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Abstract 
 
This paper compares the forecasting ability of five alternative models in predicting four key 
macroeconomic variables, namely, per capita growth rate, the Consumer Price Index (CPI) inflation, 
the money market rate, and the growth rate of the nominal effective exchange rate for the South 
African economy. Unlike the theoretical Small Open Economy New Keynesian Dynamic Stochastic 
General Equilibrium (SOENKDSGE), the unrestricted VAR, and the small-scale Bayesian Vector 
Autoregressive (BVAR) models, which are estimated based on four variables, the Dynamic Factor 
Model (DFM) and the large-scale BVAR models use information from a data-rich environment 
containing 266 macroeconomic time series observed over the period of 1983:01 to 2002:04. The 
results, based on Root Mean Square Errors (RMSEs), for one- to four-quarters-ahead out-of-sample 
forecasts over the horizon of 2003:01 to 2006:04, show that, except for the one-quarter-ahead forecast 
of the growth rate of the of nominal effective exchange rate, large-scale BVARs outperform the other 
four models consistently and, generally, significantly.  
 
Journal of Economic Literature Classification: C11, C13, C33, C53.   
Keywords: Small Open Economy New Keynesian Dynamic Stochastic Model, Dynamic Factor Model, 
VAR, BVAR, Forecast Accuracy.    

1. Introduction 
This paper compares the forecasting ability of five alternative models in predicting four key 
macroeconomic variables, namely, per capita growth rate, the Consumer Price Index (CPI) inflation, 
the money market rate, and the growth rate of the nominal effective exchange rate for an emerging 
market economy, which in our case happens to be South Africa. Specifically, we compare a standard 
Small Open Economy New Keynesian Dynamic Stochastic General Equilibrium (SOENKDSGE) 
model developed by Lubik and Schorfheide (2007), with two small-scale and two large-scale 
atheoretical models. The two-small scale models are the classical and Bayesian Vector Autoregressive 
(VAR) models involving only the above mentioned four key macroeconomic variables, while, the two 
large-scale models are the Dynamic Factor Model (DFM) and the large-scale Bayesian VAR (BVAR), 
both of which exploit information contained in a large cross-section of time series, 266 to be specific.1 
Further note, within the small-scale and large-scale category of the BVARs, we estimate each of the 
models under five-alternative hyperparameter values specifying the prior. All the models are estimated 
over the period of 1983:01 to 2002:04 using quarterly data,2 and are then used to generate one- to four-
quarters-ahead out-of-sample forecasts over a 16 quarters horizon of 2003:01 to 2006:04, with the 
performance of the models being compared using the Root Mean Square Error (RMSE) statistic.    
 
