




strata such as LaModel (Salamon20, Heasley21). In the DDM
analysis the plan outline of the mined area is tessellated
using square, quadrilateral, or triangular shaped elements
and a specific displacement discontinuity variation is
assumed within each element. The problem is solved to
determine the detailed distribution of the displacement
discontinuity components in all elements such that the total
stress at designated points within each mined element is zero
(corresponding to the boundary condition that would be
expected in an open excavation) or is constrained by the
limiting movement of the roof and floor when complete
elastic convergence (closure) occurs. The DDM has provided a
basic ‘workhorse’ tool to rock mechanics practitioners for
routine estimation of stress distributions in pillar layouts and
for assessing the potential for induced fault slip in deep-level
gold and platinum mine workings. One of the most important
applications of the DDM is to determine pillar stress distrib-
utions and average pillar loads for the assessment of layout
stability or in the back-analysis of observed pillar failures,
and the empirical determination of pillar strength criteria. 

There are unfortunately a number of computational
difficulties associated with the DDM technique, which are not
generally appreciated and which may lead to misinterpre-
tations of analysis results. The reasons for these difficulties
and some solutions to these problems are presented in the
following sections. The discussion is confined to the consid-
eration of only the stress component normal to the plane of
the seam or reef horizon.

Application of tributary area theory to determine
average pillar stress

Let the region that is enclosed by the projection of a specific
pillar outline onto the seam or reef plane be designated by Ω.
Let the area of the projected pillar region in the seam or reef
plane be equal to R, and assume that z defines the coordinate
direction normal to this plane. Let σzz (P ) be the value of the
stress component normal to the reef plane at point P within
the pillar region Ω. This stress component will be assumed to
be compressive and, following the sign convention used in
this paper, will be negative. The absolute magnitude, AP, of
the average pillar stress component, σ—zz, acting over the pillar
is then defined to be given by the following expression:

[1]

In Equation [1], dRp denotes the differential area element
with respect to the points P in the pillar region Ω. The
evaluation of Equation [1] over a general pillar shape is, in
general, very difficult and in most practical cases has to be
determined numerically. However, in the particular case
where each pillar is a uniformly replicated unit within an
infinite, horizontal tabular layout, the average pillar stress,
σ—zz, is given by

[2]

where e is the extraction ratio and σV
zz is the virgin vertical

stress at the seam horizon. This relationship provides a
useful check for numerical procedures and is a good approxi-
mation to the average stress acting on pillars near the centre
of an extensive, regular layout. In a layout comprising pillars

of different sizes, Equation [2] can be interpreted as a
general statement of force equilibrium before and after
mining takes place, and expresses the average stress acting
on the entire pillar ensemble and on the abutment regions.
This average value determination is termed the simplified
tributary area theory (TAT)10 and is independent of the
surrounding rock mass modulus. It must be emphasised that
each individual pillar in a general layout will have a stress
value that may be either above or below the average TAT
value expressed by Equation [2], and the TAT value is
therefore not necessarily a conservative estimate for the
average stress over every pillar in the layout. The focus in the
present paper is on the numerical computation of the average
stress in individual pillars as defined by Equation [1].

Figure 4 illustrates a horizontal test layout simulated with
the TEXAN code19 where the nominal extraction ratio is e =
0.75 within the pillar region and the virgin stress at the reef
horizon is σV

zz = -108 MPa. Using Equation [2], the tributary
area estimate of the average pillar stress is AP = 432 MPa. 
Figure 5 illustrates the computed average stress values for a
row of pillars (from left to right) in the centre of the
excavation. The layout is tessellated using 10 m square
elements with constant displacement discontinuity values,
and each pillar is represented by a 4 x 4 cluster of elements.
The average stress in each pillar is calculated as the mean of
the stress values that arise at the centres of the 4 x 4 pillar
element clusters. Figure 5 illustrates that as the overall size
of the layout area increases, the average pillar stress tends
towards the tributary area stress asymptote predicted by
Equation [2]. The average pillar stress values of the pillars
adjacent to the abutments can be seen to be significantly
lower than the asymptotic value. This is an illustration of
how the nominal tributary area estimate of the average stress
overestimates the stresses on pillars, since the effect of
abutments or barrier pillars is ignored. Different results will
arise if the pillar sizes are variable, or if irregular layout
configurations are analysed. In these cases the numerically
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Figure 4—Geometry simulated with the TEXAN code. This geometry
was simulated at a depth of 4000 m using an overburden density of
2700 kg/m3. Square constant-strength displacement discontinuity
elements of size 10 m (16 elements per pillar) were used



Numerical computation of average pillar stress and implications for pillar design

computed average pillar stress values in individual pillars
may exceed or fall below the TAT value estimated by
Equation [2]. It is also important to understand that certain
numerical errors are associated with the use of the DDM, and
that the choice of element size can affect the computed
estimates of average pillar stress values. This is discussed in
the next section.

