STIELTJES INTERLACING OF ZEROS OF JACOBI POLYNOMIALS FROM DIFFERENT SEQUENCES

K. DRIVER1, A. JOOSTE2, AND K. JORDAAN2

Abstract. A theorem of Stieltjes proves that, given any sequence \(\{p_n\}_{n=0}^{\infty} \) of orthogonal polynomials, there is at least one zero of \(p_n \) between any two consecutive zeros of \(p_k \), if \(k < n \), a property called Stieltjes interlacing. We show that Stieltjes interlacing extends, under certain conditions, to the zeros of Jacobi polynomials from different sequences. In particular, we prove that the zeros of \(P_n^{\alpha,\beta} \) interlace with the zeros of \(P_{n+1}^{\alpha,\beta+k} \) and with the zeros of \(P_{n-1}^{\alpha,\beta-k} \) for \(k \in \{1, 2, 3, 4\} \) as well as with the zeros of \(P_{n+1}^{\alpha,\beta+k} \) for \(t, k \in \{1, 2\} \); and, in each case, we identify a point that completes the interlacing process. More generally, we prove that the zeros of the \(k \)th derivative of \(P_n^{\alpha,\beta} \), together with the zeros of an associated polynomial of degree \(k \), interlace with the zeros of \(P_{n+1}^{\alpha,\beta}, n, k \in \mathbb{N}, k < n \).

Key words. Interlacing of zeros; Stieltjes’ Theorem; Jacobi polynomials.

AMS subject classifications. 33C45, 42C05

1. Introduction. It is well known that if \(\{p_n\}_{n=0}^{\infty} \) is a sequence of orthogonal polynomials, the zeros of \(p_n \) are real and simple, and if \(x_{1,n} < x_{2,n} < \cdots < x_{n,n} \) are the zeros of \(p_n \) while \(x_{1,n-1} < x_{2,n-1} < \cdots < x_{n-1,n-1} \) are the zeros of \(p_{n-1} \), then

\[
x_{1,n} < x_{1,n-1} < x_{2,n} < x_{2,n-1} < \cdots < x_{n-1,n-1} < x_{n,n},
\]

a property called the interlacing of zeros. Another classical result on interlacing of zeros of orthogonal polynomials is due to Stieltjes who proved that if \(m < n \), then between any two successive zeros of \(p_m \) there is at least one zero of \(p_n \), a property called Stieltjes interlacing [13, Theorem 3.3.3]. Clearly, if \(m < n - 1 \), there are not enough zeros of \(p_m \) to interlace fully with the \(n \) zeros of \(p_n \). Nevertheless, using the same argument as Stieltjes, one can show that for \(m < n - 1 \), provided \(p_m \) and \(p_n \) have no common zeros, there exist \(m \) open intervals, with endpoints at successive zeros of \(p_m \), each of which contains exactly one zero of \(p_n \). Moreover, in [3], Beardon shows that for each \(m < n - 1 \), if \(p_m \) and \(p_n \) are co-prime, there exists a real polynomial \(S_{n-m-1} \) of degree \(n - m - 1 \) whose real simple zeros provide a set of points that completes the interlacing picture. An important feature of the polynomials \(S_{n-m-1} \) is that they are completely determined by the coefficients in the three term recurrence relation satisfied by the orthogonal sequence \(\{p_n\}_{n=0}^{\infty} \). The polynomials \(S_{n-m-1} \) are the dual polynomials introduced by de Boor and Saff in [4] or, equivalently, the associated polynomials analyzed by Vinet and Zhedanov in [15].

The interlacing property of zeros of polynomials is important in numerical quadrature applications, and in [12], Segura proved that interlacing of zeros holds, under certain assumptions, within sequences of classical orthogonal polynomials even when the parameter(s) on which they depend lie outside the value(s) required to ensure orthogonality. He also considered the interlacing of zeros of polynomials \(p_{n-1} \) and \(p_{n+1} \) in any orthogonal sequence \(\{p_n\}_{n=0}^{\infty} \) and showed that interlacing of zeros occurs to the left and to the right of a specified

*

aReceived May 5, 2011. Accepted for publication September 28, 2011. Published online October 28, 2011. Recommended by F. Marcellan. Research by K. D. is supported by the National Research Foundation of South Africa under grant number 2054423. Research by A. J. and K. J. is supported by the National Research Foundation under grant number 2054423.

1Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa (alta.jooste@up.ac.za, kjordaan@up.ac.za)

2Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0002, South Africa (kathy.driver@uct.ac.za, kdriver@uct.ac.za).
point \([12, \text{Theorem } 1]\). Segura identified this point in terms of the coefficients in the three term recurrence relation satisfied by \(\{P_n\}_{n=0}^{\infty}\); equivalently, it is the zero of the linear de Boor-Saff polynomial \([3, \text{Theorem } 3]\). Stieltjes interlacing was studied for the zeros of polynomials from different sequences of one-parameter orthogonal families, namely, Gegenbauer polynomials \(C_n^{\alpha}\) and Laguerre polynomials \(L_n^\alpha\) in \([5]\) and \([6]\), respectively, and associated polynomials analogous to the de Boor-Saff polynomials were identified in each case. Related work in which recurrence relations for \(2F_1\) functions are considered can be found in \([9]\).

