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Abstract

Traits that differentiate cross-fertile plant species can be dissected by genetic linkage analysis in

interspecific hybrids. Such studies have been greatly facilitated in Eucalyptus tree species by the recent

development of Diversity Arrays Technology (DArT) markers. DArT is an affordable, high-throughput

marker technology for the construction of high-density genetic linkage maps. E. grandis and E. urophylla

are commonly used to produce fast-growing, disease tolerant hybrids for clonal eucalypt plantations in

tropical and subtropical regions. We analyzed 7680 DArT markers in a F2 pseudo-backcross mapping

pedigree based on an F1 hybrid clone of E. grandis and E. urophylla. A total of 2440 markers (31.7%)

were polymorphic and could be placed in linkage maps of the F1 hybrid and two pure-species backcross

parents. An integrated genetic linkage map was constructed for the pedigree resulting in 11 linkage

groups (n = 11) with 2290 high-confidence (LOD ≥ 3.0) markers and a total map length of 1107.6 cM.

DNA sequence analysis of the mapped DArT marker fragments revealed that 43% were located in protein

coding regions and 90% could be placed in the recently completed draft genome assembly of E. grandis.

Together with the anchored genomic sequence information, this linkage map will allow detailed genetic

dissection of quantitative traits and hybrid fitness characters segregating in the F2 progeny and will

facilitate the development of markers for molecular breeding in Eucalyptus.

Introduction

Eucalyptus tree species and their hybrids form the basis of the largest hardwood plantation crop in the

world, occupying approximately 19.6 million hectares (www.git-forestry.com). Interspecific

hybridization is important for the improvement of eucalypt plantations (Griffin et al. 1988, Eldridge et al.

1993, Khurana and Khosla 1998, Potts and Dungey 2004) yielding highly productive genotypes that are

deployed in clonal eucalypt plantations in tropical and subtropical regions (Wright 1997, Campinhos and

Ikemori 1989, Bison et al. 2006). E. grandis, a subtropical eucalypt in the section Latoangulatae, has

been extensively used for the production of pulp due to its rapid growth, good form and easy vegetative
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propagation. The species, however, has a low survival rate in humid and tropical areas, due to

susceptibility to fungal diseases (Wingfield et al. 1989). E. urophylla, a tropical eucalypt native to islands

of Indonesia and also a member of the section Latoangulatae, is more tolerant to fungal diseases than E.

grandis. Interspecific hybrids of E. grandis and E. urophylla combine the fast growth and better rooting

ability of E. grandis with the disease tolerance, adaptability and greater coppicing capability of E.

urophylla (Vigneron and Bouvet 2000, Campinhos and Ikemori et al. 1989). Hybrids of E. grandis and E.

urophylla are mainly grown in Brazil (Camphinos and Ikemori, 1977, Bison et al. 2006), the Congo

(Vigneron and Bouvet 2000) and South Africa (Darrow 1995, Wright 1997). E. grandis x E. urophylla

hybrids often exhibit superior growth and quality compared to the pure species, but the genetic

architecture of hybrid superiority (Verhaegen et al. 1997, Grattapaglia et al. 1996) remains to be fully

characterized in this hybrid combination.

Genetic linkage maps are useful for studying genome-wide patterns of inheritance of qualitative

and quantitative traits, developing markers for molecular breeding, map-based cloning and comparative

genomic studies. In the past two decades, important advances have been made in the construction of

genetic maps for Eucalyptus species.  The  first  generation  of Eucalyptus genetic maps were constructed

with Restriction Fragment Length Polymorphism (RFLP) markers (Byrne et al. 1995, Thamarus et al.

2002), Random Amplified Polymorphic DNA (RAPD) markers (Grattapaglia and Sederoff 1994,

Vaillancourt et al. 1994, Verhaegen and Plomion 1996, Bundock et al. 2000, Gan et al. 2003) and

Amplified Fragment Length Polymorphism (AFLP) markers (Marques et al. 1998, Myburg et al. 2003).

However, the relatively low throughput of of these techniques (e.g. RFLP) and low proportion of

polymorphisms shared among different outbred pedigrees (e.g. RAPD and AFLP) have hampered the

integration of information from different maps, except where shared parents were used in mapping

pedigrees (Myburg et al. 2003). More recently, several Eucalyptus genetic maps have been constructed

using co-dominant microsatellite markers (Byrne et al. 1996, Brondani et al. 1998, Bundock et al. 2000,

Thamarus et al. 2002, Brondani et al. 2002, Brondani et al. 2006, Freeman et al. 2006, Thumma et al.
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2010), which proved informative for genetic analysis in outbred eucalypts, but still limited in throughput

for rapid genome-wide genetic dissection. Although almost 300 microsatellite markers have already been

mapped in eucalypts (Bundock et al. 2000, Thamarus et al. 2002, Brondani et al. 2006), the genus will

still benefit from the availability of high-density genetic linkage maps with thousands of DNA markers

anchored  to  a  reference  genome  sequence.  This  will  facilitate  the  identification  of  positional  candidate

genes and the identification of tightly linked QTL markers for molecular breeding.

