Mechanical properties of graphene and boronitrene

R. C. Andrew,” R. E. Mapasha,! A. M. Ukpong,' and N. Chetty'?
LPhysics Department, University of Pretoria, Pretoria 0002, South Africa
INational Institute for Theoretical Physics, Johannesburg 2000, South Africa

We present an equation of state (EOS) that describes how the hydrostatic change in surface area is related to
two-dimensional in-plane pressure () and yields the measure of a material’s resilience to isotropic stretching
(the layer modulus y) as one of its fit parameters. We give results for the monolayer systems of graphene and
boronitrene, and we also include results for Si, Ge, GeC, and SiC in the isostructural honeycomb structure for
comparison. Our results show that, of the honeycomb structures, graphene is the most resilient to stretching with
a value of yc = 206.6 N m™!, second is boronitrene with yy = 177.0 N m~!, followed by ygc = 1165 Nm™!,
Yaec = 101.0Nm™, y5 = 445 Nm™', and yge = 29.6 N m~!. We calculate the Young’s and shear moduli
from the elastic constants and find that, in general, they rank according to the layer modulus. We also find that
the calculated layer modulus matches the one obtained from the EOS. We use the EOS to predict the isotropic
intrinsic strength of the various systems and find that, in general, the intrinsic stresses also rank according to
the layer modulus. Graphene and boronitrene have comparable strengths with intrinsic stresses of 29.4 and
26.0 N m™!, respectively. We considered four graphene allotropes including pentaheptite and graphdiyne and
find that pentaheptite has a value for y comparable to graphene. We find a phase transition from graphene to
graphdiyne at 77 = —7.0 N m~!. We also consider bilayer, trilayer, and four-layered graphene and find that the

addition of extra layers results in a linear dependence of y with F.

I. INTRODUCTION

The remarkable properties of diamond are wide ranging and
very well known.! Over the years a keen interest in diamond
generated a very extensive search for diamond-related
materials with similar properties to diamond and especially of
its hardness. For instance, cubic boron nitride is a historically
important material because of its diamondlike properties® and
now it is produced on an industrial scale.

The bulk modulus for cubic boron nitride is in the range
of 369 to 400 GPa,j* whereas that for diamond is 442 GPa.’
Other materials with good strength properties that are modeled
on diamond (the bulk modulus in GPa is in brackets) include
SisNy (290)° and C3Ny4 (496),” both in the spinel structures,
and SiC (211),> AIN (212),% and GaN (202)’ in the zinc-blend
structures. Some of these structures are only accessible under
conditions of high pressure, for example Si3Ny.

With the recent discoveries of graphene,!” a two-
dimensional (2D) allotrope of carbon in the honeycomb
structure and of boronitrene,!! also in the honeycomb structure,
one is once again alerted to the isostructural nature of these
elements which prompts questions about the relative hardness
and strength of these materials. The resistance to uniaxial
strain (the 2D Young’s modulus) of graphene and boroni-
trene has been compared theoretically'? and experimentally
measured,'*'* showing that graphene is the stronger material
in this respect. A 2D bulk modulus has been calculated for both
materials based on empirically derived elastic constants,!>'®
and it is apparent that boronitrene has a value of approximately
85% of the value for graphene. The full significance of this
result and how it describes the reaction of these materials
to conditions of applied 2D pressure (which we refer to as
force per unit length F) has not been investigated. Also,
since graphene and boronitrene are, in effect, among the
first two-dimensional systems to be synthesized, the notion

of hardness in two-dimensional systems is yet to be fully
investigated and tested. For example, while three-dimensional
crystal systems are compliant to positive isotropic pressure, it
is generally considered not feasible to apply negative isotropic
pressure in a carefully controlled manner to three-dimensional
systems. Two-dimensional systems, on the other hand, open
the prospects of applying a negative F, which amounts to a
uniform stretch of the material. In fact, it could be argued
that stretching a two-dimensional material is mechanically
more stable than uniformly compressing it in two dimen-
sions. Stretching constrains the system in two dimensions,
whereas compressing could result in buckling. Because of
this latter point, it is essential that one views graphene and
boronitrene as quasi-two-dimensional systems rather than
truly two-dimensional systems. Also, puckering can occur for
example by the inclusion of adatoms. Notwithstanding this,
both stretching and compressing forces can, in principle, be
applied in the plane of a two-dimensional material, and this
opens a new terrain for investigating the mechanical properties
of these materials. For instance, although the 2D bulk modulus
is readily computed from the elastic constants, there exists no
equation of state (EOS), as is the case for bulk materials,
where this property can be deduced from the relationship of
the hydrostatic change in surface area to F. The possibility
of 2D allotropes, as in the case of graphene,'” " also poses
the question of whether phase transitions exist between these
structures, something which can easily be tested by an EOS.
In this paper, we present an EOS applicable to 2D structures
which provides a simple way to calculate the 2D bulk modulus.
This modulus is a measure of the material’s resilience to an
externally applied isotropic F that is applied in two dimen-
sions. It has units of force per unit length (N m~') and may be
defined for a single layer as well as for multilayers. Because
of this and the fact that a bulk modulus is associated with bulk
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pressure, we refer to this 2D equivalent as the layer modulus
(symbol y). This property has many analogies in other fields
of study such as the “membrane stretching modulus” (also
known as the “area-stretching elastic constant”) used in the
study of lipid bilayer membranes?' and other soft materials.