In a generalization that is complementary to that of Segura in \([12]\), it was proved in \([7]\) that the zeros of \(P_{n,t}^{\alpha,\beta}\) interlace with the zeros of polynomials from some different Jacobi sequences, including those of \(P_{n-t,\beta+k}^{\alpha,\beta}\) and \(P_{n-1,t}^{\alpha,\beta+k}\) for \(0 \leq t, k \leq 2\), thereby confirming and extending a conjecture made by Richard Askey in \([2]\). Numerical examples were given to illustrate that, in general, if \(t < k\) is greater than 2, interlacing of zeros need not necessarily occur.

In this paper, we investigate the extent to which Stieltjes interlacing holds between the zeros of two Jacobi polynomials if each polynomial belongs to a sequence generated by a different value of the parameter \(\alpha\) and/or \(\beta\). We also identify, in each case, a polynomial that plays the role of the de Boor-Saff polynomial \([3, 4]\), in the sense that its zeros provide a (non-unique) set of points that complete the interlacing process.

\section{Results.}

We recall that, for \(\alpha, \beta > -1\), the sequence of Jacobi polynomials \(\{P_n^{\alpha,\beta}\}_{n=0}^{\infty}\) is orthogonal with respect to the weight function \(w(x) = (1 - x)^\alpha(1 + x)^\beta\) on \((-1, 1)\) and satisfies the three term recurrence relation \([13]\)

\begin{equation}
(2.1) \quad \frac{2(n+1)(n+\alpha+\beta+1)}{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)} P_{n+1}^{\alpha,\beta}(x) = (x - \frac{\beta^2 - \alpha^2}{\beta + \alpha + 1}) P_n^{\alpha,\beta}(x) - \frac{2(n+\alpha)(n+\beta)}{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)} P_{n-1}^{\alpha,\beta}(x).
\end{equation}

Our first four results consider cases when Stieltjes interlacing occurs between the zeros of Jacobi polynomials from different sequences whose degrees differ by two.

\begin{theorem} \label{thm1}
(i) If \(P_{n-t}^{\alpha,\beta}\) and \(P_{n+1}^{\alpha,\beta}\) are co-prime, then
\begin{enumerate}
\item the zeros of \(P_{n-t}^{\alpha,\beta}\) and \(\frac{2n^2 - t^2 - t(n-\alpha-n+2n(\alpha+\beta+1))}{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)}\) interlace with the zeros of \(P_{n+1}^{\alpha,\beta}\) for fixed \(t \in \{0, 1, 2\}\);
\item the zeros of \(P_{n-1}^{\alpha+1,\beta}\) and \(\frac{n(n+\alpha+\beta+2)(n+\alpha+\beta+2)}{(n+\alpha+2)(n+\alpha+\beta+2)}\) interlace with the zeros of \(P_{n+1}^{\alpha,\beta}\);
\end{enumerate}
(ii) If \(P_{n-t}^{\alpha,\beta}\) and \(P_{n+1}^{\alpha,\beta}\) are not co-prime, they have one common zero located at the respective points identified in (i) (a) to (c) and the \(n-1\) zeros of \(P_{n-1}^{\alpha+1,\beta}\) interlace with the remaining \(n\) (non-common) zeros of \(P_{n+1}^{\alpha,\beta}\).
\end{theorem}

\begin{remark}
A theorem due to Gibson \([8]\) proves that if \(\{p_n\}_{n=0}^{\infty}\) is any orthogonal sequence, the polynomials \(p_{n+1}\) and \(p_{n-1}\), \(m = 1, 2, \ldots, n-1\) can have at most \(m, n-m\) common zeros. Theorem \ref{thm1} (ii) extends Gibson’s result to Jacobi polynomials of degree \(n-1\) and \(n+1\) from different orthogonal sequences.
\end{remark}

\begin{remark}
The case \(t = 0\) in Theorem \ref{thm1} (i) was proved by Segura \([12, \text{Section } 3.1]\). For completeness and the convenience of the reader, we provide an alternative proof of this case.
\end{remark}
Since Jacobi polynomials satisfy the symmetry property [10, p. 82, Equation (4.1.1)]

\[P_n^{\alpha,\beta}(x) = (-1)^n P_n^{-\alpha,-\beta}(-x), \]

we immediately obtain the following Corollary of Theorem 2.1.

Corollary 2.4.

(i) If \(P_{n-1}^{\alpha,\beta+t} \) and \(P_{n+1}^{\alpha,\beta} \) are co-prime, then

(a) The zeros of \(P_{n-1}^{\alpha,\beta+t} \) and \(\frac{2^n - n(\alpha + \beta + 2) + (\beta + 2)(\alpha - \beta)}{2^n+\alpha+\beta+1} \) interlace with the zeros of \(P_{n+1}^{\alpha,\beta} \) for fixed \(t \in \{1, 2\} \);

(b) The zeros of \(P_{n-1}^{\alpha,\beta+4} \) and \(\frac{-2n(n + \alpha + \beta + 3) + (\alpha - \beta)}{2n(n + \alpha + \beta + 3) + (\beta + 3)(\alpha + \beta + 2)} \) interlace with the zeros of \(P_{n+1}^{\alpha,\beta} \).