The main motivation for this current piece of work is simple: We want to deduce which kind of 
standard model(s), theoretically grounded or atheoretical, small or large, is (are) best suited in 
forecasting an emerging market economy? To the best of our knowledge, this is the first attempt to 
look at such a wide array of small and large-scale models in forecasting a developing Small Open 
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1 In general, the motivation to use a large data set to forecast an economy originates not only from the fact that 
such data is now available at lower cost, but also because, and, perhaps, more importantly, the increased power of 
computation has facilitated in using such huge amount of information to estimate and forecast with econometric 
models. In addition, central bankers, policymakers, and academics agree that economic agents monitor hundreds of 
economic variables in their decision-making process (Bernanke and Boivin, 2003).  
2 The choice of the in-sample period is driven by the recent paper by Ortiz and Sturzenegger (2007). In this paper, 
the authors use the Lubik and Schorfheide (2007) model to estimate an interest rate rule for South Africa over the 
period of 1983:01 to 2002:04. Given that the SOENKDSGE is estimated based on Bayesian methods, using the 
same estimation period allows us to use the same set of priors on the parameters of the model, as used by Ortiz and 
Sturzenegger (2007). 
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Economy (SOE). At this stage, it must be emphasized that the choice of South Africa, as our country of 
interest, is purely data-driven, especially due to our requirement of information on 266 quarterly time 
series data, which, in turn, is derive from the existing studies of Gupta and Kabundi (2008a) and Das et 
al. (2008). Hence, there is no reason as to why similar research cannot be conducted for any other 
economy, given the general nature of the econometric models used here. Besides the obvious need of 
data, the choice of South Africa is also driven by the results of two recent papers, namely Liu et al. 
(2008) and Gupta and Kabundi (2008a), on forecasting the South African economy. Using a closed 
economy NKDSGE model, estimated using quarterly data over the period of 1970:01-2000:04, Liu et 
al (2008) forecasted  growth per capita, inflation based on the Gross Domestic Product (GDP) deflator 
and the 91 days Treasury Bill rate for the period of 2001:01 to 2006:04. When the forecasts were 
compared with those generated from the Classical and Bayesian variants of the Vector Autoregression 
(VAR) models, the results indicated that the NKDSGE model outperformed both the Classical and the 
Bayesian VARs for inflation, but not for output growth and the nominal short-term interest rate. 
However, the differences in the RMSEs were not significant across the models. Gupta and Kabundi 
(2008a), used a DFM to forecast the same three variables over the same out-of-sample horizon, but 
based on an in-sample period of 1980:01 to 2000:04.  Interestingly, when the forecast performance of 
the model was compared with an unrestricted VAR, alternative BVARs and the NKDSGE model 
developed by Liu et al. (2008), the authors found the DFM to outperform all the models in terms of 
forecasting the interest rate, while, it did no worse than the VAR and the BVARs in forecasting the 
other two variables.  Gupta and Kabundi (2008a) attributed the better performance of the DFM to its 
ability to efficiently handle large amounts of information, which, in turn, contained information about 
the influence of foreign variables on the domestic economy, and, hence, its capability to forecast more 
accurately.  
 
In such a backdrop, this paper should be viewed not only as an attempt to shed light on the type of 
model that is possibly best-suited for forecasting an emerging market, but also to  check for the validity 
of the claim made by Gupta and Kabundi (2008a), by comparing the forecasts for the four variables 
obtained from the DFM, with that of a microfounded SOENKDSGE model and also large-scale BVAR 
models, of which the latter, based on their estimation method3 can also accommodate a panel as large 
as the one used in the DFM.4 For the sake of completeness, and as is standard in the forecasting 
literature,5 we also look at the predictive abilities of a small-scale VAR and small-scale BVARs. The 
remainder of the paper is organized as follows: Section 2 briefly discusses the SOENKDSGE, the 
DFM, the VAR and the Minnesota-type BVARs. Section 3 presents the results from the forecasting 
exercise and, finally, section 4 concludes.  
 
2. Alternative Forecasting Models: 
 
2.1. The SOENKDSGE Model6: 
The log-linearized version of the SOENKDSGE model, used in this paper, can be described by three 
main equations.  The demand-side of the economy is characterized by an open economy IS curve as 
follows: 
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where, ty : real GDP; tR : nominal money market rate; tπ : CPI inflation; tz : growth rate of a non-
stationary world technology process tZ ; tq : Terms of Trade (TOT, relative price of exports to 
imports); ty∗ : exogenous world output; τ : elasticity of intertemporal substitution; α : import share; 

zρ : AR coefficient of tz . To ensure stationarity, all real variables are expressed as percentage 
deviations from tZ .  
While, the supply-side of the economy is captured by an open economy Phillips curve: 
                                                           
3 See Section 2 for details regarding the estimation of BVARs. 
4 See De Mol et al. (2006)  and Gupta and Kabundi (2008b) for two recent studies that deals with the comparison 
of the forecast performances between  large-scale BVARs and DFM.  
5 See Dua and Ray (1995), LeSage (1999), Gupta and Sichei (2006), Gupta (2006, 2007a,b) and Gupta and Das 
(2008) for further details. 
6 See Gali and Monacelli (2005), Lubik and Schorfheide (2007) and Ortiz and Sturzenegger (2007) for derivations 
of the model equations. 
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where, ty  = 1(2 ) ty∗−− − τ
τα α : potential output (in absence of nominal rigidities); β : discount factor, 

and; κ : the structural parameter defining the slope of the Phillips curve.  
Finally, the monetary authority’s reaction function is determined by an interest rate-rule of the 
following nature: 
 

