Evaluation of the Genotype® MTBDRsl Assay for Susceptibility Testing of second-line Anti tuberculosis Drugs

Halima M Said MSc¹, Marleen M Kock PhD¹,², Nazir A Ismail MMed,FCPath¹,², Kamaldeen Baba MMed,FCPath¹,², Shaheed V Omar MSc¹, Ayman G Osman MSc¹, Anwar A Hoosen MMed,FCPath¹,², Marthie M Ehlers PhD¹,²

Department of Medical Microbiology, Faculty of Health Science, University of Pretoria¹, National Health Laboratory Service, Tshwane Academic Division²

Running title: The Genotype® MTBDRsl Assay

Word count of text: 2,566

Key words: MDR-TB, XDR-TB, Genotype® MTBDRsl, drug resistance

*Corresponding author: Halima M Said
Tel: 27 12 319 2250
Fax: 27 12 321 9456
PO Box 2034, code 0001
Pretoria
South Africa

Email address: ahlammdd@yahoo.com
Abstract

Background: The GenoType® MTBDRsl assay (Hains, Lifesciences, Germany) is a new rapid assay for detection of resistance to second-line anti-tuberculosis drugs.

Method: The MTBDRsl assay was evaluated on 342 MDR-TB isolates for ofloxacin (OFX), kanamycin (KAN), capreomycin (CAP) and ethambutol (EMB) resistance and results were compared to the agar proportion method. Discrepant results were tested by DNA sequencing.

Result: The sensitivity and specificity of MTBDRsl assay was 70.3% and 97.7% for OFX, 25.0% and 98.7% for KAN, 21.2% and 98.7% for CAP and 56.3% and 56.0% for EMB, respectively. DNA sequencing identified mutation that were not detected by MTBDRsl assay including: 8/11 phenotypically OFX-resistant isolates had mutation in gyrA (2/8 had additional mutation in the gyrB gene), 1/11 had mutation only in the gyrB gene; 6/21 phenotypically KAN-resistant isolate had mutation in rrs gene; 7/26 and 20/26 phenotypically CAP-resistant isolates had mutation in the rrs and tlyA genes, respectively.

Conclusion: The MTBDRsl assay showed a lower sensitivity as compared to previous studies. The assay performed favourably for OFX; however the assay was less sensitive for detection of KAN/CAP resistance and demonstrated low sensitivity and specificity for EMB resistance. It is recommended that the MTBDRsl assay should include additional genes to achieve a better sensitivity for all the drugs tested.

INTRODUCTION

The increasing problem of multidrug-resistant tuberculosis (MDR-TB) caused by *M. tuberculosis* strains that are resistant to isoniazid (INH) and rifampicin (RIF) and the emergence of extensively drug resistant tuberculosis (XDR-TB), defined as MDR-TB with additional resistance to any fluoroquinolon (FLQ) and to at least one of three injectable second-line drugs, (kanamycin [KAN], amikacin [AK], and/or capreomycin [CAP]) has become a global health problem, threatening the success of TB control programmes (1,2). The WHO developed guidelines for drug susceptibility testing (DST) for first and second-line anti-TB drugs on Lowenstein-Jensen (LJ) medium or Middlebrook agar using the proportion method. However, DST of *M. tuberculosis* to second-line drugs is difficult, expensive, and not well standardised. In
addition results are only available within 3 to 6 weeks. Therefore, there is a major interest in rapid molecular detection methods for resistance to these drugs.

The GenoType® MTBDRsl assay (Hain Lifesciences, Germany) was developed for rapid detection of resistance against second-line drugs (3). The assay uses a multiplex PCR and reverse hybridisation to identify *M. tuberculosis* and relevant mutations in genes, *gyrA*, *rrs*, and *embB* that confer resistance to FLQ, CAP/AK/KAN/viomycin (VIO) and ethambutol (EMB), respectively (3). Previous studies reported that the majority of FLQ-resistant *M. tuberculosis* isolates had mutations in the quinolone resistance determining region (QRDR) in the *gyrA* gene (mutations mostly in codon A90, 91 and D94 and, more rarely, G88 and S91), and less frequently in *gyrB* gene (4,5,6). Resistance to CAP, KAN, and AK has been shown to be associated with mutations at positions 1401 and 1402 and position 1484 in the *rrs* gene (7,8). Mutations 1401 and 1484 were found to cause high-level resistance to all drugs, whereas 1402 causes resistance to only CAP and KAN. In addition, the *tlyA* gene, which encodes a putative rRNA methyltransferase, was reported to confer resistance to CAP (9). Ethambutol resistance is reported to be most frequently associated with mutations in the *embCAB* operon. However, 50% to 70% of EMB resistant *M. tuberculosis* isolates contain missense mutations in the *embB* gene with the majority (47 to 60%) of the *M. tuberculosis* strains carrying mutations at codon 306 (10,11).

