For the graphene allotropes, the566

ranking for γ in decreasing order went C1→C2→C3→C4567

with C1 (pentaheptite) having a value comparable to graphene.568

C4 (graphdiyne) was shown to be the softest of the four. The569

EOS fits for these structures showed a phase transition from570

graphene to C4 at a force per unit length of −7 N m−1. We571

considered multilayered graphene, and it was found that the572

curve γ (F) is more linear aroundF = 0 as the number of layers573

is increased. The planar elastic constants for all the structures574

were calculated, and it was found that the layer modulus575

derived from the elastic constants matched those from the EOS576

fits, thereby independently verifying the EOS. It was also found577

that, in general, the other moduli rank according to the layer578

modulus. The EOS was used to predict the isotropic intrinsic579

strength of the various structures. The results show that the580

intrinsic stress correlated well with the layer modulus, with581

graphene having the highest intrinsic strength of 29.4 N m−1
582

closely followed by boronitrene with 26.0 N m−1.583

Based on these results, we conclude that the layer modulus 584

is a good indicator of relative hardness in planar, buckled, and 585

layered 2D structures and that our proposed EOS correctly 586

extracts this value as one of its fit parameters. We also 587

conclude that the EOS is a useful tool to investigate a materials 588

response to F and can be used to look for possible phase 589

transitions. 590

Future work includes using the EOS to test how the 591

adsorption of H atoms on graphene and bilayer graphene 592

effects their strength and response to in-plane stretching. 593
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