(c) The zeros of \(P_{n-1}^{\alpha,\beta+4} \) and \(\frac{-2n(n + \alpha + \beta + 3) + (\alpha - \beta)}{-2n(n + \alpha + \beta + 3) + (\beta + 3)(\alpha + \beta + 2)} \) interlace with the zeros of \(P_{n+1}^{\alpha,\beta} \).

(ii) If \(P_{n-1}^{\alpha,\beta+t} \) and \(P_{n+1}^{\alpha,\beta} \) are not co-prime, they have a common zero located at the respective points identified in (i) (a) to (c) and the \(n - 1 \) zeros of \(P_{n-1}^{\alpha,\beta+t} \) interlace with the remaining \(n \) (non-common) zeros of \(P_{n+1}^{\alpha,\beta} \).

Numerical experiments suggest that results analogous to those proved in Theorem 2.1 and its Corollary also hold as \(t \) varies continuously between 0 and 4.

Conjecture 2.5. For \(t \in (0, 2) \), if \(P_{n-1}^{\alpha,\beta+t} \) and \(P_{n+1}^{\alpha,\beta} \) are co-prime, the zeros of \(P_{n-1}^{\alpha,\beta+t} \) and \(\frac{n^2 + n(n + \alpha + \beta + 3) - (\alpha + 2)(\alpha - \beta)}{n^2 + n(n + \alpha + \beta + 3) + (\alpha + 2)(\alpha + \beta + 2)} \) interlace with the zeros of \(P_{n+1}^{\alpha,\beta} \).

Our next two results prove that Stieltjes interlacing of the zeros of Jacobi polynomials from different sequences also holds when both the parameters \(\alpha \) and \(\beta \) change within certain constraints.

Theorem 2.6.

(i) For each fixed \(j, k \in \{1, 2\} \), if \(P_{n-1}^{\alpha+j,\beta+k} \) and \(P_{n+1}^{\alpha,\beta} \)

(a) are co-prime, then the zeros of \(P_{n-1}^{\alpha+j,\beta+k} \) and \(\frac{-\alpha + n(k - j)}{\alpha + \beta + 2(n + 4 - 4)} \) interlace with the zeros of \(P_{n+1}^{\alpha,\beta} \);

(b) are not co-prime, they have one common zero located at the point identified in (i) (a) and the \(n - 1 \) zeros of \(P_{n-1}^{\alpha+j,\beta+k} \) interlace with the remaining \(n \) (non-common) zeros of \(P_{n+1}^{\alpha,\beta} \).

(ii) If \(P_{n-1}^{\alpha+3,\beta+1} \) and \(P_{n+1}^{\alpha,\beta} \)

(a) are co-prime, then the zeros of \(P_{n-1}^{\alpha+3,\beta+1} \) and \(\frac{n^2 + n(n + \alpha + \beta + 3) - (\alpha + 2)(\alpha - \beta)}{n^2 + n(n + \alpha + \beta + 3) + (\alpha + 2)(\alpha + \beta + 2)} \) interlace with the zeros of \(P_{n+1}^{\alpha,\beta} \);

(b) are not co-prime, they have one common zero located at the point identified in (ii) (a) and the \(n - 1 \) zeros of \(P_{n-1}^{\alpha+3,\beta+1} \) interlace with the remaining \(n \) (non-common) zeros of \(P_{n+1}^{\alpha,\beta} \).

(iii) If \(P_{n-1}^{\alpha+1,\beta+3} \) and \(P_{n+1}^{\alpha,\beta} \)

(a) are co-prime, then the zeros of \(P_{n-1}^{\alpha+1,\beta+3} \) and \(\frac{-n^2 - n(n + \alpha + \beta + 3) - (\beta + 2)(\alpha - \beta)}{n^2 + n(n + \alpha + \beta + 3) + (\beta + 2)(\alpha + \beta + 2)} \) interlace with the zeros of \(P_{n+1}^{\alpha,\beta} \);

(b) are not co-prime, then they have one common zero located at the point identified in (iii) (a) and the \(n - 1 \) zeros of \(P_{n-1}^{\alpha+1,\beta+3} \) interlace with the remaining \(n \) (non-common) zeros of \(P_{n+1}^{\alpha,\beta} \).

Theorem 2.7.

(i) If the respective pairs of polynomials are co-prime, then

(a) the zeros of \(P_{n-1}^{\alpha-1,\beta+1} \) and \(\frac{\alpha + \beta}{2n + \alpha + \beta} \) interlace with the zeros of \(P_{n+1}^{\alpha,\beta} \).
(b) the zeros of \(P_{n-1}^{\alpha,\beta+2} \) and \(P_{n+1}^{\alpha,\beta} \) interlace with the zeros of \(P_{n+1}^{\alpha,\beta+1} \);
(c) the zeros of \(P_{n-1}^{\alpha,\beta-1} \) and \(P_{n+1}^{\alpha-\beta} \) interlace with the zeros of \(P_{n+1}^{\alpha-\beta+1} \);
(d) the zeros of \(P_{n-1}^{\alpha+2,\beta-1} \) and \(P_{n+1}^{\alpha+\beta} \) interlace with the zeros of \(P_{n+1}^{\alpha+\beta+1} \).