We use the EOS to extract fit parameters, including the layer
modulus, for the monolayer systems of graphene (which we
refer to as C) and boronitrene (also know as single-layer boron
nitride, which we refer to as BN), and we also include results
for Si, Ge, GeC, and SiC in the isostructural honeycomb struc-
ture for comparison. We consider four graphene allotropes
to test the possibility of 2D phase transitions from graphene.
We also consider bilayer, trilayer, and four-layered graphene
(henceforth denoted as two-graphene, three-graphene, and
four-graphene) to discover if the EOS can indicate any trends.
In all cases, the elastic properties are calculated and the EOS
is used to predict intrinsic strength.

In Sec. II, we present the theoretical concepts and equation
of state used to investigate the two-dimensional systems as
well as the computational parameters. In Sec. III we apply our
methods to various 2D systems, and we present and discuss
our findings. Lastly, in Sec. IV, we give our conclusions and
suggest possible future work.

II. THEORETICAL FRAMEWORK

A. Two-dimensional equation of state

The two-dimensional equivalent of bulk pressure is force
per unitlength (denoted F) where an in-plane hydrostatic force
causes a uniform change in area of the two-dimensional lattice.
Force per unit length is expressed as the first derivative of the
energy with respect to surface area:

F=—-—— 1
A M
and has units N m~!. Positive F represents a hydrostatic 2D
compression while negative J represents a uniform stretching.
The two-dimensional equivalent of the bulk modulus, which
we refer to as the layer modulus, is then defined as
oF
=—-A—. 2
14 9A 2)
The bulk modulus represents the resistance of a bulk material
to compression, whereas the layer modulus represents the
resistance of a 2D material to stretching.

In 1989, Hanfland et al. proposed a one-dimensional linear
Murnaghan EOS?? to experimentally study the effect of bulk
pressure on graphite. The equation related the change in lattice
parameter r to the pressure as follows:

r/ro = [(By/Bo) P + 1175, 3)

where r could either be the in-plane parameter a or the out-of-
plane parameter ¢ and where
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is the linear modulus with respect to bulk pressure and
is its pressure derivative. The layer modulus for a monolayer

of graphitic material can be estimated by the in-plane linear
modulus using

Yo = -, (&)

where ¢ is the layer thickness.

Using the procedure described by Birch in Ref. 23, one can
derive a similar two-dimensional EOS relating the applied F
to the surface area for any 2D material:

F==2ple+A-y)e

+ 310 = )2 =y + e}, 6)
where the equibiaxial Eulerian strain is given by
€= 1 [1 — ﬂ} , @)
2 A

and Ao, o, ¥y, and y; are the equilibrium values for
the unit-cell area, layer modulus, the force per unit length
derivative, and the second derivative of the layer modulus at
F = 0. Integrating Eq. (6) with respect to A, we obtain the
energy EOS:

E(A)=Ey+4Aon {36 +16—y)e

+ =) B =y + 1y +181€},  (8)

which can be fitted to hydrostatic expansion and compression
data to extract Ao, yp, ¥y, and y;. The resulting y versus F
curve is then given by

y(F) =y + v F+ 1y 72 ©)

The fitted energy versus area curves of various candidate
allotropes will give an indication of the presence of phase
transitions between structures.

B. Elastic theory

The four nonzero 2D elastic constants for square, rectan-
gular, or hexagonal lattices are cy1, 22, C12, and cgg (using
the standard Voigt notation: 1-xx, 2-yy, 6-xy) where, due to
symmetry, the square and hexagonal structures have c;; = ¢
and hexagonal structures have the additional relation that
Ce6 = %(c” — ¢12). The units for the elastic constants are the
same as F.

In terms of these elastic constants, the layer modulus is

y = %(011 +cn +2c12), (10)

the 2D Young’s moduli (in-plane stiffness) for strains in the
Cartesian [10] and [01] directions are

2 2
Ci1Cx —C Cl1Cx —C
Y[zllg] =—= 12 and Y[%ll)] =—= 12 (1)

c C11

the corresponding Poisson’s ratios are
2D 2D
Vo) = ci2/c2  and Vo = ciz/cn, (12)
and the 2D shear modulus is

G?P = cg. (13)



Since these equations apply only to the underlying 2D
lattice of the material, they ignore the fact that the material
has an out-of-plane thickness . They can be reexpressed in
the bulk units of N m~2 by dividing the desired modulus by
the material thickness.