Effect of element size on the determination of
average pillar stress values

Errors can arise in the application of the DDM to the
numerical determination of average stress values of
individual pillar, depending on the choice of element size and
the element shape in a geometrically complicated layout
configuration. Some perspective on the nature of these errors
can be gained by considering initially the simple case of a
single strip pillar located between two similar parallel-sided
panels in a horizontal plane. The layout configuration and
characteristic dimensions are shown in Figure 6.

If the displacement discontinuity slit approximation is
used, it is possible to determine the average pillar stress
analytically (Salamon22). The resulting expression is

[3]

where K(k) is the complete elliptic integral of the first
kind defined as23

[4]

and the argument k is given by22

[5]

The pillar problem illustrated in Figure 6 may be solved
numerically by dividing each panel into equal-sized, constant
value displacement discontinuity elements. The total stress
σ t

zz (si) at the centre si of panel element i is given by the
expression:

[6]

where Dz (sj) is the value of the assumed constant elastic
convergence in element j and where the sum is taken over all
elements, j = 1 to N. The sign of Dz (sj) in Equation [6] is
positive when the relative movement of the seam roof (reef
hangingwall) is towards the seam floor (reef footwall). The
influence kernel function Fzz (si, sj) is given by

[7]

In Equation [7], gj is the length of element j, E is the
Young’s modulus of the country rock, and v is the Poisson’s
ratio (a derivation of Equation [7] may be found in Crouch
and Starfield16). It should be noted that the expression for Fzz
(si, sj) depends only on the relative distance ⎢si – sj ⎢ between
the centres of elements i and j. In the special case where all
element sizes have the same value g, it is apparent that si – sj
= (i –j ) g and Equation [7] reduces to

[8]

Since it is known that ∑
n=1

∞
1/(1–4n2) =–1/2, it follows that 

∑
j=–∞

j=∞

Fzz (i, j ) = 0, indicating that the influence kernels are 

self-equilibrating. The numerical solution to Equation [6] is
obtained by setting the total stress σzz

t (si) at the centre of
each panel element to zero and solving for the unknown
values of the displacement discontinuity values Dz (sj ). In the
specific case where there is only a single element of length gi
at position si, the unknown value of Dz (si) in Equation [6] is
given by

[9]

It is of interest to note that the analytical solution for the
average elastic convergence D

—
z in a single, open parallel-

sided panel22 of span g is given by

[10]

which can be seen to be exactly one half of the value
given by Equation [9]. Although a single, constant strength
displacement discontinuity value is admittedly a very crude
approximation to the elastic convergence in an isolated panel,

▲
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Figure 5—Simulated APS values (vertical axis) using the TEXAN code
for different sizes of mined area of the regular pillar layout shown in
Figure 4

Figure 6—Cross-section diagram of two parallel-sided panels with a
central pillar



it is apparent that the use of the kernel expressions given by
Equations [7] or [8] can be expected to yield some
inaccuracy in estimations of the elastic convergence that will
depend on the choice of the element size. It is important also
to note that since the influence kernel values are self-equili-
brating, the element grid size effect will be reduced if
extensive replicated layouts are considered, such as the case
illustrated in Figure 4. In practice, all layouts are obviously of
finite extent, and consequently errors in estimated stress
values can arise when the element sizes are significant
compared to the characteristic dimensions of the pillars that
are of interest. A detailed analysis of this error behaviour and
strategies to compensate for the grid size effect has been
presented by Ryder and Napier18 but, unfortunately, this
treatment does not address the question of how to calculate
average pillar stress values. This issue is considered in more
detail in the present paper.