2
1 1 2 3(1 )[ ] ~ (0 )R R

t R t R t t t t t RR R y s N−= + − + + Δ + ; ,ρ ρ ψ π ψ ψ ε ε σ                                                            (3) 

where, Rρ : persistence in the interest rate; ts : nominal effective exchange rate; iψ , i  = 1, 2, 3: 
monetary authority’s reaction parameter to inflation, output and exchange rate fluctuations, 
respectively.   
The exchange rate is introduced via the CPI inflation according to:  

(1 )t t t ts q ∗= Δ + − Δ +π α π                                                                                                                        (4) 
where, t

∗π : world inflation shock. Growth rate in the TOT, in turn, follows an exogenous AR(1) 
process:  

2
1 ~ (0 )q q

t q t t t qq q N−Δ = Δ + ; ,ρ ε ε σ                                                                                                          (5) 
 
As does the world output and inflation:  
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The SOENKDSGE model presented above is estimated using Bayesian methods. The object of interest 
is the vector of parameters7: 
θ  = 1 2 3( )q z R R q zy y∗ ∗ ∗ ∗, , , , , , , , , , , , , , , ,

π π
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Given a prior ( )p θ , the posterior density of θ  is: ( )Tp Y|θ  = ( ) ( )
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likelihood conditional on observed data TY  = 1 TY Y......, .  
In our case, tY  =[ 4 4 ]t t t t t ty z R s q ′Δ + , , ,Δ ,Δπ .  ( )TL Y|θ  is computed by combining the state-space 
representation obtained from the Rational expectations solution of the model and the Kalman filter, 
based on normally distributed errors, with the posterior draws being obtained using the Markov Chain 
Monte Carlo methods from MCMC method. After obtaining the mode of the posterior, a Random Walk 
Metropolis algorithm is used to generate posterior draws. Then, from the generated values, we obtain 
the point estimates and measures of uncertainty for θ . Finally, once we are done estimating over the 
in-sample period of 1983:01-2002:04, we recursively estimate over 2003:01-2006:04 to generate one- 
to four-quarters ahead forecasts.  
 

2.2. The DFM 
This study uses the Dynamic Factor Model (DFM) developed by Forni et al. (2005) to extract common 
components between macroeconomics series, and then these common components are used to forecast 
four key macro variables of South Africa. In the VAR models, since all variables are used in 
forecasting, the number of parameters to estimate depend on the number of variables n . With such a 
large information set, n , the estimation of a large number of parameters leads to a curse of 
dimensionality. The DFM uses information set accounted by few factors nq << , which transforms the 
curse of dimensionality into a blessing of dimensionality.  

The DFM expresses individual times series as the sum of two unobserved components: a common 
component driven by a small number of common factors and an idiosyncratic component, which are 
specific to each variable. The relevance of the method is that the DFM is able to extract the few factors 
that explain the comovement of all South African macroeconomic variables. Forni et al. (2005) 
demonstrated that when the number of factors is small relative to the number of variables and the panel 
                                                           
7 See Subsection 5.2.3 in Ortiz and Sturzenegger (2007) for the specification of the priors for these 
parameters. 
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is heterogeneous, the factors can be recovered from the present and past observations. 
 
Consider an 1n ×  covariance stationary process )y...,,y(Y ntt1t ′= . Suppose that tX  is the 
standardized version of tY , i.e. tX  and has a mean zero and a variance equal to one. Under the DFM 
proposed by Forni et al. (2005), tX  is described by a factor model, it can be written as the sum of two 
orthogonal components:  
 ititittiittiit Ff)L(bx ξχξλξ +=+=+=   (8) 
 
or, in vector notation:  
 
 ititittittt Ff)L(BX ξχξΛξ +=+=+=   (9) 
 
where tf  is a 1q×  vector of dynamic factors, s

s10 LB...LBB)L(B +++=  is an qn×  matrix of 
factor loadings of order s , itξ  is an 1n ×  vector of idiosyncratic components, tF  is 1r×  vector of 
factors, with )1s(qr += . However, in a more general framework qr ≥ , instead of the more 
restrictive )1s(qr += . In a DFM, tf  and itξ  are mutually orthogonal stationary processes, while, 