Diversity Arrays Technology (DArT, Jaccoud et al. 2001) offers a rapid and affordable

methodology for high-throughput DNA marker analysis. As DArT assays are performed in a highly

parallel and automated fashion, the cost per data point is reduced by at least an order of magnitude

compared to gel-based marker technologies, which makes it attractive to plant breeders aiming to track

genome-wide segregation in large pedigrees. The technology was originally developed for rice (Jaccoud

et al. 2001) and later validated in barley (Wenzl et al. 2006) and Arabidopsis (Wittenberg et al. 2005).

DArT markers are currently being used in more than 55 species (http://www.diversityarrays.com/). A

dedicated DArT genotyping array was recently produced for Eucalyptus tree species (Sansaloni et al.

2010). This array of 7680 markers was enriched for informative, polymorphic DArT markers by

generating genomic representations from diverse Eucalyptus species and performing segregation analyses

of more than 20,000 DArT polymorphisms in Eucalyptus mapping populations.

The aim of this study was to generate high-density genetic linkage maps for E. grandis, E.

urophylla and an F1 hybrid of these species. We describe the use of a pseudo-backcross mapping

pedigree to construct linkage maps of the parental genomes using DArT and microsatellite markers. The

maps provide a high-resolution framework for future quantitative analysis of traits that differentiate the

two species, as well as hybrid fitness traits that segregate in the F2 progeny.

http://www.diversityarrays.com/
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Materials and Methods

Plant material and DNA extraction

A commercially grown F1 hybrid (E. grandis x E. urophylla) clone (GUSAP1, Sappi, South Africa) was

selected for backcrossing to individuals of the parental species. Two F2 backcross (BC) mapping families

were established using the F1 hybrid as a pollen parent with unrelated E. grandis (GSAP2) and E.

urophylla (USAP1) individuals as seed parents in both crosses. Unrelated backcross parents were used to

avoid potential inbreeding depression. The mapping pedigree consisted of 367 individuals from the E

urophylla BC family and 180 individuals from the E. grandis BC family. DNA was isolated from all of

the backcross individuals, the F1 hybrid, the two backcross parents and the original E. grandis (GSAP1)

seed parent of the F1 hybrid using a BIO101/Savant FastPrep FP120 (MP Biomedicals, Solon, OH)

instrument in conjunction with DNeasy 96 Plant kits (QIAGEN, Valencia, CA).

Marker analysis

A total of 71 previously published microsatellite markers were screened for polymorphism in the two

backcross families (Table S1). Markers with the prefix “EMBRA” were previously developed from E.

urophylla and E. grandis (Brondani et al. 1998, Brondani et al. 2006), “Eg” from E. globulus (Thamarus

et al. 2002), “En” from E. nitens (Byrne et al. 1996) and “Es” from E. sieberi (Glaubitz et al. 2001). Two

microsatellites (CesA1-MS1, CesA3-MS2) located in the promoters of cellulose synthase genes,

EgCesA1 and EgCesA3 (Creux et al. 2009) were also used.

Multiplexed PCR amplification of the microsatellite markers was performed using the QIAGEN

Multiplex PCR kit. The reactions were performed in a total volume of 10 µl containing 12 ng of template

DNA, 0.2 µM of 10X primer mix (0.2 µM of each primer in mixes of up to 12 primer pairs each), and 1X

QIAGEN Multiplex PCR master mix. PCR amplification was performed in an iCycler thermocycler (Bio-

Rad Laboratories, Hercules, CA) with the following cycling conditions: initial denaturing and activation

of the enzyme for 15 minutes at 94°C, followed by 35 cycles of denaturing at 94°C for 30 s, annealing at



6

50-60°C for 45 s, and extension at 72°C for 1 min, followed by final extension of 30 min at 60°C.

Microsatellite primers were labeled with phosphoramidite fluorescent labels (6-FAM™, HEX™ or

VIC™)  for  automated  fragment  analysis  on  an  ABI  PRISM®  3100  Genetic  Analyzer  (Applied

Biosystems,  Life  Technologies,  Foster  City,  CA)  using  ROX™  (Genescan™  500  ROX™)  (Applied

Biosystems) as internal standard. Electropherograms were analyzed using GeneMapper® 3.0 software

(Applied Biosystems).

DArT marker assays were performed by Diversity Arrays Technology Pty Ltd (DArT P/L,

Canberra, Australia) as described previously (Sansaloni et al. 2010).