The aim of the study was to evaluate the performance of the MTBDRsl assay for the detection of ofloxacin (OFX), KAN, CAP and EMB resistance in a high-TB burden area. The results obtained were compared with those of the standard agar proportion method which is performed in parallel with the MTBDRsl assay.

MATERIALS AND METHODS

Study setting and clinical isolates

The study was conducted at Diagnostic Microbiology Laboratory at Tshwane Academic Division located in Pretoria, South Africa. A total of 342 consecutive MDR-TB isolates were collected from the National Health Laboratory Service (NHLS) Diagnostic Microbiology laboratory at the Medical University of Southern Africa. The laboratory receives specimens from the surrounding clinics and hospitals in the referring provinces of Limpopo, North-West and Mpumalanga, a
geographic area with high incidence of TB. All isolates were freshly sub-cultured on Middle-
brook agar before being tested by the different methods.

Drug susceptibility testing

Drug susceptibility testing was done for OFX, KAN, CAP and EMB using the agar proportion
method. An MDR-TB isolate was classified as resistant when the colonies on the drug-
containing quadrant appeared 1% compared to the drug-free control quadrant.

GenoType® MTBDRsl assay

The DNA of MDR-TB isolates was extracted according to a method described previously (12).
MTBDRsl assay was performed as described by the manufacturer. Either the absence of a wild-
type band or the presence of a mutant band was an indicative of a resistant isolate.

DNA sequencing of discrepant results

All discrepant isolates were sequenced to evaluate discrepancies between MTBDRsl and agar
proportion method. The primers used for amplification and sequencing are shown in Table 1.

Statistical analysis

The sensitivity, specificity, positive and negative predictive values was calculated for each drug
compared to the gold standard agar proportion method. The agreement between the two methods
was determined by the κ statistic. The κ value, a measure of test reliability, was interpreted as
follows: < 0.2, poor; 0.21 to 0.4, fair; 0.41 to 0.6, moderate; 0.61 to 0.8, good; ≥ 0.81, excellent
(13).

RESULTS

Of the total 342 isolates tested by the MTBDRsl assay, 336 (98.2%) gave interpretable results. In
6 isolates, no TUB band was observed and these isolates were excluded from the analysis. No
contamination was observed in the negative controls. A total of 21/336 (6.3%) isolates met the
criteria for the classification as XDR-TB by the agar proportion method and 8/336 (2.4%) by the MTBDR\textsubscript{s/l} assay. Turnaround times for DST ranged from 6 to 21 days (median, 11 days) for the agar proportion method and from 2 to 3 days (median, 2 days) for the MTBDR\textsubscript{s/l} assay. The DST results of the MTBDR\textsubscript{s/l} assay as compared to the agar proportion method are shown in Table 2.

Ofloxacin resistance: The sensitivity and specificity of the MTBDR\textsubscript{s/l} assay for OFX resistance was 70.3% and 97.7%, respectively (Table 3). Of the total 336 isolates tested, 299 (89.0%) were phenotypically susceptible to OFX. Of these, 292 (97.7%) showed wild-type patterns with the MTBDR\textsubscript{s/l} assay and the remaining 7 (2.3%) isolates had mutations. DNA sequencing confirmed the presence of mutations in the \textit{gyrA} gene in all 7 isolates, with one isolate showing additional mutations in the \textit{gyrB}. The phenotypic method identified 37/336 (11.0%) resistant isolates to OFX, of these 26 (70.3%) had mutations with the MTBDR\textsubscript{s/l} assay and the remaining 11 (29.7%) showed wild-type pattern. Analysis of the discrepant results by DNA sequencing showed that 8/11 had mutation in the \textit{gyrA} gene, with 2 of the 8 showing additional mutations in the \textit{gyrB} gene. One of the 11 isolates (phenotypically an XDR-TB isolate) had mutation only in the \textit{gyrB} gene (at position 1491 A\textrightarrow{}G) and was not detected by the MTBDR\textsubscript{s/l} assay as the \textit{gyrB} gene is not included in the assay (Table 4).