(ii) If the respective pairs of polynomials in (i) (a) to (d) are not co-prime, then they have one common zero located at the points identified in (i) (a) to (d) and the \(n - 1 \) zeros of the respective polynomial of degree \(n - 1 \) in each case interlace with the \(n \) (non-common) zeros of \(P_{n+1}^{\alpha,\beta} \).

Remark 2.8. Restrictions on the ranges of \(t \) and \(k \) are required in our theorems since, in general, Stieltjes interlacing is not retained between the zeros of Jacobi polynomials from different sequences, whose degrees differ by two.

Using Mathematica, we see that When \(n = 5 \), \(\alpha = 20.7 \) and \(\beta = 0.5 \), the zeros of \(P_6^{\alpha,\beta} \) and \(P_4^{\alpha+5,\beta} \) or \(P_4^{\alpha,\beta-1} \) do not interlace, illustrating that Stieltjes interlacing does not hold in general for \(t > 4 \), \(k = 0 \) or \(t = 0 \), \(k < 0 \).
When \(t = k = -1 \) and \(n, \alpha \) and \(\beta \) are chosen as in the example above, the zeros of \(P_4^{\alpha-1,\beta-1} \) and \(P_6^{\alpha,\beta} \) do not interlace.
The zeros of \(P_n^{\alpha,\beta+1} \) and those of \(P_n^{\alpha+4,\beta+1} \) or \(P_n^{\alpha+4,\beta+2} \) do not interlace when \(n = 7 \), \(\alpha = -0.9 \) and \(\beta = 329.3 \).

We now state a general result for Stieltjes interlacing between the zeros of \(P_n^{\alpha,\beta} \) and the \(n - k \) zeros of the \(k \)th derivative of \(P_n^{\alpha,\beta} \).

Theorem 2.9. Let \(P_n^{\alpha,\beta} \), \(\alpha, \beta > -1 \), \(n \in \mathbb{N} \), denote the Jacobi polynomial of degree \(n \).

(i) For each \(k \in \{1, 2, \ldots, n - 1\} \), there exist polynomials \(G_k \) and \(H_k \) of degree \(k \) such that

\[
(2.3) \quad (1 - x^2)^k Q_{n,k} P_{n-k}^{\alpha+k,\beta+k}(x) = (n + 1)H_{k-1}(x)P_{n+1}^{\alpha,\beta}(x) + G_k(x)P_n^{\alpha,\beta}(x),
\]

where \(Q_{n,k} = \frac{(n+\alpha+\beta+2)_{n-k-1}(2n+\alpha+\beta+2)}{2^n} \) and \((\)_k \) denotes the Pochhammer symbol [10, p. 8, Equation (1.3.6)].

(ii) Let \(k \in \{1, 2, \ldots, n - 1\} \), \(k \) fixed. If \(P_{n+1}^{\alpha,\beta} \) and \(P_{n-k}^{\alpha+k,\beta+k} \) are co-prime, then the zeros of the \(k \)th derivative of \(P_{n+1}^{\alpha,\beta} \), together with the \(k \) real zeros of \(G_k \), interlace with the zeros of \(P_{n-k}^{\alpha+k,\beta+k} \).

(iii) Let \(k \in \{1, 2, \ldots, n - 1\} \), \(k \) fixed. If \(P_{n+1}^{\alpha,\beta} \) and \(P_{n-k}^{\alpha+k,\beta+k} \) have \(r \) common zeros, then the \((n - 2r) \) non-common zeros of the product \(G_k P_{n-k}^{\alpha+k,\beta+k} \), together with the \(r \) common zeros of \(P_{n+1}^{\alpha,\beta} \) and \(P_{n-k}^{\alpha+k,\beta+k} \), interlace with the \((n + 1 - r) \) non-common zeros of \(P_{n+1}^{\alpha,\beta} \).

3. Proofs. Jacobi polynomials are linked with the \(_2F_1 \) Gauss hypergeometric polynomials via the following identity [1, p. 99]

\[
(3.1) \quad P_n^{\alpha,\beta}(x) = \frac{(\alpha + 1)_n}{n!} _2F_1 \left(-n, n + \alpha + \beta + 1; \alpha + 1; \frac{1 - x}{2} \right).
\]

In our proofs, we make use of this connection between Jacobi and \(_2F_1 \) hypergeometric polynomials, as well as the following contiguous function relations satisfied by \(_2F_1 \) polynomials.
LEMMMA 3.1. Let \(F_n = 2F_1(-n, b; c; z) \) and denote \(2F_1(-n-1, b+1; c; z) \) by \(F_{n+1}(b+) \). \(2F_1(-n + 1, b+1; c-3; z) \) by \(F_{n-1}(b+1, c-3) \) and so on. Then,

\[
(3.1) \quad \left(\frac{b+n}{b+n+1} \right) - z F_n = \frac{b+c}{b+n+1} F_{n+1}(b+) + \frac{b-c}{c_n} F_{n-1}(c+)
\]

