
497

ISSN 1013-8471 Journal for Semitics 20/2 (2011) pp. 497-530

MANOEUVRING MULTI-DIMENSIONAL
LANGUAGE DATA:

A CODE SHUTTLE WITH XML AND
DATABASE-OPERATION FUNCTIONS1

J.H. KROEZE, T.J.D. BOTHMA, M.C. MATTHEE

ABSTRACT

The article focuses on the conversion of linguistic data between an XML

data cube and a three-dimensional array structure in Visual Basic 6 in

order to eventually facilitate data access and manipulation. After a short

consideration of the structures of the VB6 and XML databanks,

conversion between the two is discussed (“round-tripping”), as well as

essential database functions (create, read, update and delete) that may be

performed on the linguistic data cube. The suggested software tool,

therefore, acts as a “code shuttle” (a programme that moves data to and

from two different storage structures) with added elementary database

functionalities. Linguistic data from the Hebrew text of Genesis 1:1-2:3 is

used to demonstrate the data operations.

INTRODUCTION

In the electronic processing of language, one can concentrate either on the

digital simulation of human understanding and language production, or on the

most appropriate way to store and use existing knowledge. Both are valid and

important. This endeavour falls in the second category, assuming that it is

important to capture the results of linguistic analyses in well-designed,

exploitable, electronic databases. XML, for example, can be used to mark up

free text, to create a well-structured textual database. Since the data is separated

from the manipulation and display thereof, the same data can be used for

various purposes, and programmes or queries can be created to suit the

researcher‟s individual needs. This, however, necessitates the conversion of the

data stored in XML format into a data structure, such as a three-dimensional

1
 This article is a revised and extended version of a short paper, “Round-tripping

Biblical Hebrew linguistic data”, read at the IRMA 2007 conference, Vancouver,

British Columbia, Canada, May 19-23, 2007. It is an edited version of a chapter in

an unpublished doctoral thesis (Kroeze 2008:123-145).

498 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

array, which can then be processed efficiently by a computer programme.

This article focuses on the conversion of linguistic data of Genesis 1:1-2:3

between an XML data cube and a three-dimensional array structure in Visual

Basic 6 in order to eventually facilitate data access and manipulation. After a

short consideration of the structures of the VB6 and XML databanks,

conversion between the two is discussed (“round-tripping”), as well as essential

database functions (create, read, update and delete) that may be performed on

the clause cube. The algorithms together build a shuttling tool that moves

linguistic data between different storage structures. Some value is added to the

transportation function of the tool by adding elementary database

functionalities. Linguistic data from the Hebrew text of Genesis 1:1-2:3 is used

to demonstrate the data operations.

Due to the interdisciplinary nature of this study, the target audience of the

article is threefold. Humanities scholars, who may find the sections of

programming code too technical, may focus on the explanatory discussions in

order to gain a better understanding of the typical algorithmic processes that lie

behind the software that they often use to study biblical texts, especially since a

Biblical Hebrew text is used for experimentation. Computing scholars, who

may find the programming sections relatively simple, could again be interested

to see how database technology may be applied to linguistic knowledge.

Readers who are skilled in both disciplines may find the manual-like

discussions of the code useful in order to apply or adapt the logic for their own

purposes.

The XML document containing the text and mark-up of Genesis 1:1-2:3

may be regarded as a “native XML database” (i.e., “a database designed

especially for storing XML”), while the VB6 programme may be regarded as a

“content management system” (i.e., “an application designed to manage

documents and built on top of a native XML database”) (Bourret 2003). The

native XML database stores the XML content, which consists of the original

text (a phonetic version of the Hebrew text of Gen 1:1-2:3) with all the added

XML tags and mark-up (indicating syntactic and semantic functions, etc.).

Although it is a very basic system, it does fulfil the basic requirements to

Manoeuvring multi-dimensional language data 499

qualify as a native XML database (cf. Vakali et al. 2005:65, 67): the

hierarchically-structured XML document serves “as the fundamental unit of

logical storage”, the schema serves as the “logical model for the XML

document itself”, and the XML file saved on the permanent storage device uses

a sequential, text-oriented file structure as “underlying physical storage

model”.
2
 The hierarchical structure of the XML database is demonstrated by the

extract shown in Figure 1. The content management system is a database

management system that operates on the data to allow editing and various views

according to possible user needs.

<?xml version=“1.0” encoding=“UTF-8” standalone=“yes”?>

<Genesis1v1-2v3>

 <clause>

 <clauseno>Gen01v01a</clauseno>

 <headers>

 <header>Level</header>

 <header>Phrase1</header>

 <header>Phrase2</header>

 <header>Phrase3</header>

 <header>Phrase4</header>

 <header>Phrase5</header>

 </headers>

 <level1>

 <leveldesc>Phon:</leveldesc>

 <phrase1>bre$it</phrase1>

 <phrase2>bara</phrase2>

 <phrase3>elohim</phrase3>

 <phrase4>et ha$amayim ve'et ha'arets</phrase4>

 <phrase5>-</phrase5>

 </level1>

 <level2>

 <leveldesc>Translation:</leveldesc>

 <phrase1>in the beginning</phrase1>

 <phrase2>he created</phrase2>

 <phrase3>God</phrase3>

 <phrase4>the heaven and the earth</phrase4>

 <phrase5>-</phrase5>

2
 According to Smiljanić et al. (2002:17), however, a native XML database is not

required to have the third property: it can be built on various types of databases or

proprietary storage formats.

500 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

 </level2>

 <level3>

 <leveldesc>Phrase type:</leveldesc>

 <phrase1>PP</phrase1>

 <phrase2>VP</phrase2>

 <phrase3>NP</phrase3>

 <phrase4>NP</phrase4>

 <phrase5>-</phrase5>

 </level3>

 <level4>

 <leveldesc>SynF:</leveldesc>

 <phrase1>Adjunct</phrase1>

 <phrase2>Main verb</phrase2>

 <phrase3>Subject</phrase3>

 <phrase4>Object</phrase4>

 <phrase5>-</phrase5>

 </level4>

 <level5>

 <leveldesc>SemF:</leveldesc>

 <phrase1>Time</phrase1>

 <phrase2>Action</phrase2>

 <phrase3>Agent</phrase3>

 <phrase4>Product</phrase4>

 <phrase5>-</phrase5>

 </level5>

 </clause> ...