Among the 33/336 OFX-resistant isolates by MTBDR\textsubscript{s/l} assay, the \textit{gyrA} MUT 3C/D94G was the most prevalent mutation occurring in 14/33 (42.4%) isolates followed by the \textit{gyrA} MUT 3D/D94H (10/33; 30.3%), \textit{gyrA} MUT 1/A90V mutation (1/33; 3.0%) and \textit{gyrA} MUT 3B band/D94Y (1/33; 3.0%). In 5 of 33 isolates (15.2%) both \textit{gyrA} MUT 3C/D94G and \textit{gyrA} MUT 1/A90V were present. For 2 isolates (2/33; 6.1%) resistance was indicated by omission of wild-type pattern.

Kanamycin and/or capreomycin resistance: In 4/336 (1.2%) isolates, the \textit{rrs} gene control band was absent. Similar results were obtained after repeating the assay and hence, these isolates were excluded from the analysis. The sensitivity and specificity of the MTBDR\textsubscript{s/l} assay was 25.0% and 98.7% for KAN, 21.2% and 98.7% for CAP, respectively (Table 3).

A total of 304/332 (91.6%) were phenotypically susceptible to KAN and of these 300/304 (98.7%) showed wild-type patterns with the MTBDR\textsubscript{s/l} assay and the remaining 4 (1.3%) had
mutation in the \textit{rrs} gene. DNA sequencing confirmed the presence of mutations in all 4 isolates. Of the 332 isolates, 28 (8.4\%) were phenotypically resistant to KAN and only 7 (25.0\%) of these isolates had mutations by the MTBDR\textit{sl} assay, while the remaining 21 (75.0\%) had wild-type patterns. Among the 21 discrepant isolates, 6 isolates (including 3 phenotypically XDR-TB isolates) had mutation in the \textit{rrs} gene by DNA sequencing and were not detected by the MTBDR\textit{sl} assay (Table 4). These isolates had various nucleotide changes at different positions in the \textit{rrs} gene (between 87 to 1431bp).

Of the 332 isolates, 299 (90.1\%) isolates were phenotypically susceptible to CAP and of these 295/299 (98.7\%) showed wild-type patterns with the MTBDR\textit{sl} assay and the remaining 4 (1.3\%) had mutation in the \textit{rrs} gene. DNA sequencing of the \textit{rrs} gene showed mutation in all 4 discrepant isolates. Thirty-three of the 332 (9.9\%) isolates were phenotypically resistant to CAP, of these only 7 (21.2\%) had mutation in the \textit{rrs} gene with the MTBDR\textit{sl} assay and the remaining 26 (78.8\%) showed wild-type pattern. Of the 26 discrepant isolates, DNA sequencing identified mutation in 7 isolates (including 3 phenotypically XDR-TB isolate) which were not detected by the MTBDR\textit{sl} assay. These isolates had various nucleotide changes at different positions in the \textit{rrs} gene (between 87 to 1431bp). In addition, the \textit{tlyA} gene was sequenced for all the discrepant isolates. DNA sequencing identified nucleotide change at position 33 (A→G) of \textit{tlyA} gene in 20/30 isolates phenotypically resistant to CAP and 3/30 CAP-resistant isolates by the MTBDR\textit{sl} assay (Table 4). This mutation was not detected by MTBDR\textit{sl} assay as the \textit{tlyA} gene is not included in the assay.

Of the 11 KAN/CAP resistant isolates by MTBDR\textit{sl} assay, 1/11 (9.1\%) had \textit{rrs} MUT 1/A1401G and the other 1/11 (9.1\%) had \textit{rrs} MUT 2/A1484T mutation. The remaining 9/11 (81.8\%) were resistant by absence of wild-type patterns.