C. Computational details

All calculations were done within the framework of
density-functional theory?* using the projector augmented
wave” formalism as implemented in VASP.>® We used the
Perdew-Burke-Ernzerhof (PBE) generalized gradient approx-
imation (GGA) exchange-correlation functional?’ except for
multilayer graphene where the local-density approximation
(LDA) was used since it better incorporates the bonding
between layers. The k-point sampling was done ona 10x 10x 1
Monkhorst-Pack?® grid for honeycomb and layered graphene
structures. A grid of 4x4x 1 was used for structures with 4 or
8 atom unit cells and 2x2x 1 for 18 atom unit cells. The total-
energy calculations were converged to within 107> eV and
the Fermi distribution function with a smearing parameter of
0.2 eV was used to integrate the bands at the Fermi level. Each
structure was relaxed so that the forces converged to within
0.01eV A~

In all cases, a kinetic-energy cutoff of 500 eV was used. For
the monolayer materials and two-graphene, the unit-cell height

was set to ¢ = 15 A in order to prevent spurious interactions
between unit cells repeating perpendicular to the layer plane.
A height of 20 A was used for three-graphene and a height
of 30 A was used for four-graphene to incorporate the extra
layers while still preventing these interactions.

Elastic constants were obtained using the method of least-
squares fit* as implemented in the MedeA-MT module.
Phonon dispersions were obtained using the direct method
as implemented in the Mede A-PHONON?" module.

III. RESULTS AND DISCUSSION

A. Structures considered

In this study, we considered C, BN, SiC, GeC, Si, and Ge
in the honeycomb structure as well as the four allotropes of
graphene shown in Fig. 1. Multilayered graphene was also
studied to investigate layer effects.

The relaxed honeycomb structures gave lattice constants
calculated in GGA of 2.47, 2.51, 3.10, 3.24, 3.87, and 4.04 A
for C, BN, SiC, GeC, Si, and Ge, respectively. These values are
in good agreement with the LDA results of 2.46, 2.51, 3.07,
3.22,3.83, and 3.97 A given by Ref. 12 with our values being
slightly higher as is expected with GGA. Graphene, BN, GeC,
and SiC are planar structures, whereas Si and Ge are buckled.
Sahin et al.'? calculated buckling parameters of Ag; = 0.44 A

(a) 2x2 supercell

(c) 2x2 supercell

(b) 2x2 supercell
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(d) 2x2 supercell

FIG. 1. The four graphene allotropes: (a) C1 (pentaheptite) consisting of pentagons and heptagons, (b) C2 consisting of squares and
octagons, (c) C3 consisting of triangles and enneagons, and (d) C4 (graphdiyne) consisting of two acetylenic linkages between hexagons.



and Age = 0.64 A for Si and Ge which are similar to our
values of 0.45 and 0.68 A , respectively.

Figure 1(a) shows the structure for C1 where the planar
surface consists of distorted heptagons and pentagons with
eight atoms per unit cell and cmm symmetry. This struc-
ture, called pentaheptite, has been previously studied using
tight-binding methods which predict it to be metallic.'”-*
The relaxed optimized structure has unit-cell parameters of
a = 748 A and b = 4.75A with an internal angle of
38.05° which corresponds to a rectangular conventional cell
of a =7.48 A and b = 5.86 A. This compares well with the
values of a = 7.54 A and b = 4.78 A obtained by Ref. 17 and
the conventional cell values of a = 7.56 A and b = 5.70 A
obtained by Ref. 20. Each pentagon is symmetrical about a
midline that bisects an angle of 105.4°. The angles in circular
order are 105.4, 106.9, 110.4, 110.4, and 106.9°, all which
are distorted from the ideal value of 108°. Each heptagon is
symmetrical about a midline bisecting an angle of 139.2° with
angles in circular order of 139.2, 122.7, 130.4, 127.3, 127.3,
130.4, and 122.7°, all distorted from the ideal value of 128.6°.
The average bond distance is de_¢ = 1.43 A.

The graphene allotrope C2 shown in Fig. 1(b) is predicted
to be a planar metallic®® structure composed of squares
connecting distorted octagons with four atoms per unit cell
and p4m symmetry. The relaxed unit-cell lattice parameter of
a = 3.45 A compares well with the value of 3.47 A obtained
by Ref. 20. The internal angles for the octagons all have the
same ideal value of 135° and the squares have dc_¢ = 1.46 A.
The average bond distance is de_¢ = 1.44 A.

The graphene allotrope C3, shown in Fig. 1(c), is obtained
from the honeycomb structure by replacing the second atom
in the unit cell by a group of three atoms in an equilateral
triangular cluster giving four atoms per unit cell with p3m1
symmetry. The relaxed planar structure has a cell parameter
of a = 3.84 A with the triangle having dc_¢ = 1.40 A. The
average bond length is de_¢c = 1.41 A.