</Genesis1v1-2v3>

Figure 1. An extract of the Genesis 1:1-2:3 XML clause cube, which is representative

of the hierarchy and structure of the file.

The platform independence of XML documents allows the marked-up text to be

transported to other programmes “capable of making sense of the tags

embedded within it” (cf. Burnard 2004). For this project, Visual Basic 6 (VB6)

was chosen for this role because XML is essentially a hierarchical system that

fits the three-dimensional array data structure facilitated by VB6 perfectly. VB6

was chosen above Visual Basic.Net because it is easier to make an executable

file for dissemination in the older version. The structural programming also

makes it easier to follow the logic of the algorithms. It would, however, be

relatively easy to transform the programme(s) into a Visual Basic.Net format

Manoeuvring multi-dimensional language data 501

since Visual Studio provides migration facilities. This would enable the use of

pre-programmed classes, for example to extend, delete or edit the data in it. In

this article, however, these CRUD (create, read, update and delete) functions

had to be coded manually, since the size of arrays are static and do not allow

automatic insertion and deletion of records (Petroustos & Hough 1999:219).

When converted into VB6 the databank module consists of a three-

dimensional data structure. A multidimensional array is very suitable for a

limited data set, such as the data in this project, due to its built-in indexing.

Multidimensional online analytical products (MOLAP) “typically run faster

than other approaches, primarily because it‟s possible to index directly into the

data cube‟s structure to collect subsets of data” (Kay 2004). The VB6

programme discussed in this article and the following chapter may be regarded

as a simple MOLAP tool.

 The three-dimensional array in VB6 contains the records of the 108 clauses

found in Genesis 1:1-2:3. Each clause has five or less phrases. Each phrase has

five levels of analysis. One level of analysis is added to record the verse number

as primary key for reference and searching purposes (this will leave five unused

data fields per clause, which may later be used for additional metadata). An

array of 200 x 5 x 6 is used to implement this data structure. Although a size of

108 in the first dimension would be sufficient to hold all 108 clauses in the

clause cube, it was enlarged to 200 to allow room for appending more clauses'

analyses, as discussed in section 3. If the array were populated manually with

data, the first clause could be coded as shown in Figure 2. The same underlying

structure is used in this article to convert the data captured in an XML document

into a VB6 array.

Option Explicit

Public Clause(1 To 200 1 To 5, 1 To 6) As String

Sub Main()

Clause(1, 1, 1) = “Gen01v01a”

Clause(1, 1, 2) = “bre$it”

Clause(1, 1, 3) = “in the beginning”

Clause(1, 1, 4) = “PP”

Clause(1, 1, 5) = “Adjunct”

Clause(1, 1, 6) = “Time”

Clause(1, 2, 1) = “-”

502 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

Clause(1, 2, 2) = “bara”

Clause(1, 2, 3) = “he created”

Clause(1, 2, 4) = “VP”

Clause(1, 2, 5) = “Main verb”

Clause(1, 2, 6) = “Action”

Clause(1, 3, 1) = “-”

Clause(1, 3, 2) = “elohim”

Clause(1, 3, 3) = “God”

Clause(1, 3, 4) = “NP”

Clause(1, 3, 5) = “Subject”

Clause(1, 3, 6) = “Agent”

Clause(1, 4, 1) = “-”

Clause(1, 4, 2) = “et ha$amayim ve'et ha'arets”

Clause(1, 4, 3) = “the heaven and the earth”

Clause(1, 4, 4) = “NP”

Clause(1, 4, 5) = “Object”

Clause(1, 4, 6) = “Product”

…

 End Sub

Figure 2. VB6 code that could be used to create a three-dimensional array and populate

one clause element with several layers of linguistic data.

SHUTTLING LINGUISTIC DATA BETWEEN VB6 AND XML

One of the advantages of an XML database is the separation of the data and the

manipulation thereof. The same data can thus be used for various purposes, and

programmes or queries can be created to suit the researcher‟s individual needs.

An XML document in itself is not very accessible for direct human inspection.

Although it may be read in a simple word processor such as Notepad, the

abundant use of tags poses an obstacle for human conception. One needs other

software to process the data in such a repository efficiently, a tool to “bridge the

gap between having a collection of structured documents and having a

functional digital library” (Kumar et al. 2005:118).
3
 The VB6 programme

discussed in this article may be regarded as such a bridging tool. Another

example is Petersen‟s (2004) MQL query language that enables complex

3
 <teiPublisher> is an open-source tool that aims to provide a customisable repository

facilitating the dissemination of XML marked-up texts (see Kumar et al. 2005).

Manoeuvring multi-dimensional language data 503

searches for patterns in annotated linguistic corpora such as the database of the

Hebrew Bible developed by the Werkgroep Informatica (WI) at the Free

University of Amsterdam.
4
 However, according to Bourret (2003) “most native

XML databases can only return the data as XML”.

Another benefit of XML is that it provides an independent public standard

and cross-platform compatibility (Sasaki 2004:19). Since XML provides a

platform-independent organisation of data, conversion is often necessary to

make the data accessible for algorithms that implement efficient retrieval and

human-friendly interfaces (cf. Ramsay 2004). The conversion of data encoded

in XML is often necessary to satisfy very specific needs identified by

researchers. For example, if different linguistic layers are annotated in separate,

but related, XML databanks, it is necessary to programmatically merge these

data sets into Prolog facts in order to associate them in a single database (Witt

2005:68, 71). Conversion into a standardised format enables researchers to

compare various annotated layers in order to discover relations that exist

between them (cf. Bayerl et al. 2003:165, 169).