Ethambutol resistance: In 20/336 (5.9\%) of the isolates tested for EMB, both the wild-type and mutant EMB bands were observed, suggesting heteroresistance and thus were not included in the analysis. The sensitivity and specificity of the MTBDR\textit{sl} assay for detection of EMB resistance was 56.3\% and 56.0\% respectively (Table 3). Of the 316 isolates, 268 (84.8\%) were phenotypically susceptible to EMB and of these 150 (56.0\%) showed wild-type pattern and the remaining 118 (44.0\%) showed mutations with the MTBDR\textit{sl} assay. Forty-eight of the 316
isolates (15.2%) were phenotypically resistant to EMB. However, only 27 (56.3%) showed mutations with the MTBDRsl assay while the remaining 21 (44.0%) showed wild-type patterns. The discrepant isolates were sequenced in the embB306 gene to evaluate discrepancies. Of the 118 isolates resistant by the MTBDRsl assay, only 67 (56.8%) isolates had mutation with the DNA sequencing, while the remaining 51 (43.2%) isolates had no mutation (Table 4).

Of the 21 isolates susceptible to EMB by MTBDRsl assay, mutation was detected in 9 (42.9%) isolates by DNA sequencing. The remaining 12 (57.1%) isolates had wild-type patterns. The most prevalent mutation of the 145 EMB resistant isolates with MTBDRsl assay was embB MUT 1B/M306V (101/145; 69.7%), followed by embB MUT 1A/M3061 (36/145; 24.8%) and the remaining isolates (8/145; 5.5%) were resistant by absence of wild-type patterns.

DISCUSSION

In this study the largest number of isolates (342 MDR-TB) was used to evaluate MTBDRsl assay (3,14,15). A good agreement (Kappa=0.73) was found between the MTBDRsl assay and the agar proportion method for OFX, with a sensitivity of 70.3%. Previous studies have reported similar sensitivity values for the MTBDRsl assay for detecting FLQ-resistance, ranging from 70% to 87% (3,14,15,16). A significant finding of this study, DNA sequencing identified mutation in 8/11 phenotypically resistant to OFX in the in the gyrA gene (2/8 had additional mutation in gyrB), while 1/11 (phenotypically XDR-TB isolate) had mutation only in the gyrB gene. Similarly, Mokrousov et al. (6) found OFX-resistant isolates with only gyrB mutations and one of these isolate was an XDR-TB strain. Given these findings, genotypic testing for OFX resistance should not be limited to the analysis of the gyrA gene but should also include the gyrB gene. Furthermore, inclusion a bigger region of the gyrA gene could have picked up 8/11 (72.7%), with a resultant increase sensitivity to 92.0%.

In 3 phenotypically OFX-resistant isolates, no mutation was found in gyrA or gyrB gene. This finding suggests mutation in another target gene or the use of other mechanisms such as decreased cell-wall permeability to drug, drug efflux pump, or even drug inactivation (17).

Although the specificity of the MTBDRsl assay for the detection of KAN/CAP resistance was excellent (98.7% and 98.7%), the sensitivity was low (25.0% and 21.2%). Previous studies
reported higher sensitivity (77% to 100% for KAN and 80.0% to 86.7% for CAP) (3,14,15). However, these studies tested small number of isolates (5-13 isolates) and larger number of isolates need to be tested to assess sensitivity accurately. Recently, Huang et al. (16) tested 234 MDR isolates using MTBDRs/l assay and found low sensitivity (43.2%) for detecting KAN resistance.

The low sensitivity of KAN/CAP in this study could be due to other mutations associated with resistance to these drugs. The MTBDRs/l assay uses only one gene (rrs) for the detection of KAN and CAP resistance. The tlyA gene is reported to cause CAP resistance (9) and the promoter region of eis gene, which encodes an aminoglycoside acetyltransferase, are associated with low-level KAN resistance (18). It has been reported that tlyA mutations are mainly associated in vitro selected CAP-resistant mutants and are rare in clinical isolates of M. tuberculosis (9,19,20). However, in this was not the case in this study, as 20/26 of the discrepant results which were phenotypically resistant to CAP and 3/4 CAP-resistant by MTBDRs/l assay had mutation in the tlyA gene. Therefore, the role of tlyA gene in CAP resistant clinical isolates should be further investigated.