The C4 shown in Fig. 1(d) is known as graphdiyne®' and
consists of hexagons connected together by two acytylenic
linkages in p6m symmetry forming a planar structure with an
18 atom unit cell. This allotrope is predicted to be metallic?%32
and has recently been synthesized using a cross-coupling
reaction.’> The relaxed structure has a lattice parameter
of a = 9.47 A which compares well with the value of
9.44 A obtained by Ref. 32 using a full-potential LDA linear
combination of atomic orbitals method. Each hexagon has
dc_c = 1.43 A while the acytylenic linkages have C-C bond
lengths going between each hexagon of 1.40, 1.23, 1.34, 1.23,
and 1.40 A.

The monolayer and multilayered graphene structures used
to study layer effects all had the same LDA calculated lattice
parameter of a = 2.45 A with the multilayered structures
having a layer thickness of 3.33 A in the conventional Bernal
stacking arrangement.

B. Mechanical properties

Bulk equations of state such as the Birch equation are only
valid for expansions and compressions in a range of £10%
about the equilibrium volume. The range of validity for our
energy EOS was found by fitting energy versus unit-cell area

Total energy per atom pair (eV)

FIG. 2. EOS fit for graphene under hydrostatic strain showing
total energy vs relative area A/Ay. Solid line shows the fit for all
14 calculated points in the range 0.9 < A/Ao < 1.7 (inset shows
detail), and dashed line shows the fit for the first nine points in the
range 0.9 < A/A, < 1.1 extended to 1.7.

points for graphene. Calculations were done for 14 points in
the range of 90 to 170% of the expected equilibrium area. One
fit used nine points within 10% on either side of the expected
equilibrium point while a second fit used the entire range.
These are shown in Fig. 2 with the first fit shown as a dashed
line and the second shown as a solid line. Although both fits
overlap within the +10% range, as shown by the inset plot
for this range, it is clear that the narrower fit deviates from
the calculated data points for predicted expansions beyond
about 130-140% of the equilibrium area. The first fit gave
EOS fit parameters of equilibrium lattice constant a = 2.47 A,
layer modulus y =206.7 N m~!, force per unit length
derivative Y’ = 4.33, double force per unit length derivative
y” = —0.0306 mN~!, and a cohesive energy per atom
pair of 15.2 eV while the second fit gave a =2.47 A,
y =207.1Nm™!, y' =393, y” = —0.0670 mN~', and the
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FIG. 3. Force per unit length vs relative area (A/Ay) for graphene
showing a dashed line for the curve predicted by the 0.9 < A/A( <
1.1 EOS fit and a solid line for the 0.9 < A/Ay < 1.7 prediction.
Solid circles indicate calculated F.



same cohesive energy. These fit parameters can be used in
Eq. (6) to predict the F(A) curves for each fit. Figure 3 shows
these curves for graphene using the two different sets of EOS fit
parameters. The dashed line is the curve predicted by the first
fit while the solid line is that for the larger fit. The solid data
points are the force per unit length values calculated by VASP at
each unit-cell area point. The figure shows that the two curves
pass through the calculated F points up to A/Ao ~ 1.10 but
that the curve based on the larger fit deviates from the points
beyond A/Ay ~ 1.15. For this reason, it was decided to use
the shorter range of +=10% to obtain EOS fit parameters for all
materials.

The EOS fits in the upper section of Table I for the mono-
layer honeycomb structures are listed in order of decreasing
layer modulus. They give lattice constant values that are
identical to those obtained by structural relaxation. Our results
show that graphene is the most resilient to stretching with
a value of yc = 206.6 N m~!. This is in agreement with the
estimated average value of 209.4 N m~! derived from the value
of By for graphite measured by Hanfland ef al. with their linear
Murnaghan EOS. Second is BN with ygy = 177.0 N m~!,
which is about ~85% of the value of graphene, which is the re-
sult reflected in the values by Michel and Verberck.!>!® The re-
sults for SiC and GeC are ysic = 116.5Nm~" and ygec = 101.0
N m~!, being 56 and 49% that of graphene, respectively.
The values for the buckled materials are ys; = 44.5 N m™!
and yg. = 29.6 N m~!, which are substantially lower than
the results for graphene and boronitrene. This establishes the
relative expandability of these isostructural materials, with
Ge being the most expandable and graphene the least, and it
verifies that graphene and boronitrene are ideal materials to
use in applications that require structural integrity and a rigid
membrane.

The results for the graphene allotropes are shown in
the middle section of Table I and indicate that the layer
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FIG. 4. Stress vs relative area (A/A,) for graphene showing a
dashed line for the 0.9 < A/Ag < 1.1 fit and a solid line for the
0.9 < A/Ay < 1.477 fit. Dotted and dash-dotted lines show predicted
maximum values for each fit, while the solid vertical line is the value
at which the phonon dispersion has an onset of a soft mode at K.

modulus decreases from C—C1—C2—C3—C4 with values
of yor = 1923 N m™!, yo, = 1747 N m™!, ycs
153.2 Nm™!, and ycy = 110.2 N m~'. This establishes the
relative expandability of these graphene allotropes, with C4
being the most expandable and graphene the least. The EOS
fits shown in Fig. 5 show graphene as the most energetically
stable 2D carbon allotrope with a phase transition existing
from graphene to C4 at F = —7.0 Nm~'.