If the XML data should be represented in a different, more human-readable,

format, it should first be parsed by an application. In this experiment the data

should be represented in an interlinear format which is more human-friendly to

read. This necessitates the VB6 programme to read the data into an array in

order to be printed as a series of interlinear tables on the screen. By removing

the XML tags the primary textual data is restored and the layers of analysis

become much more comprehensible.

The next sections of the article describe the conversion of linguistic data of

Genesis 1:1-2:3 between such an XML data cube and a three-dimensional array

structure in Visual Basic 6 in order to facilitate data access and manipulation.

The conversion from and to XML format is called round-tripping. Round-

tripping is the circular process of storing XML data in a database and recreating

the document from the database, a process which often results in a different

document (Bourret 2003). In this experiment round-tripping refers to the

4
 Also, compare the description of XML-QL as a relational complete query language

in Deutsch et al. (1999).

504 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

process of converting a Genesis 1:1-2:3 XML document to a three-dimensional

array structure in VB6 and saving it again in XML format. If no changes are

done while the data reside in the array the second XML document should be an

exact copy of the first (ideal round tripping – Smiljanić et al. 2002:16).

However, the array phase could facilitate updates to be made, which should be

reflected in the resulting target XML document after conversion. These CRUD

facilities will be discussed towards the end of the article. Together these

algorithms constitute a „code shuttle‟ with added value in terms of basic

database functionality.

From XML to VB6

All data in an XML document is text (Bourret 2003). The mark-up itself is also

text only: “markup consists of character strings carrying information about other

character strings” (Huitfeldt 2004). For a linguistic database this poses, of

course, no problem since it also contains text data only. Therefore, in VB6, all

the variables of the three-dimensional array used in this study are also of type

string only. The limitation of arrays that all the elements should be of the same

type (string, integer, Boolean, etc.), therefore, poses no problem. To strip the

XML code from its tags a lot of string processing is done (cf. Petroustos

1999:784-795).

An efficient way to prepare the Genesis 1:1-2:3 data for ideal round-tripping

would be to ensure that empty elements (for example, where a clause has less

than five noun phrases) are represented by a dash (-). The loop that reads the

clause cube elements into the three-dimensional array can then simply assume

that the next line in the XML document will be the next element in the data

structure. Not all phrases have syntactic or semantic functions and these missing

elements may also be rendered by a dash. This simple implementation is used in

this experiment because it also ensures that after ideal round-tripping the XML

document is an exact copy of the original document. However, it is possible, in

order to reduce file size and to save memory space, to represent null values by

simply omitting these elements in the document. The conversion programme

will then have to evaluate the content of each line, using a selection structure

Manoeuvring multi-dimensional language data 505

(such as an if-statement) in order to ensure the correct placement in the array.

This procedure causes another form of, and probably more, overhead. An XML

schema can only check the validity of data recorded in the XML file. Since

absent elements are valid, another mechanism is needed to ensure correct

conversion of such elements from the XML file into the three-dimensional

array. On the VB6 side, empty elements could also be represented by zero-

length string values in the array variables. To avoid problems during advanced

array processing due to the null values the whole array should first be populated

with dashes (as symbol of an empty element) which are then partly overwritten

when the data is read in from the XML document. This ensures that all empty

elements (or yet unused spaces in the array reserved for new clauses to be

appended) contain dashes.

Before the data is converted an algorithm is used to count the number of

clauses appearing in the XML file, and the result is stored in variables called

countclauses and maxArray. The last-mentioned variable is used to limit

processing in the rest of the VB6 programme to real data only (ignoring empty

clause elements), and, therefore, its value should be adjusted when clauses are

added or deleted during the array phase.

An extract of the code for this part of the programme is shown in Figure 3.

It is assumed that all variables have been declared.

'Read XML file from disk into array

Public Sub Command1_Click()

'Initialise all array elements with empty element symbols

For iniArr1 = 1 To 200

 For iniArr2 = 1 To 5

 For iniArr3 = 1 To 6

 Clause(iniArr1, iniArr2, iniArr3) = “-”

 Next

 Next

Next

'Count number of clauses in the XML cube:

arrayMax = 0 'Reset total number of clauses in array

506 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

countclauses = 0 'Reset counter that counts number of

clauses in XML file

filenum1 = FreeFile

Open “Gen1_InputV15_RT1.xml” For Input As #filenum1

Line Input #filenum1, tempLine

Line Input #filenum1, tempLine

Line Input #filenum1, tempLine

Line Input #filenum1, tempLine

While Not EOF(filenum1)

 Line Input #filenum1, tempLine

 countclauses = countclauses + 1

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

Manoeuvring multi-dimensional language data 507

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

Wend

MsgBox (“There are “ & countclauses & “ clauses in the

XML cube”)

arrayMax = countclauses

Close #filenum1

'Populate array with data from XML file:

Open “Gen1_InputV15_RT1.xml” For Input As #filenum1

Line Input #filenum1, tempLine

Line Input #filenum1, tempLine

Line Input #filenum1, tempLine

For count1 = 1 To arrayMax

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 1, 1) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

508 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 1, 2) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 2, 2) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 3, 2) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 4, 2) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 5, 2) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

Manoeuvring multi-dimensional language data 509

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 1, 3) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 2, 3) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 3, 3) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 4, 3) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 5, 3) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 1, 4) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

510 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

XMLstringLength, tempLine)

 Clause(count1, 2, 4) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 3, 4) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 4, 4) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 5, 4) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 1, 5) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 2, 5) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 3, 5) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

Manoeuvring multi-dimensional language data 511

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 4, 5) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 5, 5) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 1, 6) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 2, 6) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 3, 6) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

XMLstringLength, tempLine)

 Clause(count1, 4, 6) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos,

512 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

XMLstringLength, tempLine)

 Clause(count1, 5, 6) = Mid(tempLine, XMLstringBeginPos,

XMLstringLength)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

Next

Close #filenum1

arrayflag = True

MsgBox (“XML cube Gen1_InputV15_RT1.xml converted to

array in RAM”)

count1 = 1

Call ShowArray

End Sub

' Function used to strip XML tags before inserting data

into array

Public Sub DecodeXML(XMLstringBeginPos2 As Integer,

XMLstringEndPos2 As Integer, XMLstringLength2 As

Integer, templine2 As String)

 XMLstringBeginPos2 = InStr(templine2, “>“) + 1

 XMLstringEndPos2 = InStrRev(templine2, “<“)

 XMLstringLength2 = XMLstringEndPos2 - XMLstringBeginPos2

End Sub

Figure 3. VB6 code used to convert linguistic data from XML format

into a three-dimensional array.