In 15 phenotypically KAN-resistant isolates and 6 phenotypically CAP-resistant isolates, no mutation was detected in either rrs or tlyA genes. Unidentified mutations associated with CAP and KAN resistance could explain this finding. Further work is needed to determine the mechanism of the unexplained KAN and CAP resistance as resistance to one of these drugs is a marker for XDR-TB.

The sensitivity of MTBDRs/l assay for detection of EMB resistance in this study was low (56.3%). Similarly, previous studies reported a sensitivity ranging from 56% to 69% (3,14,15,16). EMB is known to be a problematic drug to be tested and often yields less reproducible results (21,22). Of the 118 resistant by MTBDRs/l assay, DNA sequencing identified mutation in embB306 gene in only 67/118 (56.8%) isolates. The discrepancy could be due to the shorter region of the embB306 gene analysed by sequencing. Thus, some of the mutations could lie outside the region analysed in this study. The limitation of the study; the discrepant results were not repeated by MTBDRs/l assay to rule out the non-specific hybridisation, however no contamination was observed in negative controls.
In this study, 20/336 (5.9%) isolates showed heteroresistant for the EMB gene. Heteroresistance of *M. tuberculosis* is considered a precursor to development of full resistance (23). This highlights the important advantage of genotypic over the phenotypic methods, as genotypic methods are able to detect mixed strains.

The low performance of the MTBDRsl assay in this study was not unique since molecular methods detect only mutations that are screened for, while phenotypic tests detect resistance independent of the underlying mechanism and in addition not all mutations conferring resistance to second-line anti-TB drugs are known especially for KAN, CAP and EMB. In addition the prevalence of certain strains with specific mutation may vary in different geographical areas and thus will affect the test performance. On the other hand significant challenges exist in phenotypic susceptibility testing to second-line drugs. Although standard protocols exist, phenotypic susceptibility testing to second-line drugs is often unreliable and inaccurate, with poor clinical predictive values (24).

In conclusion, the MTBDRsl assay showed a lower sensitivity in this study as compared to previous studies. The sensitivity of the assay was variable among the drugs tested. The MTBDRsl assay performed favourably to the agar proportion method for OFX; however the assay was less sensitive for detection of KAN/CAP resistance and demonstrated low sensitivity and specificity for EMB resistance. The resolution of discrepant isolates with DNA sequencing has shown that the inclusion of *gyrB* gene and covering bigger region of *gyrA* may improve the sensitivity of the assay for detection of FLQ resistance. In addition inclusion of other genes such as the *tlyA* for detection CAP resistance and other regions of the *embB* gene as well as other targets associated with EMB resistance could improve the performance of the assay.

Acknowledgements

We would like to thank the staff members of NHLS/University of Limpopo (Medunsa Campus) and NHLS/University of Pretoria at the Tshwane Academic Division for their assistance during the study. The project was supported by a grant from the NHLS and Hains, Lifesciences. All the authors planned and designed the study. HM Said performed all the practical laboratory work,
summarised and analysed the data, and prepared the manuscript. MM Kock analysed sequencing data. NA Ismail, MM Kock, K Baba, SV Omar, A Osman, AA Hoosen, and MM Ehlers critically revised the manuscript versions.

References:

Jugheli L, Bzekalava N, de Rijk P et al. High-level of cross-resistance between kanamycin, amikacin, and capreomycin among *Mycobacterium tuberculosis* isolates

Table 1 Primer sequences for amplification and DNA sequencing of discrepant isolates

<table>
<thead>
<tr>
<th>Drug</th>
<th>Gene</th>
<th>Sequence (5’-3’)</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFX</td>
<td>gyrA</td>
<td>F YGGTGGGRTCRTTRCCGGCNGA</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R CGCGCCGTGCTGCTGCRATG</td>
<td></td>
</tr>
<tr>
<td>OFX</td>
<td>gyrB</td>
<td>F GAGTTGCGCGGCGTGGAAGGC</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R CGGCCATCAAGCAGCAGATCTTG</td>
<td></td>
</tr>
<tr>
<td>KAN/CAP</td>
<td>16s (rrs)</td>
<td>F AGAGTTTGATGCTCCTGCAAG</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R ACGGCTACCTTGTATAGCAGTTT</td>
<td></td>
</tr>
<tr>
<td>CAP</td>
<td>tlyA</td>
<td>F GGACATGCCAGTCGGCTGGTTTCGAGG</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R GGACGACCAGCAGAACACTGCGATG</td>
<td></td>
</tr>
<tr>
<td>EMB</td>
<td>embB</td>
<td>F CGGCCAGCCCTAAAAGT</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R GTAATACCGGCGAAGGGATCCT</td>
<td></td>
</tr>
</tbody>
</table>