itχ  is the common component.  
In factor analysis jargon, ittt f)L(BX ξ+=  is referred to as dynamic factor model, and 

ittt FX ξΛ +=  is the static factor model. Similarly, tf  is regarded as vector of dynamic factors, while, 

tF  is the vector of static factors. Since dynamic common factors are latent, they need to be estimated. 
Forni et al. (2005) estimate the dynamic factors through the use of dynamic principal component 
analysis. It involves the estimation of the eigenvalues and eigenvectors decomposition of the spectral 
density matrix of tX , which is a generalization of the orthogonalization process in case of static 
principal components.8 The DFM of Forni et al. (2005) is estimated in two steps to solve the end-of-
sample problems caused by two-sided filtering encountered with the Dynamic Principle Component 
Analysis (DPCA) used in Forni et al. (2000). Due to end-of-sample problems, this method is not suited 
for forecasting. Firstly, the DPCA is used to compute estimates of covariance matrices of common and 
idiosyncratic components of tX  at all leads and lags as inverse Fourier transforms of the 

corresponding estimated spectral density matrices. Thus, the spectral density matrix of tX  is given by 

)()()( θθθ ξχ Σ+Σ=Σ . Secondly, these estimates are used in the construction of r  linear 
combinations of the observations having smallest idiosyncratic-common variance ratio. 
  

2.3. The VAR and BVARs9 
The Vector Autoregressive (VAR) model, though ‘atheoretical’, is particularly useful for forecasting 

purposes. An unrestricted VAR model, as suggested by Sims (1980), can be written as follows: 
0 ( )t t ty A A L y ε= + +                                                                                              (10)                                    

where y is a ( ×1n ) vector of variables being forecasted; A(L) is a ( n n× ) polynomial matrix in the 
backshift operator L with lag length p, i.e., A(L) = 2

1 2 ................ p
pA L A L A L+ + + ; 0A is a ( ×1n ) 

vector of constant terms, and ε  is a ( 1n× ) vector of error terms. In our case, we assume 
that 2~ (0, ), where is an nN I I n nε σ × identity matrix. 

 
Note the VAR model, generally uses equal lag length for all the variables of the model. One 

drawback of VAR models is that many parameters need to be estimated, some of which may be 
insignificant. This problem of overparameterization, resulting in multicollinearity and a loss of degrees 
of freedom, leads to inefficient estimates and possibly large out-of-sample forecasting errors. One 
solution, often adapted, is simply to exclude the insignificant lags based on statistical tests. Another 
approach is to use a near VAR, which specifies an unequal number of lags for the different equations.   

 
                                                           
8See Gupta and Kabundi (2008a) for a detailed description of the model. 
9 This section relies heavily on the discussion available on VAR and BVAR in Dua and Ray (1995), LeSage 
(1999), Gupta and Sichei (2006), Gupta (2006, 2007, 2008) and Gupta and Das (2008). 
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However, an alternative approach to overcoming this overparameterization, as described in 
Litterman (1981), Doan et al. (1984), Todd (1984), Litterman (1986), and Spencer (1993), is to use a 
BVAR model. Instead of eliminating longer lags, the Bayesian method imposes restrictions on these 
coefficients by assuming that they are more likely to be near zero than the coefficients on shorter lags. 
However, if there are strong effects from less important variables, the data can override this 
assumption. The restrictions are imposed by specifying normal prior distributions with zero means and 
small standard deviations for all coefficients with the standard deviation decreasing as the lags 
increase. The exception to this is that the coefficient on the first own lag of a variable has a mean of 
unity. Litterman (1981) used a diffuse prior for the constant.  This is popularly referred to as the 
‘Minnesota prior’ due to its development at the University of Minnesota and the Federal Reserve Bank 
at Minneapolis.  

 
Formally, as discussed above, the means and variances of the Minnesota prior take the following 

form: 
 

2 2~ (1, ) and ~ (0, )
i ji jN Nβ ββ σ β σ                                                                  (11)                                   

where iβ  denotes the coefficients associated with the lagged dependent variables in each equation of 
the VAR, while jβ  represents any other coefficient. In the belief that lagged dependent variables are 
important explanatory variables, the prior means corresponding to them are set to unity. However, for 
all the other coefficients, jβ ’s, in a particular equation of the VAR, a prior mean of zero is assigned to 
suggest that these variables are less important to the model.   