(3.2) \(\left(\frac{b+n}{b+n+1} \right) - z F_n = \frac{b+c}{b+n+1} F_{n+1}(b+) + \frac{b-c}{c_n} F_{n-1}(c+) \)

(3.3) \(\left(\frac{c}{b+n+1} \right) - z F_n = \frac{c}{b+n+1} F_{n+1}(b+) + \frac{b-c}{c_n} F_{n-1}(b+c+2) \)

(3.4) \(\left(\frac{c}{b+n+1} \right) - z F_n = \frac{c}{b+n+1} F_{n+1}(b+) + \frac{b-c}{c_n} F_{n-1}(b+c+2) \)

(3.5) \(\left(\frac{c}{b+n+1} \right) + \frac{b-c}{c_n} F_n = \frac{c}{b+n+1} F_{n+1}(b-) - \frac{z}{c} F_{n-1}(b+c+) \)

(3.6) \(\left(\frac{c}{b+n+1} \right) + \frac{b-c}{c_n} F_n = \frac{c}{b+n+1} F_{n+1}(b-) - \frac{z}{c} F_{n-1}(b+c+) \)

(3.7) \(\left(\frac{b-c+1}{b+n+1} \right) F_n = \frac{b-c+1}{b+n+1} F_{n+1}(b+) - \frac{z^2 c}{z} F_{n-1}(b+2, c+) \)

(3.8) \(\left(\frac{c}{(b+1)(b+n+1)} \right) F_n = \left(c + 2nz - nz \frac{2n+1}{b+1} \right) F_{n+1}(b+) \)

(3.9) \(\left(\frac{c}{(b+1)(b+n+1)} \right) F_n = \left(c + 2nz - nz \frac{2n+1}{b+1} \right) F_{n+1}(b+) \)

(3.10) \(\left(\frac{c}{(b+1)(b+n+1)} \right) F_n = \left(c + 2nz - nz \frac{2n+1}{b+1} \right) F_{n+1}(b+) \)

where \(a = (b+1)(b+2)(c+1)(c+n+2)(c+n+3)(1+b+n) \).

Proof. For each \(j = 1, 2, \ldots, n \), the coefficient of \(z^j \) on the left-hand side of (3.2) is

\[
\frac{2b(b+n)(n-j-1)(b+j+1) b_j}{(b+n)(b+n+1)(c)_j(j+1)} - \frac{2n(n+1)(b+j+1) b_j}{(c)_j(j+1)}
\]

\[
= \frac{2(n+1)(n-j-1)}{(b+n)(b+n+1)(c)_j(j+1)} (c+n)(-n+j+1)(b+j+1) - j(c+j+1)(b+n)(b+n+1))
\]

while the coefficient of \(z^j \) on the right-hand side of (3.2) is given by

\[
\frac{2b(b+n)(n-j-1)(b+j+1) b_j}{(b+n)(b+n+1)(c)_j(j+1)} + \frac{2n(b-c)(-n+1)(b+j+1) b_j}{(c)_j(j+1)}
\]

\[
= \frac{2(n+1)(n-j-1)(b+j+1) b_j}{(b+n)(b+n+1)(c)_j(j+1)} (c+n)(-n+j+1)(b+j+1) - j(c+j+1)(b+n)(b+n+1))
\]

A straightforward calculation shows that these coefficients are equal and the result follows.

The other identities can be proved in the same way by comparing coefficients. \(\square \)

REMARK 3.2. The identities in Lemma 3.1 follow from the contiguous relations for \(2F_1 \) hypergeometric polynomials [11, p. 71]. A useful algorithm in this regard is available as a computer package [14].

The following Lemma simplifies the proofs of Theorem 2.1 and Theorem 2.6.

LEMMA 3.3. Let \(\{p_n\}_{n=0}^{\infty} \) be a sequence of polynomials orthogonal on the (finite or infinite) interval \((c, d)\). Let \(g_{n-1} \) be any polynomial of degree \(n - 1 \) that for each \(n \in \mathbb{N} \) satisfies

\[
(3.11) \quad g_{n-1}(x) = a_n(x)p_{n+1}(x) - (x - A_n)b_n(x)p_n(x)
\]
for some constant A_n and some functions $a_n(x)$ and $b_n(x)$, with $b_n(x) \neq 0$ for $x \in (c, d)$.

Then, for each $n \in \mathbb{N}$,

(i) the zeros of g_{n-1} are all real and simple and, together with the point A_n, they
interlace with the zeros of p_{n+1} if g_{n-1} and p_{n+1} are co-prime;

(ii) if g_{n-1} and p_{n+1} are not co-prime, they have one common zero located at $x = A_n$
and the $n-1$ zeros of g_{n-1} interlace with the n (non-common) zeros of p_{n+1}.

Proof. Let $w_1 < w_2 < \cdots < w_{n+1}$ denote the zeros of p_{n+1}.