In order to gain some perspective on this question,
consider a specific example in which the pillar and panel span
dimensions, W and S in Figure 6, are assigned the values W
= 24 m and S = 120 m respectively. Using Equations [3], [4],
and (5), it can be determined that the analytical value of the
average pillar stress is σ—zz / σzz

V ≈ 4.55908. A numerical
estimate of the average pillar stress can be obtained in two
stages. In the first stage, the panel and pillar regions are
divided into uniformly sized elements gi = g (where, for
convenience, g is chosen to be such that W and S are a
common integral multiple of g ) and Equation [6] is solved
for the elastic convergence values Dz (si) in each panel. In the
second stage, the average stress in the central pillar is found
by again employing Equations [6] and [8] to determine the
total stress values σzz

t (sk) at the centre sk of each pillar
element, k, using the known solution values Dz (si ) and the
kernel influence functions given by Equation [8]. The
numerical estimate of the average pillar stress, σ—zz

P , is
calculated from the weighted average summed over the pillar
elements:

[11]

Equation [11] reduces to the arithmetic average if all
pillar elements have the same size. The results of these
computations of the average pillar stress, when using a virgin
stress value of 100 MPa, are plotted in Figure 7 as a function
of the element size, g.

It is striking that the estimated absolute magnitude of 
the average pillar stress values, shown in Figure 7, follow a
nearly perfect linear trend when plotted against the element
grid size. The fitted trend intercept has a value of 456.05
MPa, which may be compared to the analytic solution value
of 455.91 MPa (an error of about 0.03%). The linear trend
displayed in Figure 7 also suggests that if two APS values of
A1 and A2 are found, corresponding to grid size values of g1
and g2 respectively, then the extrapolated value (for the APS
limit as the grid size tends to zero) can be estimated from the
equation

[12]

In the special case where g2 = g1/2, Equation [12]
reduces to

[13]

where A2 corresponds to the APS estimate with the finer grid
size.

In practice, it is not possible to arrange the pillar and
panel element sizes to conform exactly to the edges of the
layout excavations and to represent the detailed outlines of
irregular pillar shapes using uniform square element tessel-
lations. In this case, the best that can be done is to tessellate
the layout with elements that are as evenly sized as possible,
and to designate the element as being ‘mined’ if the open
excavation constitutes more than one half of the element
area. A finer tessellation may then be constructed either by
splitting the coarse parent tessellation or by re-meshing the
problem region with a finer element tessellation. Consider, for
example, an annular excavation region in the x-y plane
surrounding a central, circular pillar as shown in Figure 8.
Suppose that a square region of side length 300 m is
tessellated with square, constant variation displacement
discontinuity elements having side lengths g. The centre
points of the elements are assumed to be located at positions
xp = x0 + pg and yq = y0 + qg where p and q are integers and
(x0, y0) is a chosen coordinate origin. The stress component
values σzz

t normal to the excavation plane are given at the
centres of the elements by an appropriate influence
relationship analogous to Equation [6]. For the case of
constant value displacement discontinuity elements, this
relationship may be expressed as

[14]

where σzz
V (xp, yq) is the virgin stress at point (xp, yq) and

Dz (xr, ys) is the normal displacement discontinuity
component at point (xr, ys) on the excavation plane. The
summation limits M and N cover the region of interest. The
stress influence function Fzz is given by the expression14,16,19

[15]
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Figure 7—Average stress magnitude estimates for a single pillar as a
function of the element grid size. The correlation coefficient of the
fitted trend line is close to unity. (Panel span, S = 120 m; central pillar
width, W = 24 m)
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where ε1 = –1, ε2 = 1, Ai = g(p–r–(εi / 2)), Bj = g(q–s–(εj /

2)) and Rij = √Ai
2 + Bj

2. A close examination of Equation [15] 
also reveals that the kernel influence function, Fzz, depends
only on the absolute magnitude of the relative distance
coordinates ⎢xp – xr ⎢ and ⎢yq – ys ⎢ between the source point
(xr, ys) and receiving point (xp, yq). It may be noted as well
that the influence matrix defined by Equation [15] is also
self-equilibrating. The annular excavation problem depicted
in Figure 8 was solved using Equations [14] and [15] with a
series of different element mesh sizes, g, that are
summarized in Table I. In each case, the centre of the circular
pillar was assumed to be located at xc =150, yc = 150 and the
mesh origin was chosen to be x0 = 0, y0= 0. In Table I, NE is
the number of elements assigned to the annular excavation
and NP is the number of elements in the central pillar. These
numbers obviously increase as the element size g decreases.
The values SE and SP indicate the total area of the elements in
the excavation region and in the pillar region respectively.
The asymptotic values of SE and SP, as the grid size tends to
zero, are 67858.4 m2 and 2827.4 m2.

