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1 Introduction

A large variety of hypothesis tests in multivariate analysis make use of the likelihood ratio method to derive
appropriate test criteria. Several of the test statistics used are functions of the determinant or product of

determinants of matrix or bimatrix beta variates respectively ([1],[30]), the best known of these statistics is the

S
Wilks’ statistic [39] defined as A = ‘m

ie. § ~W,(n,I,) and B ~ W, (m,I,;0), where © is the noncentrality parameter and n,m > p. Note
that U = (S + B)~ i S (S + B)fé has the noncentral matrix variate beta type I distribution (A% is the

unique positive definite square root of A). The distribution under the nonnull hypothesis is of importance when

= |U| with S and B two independent (p x p) Wishart matrices,

calculating the power of the test and [3] gave an exact expression for the nonnull distribution of the Wilks’
statistic.

In this paper, the main focus is on deriving exact distributions of statistics that developed within the
noncentral bimatrix beta variates paradigm. Firstly, Bekker, Roux, Ehlers and Arashi [4] defined the product
of two dependent Wilks’ statistics, i.e.

=|X1 X5, 1
M= |5ap|ag| - X 0
where S; ~ W, (n;,I,), ¢ = 1,2 and B ~ W, (m,I,) are independent, and derived an exact expression for
the density function of A;. Suppose the columns of a (p X m) matrix Z, a (p X ny) matrix Y7 , and a (p X nz)
matrix Yo are distributed independently in a p-variate normal distribution with a common positive definite
covariance matrix 3. Also, let F(Z) =M, E(Y;) =0 and E(Y2) = 0. Then, both Wilks’ statistics

R ST A = Y2 Y5

Aa:ﬁ "~ N L 77

(2)
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can be used to test Hy: M =0 vs Hy : M # 0. Now, in order to use the information available in matrices
Y and Ys, designate the matrix T = [Y7 : Y3]. Then one might use the product of two dependent Wilks’
statistics, i.e. Ay = AyA, as the likelihood criteria for testing Hy vs H4. For example, suppose the original
testing problem was based on A,. But now, suppose we are interested in including the information, that were
neglected in the beginning phase of the analysis, of the p parameters (that are specific to the characteristics that
are examined) from the other source of ny experimental units. Also consider also the following case: columns
of a (2p X m) matrix Z, a (2p x n) matrix Y are distributed independently in a 2p-variate normal distribution
with a common positive definite covariance matrix diag (3,%), and let E(Z) = M, E(Y) = 0. Also let the

trio matrices Z, Y and M be partitioned as:

Y M
p, v — 1 P7 M = 1 p’
Y, | p M, | p

Consider the following hypotheses
H::M=0 s M=0
{Hz:Ml;éO,Hf:MQ;AO HG:M,#0,M; #0.

It is important to note that the alternative hypothesis H4 in the above is different from that of M # 0. Take
M, = (Mi1,...,Mq,,), and My = (May,...,My,,)". If My =0, then M = 0, however Hf occurs if at
least for one ¢ = 1,...,p; and j = 1,...,p2 (M1; = 0,My; = 0). Thus the hypotheses above is different
from Hy : M = 0 vs Hy : M # 0. Then the test Wilks’ statistic for the hypotheses H} vs H§ may be
designated as the product of two dependent Wilks’ statistics, similarly as in (2). For X = (X;: X 2)', where
X, =(S;+ B)_% Si(S;+ B)_% , i =1,2, it is said to have the bimatrix variate beta type IV distribution. The
latter distribution has been studied independently by [4], [16] and [24]. For B ~ W, (m,I,;0), X = (X, : X)'
has the noncentral bimatriz variate beta type IV distribution, studied by [15]. In this paper, we derive the density

,equivalently {

function and the cumulative distribution function (CDF) of A; = | XX 3] in terms of Meijer’s G-function for
this noncentral case.

Secondly, let S; ~ W), (n;,I,), i = 1,2, and B ~ W), (m, I,) independent, and let
U; =(S1+8S:2 +B)_% S;(S1+S2 +B)_% , i =1,2, then the distribution of U = (U : Uy)' is known as

the bimatriz variate beta type I distribution. The statistic

N

ni n2

1, 1,
= |UL[2" U], (3)

W=

Sy
S1+S,+B

So
S1+S.,+B

AQZ‘

arises when testing whether two normal populations are identical [1]. Testing that two normal distributions are
identical has an important place in multivariate analysis (see [36], pp. 1238 and [19]). In this paper, we derive
an exact expression for the density function and CDF of Ay when B ~ W), (m, I,;®) (see [17]).