 Although validation of the XML file is usually done by means of a schema, it

may again be done during the array state. In a subroutine the tags could first be

stripped and selected data tested against a standardised list of valid entries (for

example, syntactic and semantic functions). If the data does not conform to

these values, an error message should be shown. The user should use this

functionality to correct the data before any further processing takes place. In

this experiment it is assumed that the validation of phrase types and syntactic

and semantic functions has already been done. Only an example of validation

code for some syntactic functions is shown in Figure 4.

Private Sub cmdCleanData_Click() 'Clean data - syntactic

functions

Dim count11, count12, count13 As Integer

Dim arrsyn1(108, 5, 6) As String

Manoeuvring multi-dimensional language data 513

For count11 = 1 To 108 'Copy array for validation purposes

 For count12 = 1 To 5

 For count13 = 1 To 6

 arrsyn1(count11, count12, count13) = Clause(count11,

count12, count13)

 Next

 Next

Next

For count11 = 1 To 108 'Check syntactic functions

 For count12 = 1 To 5

 For count13 = 5 To 5 'Check only syntactic function

dimension

 'Extend this scheme to include all possible syntactic

functions

 'Here limited to those functions occurring in Gen 1:1-2:3

 If arrsyn1(count11, count12, 5) <> “Main verb” And _

 arrsyn1(count11, count12, 5) <> “Copulative verb” And _

 arrsyn1(count11, count12, 5) <> “Subject” And _

 arrsyn1(count11, count12, 5) <> “Object” And _

 arrsyn1(count11, count12, 5) <> “Object clause” And _

 arrsyn1(count11, count12, 5) <> “Object cluster” And _

 arrsyn1(count11, count12, 5) <> “IndObj” And _

 arrsyn1(count11, count12, 5) <> “Complement” And _

 arrsyn1(count11, count12, 5) <> “Copula-predicate” And

_

 arrsyn1(count11, count12, 5) <> “Adjunct” And _

 arrsyn1(count11, count12, 5) <> “Disjunct” And _

 arrsyn1(count11, count12, 5) <> “Attribute” And _

 arrsyn1(count11, count12, 5) <> “Conj” And _

 arrsyn1(count11, count12, 5) <> “-” Then

 'User must clean data if following message is shown:

 MsgBox (“Synf “ & arrsyn1(count11, count12, 5) & “ in

vs “ & _

 arrsyn1(count11, 1, 1) & “ is invalid”)

 End If

 Next

 Next

Next

End Sub

Figure 4. Example of VB6 code that could be used to validate syntactic function

elements during the array state.

514 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

To show the contents of the array, the elements of each clause are displayed in a

series of textboxes and labels, simulating an interlinear rendering. The code

used is shown in Figure 5.

Public Sub ShowArray() 'Procedure used to display current

clause on interface

txtFind.Text = count1 'count1 is the array index of each

clause

 txtC111.Text = Clause(count1, 1, 1)

 txtC112.Text = Clause(count1, 1, 2)

 txtC122.Text = Clause(count1, 2, 2)

 txtC132.Text = Clause(count1, 3, 2)

 txtC142.Text = Clause(count1, 4, 2)

 txtC152.Text = Clause(count1, 5, 2)

 txtC113.Text = Clause(count1, 1, 3)

 txtC123.Text = Clause(count1, 2, 3)

 txtC133.Text = Clause(count1, 3, 3)

 txtC143.Text = Clause(count1, 4, 3)

 txtC153.Text = Clause(count1, 5, 3)

 txtC114.Text = Clause(count1, 1, 4)

 txtC124.Text = Clause(count1, 2, 4)

 txtC134.Text = Clause(count1, 3, 4)

 txtC144.Text = Clause(count1, 4, 4)

 txtC154.Text = Clause(count1, 5, 4)

 txtC115.Text = Clause(count1, 1, 5)

 txtC125.Text = Clause(count1, 2, 5)

 txtC135.Text = Clause(count1, 3, 5)

 txtC145.Text = Clause(count1, 4, 5)

 txtC155.Text = Clause(count1, 5, 5)

 txtC116.Text = Clause(count1, 1, 6)

 txtC126.Text = Clause(count1, 2, 6)

 txtC136.Text = Clause(count1, 3, 6)

 txtC146.Text = Clause(count1, 4, 6)

 txtC156.Text = Clause(count1, 5, 6)

End Sub

Figure 5. VB6 code used to display one clause's linguistic analysis in a series of

textboxes and labels on the interface.

When the user presses the “Read XML file from disk into array” button, the

conversion is done and the first clause's data is displayed on the interface (see

Figure 6). The array content is displayed, clause by clause, in a series of text

Manoeuvring multi-dimensional language data 515

boxes and labels to simulate an interlinear rendering by paging through the

records in the array.

Figure 6. The end-result after converting data from the XML clause cube into a three-

dimensional array in VB6.

The code in Figure 7 is used to scroll through the data. The user may use the

next (>) and previous (<) buttons to view the data clause by clause, or they may

go directly to the first (<<) or last element (>>). The programme also enables

rolling over from the last element to the first and vice versa.

Private Sub btnFirst_Click(Index As Integer) 'Move to the

first element in the array

count1 = 1

Call ShowArray

End Sub

Private Sub btnPrev_Click(Index As Integer) 'Move to the

previous element in the array

If count1 = 1 Then

516 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

 count1 = (arrayMax + 1)

End If

count1 = count1 - 1

Call ShowArray

End Sub

Private Sub btnNext_Click(Index As Integer) 'Move to the

next element in the array

If count1 = arrayMax Then

 count1 = 0

End If

count1 = count1 + 1

Call ShowArray

End Sub

Private Sub btnLast_Click(Index As Integer) 'Move to the

last element in the array

count1 = arrayMax

Call ShowArray

End Sub

Figure 7. VB6 code used to scroll through the clause cube data.