Linkage analysis and parental map construction

Genetic linkage maps were constructed using JoinMap® 4 (Van Ooijen 2006) in combination with a

two-way pseudo-testcross mapping strategy (Grattapaglia and Sederoff 1994). DArT and microsatellite

markers were separated into three types: testcross markers segregating only in the hybrid parent (expected

segregation ratio 1:1); testcross markers segregating only in the backcross parents (1:1); and intercross

microsatellite (1:3, 1:2:1 or 1:1:1:1) and DArT (3:1) markers, segregating in both parents of the particular

backcross. Four marker parental linkage maps were constructed: a maternal map of the E. grandis

(GSAP2) backcross parent, a maternal map of the E. urophylla (USAP1) backcross parent, and two

separate paternal maps of the F1 hybrid (GUSAP1). Segregation ratios were evaluated using the χ2 test

included in JoinMap® 4. For all four maps, linkage groups (LGs) were defined at a logarithm-of-the-odds

(LOD) score of 8.0 or above. The marker order in each LG was subsequently determined by calculating

the goodness-of-fit criterion and simultaneously calculating the map position corresponding to that order

(Stam 1993) with the parameter settings Rec = 0.40, LOD = 3 and Jump = 5.  The overall marker order of

the linkage group was improved in each round by sequentially removing markers based on high mean chi-

square values, nearest neighbour fit, and the genotype probability function as implemented in JoinMap®

4 (Van Ooijen 2006) and then reordering the remaining markers in the linkage group. Recombination
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fractions were converted to additive map distances in centiMorgans (cM, Kosambi 1944). Linkage maps

were drawn using MapChart© 2.2 (Voorrips 2002) and numbered according to the convention established

by Grattapaglia and Sederoff (1994) and Brondani et al. (2006). Total genome length and genome

coverage were calculated using the method of Lange and Boehnke (1982).

The  parental  origin  of  the  testcross  markers  in  the  map  of  the  F1  hybrid  was  inferred  from

genotypes obtained for the E. grandis (GSAP1) seed parent of the F1 hybrid (GUSAP1) since the two

linkage phases in the maps of the F1 hybrid represent the markers amplified from either the E. grandis or

the E. urophylla chromosome of each homologous pair.

Comparative mapping

The two maps of the F1 hybrid were aligned using shared testcross DArT (1:1) and shared microsatellite

markers. Intercross DArT (3:1) and shared microsatellite markers were then used to align the backcross

parent maps to that of the F1 hybrid. The parental maps were aligned using MapChart© 2.2 (Voorrips

2002). Where marker order differed between individual maps, markers were classified as non-colinear

only when the difference in order involved markers that were spaced more than 1 cM apart.

Consensus map construction

An integrated (consensus) map for the entire pedigree was constructed using the 'combine groups for map

integration' module in JoinMap® 4. The locus order was calculated using the regression mapping module

and the following parameters: LOD ≥ 3.0, REC frequency ≤ 0.4, goodness- of-fit Jump threshold for the

removal of loci = 5.0, the number of added loci after which to perform a ripple = 1, and third round =

Yes. The heterogeneity test in JoinMap was used to exclude pairs of markers with significantly different

recombination fractions in individual datasets. The overall marker order was improved iteratively as

described earlier for parental map construction.
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DNA sequence analysis of cloned DArT fragments

All of the cloned DArT fragments printed on the array were re-arrayed from plasmid stocks and Sanger

sequenced in both directions (Genbank accessions HR865291-HR872186). To identify potential protein-

coding regions mapped in the present study, the DArT fragment sequences were compared with all non-

redundant  GenBank  CDS  translations,  RefSeq  proteins,  PDB,  SwissProt,  PIR,  and  PRF

(http://www.ncbi.nlm.nih.gov) using BLASTX at a threshold of 1e-10. Customized scripts (Coetzer et al.

2010) were used to group redundant DArT fragments and assign functional annotations derived from

BLASTX and BLAST2GO to each group. The DArT fragment sequences were also compared to the 8X

draft  assembly  of  the E. grandis genome sequence (DOE-JGI) using BLAST

(http://eucalyptusdb.bi.up.ac.za/blast) at a threshold of 1e-10. Marker sequences with more than 90%

identity to the draft genome sequence were used to align the consensus linkage map with the

corresponding superscaffolds in the V1.0 assembly of the E. grandis genome (DOE-JGI,

www.phytozome.net).