The force per unit length derivatives of y for the planar
structures have 4.33 < ¢’ < 5.33 and |y”| < 0.075 mN~!,
This means that according to Eq. (9) the layer moduli for these
materials change in a similar near-linear manner in response

TABLE I. EOS fit parameters for honeycomb structures, graphene allotropes, and layered graphene (equilibrium area per atom pair Ag in

A?, lattice constants a and b, relaxed interlayer distance ¢ and buckling parameter A in A, layer modulus y; in N m~

mN~!, and cohesive energy per atom pair E.o in eV).

1 I J; 3 "5
, ¥, dimensionless, y;’ in

AO a b Yo V(; y(;/ Ecoh
C 5.277 2.47 206.6 4.33 —0.0306 15.2
BN 5.468 2.51 177.0 4.37 —0.0454 13.8
SiC 8.303 3.10 116.5 4.79 —0.0688 11.2
GeC 9.068 3.24 101.0 533 —0.0722 9.3
Si 12.959 3.87* 44.5 1.79 —0.6826 7.2
Ge 14.171 4.04° 29.6 4.23 —1.5710 5.8
Cl 5.480 7.48 4.75 192.3 4.35 —0.0338 14.7
C2 5.944 3.45 174.7 4.33 —0.0361 14.2
C3 6.399 3.84 153.2 4.55 —0.0511 13.8
Cc4 8.629 9.47 110.2 4.51 —0.0742 13.7
Four-graphene (LDA) 5.187 2.45¢ 863.4 4.29 —0.0072 17.0
Three-graphene (LDA) 5.187 2.45¢ 647.6 4.29 —0.0096 17.0
Two-graphene (LDA) 5.187 2.45¢ 431.8 4.28 —0.0146 17.0
Graphene (LDA) 5.186 2.45 215.9 4.28 —0.0286 17.0
A =045.
°A = 0.68.

¢Atom relaxation for 2D EOS gave t = 3.33.
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FIG. 5. EOS for graphene and four allotropes showing a phase

transition from graphene to C4 at F = —7.0 Nm~'.

to small changes in F around their equilibrium structures.
The buckled structures of Ge and Si react in a more parabolic
manner with the layer modulus for Ge having more curvature
than Si, since |yg| < |yé.|. This could be the result of the
greater buckling in the structure for Ge.

The lower section of Table I shows the LDA EOS fits
for one-, two-, three-, and four-layered graphene. The layer
modulus for two-graphene is exactly twice that of monolayer
graphene with a value of 431.8 N m~!, while three-graphene
and four-graphene have values exactly three times and four
times as much, respectively. This establishes y as a true
property of layered structures with its value scaling with
the number of atomic layers n as y = 215.9 n. The material

becomes more resilient to stretching with the addition of extra
layers as would be expected. All have values for y’ are around
4.28, indicating that to first order the layer moduli for these
layered structures all change by the same amount for the same
change in F. The values for y” are inversely proportional to the
number of layers scaling as y” = —0.0286/n. This indicates
that y (F) becomes increasingly linear around the equilibrium
value with an increase in the number of layers.

The calculated cohesive energies per atom pair show a
general decreasing trend going down the column, with C
having the largest value and Si the lowest. Our values for
honeycomb C, BN, SiC, GeC, Si, and Ge are lower than the
values of 20.08, 17.65, 15.25, 13.23, 10.32, and 8.30 eV given
by Ref. 12 due to the underbinding nature of GGA. The C
allotropes have similar cohesive energies, as do the layered
graphenes.

C. Elastic properties

The two-dimensional elastic constants c¢;; were obtained
by first doing a least-squares fit on various ab initio stress
calculations for carefully chosen strain states on the volume
unit cell to extract the bulk elastic constants.?” These were then
multiplied by the unit-cell height to obtain the corresponding
2D values. Due to the size of the unit-cell heights, all bulk
elastic constants containing 4 or 5 in their subscripts equated
to zero within the numerical error of the fit. Monolayer
materials also had all elastic constants containing 3 in their
subscripts calculated to zero. The elastic constants for the
various structures and other derived elastic properties are listed
in Table II.