The code in Figure 8 is used to display a required clause, the array index of

which is shown in the clause number textbox.
Private Sub btnFind_Click() 'Show clause of clause index

shown in textbox “Find clause no”

count1 = txtFind.Text

 If count1 > arrayMax Or count1 < 1 Then

 MsgBox (“Invalid clause no”)

 Exit Sub

 Else

 Call ShowArray

 End If

End Sub

Figure 8. VB6 code used to display a required clause using its array index.

Manoeuvring multi-dimensional language data 517

The code in Figure 9 is used to facilitate exact searches; for example, the user

may enter “Gen01v07a” and click on the “Exact search” button to move directly

to the eighteenth clause. If a parameter is used that appears more than once all

clauses containing the parameter are shown one-by-one, paused by a message

box. The parameter must match the searched item exactly, but it is not case

sensitive.

Private Sub btnSearch_Click() 'Exact search

count1 = 1

flagSrch = 0

If txtSearch.Text = ““ Then

 Exit Sub

End If

For countSrch1 = 1 To arrayMax

 For countSrch2 = 1 To 5

 For countSrch3 = 1 To 6

 If StrComp(Clause(countSrch1, countSrch2, countSrch3),

txtSearch.Text, 1) = 0 Then

 flagSrch = 1

 count1 = countSrch1

 Call ShowArray

 MsgBox (“Click OK to search next”)

 End If

 Next

 Next

Next

If flagSrch = 0 Then

 MsgBox (“Not found”)

 Else

 MsgBox (“End of data cube reached”)

End If

End Sub

Figure 9. VB6 code used to perform exact searches.

518 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

Users who are not acquainted with the sets of phrase types, semantic and

syntactic functions used, may need a facility to do “fuzzy” searches. The

“Search part of string” button enables one to type any part of a string to be

searched within the elements; for example, one may enter “Ben” to find

instances of the semantic function of Beneficiary; however, in addition to the

required clauses, other clauses containing the Hebrew word ben in the

phonological rendering will also be shown. The code in Figure 10 is used to do

searches on parts of strings in the clause cube.

Private Sub cmdSearchPart_Click() 'Fuzzy search

count1 = 1

flagSrch = 0

If txtSearchPart.Text = ““ Then

 Exit Sub

End If

For countSrch4 = 1 To arrayMax

 For countSrch5 = 1 To 5

 For countSrch6 = 1 To 6

 pos = InStr(1, Clause(countSrch4, countSrch5,

countSrch6), txtSearchPart.Text, 1)

 If pos > 0 Then

 flagSrch = 1

 count1 = countSrch4

 Call ShowArray

 MsgBox (“Click OK to search next”)

 End If

 Next

 Next

Next

If flagSrch = 0 Then

 MsgBox (“Not found”)

Else

 MsgBox (“End of data cube reached”)

End If

End Sub

Figure 10. VB6 code used to perform searches on parts of strings.

Manoeuvring multi-dimensional language data 519

After discussing conversion from the array in VB6 back to an XML file in the

following paragraph, more CRUD functionalities will be discussed. These

procedures should also take place while the cube resides in the computer's RAM

(random access memory) during its array phase.

From VB6 to XML

The conversion of the content of the three-dimensional array in VB6 into the

XML clause cube is more or less the reversal of the above process. Assuming

that no updates have been done, it is of course not necessary to do validation

again, but string processing will again be used to convert the variables to lines

of text wrapped in applicable XML tags. The structure of the XML schema

must strictly be adhered to in order to create a file that can again be read into

VB6 using the same algorithm. In order to keep the original data intact the

current date and time may be added to the name of the output file so that a

different XML file is created each time when the button “Write array to XML

file on disk” is pressed. If one wants to accept and store edited data

permanently, the output file should have the same name as the input file. In the

empirical experiment of this article, a copy of the XML clause cube is used for

this purpose. Figure 11 shows the code that is used to write the linguistic data

from the array into the XML clause cube on disk.

Public Sub Command3_Click() 'Write array to XML file on

disk

If arrayflag = False Then

 MsgBox (“Array is empty - not saved”)

 Exit Sub

End If

filenum2 = FreeFile

'Create unique output file name (optional):

'outputname = “Gen1V15_Output_” & Format(Now,

“yyyymmddhhmmss”) & “.xml”

outputname = “Gen1_InputV15_RT1.xml”

520 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

Open outputname For Output As #filenum2

Print #filenum2, “<?xml version='1.0' encoding='UTF-8'

standalone='yes' ?>“

Print #filenum2, “<?xml-stylesheet type='text/css'

href='Gen1XMLdb03c.css'?>“

Print #filenum2, “<Genesis1v1-2v3>“

For count1 = 1 To arrayMax

 Print #filenum2, “ <clause>“

 Print #filenum2, “ <clauseno>“ & Clause(count1, 1, 1) &

“</clauseno>“

 Print #filenum2, “ <headers>“

 Print #filenum2, “ <header>Level</header>“

 Print #filenum2, “ <header>Phrase1</header>“

 Print #filenum2, “ <header>Phrase2</header>“

 Print #filenum2, “ <header>Phrase3</header>“

 Print #filenum2, “ <header>Phrase4</header>“

 Print #filenum2, “ <header>Phrase5</header>“

 Print #filenum2, “ </headers>“

 Print #filenum2, “ <level1>“

 Print #filenum2, “ <leveldesc>Phon:</leveldesc>“

 Print #filenum2, “ <phrase1>“ & Clause(count1, 1, 2)

& “</phrase1>“

 Print #filenum2, “ <phrase2>“ & Clause(count1, 2, 2)

& “</phrase2>“

 Print #filenum2, “ <phrase3>“ & Clause(count1, 3, 2)