In this paper we focus on the distributional aspect of the generalized statistic Az, where the covariance
matrices are not equal; we consider the case of proportional covariance matrices. More specifically, ST ~
W, (ni, a;1,), i =1,2, and B* ~ W, (m, cI; ®") are independent (ay,as, ¢ > 0), with

1 1
2m 272

S1
Si+S;+ B”*

S5
Si+S;+ B*

(4)

|

The study of As is a theoretical development of A; and As, proposing a more general statistic, with different

covariances matrices. The application is still to be explored.



Expression (4) can also be written as

1
N2

, (5)

1
N
2™ O[QSQ

@181+ axSs + cB

o181

As =
3 a181 + axSs + cB

with §; ~ W, (n;,I,), i = 1,2 and B ~ W, (m,I,,®) independent. This leads to the definition of the
noncentral bimatriz variate beta type V distribution. In this paper, the density function for this proposed
distribution is derived as well as the density function and CDF of As.

The rest of the paper is organized as follows: In section 2 and 3 the exact expressions for the density
functions and CDF’s of (1) and (3) if B ~ W), (m, I,; ®) are derived respectively. Subsequently, the noncentral
bimatrix variate beta type V distribution is proposed in section 4 and used to derive the density function and
CDF for (5). The expressions are given in terms of Meijer’s G-function, Fox’s H-function, zonal polynomials,
hypergeometric functions with matrix argument, or homogeneous invariant polynomials with two or more matrix
arguments. The reader is referred to the papers ([6],[7],[8],[9],[10],[11],[26],][27],[28]) on these functions; as well as
the reference books ([23],[32],[34]). These density functions of (1), (3) and (5) are complemented with graphical
representations in the bivariate as well as the bimatrix case. Note there is no loss of generality in assuming
3 = I, in the derivation of the density function of A; (i =1,2,3).

2 Density function of A,

For S; ~ W), (n;,I,),i=1,2 and B ~ W, (m, I,,®) independent, let

X;=(S;+B) 28;(S;+B) %, i=12, (6)

then X = (X;: X 2)/ has the noncentral bimatrix variate beta type IV distribution, denoted as
X~ BB;V (n1,n2,m; ®). The density function is given by

[ (X1, X2)

= {5, ()} T i xR e
i=1

9 -1
'|Ip _ X1X2|—%(m+n2+m) etr (7%@) 1By (W, %’% [Ip + lez (Ip B Xi)—l} (_)> ’ (7)

1=

0<X;<I, i=12 where n; > (p—1),1=1,2, m > (p—1), 1F1 (-) is the confluent hypergeometric

function of matrix argument, 3, (a,b;c) = a (Fa)(l; igfc)(c) denotes the multivariate beta function, I', (a) repre-
P

P
sents the multivariate gamma function (T, (a) = /A>Oetr (—A) |A|“*%(P+1)dA = gpap(p—1) H F'(a—1(i-1)),
i=1
Re(a) > 3 (p—1), see [14], Eq. 2.3). Firstly, we derive the (h1, hy)™ product moment, E (|X1\h1 \X2|h2) )
and use this in an inverse Mellin transform to obtain the density function for A; (see (1)) in terms of Mei-
jer’s G-function. Note that to test equality of the dispersion matrices of two p-variate normal populations ([1],
pp.405), the test statistic is based on the product of two dependent Wilks’ statistics but it differs from A;. Exact
expressions for the density function of two independent generalized Wilks’ statistics under the null hypothesis

was derived by [35].



Lemma 2.1
If (X1,X3)~ BB}V (n1,n3,m;0) then E (|X1|h1 |X2|h2) is given by

[0, (2] 1 Ly (T b b
T, %)pp(%z)etr (‘56) n,,\,r,%;(p,d;* BT (,\) (p) /\,p0¢*

CH(IP) CT(IP) FP(%J‘+ (%2+h2,7') Fp(n1+1;2+m,¢*)

) w)  Tp(Sh+hie)  Tu(%2
Cx(Ip) Cp(Ip) Fp<n71+ 2

T3 J.¢ (1 _
A) Tp(Shthi+ 28 k) Tp (R +20) Tp(R+ho+ 28 r)  Tp(%.J) o (38,-1,),

Is
m|+ MF—

(8)
where > = i > i > i ; SN i S, Ck(+) is the zonal polynomial corresponding

wA T Jid,d* k=0 K I=0 X t=0 T 7=0 p ¢EA-pj=0 J ¢p*EJ-¢
to k [27], C’i’f (+) denotes the invariant polynomial defined by [9],[9],[11] (see also [6]) and Gi’f and gf’p as
defined in [7].
Furthermore, the generalized gamma function of weight k can be expressed as

p
T, (a,r) = 7i?@=D [T T (a+ki—5(i—1)) =Ty (a)(a),, (Re(a) > 2=l —k,) with the generalized hypergeo-
i=1

m
metric coefficient given by (a), = ] (a — 4 (i — 1)), where (a),=a(a—1)...(a+k—1), (a)y=1.
i=1

i

Proof:
The density of (S1,S2,B) is given by

2 1 1
KT [etr (~38:) 182777V [etr (~3©) etr (~4B) B} >V o1y (4:40B)] 9)

=1

where K—' =T, ()T, (%)T, (%) 22 (mitnatm)p ([23], Eq.3.5.1) and oF} (-) is the hypergeometric function

of a matrix argument.