Genome-wide distribution of genetic recombination

To investigate the genome-wide correlation of physical and recombination distances (bp vs cM), 153

genomic regions each corresponding to an approximately 1 cM interval were selected throughout the 11

linkage groups where both flanking markers were located on the same de novo assembled scaffold of the

E. grandis 8X genome assembly (http://eucalyptusdb.bi.up.ac.za).

Results

Microsatellite polymorphism

A total of 68 (96%) microsatellite markers (Table S1), primarily from the EMBRA (Brondani et al. 2006)

and CSIRO (Thamarus et al. 2002) sets, were found to be polymorphic in at least one of the backcross
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families and were used for linkage mapping. Of the 63 markers polymorphic in the E. grandis backcross,

35 (55%) were informative in both parents and segregated with three to four alleles, 22 (35%) were only

informative in the F1 hybrid (GUSAP1) and 6 (9.5%) were only informative in the E. grandis BC parent

(GSAP2).  Of the 64 markers in the E. urophylla backcross, 46 (72%) were informative in both parents,

14 (22%) were only informative in the F1 hybrid (GUSAP1) and four (6%) were only informative in the

E. urophylla BC  parent  (USAP1).  As  expected,  a  higher  proportion  of  microsatellite  markers  were

polymorphic and segregated from the F1 hybrid, than from the backcross parent in each backcross family

(90.4% vs 65.0% and 93.8% vs 78.1%, respectively).

DArT polymorphism

Of the 7680 markers on the DArT array, 3297 (43%) segregated in one or both backcrosses. Of these, 680

were excluded from the final mapping dataset based on filtering using three quality parameters (<90%

reproducibility, <75% call rate and a Q-value <60%) and removal of markers for which the parental

source could not be determined. The remaining 2617 markers were used for linkage map construction

(Table 1). Of these, 1743 (66.6%) segregated in the E. grandis backcross pedigree and 1757 (67.1%) in

the E. urophylla backcross pedigree, with 883 (33.7%) common between the two families. A higher

proportion of testcross (1:1) DArT markers segregated out of the F1 hybrid than out of either backcross

parent (37.5%  vs 24.6% and 40.8% vs  22.8%, respectively, Table 1) consistent with the higher expected

heterozygosity of the F1 hybrid.

Linkage analysis and parental linkage maps

The 68 microsatellite markers and 2617 DArT markers were used for the construction of four single-tree

genetic linkage maps, one for each of the backcross parents and two for the F1 hybrid (Figure S1).  All of

the parental marker data sets separated into 11 main linkage groups (LG) corresponding to the haploid

chromosome number of Eucalyptus. The final parental linkage maps contained a total of 2440 DArT and

67 microsatellite markers (Table 2). Total map lengths ranged from 924.7 cM for the E. grandis BC

parent to 1107.3 cM for the E. urophylla BC parent with the F1 hybrid maps intermediate in size.
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The genotypic ratios of a relatively large proportion of testcross and intercross markers deviated

significantly from the expected Mendelian ratios in both backcross families (Table S2). Distorted markers

were not excluded from the mapping analysis, because segregation distortion is expected to be prevalent

in interspecific crosses and omitting such markers would result in low coverage in many regions of the

genetic map (Myburg et al. 2003, Brondani et al. 2006). Chi-square testing revealed that 31.1% and

35.7% of the DArT markers showed significant (α = 0.05) segregation distortion in the E. grandis and E.

urophylla BC families, respectively (Table S2). Similar proportions of markers were distorted in the

backcross parent maps and the two F1 hybrid maps (27.5% and 36.3% vs 32.1 and 32.3%, Table S2).

Clusters of distorted markers that were observed throughout the four parental maps most likely represent

true cases of genomic segregation distortion linked to postzygotic isolation barriers segregating in the F2

backcross progeny (Myburg et al. 2004). Some chromosomal regions exhibited segregation distortion in

four  parental  maps,   e.g.  almost  the  entire  length  of  LG5  and  the  distal  end  of  LG7  showed  distorted

marker segregation in all four maps.

The large number of markers mapped resulted in high map coverage. On average, 80-91% of the

loci in the BC parent and F1 hybrid maps were within 1 cM of a marker and 99.9% of loci in the four

parental maps were within 5 cM of a marker.

Comparative and consensus maps

The two-way pseudo-backcross design, as well as the inclusion of multi-allelic microsatellite markers,

allowed robust identification of homologous pairs of linkage groups representing the E. grandis, E.

urophylla and F1 hybrid genomes (Figure S1). The large number of shared testcross and/or intercross

(612) DArT markers and 46 microsatellite markers in the two maps of the F1 hybrid facilitated the

alignment of these two maps. The linkage groups of the backcross parent maps were aligned to the two F1

hybrid maps with the use of 538 (23.4%) and 545 (23.7%) common markers in the E. grandis and E.

urophylla BC families, respectively. The linkage maps of the two backcross parents were aligned with

251 (10.9%) common makers. Comparison of marker orders and map positions in the parental maps
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(Figure 1) revealed only two non-syntenic marker placements between the E. grandis and E. urophylla