OFX=ofloxacin, KAN=kanamycin, CAP=capreomycin, EMB=ethambutol, bp=base pairs

Table 2 Drug susceptibility results of MDR-TB isolates by the GenoType® MTBDR sl assay and the agar proportion method

<table>
<thead>
<tr>
<th>Drug</th>
<th>Total no. of isolates</th>
<th>S by both methods (S by agar)</th>
<th>R by both methods (R by MTBDRsl)</th>
<th>Correctly identified as S by MTBDRsl (%)</th>
<th>Correctly identified as R by MTBDRsl (%)</th>
<th>Agreement (%)</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFX</td>
<td>336</td>
<td>S 292 R 26 S 7 R 11</td>
<td>S 292 (97.7) R 26 (70.3)</td>
<td>94.6</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAN</td>
<td>332</td>
<td>S 300 R 7 S 4 R 21</td>
<td>S 300 (98.7) R 7 (25.0)</td>
<td>92.5</td>
<td>0.327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAP</td>
<td>332</td>
<td>S 295 R 7 S 4 R 26</td>
<td>S 295 (98.7) R 7 (21.2)</td>
<td>91.0</td>
<td>0.283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMB</td>
<td>316</td>
<td>S 150 R 27 S 118 R 21</td>
<td>S 150 (56.0) R 27 (56.3)</td>
<td>56.0</td>
<td>0.067</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OFX=ofloxacin, KAN=kanamycin, CAP=capreomycin, EMB=ethambutol, S=susceptible, R=resistant

Table 3 Diagnostic efficiency of the GenoType® MTBDR sl compared to the agar proportion method

<table>
<thead>
<tr>
<th>Drug</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Positive predictive value (%)</th>
<th>Negative predictive value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFX</td>
<td>70.3</td>
<td>97.7</td>
<td>78.8</td>
<td>96.4</td>
</tr>
<tr>
<td>KAN</td>
<td>25.0</td>
<td>98.7</td>
<td>63.6</td>
<td>93.5</td>
</tr>
<tr>
<td>CAP</td>
<td>21.2</td>
<td>98.7</td>
<td>63.6</td>
<td>91.9</td>
</tr>
<tr>
<td>EMB</td>
<td>56.3</td>
<td>56.0</td>
<td>18.6</td>
<td>87.7</td>
</tr>
</tbody>
</table>

OFX=ofloxacin, KAN=kanamycin, CAP=capreomycin, EMB=ethambutol, S=susceptible, R=resistant
Table 4 DNA sequencing results for the discrepant isolates between GenoType®MTBDRsl assay and agar proportion

<table>
<thead>
<tr>
<th>Drug</th>
<th>Locus</th>
<th>DNA SEQUENCING</th>
<th>R by MTBDRsl/</th>
<th>S by agar</th>
<th>R by agar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>S MTBDRsl/</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R by MTBDRsl/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFX n=18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gyrA</td>
<td>Mutation present (n=15)</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutation absent (n=3)</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>gyrB</td>
<td>Mutation present (n=4)</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutation absent (n=14)</td>
<td>6</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>KAN n=25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16s (rrs)</td>
<td>Mutation present(n=10)</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutation absent (n=15)</td>
<td>0</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>CAP n=30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16s (rrs)</td>
<td>Mutation present (n=11)</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutation absent (n=19)</td>
<td>0</td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>tlyA</td>
<td>Mutation present (n=23)</td>
<td>3</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutation absent (n=7)</td>
<td>1</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>EMB=139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>embB (M306)</td>
<td>Mutation present (n=76)</td>
<td>67</td>
<td>67</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mutation absent (n=63)</td>
<td>51</td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

OFX=ofloxacin, KAN=kanamycin, CAP=capreomycin, EMB=ethambutol, S=susceptible, R=resistant