2
On performing the transformations (6) with Jacobian J(S1,S2 — X1,X3) = |B‘(P+1) 1, - X¢|_(p+1) , it
i=1
follows from (9) that

E(1X0" |Xa[") = Ketr (%@)/B 0|B\%("1+”2+m>—%@+”etr(%B) oF: (2;10B) (10)
>
/ U(Xl,B)dX1/ ’U.(XQ,B)dXQdB,
0<X:1<I, 0<X o<1,

where K1 is defined as before and
W (X, B) = [ X220 |, x|t e | ABX (1, - X)L i = 1,2

For any H € O(p) = {H € RP*?/H'H = HH' =1,,} (dH denotes the normalised Haar measure on O (p)
([34], pp.60), and using ([7], Eq.30), ([27], Eq.29), ([23], Eq.1.6.2) and ([34], pp.283, Eq.7) it follows that

/ u(Xl,B)Xm
0<X1<I,

= / u(Xl,HBHI)dexl
0<X:1<I,JO(p)

o0
D Tl e ST SD o)
0<X <1, k=0 k

- / ‘X1|%nl+h17%(p+1) |Ip_X1|7%nr%(p+1) OF(gp) (_%BaXl(Ip_Xl)J) dX,
0<X 1<,

B =, 1 7501 (1 Ini+hi—3(p+1) Cu(X1)
B kz::OXH:HL’% (EB)/0<X1<I X[ = Cn(Ipl)dXI



where L7 (+) is the Laguerre polynomial of a symmetric matrix [34]. Next, using ([9], Eq.3.2) and ([23], Eq.1.7.4)

we have
0 1n Fp(_1+hlx ) (P_‘H)
X B dX = iL’% 1 lB 2 p]
/0<X1<I U( b ) ! kgo; k! (2 ) Fp(_L+’l1+
o0 k n 1 n +1
_ 1 C.(I,)T (—1+p—,n) r (—1+h17,‘§)1—‘ (P_) 1
o kgo;lgo;y(i) Cx(Ii) FP(EZLJr%,\ I;p(QzZLJrh +& z) Cx(—3B)
Similarly,

t=0

o0 t n +1 n 1
_ 1 (7 Celly) Do(FF 4252 7) Dy (FFtha,)T0 (552) ~ (1
/0<X2<I U(XQ;B)dXQ— ZZT: Z Zp:t! (p)C (Ip) Fp(%hr&,p) Fp(%ZJrthrE;l,‘r) Cp( 2B)

Substituting (11) and (12) in (10) yields

B (1% |X,/")

2 X K o (Ip I n1+ﬂ,m Ip(Zt+hy,k6
= Keir (-40) [T, (349)" £ T 3 £ () St mr e

p+1 no
T,T) FP(T-HLQJ)
) To (R bt EE ) B>0U (B)dB.

Applying ([9], Eq.2.8 and Eq.2.10), ([7], Eq.25) and ([6], Eq.3.21) it follows that

/B (BB

_ / |B|%(n1+n2+m)7%(p+1) etr (_
B>0

3B) oF1(5:10B) 0y (—3B) G, (-3 B)dB

=3 [ BT (4B) oF (3:10B) C, (~B)4B
P

| Lni+no+m)—1 1 s
— Z gip. ZJ:%(ml) Z Qé*‘z’/B>O|B2( 1+na+m)—3 (p+ )etr (—%B) Cg:ﬁ (%@B,—%B)dB

ni1+na+m) = J, nitns+m ¥ J,
—  93(nitnat ¢ZA f,,,;)?;l!(%l) ) 9¢*¢Fp(1+22+ ,¢)C¢*¢(%@,71p).

BN

Substituting (14) in (13) completes the proof.

(11)

(13)

Now using this result (8), we are in a position to derive the exact expression for the density function and the

CDF of A;.

Theorem 2.1
Let (Xl,X2> ~ BB;V (nl,ng,m; @) and A1 = |X1X2| .