BC parent maps. DArT marker ePT_636534 mapped to LG5 in the E. grandis BC parent map and LG1 in

the E. urophylla BC parent map. Similarly, ePT_637292 mapped to LG2 and LG8 in the E. grandis and

E. urophylla BC parent maps, respectively (Figure 1A). Apart from a small proportion of markers with

different local orders (indicated by crossed lines, Figure S1), the locus order was largely conserved

among the four parental maps. Excluding markers closer than 1.0 cM, 93.2%, 93.3%, and 95.1% of the

markers were mapped with the same linear order in the E. grandis and E. urophylla BC parent maps, the

E. grandis BC parent and F1 hybrid, and the E. urophylla BC parent and F1 hybrid maps, respectively.

The consistent ordering of markers in the four parental maps (Figure S1) allowed the construction

of a high-density consensus linkage map for the E. grandis x E. urophylla backcross pedigree (Figure 2).

The integrated linkage map comprised 2229 DArT and 61 microsatellite loci (Table 3). The total length of

the consensus map was 1107.6 cM with an average marker spacing of 0.48 cM. Large numbers of

perfectly co-segregating markers were also observed. Potential redundancy of DArT markers in the

consensus map was evaluated by collapsing perfectly co-segregating loci into bins. A total of 1640 non-

redundant bins were formed revealing that 28.3% of the mapped DArT markers were potentially

redundant (i.e. possibly duplicate copies of the same cloned DArT fragment, or tightly linked). Besides

co-segregation, regions of  apparent  DArT marker clustering was observed in all linkage groups,

particularly in LG2, LG3, LG5, LG7 and LG9 (Figure 2).  Clustering of markers in LG2, LG5 and LG7

has been reported in previous studies (Brondani et. al. 2006), supporting the possible biological basis for

this occurrence.  The locus order was well conserved between the consensus map and single-tree parental

maps for all linkage groups (Figure S2). Only E. grandis LG1 and LG7 exhibited substantially shifted

marker  positions  relative  to  the  consensus  map.  This  was  also  visible  in  the  alignment  of  the  parental

maps (Figure S1) and may be the result of difference in map coverage at the ends of linkage groups (e.g.

LG1) or due to different local rates of recombination in regions of the E. grandis homologs (e.g. LG7).
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DNA sequence analysis of DArT fragments and alignment to the E. grandis genome sequence

DNA sequences were obtained for 6895 of the 7680 cloned DArT fragments on the array (Genbank

accessions HR865291-HR872186). Of the sequenced markers, 2030 were polymorphic and could be

mapped in this study (Table S3).  Consistent with the previously reported enrichment of DArT markers in

single copy DNA (Tinker et al.  2010),  a  comparison  of  the  DArT  fragment  sequences  to  the  non-

redundant protein database (NCBI) using BLASTX (<1e-10) revealed that 865 (42.6%, Table S3) of the

marker fragments potentially contained protein coding sequences. Annotation of the putative protein

coding sequences revealed a broad range of functional categories. Sequence analysis also revealed that

477 marker fragments (mapped to 305 loci) exhibited similarity to the same or similar protein sequences.

Those mapping to different loci may represent duplicated gene loci or different gene family members in

Eucalyptus, while those mapping to the same locus could be cloned copies of the same amplified DArT

fragment (marker redundancy).

Mapping of the DArT marker sequences to the draft E. grandis genome sequence assembly (V1.0,

DOE-JGI, http://eucalyptusdb.bi.up.ac.za/) identified 1836 (90.3%) marker sequences that could be

placed in the genome (at an identity greater than 90% over the length of the sequence). The DArT

markers placed in the genome cover approximately 600 Mbp (87%) of the sequenced genome space (690

Mbp) in the V1.0 E. grandis genome assembly (www.phytozome.net).  The remaining 9.7% of the

markers that could not be placed in the genome could have originated from unassembled parts of the E.

grandis genome (gaps), or they may represent allelic variants of E. grandis or other Eucalyptus species,

since the DArT array was constructed with DNA from a variety of species mainly E. grandis, E.

urophylla, E. globulus and E. nitens, some of which are very distantly related to E. grandis (Sansaloni et

al. 2010, Steane et al. 2011).  The overall marker order was highly conserved between the consensus map

and the Eucalyptus genome scaffolds in the draft 8X (V1.0) assembly of the E. grandis genome (Figure

S3).