Figure 9 is a plot of the estimated stress values at the
centres of the elements covering the central pillar region for
the different mesh sizes given in Table I. Each point is plotted
as a function of the radial distance of the element centre from
the centre of the pillar. The magnitudes of the average pillar
stress values corresponding to each element grid size are
summarized in the last column of Table I and are plotted in
Figure 10. It is apparent that the trend in average values is
nonlinear, unlike the plane strain case shown in Figure 7,
making the extrapolation procedure more uncertain. For
example, if it is assumed that a quadratic extrapolation can
be applied, then the average pillar stress would be given by

[16]

where A1, A2, and A3 represent the average stress
magnitudes computed with element grid sizes of g, g/2, and
g/4 respectively. Applying Equation [16] to the first three
entries of the last column in Table I yields an extrapolated
average stress magnitude of 429.5 MPa. If Equation [16] is
applied to the last three entries, the extrapolated average
stress magnitude is 434.1 MPa. Alternatively, applying the
linear extrapolation of Equation [13] to the last two values of
the last column of Table I yields an extrapolated average
stress magnitude of 434.9 MPa. An independent check on the
accuracy of this estimate was made by Gordeliy24 using a
special axisymmetric formulation of the displacement discon-
tinuity method25. This yielded a value of 435.0 MPa, which is
in close agreement with the extrapolated value estimates. It
may be noted as well that the simple extrapolation procedures
described here could be extended to a more general

Richardson deferred limit extrapolation26 procedure,
admitting a power-law variation of the average pillar stress
as a function of the element grid size, but probably offering a
limited improvement in accuracy in the present case. 

This example demonstrates that the extrapolation
technique must be treated with some caution in the case of
tabular mine layouts. The main sources of numerical error
arise from both the inaccuracy of constant value displacement
discontinuity element convergence values and from the

▲
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Table I

Effect of grid size on the average stress in a circular
pillar

g (m) NE SE (m2) NP SP (m2) AP (MPa)

10.0 684 68400 32 3200 388.9
5.0 2716 67900 112 2800 424.6
2.5 10856 67850 448 2800 430.9
1.25 43440 67875 1804 2818.75 432.9

Figure 10—Effect of element size on the average centre pillar stress for
the annular excavation shown in Figure 8

Figure 9—Effect of element size on the radial distribution of stress
values in the central pillar within the annular excavation shown in
Figure 8. The stress values are computed at the centres of the elements
covering the central pillar

Figure 8—Central circular pillar surrounded by an annular excavation
region. (Pillar radius = 30 m; outer excavation radius = 150 m)



limitations of using a square element shape to tessellate
complex layout configurations. It is important to note that for
the finest grid size used in Table I (g = 1.25 m) the ratio of
the pillar diameter to the grid size is 48. In practical layout
problems, the use of such a fine grid relative to the charac-
teristic dimension of pillars of interest may be prohibitive
computationally. Unfortunately, there are no simple
numerical solutions to this problem. One possible strategy is
to use higher order triangular or quadrilateral shaped
elements19. This certainly provides a much more efficient
method of representing complex layout plan forms and,
combined with the extrapolation method described here,
represents the best current numerical approach to the
estimation of average pillar stress magnitudes. However, it is
important to note that it is not possible to determine with
complete accuracy the stress profiles in pillar or abutment
regions, since no exact asymptotic analytic forms are known
for the elastic convergence distribution near the edges of a
general polygonal-shaped pillar region or mining abutment
region.

A second difficulty is that the stress distribution in an
actual pillar will be affected by additional factors such as the
finite height of the excavation and by local face fracturing or
pillar scaling. The effect of the reef and seam stiffness is
discussed in the next section.