Then the density of A1 is given by

) Jip C(Ip) Cr(Ip)
%6” (_%@) nm;w o k!tllj! (i)( ) /\p9¢* CA (T )cp(zﬁ)

%2-+'M,T) Fp(n]+7;2+7n7¢*)
na
2

Jp (1 2p, a,...,a
+%,p) T,(%.7) Cy? (30,-1,) G2§,2p (/\1| 17_,,,1722:) ;

(15)



00 k o) t 00
0 < A\ <1, where > =3 333N 5 >, G(:) denotes Meijer’s G-function
K A T P j J

Ky, T,p,J ;0,0 k=0
([32], pp.60) and

o+ = +k(l+1)/2——(zfl) for i=1,3,5,....2p—1
a; =

—2—|—p +tij2 — (z—2) for i =2,4,6,...,2p,

=1+ kG2 — (z—l) for i=1,3,5,...,2p—1
b; =

=14t — (1—2) for i=2,6,10,...,2p.
Proof:

Using (8) the Mellin transform (see [32], Eq.1.8.1) of f (A1) is
E(AF)

E [(|X1X2|)h71]

My (h)

_ [P 1 L (x 1,6 Cu(ly) Co(I)

= T, %)pp(n_;)etr (—39©) I ] (,\)( ) )\pecb NI ol
.rp("TlJrPT“,ﬁ) Do (22 + 250 7) Dp (B2t o) 1y (Bl +h—1,6)  Tp(%2+h—1,7)
L (RN T (F450)  To(37) D (S thi 55 m) Ty (S thi 250 )

The generalized gamma functions of weights k and 7 respectively in (16) can be written as
1 1 L 1 o
Iy (3 4t 25 Ty (5 A 252 7) =820 T (a0,
i=1

and ,
D
Ty (% +h—1,6)T, (% +h—1,7) =72P@ D [T T (b; + h)

i=1

with a; and b; as defined above.

Now, substituting (17) and (18) in (16) gives

_ (=) 1 1 (9)(7) gl ¢ Gxlde) o (L)
Mp(h) = 5@y, et (—2©) . ZJM* i () (9%, 05 Ty ooty
Ry ASTH 05059,
FP(%'FP_;IW) Fp(n_?z"'pTﬂxT) FP(W *)CJﬁb(l@ -1 ) H U'(bi+h)
T (F+EE ) T (R85 0)  To(3.7) L2 ratn)

Applying the inverse Mellin transform on (19) (see [32], Eq.1.8.2), the result (15) follows.
Theorem 2.2
Let (X1,X3) ~ BBl (n1,n2,m;0) and Ay = |X1X | with density function given by (15).

Then the CDF of A1 is given by

C?(30,-1,).

(16)

r, (2] 1 1 o (p76\? Cully) Co(I1y)

F\) = P(A < A) = (C1g (5 (9;)~ -

(A1) (A1 < A1) FP(%)FP(%)e 7“( 2 )H7A777§];¢7¢* AT ()\)( )gA,p ¢ Ch(I,) Cp(Tp)
FP(%]“F%W) Fp(%z“'#ﬂ') Fp(_ln +2 +m7¢*) Cs(30)C p* \ P)GQP, 1”'1""1 - a2pt+1
.Fp(%lur%l’)\) T, (%2 4+ ) ) Cc;(I, 2p+1,2p+1 b1+1, ,bzp+1o

)



00 k e t 00
0 < A < 1, where > SIS >3 >, and a; and b; as specified in
KA T,p,J 50,0 k=0 k I=0 X\ t=0 7 r=0 p ¢peX-pj=0 J ¢p*€J-¢
Theorem 2.1.
Proof:
Applying ([33], Eq 2.53) and ([32], Eq. 2.2.1) completes the proof. |

For the bivariate case, p = 1, Corollary 2.1 gives the density function and CDF of A; = X; X5 where (X7, X2) ~
BB{V (nla n23 m7 0)

Corollary 2.1
If (X1,X3)~ BBV (n1,n9,m;0) then the

(a) density function of Ay = X1 Xy is

o 1 __0 2n2 1 1 . Lo+ k—1 I‘(n22+m+k)r(n12+m+k)r(n1+v;2+m+k> 0 k
fa) = r(r(% A ;go (1= A0)? D (% k)T (22222 o) (2)

3 )
CoFy (R gk, n2tm +k- mngdIm 4 op 1 —X\i), 0< M\ <1,
g ("2 4 k)D(™Mg™ k)02 kg t)

= W e3¢ Z Z T (2) L(%+k)

(A |m2ﬂ+k+t 1, 1l+_22ﬂ+k+t1>
1

(20)

and

(b) CDF Of A1 = XlXQ 8

n2+m+k) (n1+m k) (n1+n2+m+k+t)

F(M) =P <M)= e 30 i:)i:):%(a)“( @ Y )

k=0 1
G2l ,"1*"2+m+k+t,"1+§2+m+k+t
3,3 "1 +t,%2 +t,0

), 0< A <1,

where o F (+) is the Gauss hypergeometric function with scalar argument (see [20]).

Expression (20), in terms of the Gauss hypergeometric function, was studied and used by [25] to calculate
percentage points. The effect of the noncentrality parameter on the form of the pdf of A; will be illustrated.
Figure 1 shows the effect of the noncentrality parameter 6 on f (A1), given by (20), where (X;,Xs3) ~
BBV (8,8,8;0). As 6 increases the density f(\;) shifts towards smaller values of A;.