13

Genetic recombination

Comparison of marker intervals on the consensus genetic map to marker positions on de novo assembled

scaffolds of the E. grandis genome (http://eucalyptusdb.bi.up.ac.za) enabled us to compare genetic

distance and physical distance in the Eucalyptus genome, an important property for future map-based

cloning  efforts.  Due  to  the  early  stage  of  the  DOE-JGI E. grandis genome  assembly,  we  expected  the

sequence to contain many gaps and some errors in assembly. We therefore selected 153 genomic intervals

throughout the 11 linkage groups, each corresponding to an approximately 1 cM interval in the genetic

map with both flanking markers placed in the same de novo assembled genomic scaffold. The average

physical distance per centiMorgan in the 153 intervals was 633 kb with a range of 100 kb to 2.4 Mbp

(Figure S4, Table S4).

Discussion

Dense genetic linkage maps are useful for genome-wide identification of molecular markers closely

linked to genes or QTLs, the isolation of genes via map-based cloning, detailed comparative mapping,

and genome evolution studies (Varshney et al. 2007). To develop resources for such investigations, we

used DArT and microsatellite markers to construct high-density genetic linkage maps of E. grandis, E.

urophylla and the fast-growing interspecific F1 hybrid of these two species. This is the first genetic

linkage map of the F1 hybrid genome representing one of the most widely used hybrid combinations in

commercial plantation forestry in tropical and subtropical areas. The consensus map of the pedigree

provides a valuable resource for genetic analysis in Eucalyptus based on 2229 DArT and 61 microsatellite

loci with excellent genome coverage for targeted marker saturation of economically important traits and

new anchor points for evaluation of genome colinearity among Eucalyptus species.

Genetic maps previously reported for Eucalyptus species ranged from 919 cM to 1814 cM in

length (Brondani et al. 2006).  The parental maps constructed here ranged from 924.7 cM (E. grandis BC

parent) to 1107.3 cM (E. urophylla BC parent) and 1107.6 cM for the consensus map. Despite high map
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coverage, the E. grandis BC parent map (924.7 cM) was substantially shorter than maps reported earlier

for this species (1552 cM - Grattapaglia and Sederoff 1994, 1415 cM -Verhaegen and Plomion 1996,

1335 cM - Myburg et al. 2003, 1814 cM - Brondani et. al 2006). Similarly, the E. urophylla BC parent

map (1107 cM) was shorter than previously reported for the species (1331 cM - Verhaegen and Plomion

1996, 1505 cM - Gan et al. 2003),  except for the map reported by Brondani et.al (2006 -  1133 cM). The

difference in map lengths could be explained by the different mapping software used for linkage analysis.

The maps reported previously were mostly constructed using MAPMAKER (MM, Lander et al. 1987),

whereas JoinMap (Van Ooijen 2006) was used in this study. The multilocus likelihood method used by

MM assumes the absence of crossover interference, while JoinMap accounts for a level of interference

even though both programmes use the Kosambi function.  This difference was also observed in other crop

plants (Vuylsteke 1999, Liebhard et al. 2003, Hong et al. 2008). Due to these differences in estimation,

JoinMap produces shorter maps than MM (Stam  1993, Vuylsteke 1999, Liebhard et al. 2003, Hong et al.

2008), especially when large numbers of markers are mapped. The E. urophylla parental linkage map

reported by Brondani et al. (2006) was constructed with MM, but had low genome coverage, which

explains the smaller map length.  The two F1 hybrid maps (1021 cM and 1067 cM) were intermediate in

size compared to the pure-species maps, despite higher numbers of segregating markers. This suggests

that  (paternal)  recombination  rates  were  overall  very  similar  in  the  F1  hybrid  and  the  pure-species

parents, although local differences in recombination rates were apparent in the comparative maps of the

F1 hybrid and the backcross parents (Figure S1).

For a comparison of genome coverage achieved in different studies, marker density and

distribution should be considered. Past DArT mapping studies in plants (Wenzl et al. 2006, Tinker et al.

2009) suggested that DArT markers have a reasonably uniform genomic distribution.  We observed

apparent clustering of DArT markers in several linkage groups of the parental maps (Figure S1) and the

consensus map (Figure 2). In addition, more than 25% of the DArT markers in the consensus map co-

segregated perfectly with one or more other markers. This may simply be a feature of the large number of
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markers mapped in this study, which would by chance lead to higher marker density in some regions of

the map. However, some genomic regions may indeed be more polymorphic than others, especially in the

F1 hybrid genome where regions that are rapidly diverging between the parental species could give rise to

higher marker density in the F1 hybrid maps than the pure-species maps. Clustering of DArT markers has

also been reported in mapping studies in wheat (Akbari et al. 2006, Semagn et al. 2006), barley (Wenzl et

al.2004) and oat (Tinker et al.2009) and may be the result of reduced recombination in regions such as

centromeres or regions with an excess of repeats (Vuylsteke et al. 1999, Young et al. 1999, Van Os et al.

2006).  Despite the apparent clustering and redundancy of many DArT markers, the average marker

interval (Table 1) in our maps was smaller than that of previous Eucalyptus genetic maps (Marques et al.