 
 The prior variances 2

iβ
σ and 2

jβ
σ , specify uncertainty about the prior means iβ  = 1, and jβ  = 0, 

respectively. Because of the overparameterization of the VAR, Doan et al. (1984) suggested a formula 
to generate standard deviations as a function of small numbers of hyperparameters: w, d, and a 
weighting matrix f(i, j). This approach allows the forecaster to specify individual prior variances for a 
large number of coefficients based on only a few hyperparameters. The specification of the standard 
deviation of the distribution of the prior imposed on variable j in equation i at lag m, for all i, j and m, 
defined as S1(i, j, m), can be specified as follows:   

1

ˆ
( , , ) [ ( ) ( , )]

ˆ
j

i

S i j m w g m f i j
σ
σ

= × ×                                                                         (12)                               

with f(i, j) = 1, if i = j and ijk  otherwise, with ( 0 1ijk≤ ≤ ), g(m) = , 0dm d− > . Note that ˆiσ  is the 
estimated standard error of the univariate autoregression for variable i. The ratio σ σˆ ˆ/i j  scales the 
variables to account for differences in the units of measurement and, hence, causes specification of the 
prior without consideration of the magnitudes of the variables. The term w indicates the overall 
tightness and is also the standard deviation on the first own lag, with the prior getting tighter as we 
reduce the value. The parameter g(m) measures the tightness on lag m with respect to lag 1, and is 
assumed to have a harmonic shape with a decay factor of d, which tightens the prior on increasing lags. 
The parameter f(i, j) represents the tightness of variable j in equation i relative to variable i, and by 
increasing the interaction, i.e., the value of ijk , we can loosen the prior.10 Note, in the standard 
Minnesota-type prior, the overall tightness (w) takes the values of 0.1, 0.2 and 0.3, while, the lag decay 
(d) is generally chosen to be equal to 0.5, 1.0 and 2.0. The interaction parameter ( ijk ) is traditionally 
set at = 0.5. The small-scale BVARs would be estimated with this set of parameterization of the priors. 
  
Given that, we have domestic as well as foreign and world variables within the 266 data series used for 
the large-scale models, and realizing that South Africa is a small open economy, and, hence, domestic 
variables would have minimal, if any, effect on foreign and world variables, while, the latter set of 
variables is sure to have an influence on the South African variables, setting ijk = 0.5 could be quite far 
fetched from reality. Hence, borrowing from the BVAR models used for regional forecasting, 
involving both regional and national variables, and following Kinal and Ratner (1986), Shoesmith 
(1992) and Gupta and Kabundi (2008b), the weight of a foreign or world variable in a foreign or world 
equation, as well as a domestic equation, is set at 0.6. The weight of a domestic variable in other 
domestic equation is fixed at 0.1 and that in a foreign or world equation at 0.01. Finally, the weight of 

                                                           
10 For an illustration, see Dua and Ray (1995). 
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the domestic variable in its own equation is 1.0. These weights are in line with Litterman’s circle-star 
structure. Star (foreign or world) variables affect both star and circle (domestic) variables, while, circle 
variables primarily influence only other circle variables.11 Clearly then, the large-scale BVARs are 
estimated with asymmetric priors.  
  

Finally, once the priors have been specified, the alternative BVARs, whether based on the 4 
variables or all of the 266 variables, are estimated using Theil's (1971) mixed estimation technique. 
Specifically, suppose we denote a single equation of the VAR model as: 

2
1 1 1, with ( ) ,y X Var Iβ ε ε σ= + =  then the stochastic prior restrictions for this single equation can be 

written as: 
111 111 111 111

112 112 112 112

/ 0 . . . 0
0 / 0 . . 0

. . . . . . . . .

. . . . . . . . .