TABLE II. Elastic properties for honeycomb structures, graphene allotropes, and layered graphene (elastic constants c;;, shear modulus

G™, calculated layer modulus y,., EOS-derived layer modulus given in brackets, Young’s modulus ¥?® in N m

—1. and Poisson’s ratio v

dimensionless).
i )) (4P ces = G Yeale Y, [%]8] Y, [%)]1)] Viio] Vjo1]
C This work 352.7 352.7 60.9 145.9 206.8 (206.6) 342.2 3422 0.173  0.173
VASP (PBE)** 358.1 358.1 60.4 148.9* 209.3* 348 348 0.169 0.169
Estimated® 372.2 372.2 46.6 162.8 209.4 366.4 366.4 0.125 0.125
BN This work 289.8 289.8 63.7 113.1 176.8 (177.0) 275.8 275.8 0.220 0.220
Estimated?® 270.0 270.0 56.2 106.9 163.1 258.3 258.3  0.208 0.208
SiC This work 179.7 179.7 53.9 62.9 116.8 (116.5) 163.5 163.5 0.300 0.300
GeC This work 154.7 154.7 47.5 53.6 101.1 (101.0) 140.1 140.1  0.307 0.307
Si This work 68.3 68.3 233 22.5 45.8 (44.5) 60.6 60.6 0341 0.341
VASP (LDA)*’ 68.9 68.9 233 22.8% 46.1% 61.0 61.0 0.33 0.33
Ge This work 46.4 46.4 13.1 16.7 29.8 (29.6) 42.7 427 0.282 0.282
VASP (LDA)*’ 473 473 16.7 15.32 32.0% 41.4 414  0.35 0.35
Cl This work 309.6 325.2 67.6 117.8 192.5(192.3) 295.5 3104 0.208 0.218
C2 This work 295.3 295.3 54.5 49.1 174.9 (174.7) 285.2 2852 0.185 0.185
C3 This work 2194 219.4 87.7 65.9 153.6 (153.2) 184.3 184.3 0.400 0.400
C4 This work 152.1 152.1 69.0 41.6 110.6 (110.2) 120.8 120.8 0.454 0.454
Four-graphene (LDA) This work 1456.2 1456.2 273.8 591.2 865.0 (863.4) 1404.7 1404.7 0.188 0.188
Three-graphene (LDA) This work 1091.9 1091.9 204.7 443.9 648.3 (647.6) 1053.5 1053.5 0.187 0.187
Two-graphene (LDA) This work 728.5 728.5 1359 296.3 432.2 (431.8) 703.1 703.1 0.186 0.186
Graphene (LDA) This work 364.6 364.6 67.3 148.7 216.0 (215.9) 352.2 3522 0.185 0.185

4Calculated from given elastic constants.



In order to validate our method, we compared our results for
C, BN, Si, and Ge to previous calculations and results based on
available experimental data. The results for graphene compare
very well with those of Ref. 34, which used a least-squares
fit of Cauchy stress calculations done in VASP using the PBE
GGA functional. As with our method, Ref. 34 converted bulk
volume unit-cell values to planar values by multiplying by the
cell height. As can be seen in Table II, the values in Ref. 34
for the elastic constants, the moduli, and the Poisson ratio are
very close to our results. Our values also compare reasonably
well with those derived from elastic constant estimates taken
from inelastic x-ray data for graphite,®> and our value of
342.2 N m~! for the 2D Young’s modulus compares well to the
experimental value of 340 + 50 N m~! measured by Lee et al.'
The results for BN compare reasonably well with those derived
from elastic constant estimates from inelastic x-ray data for
hexagonal boron nitride.*® Our value of 275.8 N m~! for the
2D Young’s modulus is within the range of 200-500 N m~!
determined by Song et al.'* For the two nonplanar materials
Si and Ge, the values for the elastic constants, moduli, and
Poisson’s ratio compare very well with those calculated by
Ref. 37, which used various strain-energy LDA calculations to
obtain their elastic constants.

What is immediately apparent about the values in Table II
is that the y 4 values derived from the elastic constants are
almost exactly the same as the layer modulus values obtained
from the EOS fits (shown in brackets). This independently
establishes that our EOS correctly determines the layer
modulus for planar 2D materials as well as buckled and layered
quasi-two-dimensional systems.

The elastic properties for the six honeycomb systems
are shown in the top section of Table II. All the moduli
show a decreasing trend going down the columns from
C—BN—SiC— GeC—Ge— Si. The Young’s moduli values
of 342.2, 275.8, 163.5, 140.1, 60.6, and 42.7 N m~! are in
general agreement with the LDA values of 335, 267, 166,
142, 62, and 48 N m~' given by Ref. 12. The Poisson’s ratios
show an increasing trend except where Ge and Si are switched
due to Ge being more buckled. Since these structures are
isostructural, these trends are indicative of the relative bonding
strengths between the atoms, and not of the geometry of the
materials, except in the case of Si and Ge where the added
effect of surface buckling further reduces their elastic moduli.