1998, Myburg et al. 2003, Brondani et al. 2006). Only four map intervals greater than 10 cM were

observed for the E. grandis and E. urophylla BC parent maps.  The consensus map had no intervals larger

than 10 cM and only 10 intervals ranging 5 cM to 10 cM, with the largest gap (9.6 cM) on the distal end

of  LG5  (Figure  2).  It  is  known  that  DArT  genomic  representations  obtained  with PstI reflect the

methylation status of the genomic DNA and produce markers preferentially situated in hypomethylated,

gene rich regions (van Os et al. 2006). Therefore, regions with lower marker density may be

heterochromatin rich, or simply regions with lower genetic variability. Nevertheless, the high genome

coverage achieved (c > 99.9% at 5 cM) makes these maps particularly useful for genome-assisted

breeding.

 In Eucalyptus, segregation distortion is normally higher in interspecific crosses (Grattapaglia et

al. 1994, Verhaegen and Plomion 1996, Marques et al. 1998, Myburg et al. 2003) than in intraspecific

crosses (Byrne et al. 1995, Thamarus et al. 2002).  The observed segregation distortion in eucalypts is

most likely caused by linkage between genetic markers and genes with recessive deleterious alleles or by

hybrid incompatibility (Potts and Wiltshire 1997). Markers with significant deviation from the expected

Mendelian ratios occurred throughout the F1 hybrid and BC parent maps (Table S2) suggesting the

presence of multiple segregation distorting loci (SDLs) as previously reported for Eucalyptus (Myburg et
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al. 2004). Approximately the same proportion of DArT markers were distorted in the two backcross

parents than in the F1 hybrid which suggests that genetic factors affecting hybrid fitness may also be

segregating in the two pure-species parents. This may be a feature of F2 pseudo-backcrosses where the

two alleles segregating from the backcross parent can exhibit different (positive or negative)

heterospecific interactions with the alleles segregating from the F1 hybrid (Myburg et al. 2004). The

distorted markers often occurred as clusters (>10 markers/5 cM) or in some cases spanning the entire

chromosome in the parental and hybrid maps (LG5). Clustering of loci showing segregation distortion has

been reported before in Eucalyptus (Byrne et al. 1995, Verhaegen and Plomion 1996, Marques et al.

1998, Bundock et al. 2000, Brondani et al. 2006). These regions may contain genetic factors influencing

the viability of F1 gametes, or fitness of F2 progeny (Lorieux et al. 2000, Cervera et al. 2001, Myburg et

al. 2004, Liebhard et al. 2003, Bundock et al. 2000).

The reliability of consensus mapping was questioned by Beavis and Grant (1991) who cited the

variability of recombination frequency in different populations or crosses. However, where marker order

is conserved among individual maps, consensus mapping is a robust approach (Lespinasse et al. 2000).

Only a small number of markers exhibited a change in order in the consensus map relative to the parental

maps, specifically in LG1 and LG7 of the E. grandis BC parent (Figure S1, Figure S2). Changes in

marker order during map integration have been reported in Eucalyptus (Brondani et al. 2006) and other

species (Doligez et al. 2006, Lombard and Delourme 2001, Mace et al. 2009) and could be caused by

heterogeneity in recombination, incorrect ordering in individual parental maps and missing or poor

quality marker data (Lombard and Delourme 2001). Despite the fact that the markers in the parental maps

were ordered with high statistical support and the order of markers in the consensus map was highly

similar to that in the E. grandis genome scaffolds (Figure S3) users of this map should be aware of the

mentioned limitations of consensus mapping when interpreting consensus marker order, as well as total

map length and spacing (Table 3).
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The high marker density of the consensus map allowed selection of more than 150 pairs of

markers that are both located on the same de novo assembled E. grandis genome scaffold.  The ratio of

physical to genetic distance (Figure S4) will determine the feasibility of future map-based cloning efforts

in Eucalyptus. The average physical distance observed per centiMorgan (633 kb/cM) was substantially

larger than that reported before in Populus (200 kb/cM, Yin et al. 2004), and rice (244 kb/cM, Chen et al.