Secondly, in Figure 2 we consider the bimatrix case, p = 2, to illustrate the effect of the noncentrality parameter
© on the density function of A; (see (15)) where (X1, X2) ~ BBLYV (8,8,8;0), ® = 0I,. We note that as 6

increases the density function shifts towards smaller values of Aj.

Fig.1. Effect of 9 on f(11), A1 = X1Xp, (X1,X2) ~ BBY(8,8,8;6) Fig.2. Effect of ® on f(11), A1 = [X1X2|, (X1,X2) ~ BBY(8,8,8,0), ® =01,

12 60
------- 0=0 50
—_0-8 f(11)
fa1) ° ——60-16 140
6 30
20

3 .

104 7

0k : - AL EE . ot
0 0.2 0.4 0.6 0.8 1 0 01 0.2
A1 A1




3 Density function of A,

IfU= (U : Ug)/ has the noncentral bimatrix variate beta type I distribution, denoted as U ~ BBZ{ (ny,n2,m; ©),

the density function is given by

sm—3(p+1)

2
FOLO) = (8, (359} IO, - s,
2
-etr (_%8) 1F1 (W, %,% (Ip - Ui) 9) ) (21)
=1

2
0<U,<I, i=12 0<5> U;<I, where n; >(p—1),7i=1,2, m> (p—1) and with product moment
i=1
[see [12]]

I (R £ (340 )0 ()
(V%) T (R o)

B (0" [Ua]) =

etr (—30©)  Fy (tedm, mabnodm 4 by 4y 1O),

(22)

where Re (% + hi) > %(p —1), ¢ = 1,2. Subsequently, we now derive an exact expression for the density
function and CDF of Aj. For asymptotic distribution of a suitable function of Ay the reader is referred to [12]
and [22].

Theorem 3.1
Let (U, Us) ~ BB (n1,n0,m;©) and Ay = |Uy|2™ |U,|?"™.
Then the density function of Ao is given by

Trl (=1 ni+ns+m 1 2p, (a1,a1),...,(ap,ap)
iRy (+40) 5 ST, (apsn ), (10) 250 (Ml e ) e

0 < Ao <1, where H () denotes Fox’s H-function ([30], pp.140 and [33]) and

aJ:%+kJ_%(J_1) fO’/‘j:].,Q,...,p, aj:nlérnz forj21,2,...,p,
—1G -1 for j=1,3,5,...,2p—1 M for j=1,3,5,...,2p—1
—3(—2)  for j=2,4,6,...,2p, ne o for j=2,4,6,...,2p
Proof:

Using (22), ([7], Eq.25), the inverse Mellin transform and definition of the H-function, the result (23) follows.l

Theorem 3.2
Let (Ui, Up) ~ BBy (n1,n2,m;©) and Ay = |U1|%"1 \U2|%n2 :
Then the CDF of Ao s given by

F(X2) = P(A2 < X\2) = W(gtr( o) Z Zk|F (mtmatm o), (10)
’ 24
_H2P 1 |(171)7((114‘@17041),--47(ap+ocp,ap) ( )
p+1,2p+1 | 2 (b14+81,81)-- (b2p+Bap:Bayp )-(0,1)

0 < A2 <1, with aj,aj,b;,B; as specified in Theorem 3.1.



Proof:
Applying ([33], Eq.2.53) and ([33], Eq.1.60) completes the proof. |

1 1
For the bivariate case, p = 1, Corollary 3.1 gives the density function and CDF of Ay = Ufmenz where
(U1,Uz) ~ BB{ (n1,n2,m;0).

Corollary 3.1
If (U1,U3) ~ BB (ny1,n2,m;0) then the

ln, 1
(a) density function of Ay =UZ" U™ s

1 & kK nydtnetm
FO)= e ™ L u (6) T k)
m kvn];nz
1—{12,’;J AQ‘E;;) (0 Q))>v 0< A <1, (25)
and
(b) CDF of Ay = UE™ U™ s
19 2 k
F(\)=PAy < X)) = —trmmye 20 Y % (g) T (motnetm 4 )
2 k=0

1 (1) (g + 572 4k, 252
. HQ,S ()‘2|(£2L ﬂ),(%z,%z),(o,l) s 0< X <1.

The effect of the noncentrality parameter on the density function of Ag, f (A2), is shown in Figures 3 and
4 where (Uy,Us) ~ BB{(2,2,2;0) and (Uy, Uy) ~ BB (2,2,2;0) (© = 0I,) respectively. In Figure 3, at
smaller values of As the density function increases as 6 increases, whilst for p = 2, i.e. Figure 4, the density

function shifts towards smaller values of As for increasing 6.