The elastic properties of the graphene allotropes are shown
in the middle section. There is a clear decrease in Young’s
modulus going down the columns, with C1 having the highest
anisotropic values of Y3, = 2955 N m™' and Yg} =
310.4 N m~!. Due to the fact that the pentagons are symmetri-
cal about their y axis and the enneagons are symmetrical about
their x axis, C1 is slightly more structurally rigid to elongations
along the [01] direction. The averaged Young’s modulus of
303.0 N m~! is 88% that of graphene. Next is C2 with an
isotropic value of 83% that of graphene. C1 and C2 have
comparable Young’s moduli with C2 having a value 94% that
of the averaged value for C1, indicating that they have a similar
resilience to linear strain. C3 has a value 54% that of graphene
and 65% that of C2. This is due to increased bond bending as
compared to the previous structures. C4 has the lowest value,
being 35% that of graphene and 66% that of C3. The long

acetylenic linkages cause structural weakness compared with
the more compact structures. Graphene has the highest shear
modulus due to the fact that its honeycomb structure is very
rigid. The shear modulus of C1 is ~81% that of graphene due
to its strong network of slightly distorted polygons. The shear
moduli of C2 and C3 are more than half that of graphene,
showing them to be more prone to bond bending under shear
strain. Even through C4 has a generalized honeycomb structure
similar to graphene, it has a shear modulus ~30% that of
graphene due to the long acetylenic chains making up this
structure. The Poisson’s ratios for C3 and C4 are significantly
higher than C1 and C2 due to their structures lending more to
bond bending under uniaxial strain. These results show that of
all the allotropes metallic C1 would best compliment graphene
for nanoapplications since both have comparable moduli and
therefore similar hardness properties.

The last section of Table II shows the results for the layered
graphene structures. The elastic constants cy1, ¢22, ¢12, and
ces (and therefore all derived elastic moduli) scale in the
same manner as found for y. This is seen in the experimental
results of Song et al.,'"* who gave Young’s modulus values of
503 + 30,431+ 21,and 223 + 16 Nm~! for BN samples with
possible layer numbers of 5, 4, and 2. The moduli reflect this
scaling by having possible ratios of 5/4, 5/2, and 2 within the
experimental error. The Poisson ratios for the layered materials
are in the range 0.185< v < 0.188, showing that the widths of
the materials all decrease the same with the same amount of
linear strain.

In general, the Young’s and shear moduli rank in the same
order as the layer modulus, showing that it is a good indication
of relative hardness.

D. Intrinsic strength

When a 2D material is stretched, the applied stress increases
with the strain until it reaches a maximum beyond which the
stress decreases. This extremum point indicates the isotropic
intrinsic stress and strain for the material at which point the
material fails. These values can be obtained by using Eq. (6)
with the fit parameters from the 2D EOS fit for a given material.
Figure 4 shows the stress (negative J) versus relative area
(A/Ay) curves for graphene using two different EOS fits. The
dashed curve is froma fitover therange 0.9 < A/Aop < 1.1and
predicts a breaking stress of 32.5 N m~! at an area 47.7% larger
than the equilibrium value. The actual onset of a soft mode in
the phonon dispersion occurs when A/Ay = 1.340 (the solid
vertical line in Fig. 4), showing that this curve overestimates
A /Ao by 10.2%. The solid curve in Fig. 4 uses an EOS fit that
has the previously predicted relative area of 1.477 as an upper
bound. It predicts a slightly lower failure stress of 29.4 N m™!
at a relative area of 1.372. This predicted area is closer to the
phonon prediction, being only 2.4% higher.

The predicted results for our materials using this method are
summarized in Table III. The materials in the upper section are
listed in order of decreasing layer modulus. The relative area
and breaking stress x4 and o4 are based on a £10% EOS fit
while x and o use the extended range. The predicted phonon
results for selected examples of planar, buckled, and layered



TABLE III. Intrinsic strength based on EOS fits for honeycomb structures, graphene allotropes, and layered graphene (x, is the relative
area at failure from the EOS fit over 0.9 < A/A, < 1.1, 04 is the hydrostatic stress at failure from the same fit in N m~', x is the relative area
at failure from the EOS fit over 0.9 < A/A, < x4, op is the hydrostatic stress at failure from the same fit in N m™', Xphonon 18 the relative area
where the first onset of a soft mode occurs in the phonon dispersion, and RD is the relative percentage difference between xz and Xpnonon)-

XA oA XB OB Xphonon RD (%)a
C 1.477 325 1.372 29.4 1.340 24
BN 1.487 28.0 1.407 26.0 1.365 3.1
SiC 1.414 16.4 1.253 133 1.427 —122
GeC 1.449 13.9 1.244 10.5 1.386 —10.2
Si 1.301 6.6 1.201 4.9 1.420 —15.4
Ge 1.200 29 1.239 32 1.430 —12.7
C1 1.469 30.0 1.278 243 1.309 —24
C2 1.464 27.5 1.298 22.7 1.309 —-0.8
C3 1.422 223 1.304 19.4 1.308 —-03
C4 1.414 16.0 1.307 14.0
Four-graphene (LDA) 1.481 137.0 1.381 125.0
Three-graphene (LDA) 1.481 102.8 1.381 93.8 1.32 4.6
Two-graphene (LDA) 1.478 68.4 1.381 62.5 1.363 1.3
Graphene (LDA) 1.483 344 1.383 313 1.363 1.5

. . XB—X,
2Relative difference, Bx}liph"""" x 100%.
phonon

materials are compared to the EOS predictions by calculating
the relative percentage difference between the two.