Effect of seam or reef stiffness on average pillar
stress

The displacement discontinuity approximation to a tabular
excavation takes no account of the excavation dimensions
normal to the plane of the seam or reef and it simulates the
pillars with ‘zero height’. The pillar can therefore not deform.
A popular method that is used to compensate for the seam or
reef compressibility is to employ a linear spring (the so-called
‘Winkler spring’ approximation) to represent the assumed
elastic behaviour of the seam or reef material (see, for
example, Oravecz27). In Equation [14], the total stress σzz

t at
points (xp, yq) of the seam is assumed to be given by the
expression

[17]

where kS is a linear stiffness factor that is used to represent
the seam or reef compressibility at the point (xp, yq). For
example, if the mining height is H and if it is assumed that
the lateral strain parallel to the seam or reef plane is
negligible, then the stiffness kS may be deduced from
Hooke’s law to be

[18]

where ES and vS are the Young’s modulus and Poisson’s ratio
respectively of the seam or reef rock in the pillar or abutment
regions. It is important to note that the value of kS depends
on the ratio ES /H and will be altered if either ES or H is
varied. Following the adopted sign conventions used in this
paper, it apparent from Equation [17] that when Dz > 0 the
seam is compressed relative to the virgin state and the total
stress σzz

t becomes more compressive than the virgin stress
σzz

V . Substituting Equation [17] into Equation [14] yields the
following equality constraint relationship for the elastic
convergence Dz (xp, yq) at point (xp, yq) in the seam, 

[19]

Equations [14] and [19] can be combined to solve for the
elastic convergence in both the excavation and seam regions.
The total stress values at all points in the seam regions can
be recovered from Equation [17].

It is of some interest to compare the stress values that are
computed using the linear stiffness approximation to values
that are obtained by explicitly solving two adjacent
rectangular section slots as illustrated in Figure 11. The
explicit slot solution is obtained using an elastic boundary
element program, RIFT, and the pillar stress values are
evaluated along the horizontal line AB through the centre of
the pillar as illustrated in Figure 11. It is assumed that the
rock mass modulus is 72 000 MPa and the Poisson’s ratio is
0.2. The panel spans are set to 120 m, the pillar width is
equal to 24 m, and the virgin stress at the seam horizon is
assumed to be σzz

V = –100 MPa. Note that the pillar and panel
dimensions are similar to those used to plot the graph in
Figure 7, where the analytical solution for a zero height pillar
was found to be equal to 455.91 MPa and the corresponding
extrapolated numerical estimate was 456.05 MPa. If the seam
modulus, ES, and seam Poisson’s ratio, vS, are equal to the
rock mass values then, using Equation [18], the linear seam
stiffness is kS = 80 000 MPa/m if the pillar height is equal to 
1 m. Figure 12 shows a comparison between the pillar stress
profile determined along the centre line AB of the actual pillar
and the values obtained from the displacement discontinuity
slit solution using the linear stiffness factor in the pillar
region. It is apparent from Figure 12 that the stress profiles
are very similar in this case where the pillar height:width
ratio is small (1:24). If the pillar height is increased to 4 m,
the equivalent linear seam stiffness is reduced to 20 000
MPa/m. Figure 13 shows a comparison between the stress
profile across the central line of the 4 m pillar and the linear
stiffness model. In this case, it is apparent that the stress in
the actual pillar model is much lower near the pillar edges
than for the linear seam stiffness model. These diagrams
illustrate some important differences in the stress profiles
that are estimated using an actual pillar as compared to the
simple stiffness model where the pillar edge stress is highly
peaked.
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Figure 11—Detail of a section through an infinitely long strip pillar of
height H between two slot-shaped panels. (The long axis of the pillar is
out of the plane of the diagram. The full lateral span of each panel is
not shown)



Numerical computation of average pillar stress and implications for pillar design

The average pillar stress values, scaled to the seam
horizon virgin stress, were calculated for a series of different
pillar heights and are summarized in Table II. In each case
the seam modulus and Poisson’s ratio are assumed to be the
same as the respective rock mass values. The scaled average
stress values given in Table II are plotted against the scaled
pillar height values (pillar height divided by the pillar width)
in Figure 14. It is of particular interest to observe that for the
chosen example, where the pillar elastic parameters are the
same as the surrounding rock mass, the average pillar stress
values are not very strongly dependent on the height of the
pillar. It is also apparent that the average stress values that
are calculated across the centre of the actual pillar cases are
slightly larger than but very similar to, the values for the
linear stiffness model. The results plotted in Figure 13 show
that the linear stiffness model may yield artificially peaked
stress values near the edges of the pillar.