(i) Since p_n and p_{n+1} are always co-prime, and by assumption $b_n(x) \neq 0$ for $x \in (c, d)$
and p_{n+1} and g_{n-1} are co-prime, we deduce from (3.11) that $A_n \neq w_k$ for any
$k \in \{1, 2, \ldots, n + 1\}$. Evaluating (3.11) at w_k and w_{k+1}, we obtain

$$
\frac{g_{n-1}(w_k)p_{n-1}(w_{k+1})}{p_n(w_k)p_n(w_{k+1})} = (w_k - A_n)(w_{k+1} - A_n)b_n(w_k)b_n(w_{k+1}),
$$

for each $k \in \{1, 2, \ldots, n\}$. Since w_k and $w_{k+1} \in (c, d)$ while b_n does not change
sign in (c, d), we know that $b_n(w_k)b_n(w_{k+1}) > 0$. Hence, the right-hand side of
(3.12) is positive if and only if $A_n \notin (w_k, w_{k+1})$. Since $p_n(w_k)p_n(w_{k+1}) < 0$
for each $k \in \{1, 2, \ldots, n\}$ because the zeros of p_n and p_{n+1} are interlacing, we deduce
that, provided $A_n \notin (w_k, w_{k+1})$, g_{n-1} has a different sign at consecutive zeros
of p_{n+1} and therefore has an odd number of zeros (counting multiplicity) in each
interval (w_k, w_{k+1}), $k \in \{1, 2, \ldots, n\}$, apart from one interval that may contain the
point A_n. It follows from the Intermediate Value Theorem that for each $n \in \mathbb{N}$ the
$n-1$ real simple zeros of g_{n-1}, together with the point A_n, interlace with the $n+1$
zeros of p_{n+1}.

(ii) If p_{n+1} and g_{n-1} have common zeros, it follows from (3.11) that there can only be
one common zero at $x = A_n$ since p_n and p_{n+1} are co-prime. For $x \neq A_n$ we can
rewrite (3.11) as

$$
G_{n-2}(x) = a_n(x)P_n(x) - b_n(x)p_n(x),
$$

where $(x - A_n)G_{n-2}(x) = g_{n-1}(x)$ and $(x - A_n)P_n(x) = p_{n+1}(x)$. Note that
the zeros of P_n are exactly the n (non-common) zeros of p_{n+1}, say $v_1 < \cdots < v_n$,
and at most one interval of the form (v_k, v_{k+1}), $k \in \{1, \ldots, n-1\}$, can contain the
point A_n. Evaluating (3.13) at v_k and v_{k+1}, for each $k \in \{1, \ldots, n-1\}$ such that
$A_n \notin (v_k, v_{k+1})$, we obtain

$$
G_{n-2}(v_k)G_{n-2}(v_{k+1}) = b_n(v_k)b_n(v_{k+1})p_n(v_k)p_n(v_{k+1}) < 0,
$$

and it follows that G_{n-2} has an odd number of zeros in each interval (v_k, v_{k+1}), $k \in \{1, 2, \ldots, n\}$, that does not contain A_n. Since there are at least $n-2$ of these
intervals and $\deg(G_{n-2}) = n - 2$, there are at most $n-2$ such intervals and we
deduce that $A_n = w_j$ where $j \in \{2, \ldots, n\}$ and the zeros of G_{n-2}, together with the
point A_n, interlace with the n zeros of P_n. The stated result is then an immediate
consequence of the definitions of G_{n-2} and P_n. \square

Proof of Theorem 2.1.

(i) (a) If $t = 0$, the result follows from (2.1) and Lemma 3.3 (i). For $t = 1$, we
use (3.2) with $b = \alpha + \beta + n + 1$ and $c = \alpha + 1$, together with (3.1), and then
apply Lemma 3.3 (i). For $t = 2$, the stated result follows from (3.3) and (3.1)
together with Lemma 3.3 (i).

(b) Replacing b by $n + \alpha + \beta + 1$, c by $\alpha + 1$ and z by $\frac{1 - x}{2}$ in (3.6) and using
Proof of Theorem 2.6.

(ii) This follows immediately from Lemma 3.3 (ii) and the proofs of Theorem 2.1 (i) (a) to (c).

(i) (a) The case when \(j = k = 1\) will be proved in Theorem 2.9. For \(j = k = 2\), (3.8) and (3.1) yield

\[
\left(x - \frac{\beta - \alpha}{x + \beta + 1} \right) P_{n+1}^{\alpha, \beta}(x) = \frac{2(n+1)C(x)}{B(n+1)(\alpha + \beta + 1)(\alpha + \beta + 2)} P_{n+1}^{\alpha, \beta}(x) + E_n(1 - x^2)P_{n-1}^{\alpha+2, \beta+2}(x),
\]

where

\[
E_n = \frac{(n+\alpha+\beta+2)(n+\alpha+\beta+3)(2n+\alpha+\beta+2)}{B(n+1)(\alpha + \beta + 1)(\alpha + \beta + 2)}
\]

and \(C(x)\) is a polynomial of degree 2 in \(x\) which depends on \(n, \alpha, \) and \(\beta\). The result follows from Lemma 3.3 (i).