& “</phrase3>“

 Print #filenum2, “ <phrase4>“ & Clause(count1, 4, 2)

& “</phrase4>“

 Print #filenum2, “ <phrase5>“ & Clause(count1, 5, 2)

& “</phrase5>“

 Print #filenum2, “ </level1>“

 Print #filenum2, “ <level2>“

 Print #filenum2, “

<leveldesc>Translation:</leveldesc>“

 Print #filenum2, “ <phrase1>“ & Clause(count1, 1, 3)

& “</phrase1>“

 Print #filenum2, “ <phrase2>“ & Clause(count1, 2, 3)

& “</phrase2>“

 Print #filenum2, “ <phrase3>“ & Clause(count1, 3, 3)

& “</phrase3>“

 Print #filenum2, “ <phrase4>“ & Clause(count1, 4, 3)

Manoeuvring multi-dimensional language data 521

& “</phrase4>“

 Print #filenum2, “ <phrase5>“ & Clause(count1, 5, 3)

& “</phrase5>“

 Print #filenum2, “ </level2>“

 Print #filenum2, “ <level3>“

 Print #filenum2, “ <leveldesc>Phrase

type:</leveldesc>“

 Print #filenum2, “ <phrase1>“ & Clause(count1, 1, 4)

& “</phrase1>“

 Print #filenum2, “ <phrase2>“ & Clause(count1, 2, 4)

& “</phrase2>“

 Print #filenum2, “ <phrase3>“ & Clause(count1, 3, 4)

& “</phrase3>“

 Print #filenum2, “ <phrase4>“ & Clause(count1, 4, 4)

& “</phrase4>“

 Print #filenum2, “ <phrase5>“ & Clause(count1, 5, 4)

& “</phrase5>“

 Print #filenum2, “ </level3>“

 Print #filenum2, “ <level4>“

 Print #filenum2, “ <leveldesc>SynF:</leveldesc>“

 Print #filenum2, “ <phrase1>“ & Clause(count1, 1, 5)

& “</phrase1>“

 Print #filenum2, “ <phrase2>“ & Clause(count1, 2, 5)

& “</phrase2>“

 Print #filenum2, “ <phrase3>“ & Clause(count1, 3, 5)

& “</phrase3>“

 Print #filenum2, “ <phrase4>“ & Clause(count1, 4, 5)

& “</phrase4>“

 Print #filenum2, “ <phrase5>“ & Clause(count1, 5, 5)

& “</phrase5>“

 Print #filenum2, “ </level4>“

 Print #filenum2, “ <level5>“

 Print #filenum2, “ <leveldesc>SemF:</leveldesc>“

 Print #filenum2, “ <phrase1>“ & Clause(count1, 1, 6)

& “</phrase1>“

 Print #filenum2, “ <phrase2>“ & Clause(count1, 2, 6)

& “</phrase2>“

 Print #filenum2, “ <phrase3>“ & Clause(count1, 3, 6)

& “</phrase3>“

 Print #filenum2, “ <phrase4>“ & Clause(count1, 4, 6)

& “</phrase4>“

 Print #filenum2, “ <phrase5>“ & Clause(count1, 5, 6)

& “</phrase5>“

522 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

 Print #filenum2, “ </level5>“

 Print #filenum2, “ </clause>“

Next

Print #filenum2, “</Genesis1v1-2v3>“

Close #filenum2

MsgBox (“Array converted to XML and saved as “ &

outputname)

End Sub

Figure 11. VB6 code used to save clause cube data from the three-dimensional array

into permanent XML-formatted storage.

The first version of the XML file for this study was, actually, created in a

similar way. The original data was written as code in a module of a VB6

programme that creates and populates a three-dimensional array with the clause

cube data. Empty elements were not marked by a dash or other symbol,

implying that the array contained null values in those variables. To fill up the

array with symbols representing empty values, a for-loop was used, first of all,

to populate the whole array with dashes, after which parts of the array were

overwritten by those elements that do exist. The array was then converted into

an XML file using the same set of code as the lines discussed above.

EDITING THE DATA IN THE CLAUSE CUBE

Reading the data requires a procedure that displays the clause cube data as a set

of two-dimensional tables (see above). For read-only purposes, this

functionality, combined with the search functions discussed above, should be

sufficient. However, it is very likely that some users would need the opportunity

to add more clauses to the clause cube, to edit existing data, or even to delete

records. Array-like functionalities make these types of operations relatively

easy, especially if predefined functions exist which may be called, such as those

available in collections or array lists. However, in this experiment, original code

was written to facilitate full CRUD since arrays' sizes in VB6 are static and

Manoeuvring multi-dimensional language data 523

cannot grow or shrink automatically.
5
 This approach may be regarded as an

example of “creative programming techniques” that may be used to overcome

the limitations of simple arrays (cf. Petroustos & Hough 1999:219).
6

In order to add clauses to the database, the size of the primary dimension of

the cube had to be set large enough to reserve room for a number of extra

clauses. This was done by declaring the size of the three-dimensional array as

200 (although there are actually only 108 in the databank, thus reserving space

for 92 more clauses).

New records may be inserted either before or after the current clause. When

the user identifies the location after which another clause should be inserted (see

the “Insert new clause after this one” button on Figure 6), all the clause

elements following this location in the computer's memory should be moved

one place up to free the current set of variables for a new clause's data to be

recorded. If the new clause must be inserted before the current one (see the

“Insert new clause before this one” button on Figure 6), the current clause must

also be moved one position up in the array.

The code used to create space for a new clause record preceding the one

currently displayed on the interface is shown in Figure 12.

Private Sub Command4_Click() 'Insert new clause before

current one into array

arrayMax = arrayMax + 1

For countAddRec = (arrayMax - 1) To count1 Step -1

5
 “In most programming languages, conventional arrays have a fixed size – they

cannot grow or shrink dynamically to conform to an application‟s execution-time

memory requirements” (Deitel & Deitel 2006:1321). Dynamic arrays in VB6 is not

an option since only the last dimension may be changed without losing existing data.