It is of some interest to calculate the variation of the
effective vertical pillar stiffness at each point across the pillar
width for different pillar heights. Let the absolute difference
in the vertical displacement between the roof contact and the
floor contact of the pillar at a distance x from the pillar centre
line be designated as ∆uz (x). Referring to Equation [17], the
effective point pillar stiffness, keff, at position x within the
pillar is defined to be 

[20]

where the virgin vertical stress component σzz
V (x) and the

total vertical stress component σzz
t (x) are evaluated at

positions x along the central line AB across the pillar (see
Figure 11). These effective stiffness factors were computed
for each pillar height value in the first column of Table II and
are plotted in Figure 15. The results indicate that the effective
point stiffness profile, defined according to Equation [20], is
relatively uniform in the central region of each pillar but
decreases more and more sharply near the pillar edges, as the
pillar height becomes smaller. The central ‘plateau’ stiffness
in each profile shown in Figure 15 is larger than the
corresponding stiffness values in the second column of Table
II but falls below these values near the pillar edges. It is also
noteworthy that the reduced effective stiffness near the pillar
edges can be expected to induce significantly different stress
patterns in the pillar foundation and roof regions near the
pillar edges from the stress field that is induced by using the
zero height seam or reef linear stiffness approximation
defined by Equation (17). This difference in the point
stiffness near the pillar edges will control the propensity for
the pillar to ‘punch’ into the surrounding rock and will play
an important role in controlling possible slip on disconti-

▲
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Figure 12—Comparison of the stress profile across the central line AB
of an actual pillar of height H = 1 m (see Figure 11) to the stress profile
arising from an equivalent linear stiffness displacement discontinuity
model with kS = 80 000 MPa/m

Figure 13—Comparison of the stress profile across the central line AB
of an actual pillar of height H = 4 m (see Figure 6) to the stress profile
arising from an equivalent linear stiffness displacement discontinuity
model with kS = 20 000 MPa/m

Figure 14—Effect of pillar height on average pillar stress values
calculated for actual pillars, compared to the average stress values
computed using a linear seam stiffness approximation. (Seam elastic
parameters equal to the host rock properties; Pillar width = 24 m)

Table II

Comparison of average pillar stress values
calculated for actual pillars to the average stress
values computed using a linear seam stiffness
approximation. (Uniform seam and host rock
properties; Pillar width = 24 m)

Height, H (m) Stiffness, kS Actual pillar Linear stiffness
(MPa / m) σ

—
zz / σzz

v
σ
—

zz / σzz
v

1 80000 4.565 4.509
2 40000 4.544 4.471
3 26667 4.522 4.436
4 20000 4.500 4.403
6 13333 4.454 4.341
8 10000 4.407 4.284



nuities that are parallel to the roof and floor contacts near the
pillar edges. These possibilities will not be explored further
here.

From the point of view of estimating average pillar stress
values, it appears that the linear stiffness model will yield
comparable results to cases where the actual pillar height is
explicitly modelled. If the pillar material and the host rock
have similar elastic properties, then the rigid seam model
where the elastic convergence is zero also apparently yields a
good upper bound to the average pillar normal stress. The
case where the pillar material elastic properties are different
from the host rock is considered in the next section.

Reef or seam modulus different from the host rock

Figure16 shows two examples of underground pillars where
(a) the pillar rock has approximately the same modulus as
the host rock and where (b) the pillar rock modulus is softer
than the host rock. The pillar shown in Figure 16a is an
example of a pillar in a platinum mine in the Great Dyke in
Zimbabwe, where the pillar material and the rock in the
hangingwall and footwall typically have the same average
moduli. In contrast, the coal pillar in Figure 16b has a much
lower modulus than the host rock. It is important to consider
how the average pillar stress is affected by a contrast
between the pillar modulus and the host rock modulus. In
addition, the important question arises whether a simple rigid
pillar assumption, associated with a zero width slit solution,
can lead to errors when computing the average pillar stress
for the two different pillar scenarios illustrated in Figure 16.