Fig.3. Effect of 0 on f(12), A2 = U1Up, (U1,Up) ~ BB1(2,2,2;0) Fig.4. Effect of ® on f(12), Ao = [U1U5], (U1,Uy) ~ BBY(2,2,2:©), © = 61,
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Remark 3.1

(a) As pointed out by [37], the computation for hypergeometric functions of matrix arguments, or zonal
polynomials are in a state of development. Therefore the sequential saddlepoint approximation is used to
calculate tail probabilities of In Az. In this method the cumulant generating function K(s) = In My, , ()

is used, where My a, () is the moment generating function of In Ay. From (22) and ([34], pp.265, Eq.(6)):



Minns (s) = E(A3)
(|U 20U )

B Fp(n1+n2+m) Fp(n1+nls)rp(vz22+n§s)

= Fp(%]-) p( ) (n1+n2+m+nls+n25)

.etr (,é(_)) Fy <n1+7;2+m; n1+g2+m + n15n2ans %@) (26)
[[ re=pe=agen) T rEe-sen [ repes-30-)

J— i=1 i=1 i=1

= H;l (,L —1(i— 1))H 11‘(7—‘22——2 1)

D
) H B F(n]+7;2+m+n]s;nzs_%(i_l))
nis+nss. nit+notm nis+nss 1
~1F1(122,122 +122’_§®)

1=

The method involves two stages:

(1) replacing the relevant hypergeometric function of matrix argument in (26) by the calibrated Laplace

approximation 1F1;
(2) wusing the Lugananni and Rice tail probability approximation.

For more detail the reader is referred to [5] and [31]. Table 1 gives values of the tail probabilities,
P(ln Ay > y), for p=2,n1 =2,n3 =2,m = 2,0 = 01 for different values of 6.

0 0 1 8
Approximated values 0.056 | 0.045 | 0.001
Simulated empirical values | 0.055 [ 0.032 | 0.001

Table 1: P(InA, > —4.5).

(b) Consider ® = 6I,, using ([23], Eq.1.5.5) and ([33], Eq.A.69) to write H (-) in a computational form, (24)
could be evaluated. However, careful consideration should be given to the gamma function for negative
integer values (see also [2]). In commercial software like MATHEMATICA or MAPLE Meijer’s G-function
is available, but the Fox H-function is still in a developing stage (see also [40]).

4 Density function of A3 - noncentral bimatrix variate beta type V

Firstly, in this section the noncentral bimatrix variate beta type V distribution is introduced, followed by the
expression for the product moment. Lastly, we obtain an exact expression for the density function, as well as
the CDF of A3 (see (5)). The bimatrix variate beta type V distribution allows for constant factors to be built
into the covariance matrices of Wishart matrix variates from which this distribution is generated, and as such

may be useful in test statistics requiring this.

Lemma 4.1
Let 81 ~W,(n1,I,), Sa~W,(n2,I,) and B ~ W, (m,I,;®) be independently distributed. Consider the
rattos

1

Q; = (151 + @282 + ¢B) "% (0;S;) (181 + a2Ss +¢B) %, i=1,2. (27)

Then density function of Q =(Qy : Q,)", denoted as Q NBBZ‘,/ (n1,n2,m, a1, s, c; ), is given by

10



f (le QQ)

1 2 1ni—d(p+1) 2 %m*%(lﬂrl) 2 %’MP 2 *%(n1+n2+m)
= B et L - s o 1 (£) "L+ £ ==a
1 -1 1l
2 2 2 2 2
argonn (2 (n-Fa) (nefae) (n-fa)e)
(28)
2
0<Q;<I,,i=12 0<5> Q,<I, where n;>((p—1), i=1,2and m> (p—1).
i=1
Proof:
On performing the transformations (27) where Q, = S~ % i)S~ 2, 1=1,2, with S = 0181 + @285 + ¢B,
2 *2p(p+1
the Jacobian is J (S1,S2, B — Qy, Q,, S ( H > 1S|P*Y | From (9) follows that

f(Qla QQ, )

2
= Keir(-30) [T oy mfzmpmcz\?m—ﬂp*”

i=1

1 1 1 2 1
SR T3P oy [—S (Ip e Qi)] oFi (m ros? (Ip > Qi> sg) L@

where K1 =T, ()T ()T, (3) 240,

We consider the symmetrised density function of (Q, Q,) defined by [21], that is

fs(Q1, Q) = / / f(HQH' \HQ,H' HSH')dHdS where H € O (p). Note that dS = dHSH’
S>0J0(p
[13]. From (29), ([7], Eq.25) and ([17], Eq.2.3.6)

fs (Qla QQ)
sm—3(p+1)
- K ﬁ a;%nipcfémp ﬁ |Qz|gm—l(p+1) Ip _ i Qi 2 / |S|%(n1+7l2+m)—%(p+1)
i=1 i=1 i=1 5>0
L 1
2 2 2 2 2
-etr [—%S <Ip+ > %QJ] /( : oF) (”21, T ( Z > H'©OH (Ip -3 QZ) S)deS.
i=1 O(p i=1 i=1
(30)
Integrating (30) with respect to S by using ([23], Eq.1.6.4) and since fs (Q;, Qy) = / f(HQH'  HQ,H')dH
O(p)
the result (28) follows from applying the result of Greenacre [21] in an inverse way (see [13]). W
Remark 4.1

Ehlers, Bekker and Roux [18] derived the result in (28) for the bivariate case, that is where p = 1, and also

studied some properties of the noncentral bivariate beta type V distribution.