. 0 . . . . 0 . .
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M a u
M a u

M a u

σ σ
σ σ

σ σ
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                 (13)                                  

 
Note, 2( )Var u Iσ= and the prior means ijmM and ijmσ  take the forms shown in (11) and (12). With 

(13) written as: 
r R uβ= +                                                  (14)                                     

and the estimates for a typical equation are derived as follows: 
1

1
ˆ ( ' ' ) ( ' ' )X X R R X y R rβ −= + +                                                                                                    (15)                                     

 
Essentially then, the method involves supplementing the data with prior information on the 

distribution of the coefficients. The number of observations and degrees of freedom are increased by 
one in an artificial way, for each restriction imposed on the parameter estimates. The loss of degrees of 
freedom due to over-parameterization associated with a classical VAR model is, therefore, not a 
concern in the BVARs. 

3. Data 
While, the SOENKDSGE and the small-scale VAR and BVARs, includes data on only the four 
variables of interest, namely, per capita growth rate, the Consumer Price Index (CPI) inflation, the 
money market rate, and the growth rate of the nominal effective exchange rate, the DFM and the large-
scale BVARs includes 266 quarterly series12 of South Africa, covering the real, nominal, and financial 
sectors. We also have intangible variables, such as confidence indices, and survey variables. In addition 
to national variables, the paper uses a set of global variables such as commodity industrial inputs price 
index and crude oil prices. The data also comprises series of major trading partners such as Germany, 
the United Kingdom (UK), and the United States (US) of America. The in-sample period contains data 
from 1983Q1 to 2002Q4, while the out-of-sample set is 2001Q1-2006Q4. All series are seasonally 
adjusted and made covariance stationary. The more powerful DFGLS test of Elliott, Rothenberg, and 
Stock (1996), instead of the most popular, but low in power, ADF test, is used to assess the degree of 
integration of all series. All nonstationary series are made stationary through differencing. The Schwarz 
information criterion is used in the selecting the appropriate lag length in such a way that no serial 
correction is left in the stochastic error term. Where there were doubts about the presence of unit root, 
the KPSS test proposed by Kwiatowski, Phillips, Schmidt, and Shin (1992), with the null hypothesis of 
stationarity, was applied. All series are standardized to have a mean of zero and a constant variance. It 
must, however, be pointed out that, non-stationarity is not an issue with the BVAR, since Sims et al. 
(1990) indicates that with the Bayesian approach entirely based on the likelihood function, the 
associated inference does not need to take special account of nonstationarity, since the likelihood 
function has the same Gaussian shape regardless of the presence of nonstationarity. Hence, for the sake 

                                                           
11 We also experimented by assigning higher and lower interaction values, in comparison to those specified above, 
to the star variables in both the star and circle equations, but, the rank ordering of the alternative forecasts 
remained the same.  
12 The data set contains a total of 245 series of South Africa , two global variables, and 19 series of major trading 
partners. Details about data and their statistical treatment are available upon request. Details about data and their 
statistical treatment of the variables used to estimate the DFM are available upon request. 
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of comparison amongst the VARs, both classical and Bayesian, we make no attempt o make the 
variables stationary, unlike in the DFM.13  Note as far as the SOENKDSGE is concerned, we follow 
Lubik and Schorfheide (2007) and Ortiz and Sturzenegger (2007), in pre-filtering the data, by 
demeaning them using their sample means. 
  

There are various statistical approaches in determining the number of factors in the DFM. For 
example, Bai and Ng (2002) developed an information criteria, based on AIC and BIC, guiding the 
selection of the number of factors in large dimensional panels. The principal component analysis 
(PCA) can also be used in establishing the number of factors in the DFM. The PCA suggests that the 
selection of a number of factors q be based on the first eigenvalues of the spectral density matrix of 

tX . Then, the principal components are added until the increase in the explained variance is less than 
a specific 05.0=α . The Bai and Ng (2002) approach proposes five static factors, while Bai and Ng 
(2007) suggests two primitive or dynamic factors. Similar to the latter method, the principal component 
technique, as proposed by Forni et al. (2000), suggests two dynamic factors. The first two dynamic 
principal components explain approximately 99 percent of variation, while the eigenvalue of the third 
component is 05.0005.0 < .  