For \(j = 1, k = 2\), the mixed recurrence relation

\[
\left(x + \frac{n + n - \beta}{n + \alpha + \beta + 2} \right) P_{n+1}^{\alpha, \beta}(x) = \frac{(n(x+1)+2\beta+2)(n+1)}{(n+\alpha+\beta+2)(n+\beta+1)} P_{n+1}^{\alpha, \beta}(x) - \frac{(x+1)^2(x-1)(2n+\alpha+\beta+2)}{4(n+\beta+1)} P_{n-1}^{\alpha+1, \beta+2}(x)
\]

is obtained from (3.1) together with (3.4). Lemma 3.3 (i) then yields the stated result.

For \(j = 2, k = 1\), the result follows from the symmetry property (2.2).

(b) From (3.1) and (3.9), we obtain the mixed recurrence relation

\[
\left(x - \frac{n^2 - (\alpha + 1)\alpha + n(\alpha + \beta + 3)}{n^2 + (\alpha + 1)(\beta + 1)(\alpha + \beta + 2)} \right) P_{n+1}^{\alpha, \beta}(x) = \frac{4(n+1)(\alpha + 2)(3\alpha - \beta + 4)n - 2n^2(2n+\alpha+\beta+2)(2n+\alpha+\beta+3)(n^2 + (\alpha + 2)(\alpha + \beta + 2)(n(\alpha + \beta + 3))}{8n(n^2 + (\alpha + 2)(\alpha + \beta + 2)(n(\alpha + \beta + 3))}\bigg) P_{n+1}^{\alpha+3, \beta+1}(x),
\]

and Lemma 3.3 (i) then yields the stated result.
(c) This follows directly from the symmetry property (2.2).

(ii) This follows from Lemma 3.3 (ii) and the proofs of Theorem 2.6 (i) (a) to (c).

We omit the proof of Theorem 2.7 which follows exactly the same reasoning as the proofs of Theorems 2.1 and 2.6.

Proof of Theorem 2.9.
(i) We use the mixed recurrence relations

\begin{equation}
(1 - x^2) P_n^{\alpha+1,\beta+1}(x) = 2 \left(x + \frac{\alpha+\beta}{2n+\alpha+\beta+2} \right) P_n^{\alpha,\beta}(x) - \frac{4(n+1)}{2n+\alpha+\beta+2} P_{n+1}^{\alpha,\beta}(x)
\end{equation}

and

\begin{equation}
(1 - x^2) P_n^{\alpha+1,\beta+1}(x) = \frac{2}{n+\alpha+\beta+2} \left(\frac{2(n+1)(n+\alpha+1)}{2n+\alpha+\beta+2} P_n^{\alpha,\beta}(x) - (n+1) \left(x - \frac{\alpha+\beta}{2n+\alpha+\beta+2} \right) P_{n+1}^{\alpha,\beta}(x) \right),
\end{equation}

which can be obtained from (3.1), (3.5), and (3.7). We prove our result by induction on \(k\).

For \(k = 1\), equation (2.3) is the same as equation (3.14) with \(H_0(x) = -1, G_1(x) = \frac{1}{2}((2n+\alpha+\beta+2)x+\alpha-\beta)\) and \(Q_{n,1} = \frac{1}{2}(2n+\alpha+\beta+2)\). Therefore, (2.3) holds for \(k = 1\).

Next, we assume that the result holds for \(m = 1, 2, \ldots, k\), i.e., we assume that

\begin{equation}
(1 - x^2)^m Q_{n,m} P_{n-m}^{\alpha+m,\beta+m}(x) = (n+1) H_{m-1}(x) P_{n+1}^{\alpha,\beta}(x) + G_m(x) P_n^{\alpha,\beta}(x),
\end{equation}

with \(G_m\) and \(H_m\) polynomials of degree \(m\) and \(Q_{n,m} = \frac{(n+\alpha+\beta+2)m-1(2n+\alpha+\beta+2)}{2^{2m}}\) for \(m = 1, 2, \ldots, k\).

For \(m = k+1\), the left-hand side of (2.3) is equal to

\begin{equation}
(1 - x^2)^{k+1} Q_{n,k+1} P_{n-k-1}^{\alpha+k+1,\beta+k+1}(x),
\end{equation}

and, applying (3.14) and (3.15), a straightforward calculation shows that this equals

\begin{equation}
G_{k+1}(x) P_n^{\alpha,\beta}(x) + (n+1) H_k(x) P_{n+1}^{\alpha,\beta}(x)
\end{equation}

with

\begin{equation}
H_k(x) = -\frac{n}{2} \left(x - \frac{\alpha+\beta}{2n+\alpha+\beta+2} \right) H_{k-1}(x) - \frac{n+\alpha+\beta+2}{2n+\alpha+\beta+2} G_k(x)
\end{equation}

and

\begin{equation}
G_{k+1}(x) = \frac{n(n+\alpha+1)(n+\beta+1)}{2(n+\alpha+\beta+2)} H_{k-1}(x) + \frac{n+\alpha+\beta+2}{2} \left(x + \frac{\alpha-\beta}{2n+\alpha+\beta+2} \right) G_k(x),
\end{equation}

which is the right-hand side of (2.3) for \(m = k+1\). It follows that (3.16) holds for \(m = k+1\), and the result follows by induction on \(k\).