The results in the upper two sections of Table III show
that C, BN, C1, C2, and C3 give predictions no greater than
~3% off the phonon results while the results for SiC, GeC, Si,
and Ge are more than 10% off. Of the elemental honeycomb
structures C, Si, and Ge, only the buckled structures show
a vast discrepancy between the EOS predictions and phonon
results. Of the binary structures, only SiC and GeC have vast
discrepancies between EOS and phonon predictions. Whereas
BN contains atoms of comparable mass, SiC and GeC contain
atoms with large mass differences. The layered materials of
two-graphene and three-graphene show predicted EOS values
no more than 5% off the phonon values. We suggest that
the discrepancies are due to anharmonic effects that are not
accounted for by the phonon calculations when the structures
are extended too far from their equilibrium states.

The honeycomb structures in the upper section of
Table III show decreasing intrinsic stress op in the same
ranking order as their layer moduli, with graphene having
the highest value of 29.4 N m~!. Boronitrene is second with a
comparable breaking stress of 26.0 N m~!. The values for SiC
and GeC are 45 and 36% that of C. Si and Ge have the lowest
values of 17 and 11% that of graphene.

The ordering of the intrinsic relative area xp goes in
decreasing order from BN— C— SiC—GeC—Ge—Si. BN
and graphene both fail at areas ~40% greater than their
equilibrium values though at different stresses. SiC, GeC, and
Ge fail at areas 24-25% greater while Si fails at a relative
area 20% higher than its equilibrium value, about half that
of BN and C. Ge has a higher intrinsic strain than Si even
though it fails at a lower stress since it is more buckled. These
results indicate that C and BN are able to withstand greater
isotropic strains than the other honeycomb materials at higher
stresses, aresultreflected by their relatively high layer modulus
values.

The intrinsic stress values of the four graphene allotropes,
shown in the middle section of Table III, decrease from
C1—->C2—C3—C4, with C1 having a value 83% that of
graphene, C2 (77%), C3 (66%), and C4 (48%). This correlates
well with the ordering of their layer moduli. All of the
structures fail at approximately the same strain with an area
~30% higher than their equilibrium values. This is slightly
lower than graphene, once again showing the honeycomb
structure to be the strongest.

As with the elastic moduli, the intrinsic stress values of
the layered graphene structures, shown in the lower section
of Table III, scale with the number of layers. The values
scale on average as o = 31.2n where n is the number of
layers present while the relative area at failure remains fixed
at ~1.38, indicating that these structures all fail at the same
lattice parameter of a = 2.88 A. This shows that each added
layer increases the strength of the multilayered structure but
does not increase the amount of stretching the structure can
withstand.

IV. CONCLUSIONS

In this paper we proposed an equation of state (EOS)
for 2D materials that equates 2D pressure (force per unit
length F) with a change in surface area. This was then used to
fit energy versus area data to extract equilibrium fit parameters
including the layer modulus (symbol y), which measures a
material’s resilience to hydrostatic stretching. We give results
for the monolayer systems of graphene and boronitrene, and
we also include results for Si, Ge, GeC, and SiC in the
isostructural honeycomb structure for comparison. For these
structures, the layer moduli were ranked, showing graphene
to be the most resilient to stretching with yc = 206.6 N m™!
followed by boronitrene with a value of ygny = 177.0 N m~L.
The buckled structures of Si and Ge were found to be the
least resilient. It was found that y(F) around F= 0 is more



linear for planar structures and more parabolic for buckled
structures. We considered four graphene allotropes including
pentaheptite and graphdiyne. For the graphene allotropes, the
ranking for y in decreasing order went C1—C2—C3—C4
with C1 (pentaheptite) having a value comparable to graphene.
C4 (graphdiyne) was shown to be the softest of the four. The
EOS fits for these structures showed a phase transition from
graphene to C4 at a force per unit length of —7 N m~!. We
considered multilayered graphene, and it was found that the
curve y (F)is more linear around 7 = 0 as the number of layers
is increased. The planar elastic constants for all the structures
were calculated, and it was found that the layer modulus
derived from the elastic constants matched those from the EOS
fits, thereby independently verifying the EOS. It was also found
that, in general, the other moduli rank according to the layer
modulus. The EOS was used to predict the isotropic intrinsic
strength of the various structures. The results show that the
intrinsic stress correlated well with the layer modulus, with
graphene having the highest intrinsic strength of 29.4 N m~!
closely followed by boronitrene with 26.0 N m~!.

Based on these results, we conclude that the layer modulus
is a good indicator of relative hardness in planar, buckled, and
layered 2D structures and that our proposed EOS correctly
extracts this value as one of its fit parameters. We also
conclude that the EOS is a useful tool to investigate a materials
response to F and can be used to look for possible phase
transitions.

Future work includes using the EOS to test how the
adsorption of H atoms on graphene and bilayer graphene
effects their strength and response to in-plane stretching.
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