Lemma 4.2
If (Q1, Q) ~ BBX (n1,n2,m, 01, 02,¢;0) as given by (28) then for a1 =z =, E (\Q1|h1 |Q2|h2) is
given by

Dy (% +h1 )Ty (%2 +ha) (g)*%mpetr (—3©) X 0

TQ 7TL Fp(%ﬂb)rp(quﬁ) I{,T(g
Iy (3)0n (%) o

)FP(WMth@) p QC@’C_caIp)’ (31)



where Y = > TS Y.
K,T;¢ k=0 K T
Proof:

From (29) with @1 = as = o and using ([23], pp.22) yields

E(1Qi" Q")

= Ko 3(mitn2)pe—3mpepy (—%@)/ \S|%(m+n2+m)fé(p+1)
S>0

2 snithi—3(p+1) 2
'H1 1Qil? : f Zl Q; |dQ,dQ,dS
1= 1=

0<Q;+Q,y <,
Q;>0
= Ko 3(mitn2)pe—3mpepy (,%@) B, (% +hi, %2+ hg) / |S|%(n1+n2+m)—%(p+1)/ g(Z)dzds,
S5>0 0<zZ<I,

(32)

g(Z) = |g|p0 a0 L g a0t e [ LS (1, + <22)] oy (%5451 08P (I, - 7).

Let X =1, — Z; using ([7], Eq.25 and Eq.30), (|8], Eq.2.8) and (|6], Eq.3.28) we obtain
P

[ vz
0<Z<I,
= (A S ESY Y 0
k=0 k t=0 T PERT 2 )k
/0 . |X|%mf%(p+1) |1-p_X|1(n1+n2)+h1+h2*2(p+1 oF T( 8295 7 2ca )dX
<X<I,

- 1 ko 1 To(%) Tp(5.9)0p(HF"2 +hiths) 1 o
= etr(_zas) > 04 R T, (B n) Ty (CLB2 o oy ) ¢ (£08,52S).

(33)
Substituting (33) in (32) and applying ([6], Eq.3.21) completes the proof. ]

Armed with the results in Lemma 4.1 and 4.2, we can derive the key result, namely the density function of A

(see (5)).

Theorem 4.1
Let (Qq, Qy) ~ BBZ‘,/ (n1,na,m, o, a, ¢; O) with density function given by (28) and let As = |Ql|%"1 |Q2|%"2 i
Then the density function of As s given by

ﬂ_% (p—1) c\—5smp KTL (%Aﬁ Fp(n1+n2+m ) (o c-a 2p,0 (a1,01),...,(ap,op)

Fp(%l)F,,(%Z) ( ) etr( )ngﬁe k!t I n) C (2 c IP)HP 2p >\ |(b B ,(bzp /32;7)
(34)
0< A3 <1, where >, =3 > > > and
R, T;¢ k=0 k t=0 T ¢€kr-T
aj =2+ (kj+t;) =50 -1 for 5=1,2,3,...,p,  a;=2F2 for j=1,2,3,...,p,
—31(G—=1)  for j=1,3,5,...,2p—1 o for j=1,3,5...,2p—1

bj = Bj =

—2(j—2) for j=2,4,6,...,2p, Lo for j=2,4,6,...,2p.

2

»M»—‘
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Proof:
Similar to the proof of Theorem 2.1. |

Theorem 4.2
Let (Qq, Q) ~ BBX (n1,n2,m, o, o, c; ®) with density function given by (28) and let As = |(;,)1|%n1 |Q2|%n2 .
Then the CDF of A3 is given by

7= c)~3m K,T 2 a\k (c—a Z,6)0p (= mitradm o
F(A3) = P(A3 < \3) = m (g) P etr (—%@) RZ (9¢ ) (%) ( — ) Lo ( = (%,m) )

.C¢(I )C (®)H2p1 )\ |(1!1)’(a1+a1aal)"“’(ap+apvap)
RIIC(T,) p+1.2p4+1 \ 735,18, .8,),., (bop+BapsBap ) (0,1)

[ee] [ee]
0<X3<1,where 33 = > > > >, andwith aj,a;b;,B; as specified in Theorem 4.1.
K,T;0 k=0 k t=0

Proof:
Applying ([33], Eq.2.53), ([33], Eq.1.60) and ([9], Eq.2.2, Eq.2.7) completes the proof. |

For the bivariate case, p = 1, that is where (Q1,Q2) ~ BB} (ni,ns,m, a1, as,c;0), the product moment
L1p, 1
E ( }1” ’2’2) is given for this special case in Corollary 4.1. The density function and the CDF of A3 = Q2" Q3"

is given in Corollary 4.2 as an immediate result.