2002). The first JGI annotation of the E. grandis genome (V1.0, www.phytozome.net) predicted a total of

41,204 protein-coding loci in the 11 chromosome assemblies, which correspond to the 11 linkage groups

in our map (Figure S3). Based on the cumulative size of the 11 chromosome assemblies (605.8 Mbp), the

average gene density in the E. grandis genome is predicted to be 68 per Mbp. This is lower than the gene

density in Arabidopsis (218 per Mbp, www.phytozome.net) and Populus (100 per Mbp,

www.phytozome.net). However, considering genetic distance, the gene density in Eucalyptus, 43 per cM

(633 kb), is predicted to be the same as in Populus (43.6 per cM, 200kb).  This means that a QTL interval

of 20 cM would on average contain approximately 860 genes. In this context, genetical genomics (eQTL

mapping) approaches (e.g. Kirst et al. 2004) would be valuable to further dissect candidate genes

underlying trait QTLs. The high-density of the genetic maps that can be achieved with the Eucalyptus

DArT array (up to an average spacing of 0.48 cM, Table 3) will ensure many (~ 40) sequence-anchored

marker loci per QTL (assuming a confidence interval of 20 cM), which will increase the accuracy of QTL

tagging.  A total of 1836 DArT markers were placed in the genome sequence assembly (Figure S3). These

markers and additional markers developed from the genome sequence in tagged QTL intervals will

support fine-scale mapping of QTL regions of interest. Most QTLs underlying economically important

traits in Eucalyptus have not been characterized at this scale. We expect that the sequence-anchored

genetic maps reported here and others to follow will accelerate the tagging of QTLs and cloning of

positional candidate genes, and enhance Eucalyptus breeding through marker-assisted selection.
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Tables

Table 1. Summary of the 2617 DArT markers that segregated and were used for linkage analysis in the
F2 backcross pedigree. Of these, 2440 markers were included in the final parental linkage maps (Table 2)
and 2229 in the consensus linkage map (Table 3).

Segregation type E. grandis BC family E. urophylla BC family

F1 hybrid

Testcross markers (1:1)

655 (37.5%) 718 (40.8%)

Backcross parent

Testcross markers (1:1)

429 (24.6%) 401 (22.8%)

Both parents

Intercross markers (3:1) 659 (37.8%) 638 (36.3%)

Total markersa 1743 1757
a A total of 883 markers (33.7%) were shared between the two backcross families bringing the total for the two families to

2617.



28

Table 2. Summary of DArT and microsatellite (SSR) markers mapped in each linkage group of the two backcross families

       E. grandis BC parent F1 hybrid (E. grandis BC) F1 hybrid (E. urophylla BC)     E. urophylla BC parent

Linkage

group

No of

DArT

markers

No of

SSR

markers

Size

in

cM

Mean

distance

between

markers

No of

DArT

markers

No of

SSR

markers

Size

in

cM

Mean

distance

between

markers

No of

DArT

markers

No of

SSR

markers

Size

in

cM

Mean

distance

between

markers

No of

DArT

markers

No of

SSR

markers

Size

in

cM

Mean

distance

between

markers

1 70 5 89.9 1.19 86 7 87.0 0.93 90 7 92.3 0.95 61 6 85.1 1.27

2 103 6 92.3 0.84 146 8 102.2 0.66 139 8 106.0 0.72 101 6 107.1 1.00

3 103 4 71.6 0.68 112 4 98.4 0.84 133 4 108.6 0.78 99 5 113.4 1.09

4 75 2 69.4 0.90 88 5 68.9 0.74 73 6 69.8 0.88 54 4 87.4 1.50

5 107 2 82.0 0.75 132 2 103.8 0.77 107 4 90.8 0.81 86 4 98.5 1.09

6 102 3 90.5 0.78 116 4 107.4 0.89 119 3 121.6 0.99 98 3 124.8 1.23

7 86 3 82.0 0.93 85 4 81.2 0.91 109 6 78.8 0.68 78 5 87.1 1.04

8 118 3 98.7 0.81 149 7 109.8 0.70 167 9 115.3 0.64 126 6 123.1 0.93

9 80 3 79.6 0.95 97 6 71.5 0.69 119 6 80.5 0.64 59 4 79.0 1.25

10 41 1 82.5 1.96 75 1 95.2 1.25 81 2 95.0 1.14 61 1 93.7 1.51

11 72 2 86.2 1.16 81 2 95.8 1.15 115 4 108.6 0.92 89 2 108.2 1.28

Total 957 34 924.7 0.99 1167 50 1021.2 0.86 1252 59 1067.3 0.83 912 46 1107.3 1.19
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Table 3.  Summary of markers integrated into the consensus map for the interspecific F2

backcross pedigree of E. grandis x E. urophylla

Consensus

linkage group

No of

DArT

markers

No of

microsatellite

markers

Map length

(cM)

Mean marker

spacing (cM)

1 173 7 88.8 0.49

2 228 7 102.1 0.43

3 251 6 105.5 0.41

4 157 6 79.8 0.48

5 218 2 110.4 0.50

6 232 4 136.9 0.58

7 163 6 83.5 0.49

8 263 11 119.1 0.45

9 203 7 88.5 0.42

10 155 1 97.7 0.62

11 186 4 95.3 0.50

Total 2229 61 1107.6 0.48
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