Even if the Preserve keyword is used to maintain a multidimensional array's contents

when it is resized (using the ReDim statement), only the last dimension may be

changed (Petroustos 1999:769).
6
 Grow and shrink functionalities are facilitated by means of array lists in Visual

Basic.Net, a fully object-oriented language (Deitel & Deitel 2006:1321; MacDonald

2006:207; Foxall 2006:77). Visual Basic 6 offers the use of collections instead

(Crawford 1999:219-224).

524 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

 countAddRec2 = countAddRec + 1

 For count4 = 1 To 5

 For count5 = 1 To 6

 Clause(countAddRec2, count4, count5) =

Clause(countAddRec, count4, count5)

 Next

 Next

Next

For count4 = 1 To 5 'Clear new element in array

 For count5 = 1 To 6

 Clause(count1, count4, count5) = “-”

 Next

Next

Call ShowArray

End Sub

Figure 12. The VB6 code used to make space for a new clause record to precede the

current one.

Figure 13 shows the code used to insert a new, empty clause record set

following the current one.

Private Sub Command7_Click() 'Insert new clause after

current one in array

arrayMax = arrayMax + 1

count1 = count1 + 1

For countAddRec = (arrayMax - 1) To (count1) Step -1

 countAddRec2 = countAddRec + 1

 For count4 = 1 To 5

 For count5 = 1 To 6

 Clause(countAddRec2, count4, count5) =

Clause(countAddRec, count4, count5)

 Next

 Next

Next

Manoeuvring multi-dimensional language data 525

For count4 = 1 To 5 'Clear new element in array

 For count5 = 1 To 6

 Clause(count1, count4, count5) = “-”

 Next

Next

Call ShowArray

End Sub

Figure 13. The VB6 code used to make space for a new clause record

to follow the current one.

After the existing records have been moved up the array, old, redundant data in

the freed space is overwritten with dashes and the new, empty record is shown

on the screen. The user may now enter the new clause data here. After the user

has typed the new information on the usual interface, he/she may press a button

(“Accept changes in this clause (RAM)”) to save the new data into the array in

the RAM. If he/she is satisfied that all the information is correct, he/she should

press another button (“Write array to XML file on disk”, see Figure 6 above) to

save the information to the target XML-file.

Tagging mistakes may be corrected by directly changing the information

shown on the display and by saving the updates both to the RAM for immediate

use and to the XML file for permanent storage. The same code is used to save

new or updated data to the RAM (see Figure 14).

Private Sub Command2_Click() 'Accept changes in this

clause (RAM)

 Clause(count1, 1, 1) = txtC111.Text

 Clause(count1, 1, 2) = txtC112.Text

 Clause(count1, 2, 2) = txtC122.Text

 Clause(count1, 3, 2) = txtC132.Text

 Clause(count1, 4, 2) = txtC142.Text

 Clause(count1, 5, 2) = txtC152.Text

 Clause(count1, 1, 3) = txtC113.Text

 Clause(count1, 2, 3) = txtC123.Text

 Clause(count1, 3, 3) = txtC133.Text

 Clause(count1, 4, 3) = txtC143.Text

 Clause(count1, 5, 3) = txtC153.Text

526 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

 Clause(count1, 1, 4) = txtC114.Text

 Clause(count1, 2, 4) = txtC124.Text

 Clause(count1, 3, 4) = txtC134.Text

 Clause(count1, 4, 4) = txtC144.Text

 Clause(count1, 5, 4) = txtC154.Text

 Clause(count1, 1, 5) = txtC115.Text

 Clause(count1, 2, 5) = txtC125.Text

 Clause(count1, 3, 5) = txtC135.Text

 Clause(count1, 4, 5) = txtC145.Text

 Clause(count1, 5, 5) = txtC155.Text

 Clause(count1, 1, 6) = txtC116.Text

 Clause(count1, 2, 6) = txtC126.Text

 Clause(count1, 3, 6) = txtC136.Text

 Clause(count1, 4, 6) = txtC146.Text

 Clause(count1, 5, 6) = txtC156.Text

End Sub

Figure 14. The VB6 code used to save new or edited clause data to the RAM.

If the user wants to delete a whole clause‟s data, he/she should be able to press a

button to activate a procedure that removes the data of the clause currently

shown on the display (see the “Delete this clause” button on Figure 6 above).

The related set of clause variables is removed by moving all the following

clauses‟ data one position down in the primary dimension, and by clearing the

last element's data that is now duplicated in the second-last position (see Figure

15). These changes should also be saved to the RAM and the target XML file.

Private Sub Command5_Click() 'Delete this clause

For countDelRec = count1 To (arrayMax - 1)

 countDelRec2 = countDelRec + 1

 For count2 = 1 To 5

 For count3 = 1 To 6

 Clause(countDelRec, count2, count3) =

Clause(countDelRec2, count2, count3)

 Next

 Next

Next

Manoeuvring multi-dimensional language data 527

For count2 = 1 To 5 'Clear last element in array

 For count3 = 1 To 6

 Clause(arrayMax, count2, count3) = “-”

 Next

Next

If count1 = arrayMax Then

 count1 = count1 - 1

End If

arrayMax = arrayMax - 1

Call ShowArray

End Sub

Figure 15. The VB6 code used to delete a clause record.

The procedure used to save all current data in the array from the RAM to the

target XML file for permanent storage and recovery has already been discussed

in 2.2 (see Figure 11).

Adding these CRUD functions to the programme significantly enhances its

functionalities by facilitating basic database procedures to create, delete and

maintain data. Even though it could not be called “ideal round-tripping”

anymore (since the contents of the source and target XML files differ), in

practice, this scenario is preferable for an environment where the database is

populated, corrected and expanded. In a situation where end-users should not be

able to change the data, these functionalities should, of course, not be offered.

The CRUD functionality currently is the only way to extend the database,

manually and clause-by-clause, to larger parts of the Hebrew Bible. A more

elegant solution would be to import existing data, but this need creates new

challenges that fall outside the scope of this article.