The same pillar geometry depicted in Figure 11 and
discussed in the previous section was analysed using RIFT
with a seam modulus ES that was different from the host rock
modulus of 72 000 MPa. The Poisson’s ratio was set equal to
0.2 for both the seam material and the host rock. The results
for a fixed pillar height of 4 m are shown in Table III, and the
scaled average pillar stress values are plotted against the
ratio of the rock modulus to the pillar modulus in Figure 17.
It is again interesting to observe that the average stress
associated with the actual pillar geometry is very similar to,
but slightly larger than, the corresponding average stress
value determined using the linear stiffness model. This
appears also to hold true if the individual values of the seam
modulus ES and the pillar height, H, are varied but the ratio
of ES : H is maintained at a constant value. This is illustrated
in Table IV, where the linear seam stiffness is 20 000 MPa m

for each row. It is notable as well that the average pillar
stress of the actual pillar is remarkably insensitive to the
different pillar height cases, provided the pillar modulus is
changed in proportion to the height. It should be stated again
that the linear stiffness model appears to yield good results in
computing the elastic average pillar stress, but should be very
carefully assessed if stress values are to be evaluated in the
rock mass near the pillar edges. 

From Figure 17, it is apparent that, for the present
example, the average pillar stress will be overestimated if the
seam modulus is assumed to be very stiff. (As the rock
modulus: seam modulus tends to zero, the pillar effectively
becomes rigid). For cases where the seam modulus is much
lower than the host rock modulus, it is then recommended
that the linear stiffness model should be used with the pillar
stiffness estimated using Equation [18].

Conclusions

The computation of average pillar stress values is important
when attempting to establish criteria for pillar design and in
the analysis of the stability of tabular pillar layouts. One of
the default ‘classic’ numerical methods that are used to
determine pillar stresses is the displacement discontinuity
method. In many instances it is not clearly understood that
this approach does suffer from some limitations, particularly
in relation to the fact that in coarse element simulations, the
results can depend on the chosen element mesh size. The
nature of this error is highlighted in the paper and some
strategies are suggested to bound the magnitude of these
errors. It is demonstrated as well that the popular linear
stiffness approximation to pillar or seam compressibility does
appear to allow reasonably accurate estimates to be made of
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Table III

Comparison of average pillar stress values
calculated for actual pillars to the average stress
values computed using a linear seam stiffness
approximation. (Variable seam modulus; Pillar height
= 4 m; Pillar width = 24 m)

Height, H (m) Modulus, ES Stiffness, kS Actual pillar Linear stiffness
(MPa) (MPa / m) σ

—
zz / σzz

v
σ
—

zz / σzz
v

4 720000 200000 4.632 4.534
4 72000 20000 4.520 4.403
4 36000 10000 4.404 4.284
4 18000 5000 4.216 4.083
4 9000 2500 3.915 3.759

Figure 15—Effective point stiffness profile of pillars with different
heights but having the same elastic parameters as the host rock

Figure 16—Examples of underground pillars with different pillar/host
rock moduli. (a) Platinum mine pillar with modulus approximately
similar to the host rock. (b) Coal mine pillar with modulus lower than
the host rock (photograph courtesy of Prof. Nielen van der Merwe)
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the average pillar stress when either the pillar height is varied
or when the seam modulus differs from the host rock
modulus. At the same time, it is noted that although this
approximation has some utility in allowing the determination
of average pillar stress values, it may lead to significant
errors when analysing the stress distribution off the reef
plane or along the seam horizon in positions that are close to
the edges of pillars or abutments. It is important to explore
these effects in relation to pillar foundation failure
mechanisms in future studies.  

A practical implication of this study is that if the seam
modulus is noticeably lower than that of the host rock, such
as for coal seams, it is advisable to use a linear stiffness
model for the pillars instead of a ‘rigid’ pillar assumption.
This added complexity seems unnecessary, however, when
simulating hard rock pillars in mines where the seam
modulus is very similar to that of the surrounding rock.     
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Table IV

Comparison of average pillar stress values
calculated for actual pillars where the pillar modulus
is proportional to the pillar height. (Pillar width = 
24 m)

Height, H (m) Modulus, ES Stiffness, kS Actual pillar Linear stiffness
(MPa) (MPa/m) σ

—
zz / σzz

v
σ
—

zz / σzz
v

2 36 000 20 000 4.500 4.403
4 72 000 20 000 4.520 4.403
6 108 000 20 000 4.527 4.403
8 144 000 20 000 4.521 4.403

Figure 17—Effect of pillar modulus on average pillar stress values
calculated for actual pillars, compared to the average stress values
computed using a linear seam stiffness approximation. (Pillar height = 
4 m; Pillar width = 24 m)