Corollary 4.1
If (Q1,Q2) ~ BBY (n1,n9,m,ay,as,c;0) then from [18],

hihs (5 )T(% +ho) (L)%"l (L)%m gD (M) gyl
E( 1 w2 ) - F(nTl) <_2) i as e 2 l;(] A F(m+_gzﬂ+l+h1+h2) (2)
By (—"ﬁ’;*m F 1,0+, B h, P Ly By 91 “g;) : (35)

where F} (-) is the Appell function of the first kind.

Corollary 4.2
If (Q1,Q2) ~ BBY (n1,n2,m,a1,a9,c;0) then the

(a) density function of Az = 2n1 an (see [18])

c 31 ¢ 3n2 L R ni+no+m
f()\g) - WIF(%Z) (04_1) (04_2) € 29k§0t§0l20 k'i‘l'l—‘ (L +k+t+l)
l

k t m nj+no
[ aj—c as—c 2,0 ( +hAt4, )
(%) (—31 ) (—32 ) Hi, ()\d(k _L)(t%z)Q ), 0<A3<1. (36)
and
(b) CDF of A3 is
1 . %n1 . %ng _1p oo 00 00 1 At
F(As) = P(As < As) = p(n_l—_z)(a—l) a e 2 3 NN D (R k-t 4 1)
2 k=01t=0[=0

0
k m ; nit ni+4+n
ar1—c as—c 2,1 (1,1),( B+ 2002 g, 2102 )
( ) ( ) H23 <>\3| o ,<t+7—122,7—;2),(071) , 0< A3 < 1.



Subsequently, graphical representations will show the effect of the parameters o, as and ¢ on the form of the den-
sity function of As. Figure 5 shows the effect of a; on f (A\3) (see (36)) where (Q1,Q2) ~ BBY (2,2,2,a1,1,1).
At smaller values of Ag the density function, f (A3), increases as a; decreases. Figure 6 illustrates the shape
of f()3) (see (34)) for increasing values of o where (Q;, Q,) ~ BBY (2,2,2,a,a,1). We note that as «

increases the density function shifts towards larger values of As.

Fig.5. Effect of a3 on f(13), Az = Q1Q2, (Q1,Q2) ~ BB\1/(2,2,2,(11,1,1) Fig.6. Effect of @ on f(13), Az = [Q1Q,], (Q1,Q5) ~ BB\2/(2,2,2,a,a,l)

20 - 80

16
f(43)

12

In Figure 7 the effect of the additional parameter ¢ on f(A3) (see (36)) was studied where (Q1,Q2) ~
BBY (2,2,2,1,1,c). At smaller values of A3 the density function, f ()\3), increases as c increases. Figure 8
illustrates the shape of f (\3) (see (34)) for increasing values of ¢ where (Q, Q,) ~ BBY (2,2,2,1,1,¢).

Fig.7. Effect of con f(13), A3 = Q1Q2, (Q1,Q2) ~ BBY(2,2,2,1,1,¢) Fig.8. Effect of c on f(13), A3 = [Q;Q,|, (Q1,Q,) ~ BB¥(2,2,2,1,1,c)
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5 Conclusions

Bekker, Roux, Ehlers and Arashi [4] defined A1 = ’SISﬁ) ‘Sfﬁ , the product of two dependent Wilks’statistics,

and in this paper we focussed on the case if the common "denominator" of the "ratios" has the noncentral

Wishart distribution. An exact expression for the density function, as well as the CDF of
1
s, _|?™

s i

— 1

A = 55578 S1+S.+B
tion. The noncentral bimatrix variate beta type V distribution, that allows for different covariance structure,

1 1
= |U;|?"" |Uy|2™ was given for B having a noncentral Wishart distribu-

was introduced with the corresponding generalized statistic A3 and its density function expression. The effect
of specific parameters on the density functions of A;, ¢ = 1,2,3 were shown. This paper makes a substantial
contribution to the field of multivariate statistical analysis with the potential to be applied to hypothesis testing
where two samples are present. A reason for the lack of exact expressions for the distributions of the test statis-
tics under the nonnull hypothesis in the past is because of the limitation of software packages to handle the final

expressions which are quite complicated. These functions are becoming more computable due to the availability

14



of packages and algorithms, see [29]. Since exact expressions for the density functions of these statistics are now

available exact confidence intervals can also be determined.
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