528 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

CONCLUSION

After an overview of the essential concepts of building a clause cube, either by

using a three-dimensional array in VB6, or a hierarchically structured XML file,

a method was proposed to convert the linguistic data between these two

formats. “Ideal” round-tripping was implemented by means of string processing

to either strip or wrap the primary data in XML tags. This enabled the

transformation of the data from permanent storage into a temporary three-

dimensional array in the computer's RAM, and vice versa. Round-tripping

enables one to overcome the limitations of both the array and XML versions.

Using only an array does not allow permanent storage, while viewing the data

simply by using an XML style sheet does not allow advanced processing. By

using both versions as different phases the data is stored elegantly and

permanently as an XML file, while some of the functionalities of array

processing, like searching and scrolling through the multidimensional clause

representations, are facilitated by the consolidated system, which constitutes a

code shuttle that carries the data safely between the two storage structures,

ensuring that the essential content of the cube stays intact. Various viewing and

searching functions have also been discussed.

In addition, some value was added to the mere transportation function of the

code shuttle by adding elementary database functionalities. Basic create, update

and delete functionalities were added to enable users to populate and edit the

clause cube while it is in the array state and to save these updates both to the

RAM and on permanent storage in XML format. One may conclude that these

technologies are suitable for the efficient storage, transfer and processing of

linguistic data. Since all essential database functionalities are now possible, the

created software may be regarded as a linguistic information system. By

conceptualising and testing the code shuttle, the authors hope to have made a

small contribution to the interdisciplinary field of Linguistics and Information

Systems.

Manoeuvring multi-dimensional language data 529

BIBLIOGRAPHY

Bayerl, P S, Goecke, D, Lüngen, H & Witt, A 2003. Methods for the semantic analysis

of document markup, in Proceedings of the ACM-Symposium on Document

Engineering (DocEng), Grenoble, France, pp. 161-170.

Bourret, R 2003. XML and databases. Available:

http://www.rpbourret.com/xml/XMLAndDatabases.htm [20 October 2003].

Burnard, C 2004. A gentle introduction to XML. Essays in humanities computing.

Available: http://www.digitalhumanities.org/Essays/ [23 November 2005].

Crawford, J (ed.) 1999. Visual Basic 6 complete. San Francisco, CA: Sybex.

Deitel, H M & Deitel, P J 2006. Visual Basic® 2005: how to program. 3rd edition.

Upper Saddle River, NJ: Pearson.

Deutsch, A, Fernandez, M, Florescu, D, Levy, A & Suciu, D 1999. A query language

for XML, Computer Networks 31:1155-1169.

Dipper, S, Götze, M & Stede, M 2005. Heterogeneity in focus: Creating and using

linguistic databases. Interdisciplinary Studies on Information Structure (ISIS) 2,

Working Papers of the SFB 632. Potsdam: Universitätsverlag.

Foxall, J 2006. SAMS Teach yourself Visual Basic 2005 in 24 hours, complete starter

kit. Inianapolis, Indiana: SAMS.

Huitfeldt, C 2004. Scholarly text processing and future mark-up systems. Essays in

humanities computing. Available: http://www.digitalhumanities.org/Essays/ [23

November 2005].

Kay, R 2004. Data cubes, Computer World 38/13:32. Available: http://0-

web25.epnet.com.innopac.up.ac.za [22 June 2004].

Kroeze, J H 2008. Developing an XML-based, exploitable linguistic database of the

Hebrew text of Gen. 1:1-2:3. Unpublished PhD (IT) thesis. University of

Pretoria.

 Available: http://upetd.up.ac.za/thesis/available/etd-07282008-121520/

Kumar, A, Schreibman, S, Arneil, S, Holmes, M, Bia, A & Walsh, J 2005.

<teiPublisher>: a repository management system for TEI documents, Literary

and Linguistic Computing 20/1:117-132.

MacDonald, M 2006. The book of Visual Basic 2005: .Net insight for classic VB

developers. San Francisco, FL: No Starch.

Petersen, U 2004. Emdros: a text database engine for analysed or annotated text. Paper

read at 20
th

 International Conference on Computational Linguistics, Geneva,

2004. Available: http://emdros.org/petersen-emdros-COLING-2004.pdf [15

October 2004].

Petroustos, E 1999. The complete Visual Basic 6 language reference, in Crawford, J

1999:744-904.

Petroustos, E & Hough, K 1999. Object programming with Visual Basic, adapted from

Visual Basic 6 Developer's Handbook, in Crawford, J 1999:169-224.

Ramsay, S 2004. Databases, in Schreibman, Siemens & Unsworth 2004, Chapter 15.

Schreibman, S, Siemens, R & Unsworth, J (eds.) 2004. A companion to digital

humanities. Oxford: Blackwell. Available:

http://www.digitalhumanities.org/companion/ [15 October 2011].

http://0-web25.epnet.com.innopac.up.ac.za/
http://0-web25.epnet.com.innopac.up.ac.za/

530 J.H. Kroeze, T.J.D. Bothma, M.C. Matthee

Sasaki, T 2004. Building an annotated corpus and a lexical database of Modern Hebrew

in XML, Kyoto University Linguistic Research 23:17-45.

Smiljanić, M, Blanken, H, Van Keulen, M & Jonker, W 2002. Distributed XML

database systems. Available: http://www.purl.org/utwente/38064 [27 July 2005].

Vakali, A, Catania, B & Maddalena, A 2005. XML data stores: emerging practices,

IEEE Internet Computing 9/2:62-69.

Witt, A 2005. Multiple hierarchies: new aspects of an old solution, in Dipper, Götze &

Stede 2005:55-85.

J.H. Kroeze

School of Computing

University of South Africa

P.O. Box 392

UNISA 0003

kroezjh@unisa.ac.za

T.J.D Bothma

Department of Information Science

University of Pretoria

Private Bag X20

Hatfield, Pretoria 0002

E-mail: theo.bothma@up.ac.za

M.C. Matthee

Department of Informatics

University of Pretoria

Private Bag X20

Hatfield, Pretoria 0002

E-mail: machdel.matthee@up.ac.za