(ii) We note that \(D^k[P_n^{\alpha,\beta}] = \frac{1}{k!} (n+\alpha+\beta+1) k P_{n-k}^{\alpha+k,\beta+k}\), where \(D^k\) denotes the \(k\)-th derivative [13, p. 63]. From (2.3), provided \(P_{n+1}^{\alpha,\beta}(x) \neq 0\), we have

\begin{equation}
\frac{(1 - x^2)^k Q_{n,k} P_{n-k}^{\alpha+k,\beta+k}(x)}{P_{n+1}^{\alpha,\beta}(x)} = (n+1) H_{k-1}(x) + \frac{G_k(x) P_n^{\alpha,\beta}(x)}{P_{n+1}^{\alpha,\beta}(x)}.
\end{equation}
Now, if \(w_1 < w_2 < \cdots < w_{n+1} \) are the zeros of \(P_n^\alpha \beta \), we have
\[
P_n^\alpha \beta(x) = \frac{n+1}{A_j} \sum_{j=1}^{n+1} \frac{A_j}{x - w_j},
\]
where \(A_j > 0 \) for each \(j \in \{1, \ldots, n+1\} \) [13, Theorem 3.3.5]. Therefore (3.17) can be written as
\[
(1 - x^2)^k Q_{n,k} P_n^{\alpha+k,\beta+k}(x) = (n+1) H_{k-1}(x) + \sum_{j=1}^{n+1} G_k(x) A_j, \quad x \neq w_j.
\]

Since \(P_n^\alpha + P_n^\beta \) and \(P_n^{\alpha+k,\beta+k} \) are always co-prime while \(P_n^\alpha \beta \) and \(P_n^{\alpha+k,\beta+k} \) are co-prime by assumption, it follows from (2.3) that \(G_k(w_j) \neq 0 \) for any \(j \in \{1, 2, \ldots, n+1\} \).

Suppose that \(G_k \) does not change sign in \(I_j = (w_j, w_{j+1}) \) where \(j \in \{1, 2, \ldots, n\} \).

Since \(A_j > 0 \) and the polynomial \(H_{k-1} \) is bounded on \(I_j \) while the right hand side of (3.18) takes arbitrarily large positive and negative values, it follows that \(P_n^{\alpha+k,\beta+k} \) must have an odd number of zeros in each interval in which \(G_k \) does not change sign. Since \(G_k \) is of degree \(k \), there are at least \(n - k \) intervals \((w_j, w_{j+1}) \), \(j \in \{1, \ldots, n\} \) in which \(G_k \) does not change sign, and so each of these intervals must contain exactly one of the \(n - k \) real, simple zeros of \(P_n^{\alpha+k,\beta+k} \). We deduce that the \(n - k \) zeros of \(G_k \) are real and simple and, together with the zeros of \(P_n^{\alpha+k,\beta+k} \), interlace with the \(n + 1 \) zeros of \(P_n^\alpha \beta \).

(iii) Assume that \(P_n^\alpha \beta \) and \(P_n^{\alpha+k,\beta+k} \) have \(r \) common zeros. From (2.3), it follows that if \(P_n^{\alpha+k,\beta+k} \) and \(P_n^\alpha \beta \) have any common zeros, these must also be zeros of \(G_k \) since \(P_n^\alpha \beta \) and \(P_n^{\alpha+k,\beta+k} \) are co-prime. It follows that \(r \leq \min\{k, n - k\} \) and there are at least \((n - 2r)\) open intervals \(I_j = (w_j, w_{j+1}) \) with endpoints at successive zeros \(w_j \) and \(w_{j+1} \) of \(P_n^\alpha \beta \) where neither \(w_j \) or \(w_{j+1} \) is a zero of \(P_n^{\alpha+k,\beta+k} \) or \(G_k \).

If \(G_k \) does not change sign in an interval \(I_j = (w_j, w_{j+1}) \), it follows from (3.18), since \(A_j > 0 \) and \(H_{k-1} \) is bounded while the right hand side takes arbitrarily large positive and negative values for \(x \in I_j \), that \(P_n^{\alpha+k,\beta+k} \) must have an odd number of zeros in that interval. Since this applies to at least \((n - 2r)\) intervals \(I_j \) and \(P_n^{\alpha+k,\beta+k} \) has exactly \((n - k - r)\) simple zeros that are not zeros of \(P_n^\alpha \beta \) while \(G_k \) has at most \((k - r)\) zeros that are not zeros of \(P_n^\alpha \beta \), it follows that there must be exactly \((n - 2r)\) intervals \(I_j = (w_j, w_{j+1}) \) with endpoints at successive zeros \(w_j \) and \(w_{j+1} \) of \(P_n^\alpha \beta \) where neither \(w_j \) or \(w_{j+1} \) is a zero of \(P_n^{\alpha+k,\beta+k} \). This implies that the common zeros of \(P_n^\alpha \beta \) and \(P_n^{\alpha+k,\beta+k} \) cannot be two consecutive zeros of \(P_n^\alpha \beta \), and the stated result now follows using the same argument as in (ii). \(\square \)

REFERENCES