 
 
5. Evaluation of Forecast Accuracy 

 
Given the specifications of the models, we estimate the five alternative models, namely, the 

SOENKDSGE, the DFM, VAR, small-scale BVARs and the large-scale BVARs over the period of 
1983:1 to 2002:04, based on quarterly data. Then we compute the out-of-sample one- through four-
quarters-ahead forecasts for the period of 2003:01 to 2006:04, and compare the forecast accuracy of the 
five alternative models with respect to each other. The different types of the VARs are estimated with 5 
lags14 of each variable. Since we use five lags, the initial five quarters of the sample, 1983:01 to 
1984:01, are used to feed the lags. We generate dynamic forecasts, as would naturally be achieved in 
actual forecasting practice. The models are re-estimated each quarter over the out-of-sample forecast 
horizon in order to update the estimate of the coefficients, before producing the 4-quarters-ahead 
forecasts. This iterative estimation and 4-steps-ahead forecast procedure was carried out for 16 
quarters, with the first forecast beginning in 2003:01. This experiment produced a total of 16 one-
quarter-ahead forecasts, 16-two-quarters-ahead forecasts, and so on, up to 16 4-step-ahead forecasts. 
The RMSEs15 for the 16, quarter 1 through quarter 4 forecasts are then calculated for the per capita 
growth, CPI inflation, the money market rate and the growth rate of the effective nominal exchange 
rates. The values of the RMSE statistic for one- to four-quarters -ahead forecasts for the period 2003:01 
to 2006:04 are then examined. The model that produces the lowest average value for the RMSE is 
selected, as the ‘optimal’ model for a specific variable.  
 
In Tables 1 to 4, we compare the RMSEs of one- to four-quarters-ahead out-of-sample-forecasts for the 
period of 2003:01 to 2006:04, generated by the abovementioned models. At this stage, a few words 
need to be said regarding the choice of the evaluation criterion for the out-of-sample forecasts 
generated from Bayesian models. As Zellner (1986) points out the “optimal” Bayesian forecasts will 
differ depending upon the loss function employed and the form of predictive probability density 
function". In other words, Bayesian forecasts are sensitive to the choice of the measure used to evaluate 
the out-of-sample forecast errors. However, Zellner (1986) points out that the use of the mean of the 
predictive probability density function for a series, is optimal relative to a squared error loss function 
and the Mean Squared Error (MSE), and, hence, the RMSE is an appropriate measure to evaluate 
performance of forecasts, when the mean of the predictive probability density function is used. This is 
exactly what we do below in Tables 1 through 4, when we use the average RMSEs over the one- to 

                                                           
13 See Dua and Ray (1995) for further details. 
14 The choice of 5 lags is based on the unanimity of the sequential modified LR test statistic, Akaike information 
criterion (AIC), the final prediction error (FPE) criterion and the Hannan-Quinn (HQ) information criterion applied 
to a stable VAR estimated with the four variables of concern. Note, stability, as usual, implies that no roots were 
found to lie outside the unit circle.   
15 Note that if t nA +  denotes the actual value of a specific variable in period t + n and t t nF + is the forecast made in 

period t for t + n, the RMSE statistic can be defined as: 1 ( )t n t t nA F
N + +−∑ . For n = 1, the summation runs from 

2003:01 to 2006:04, and for n = 2, the same covers the period of 2003:02 to 2006:04, and so on. 
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four-quarter-ahead forecasting horizon. The conclusions, regarding each of the four variables, based on 
the average one- to four-quarters-ahead RMSEs, from these tables can be summarized as follows:  
 

(i) Per Capita Growth Rate: Based on the average RMSEs for one- to four-quarters-ahead 
forecasts, all the athoretical models outperform the SOENKDSGE model. However, 
within the category of the atheoretical models, it is the large-scale BVAR model with w = 
0.2, d = 2 that tends to stand out for each of the quarters. 

(ii) CPI Inflation: Though the SOENKDSGE model performs better than the DFM, it, in turn, 
is outperformed by not only the small-scale VARs, both classical and Bayesian, but also 
by the large-scale BVARs. As with per capita growth rate, the best performing model, 
both in terms of average RMSEs and each of the quarters ahead, is a large-scale BVAR, 
but  with a relatively loose prior of w = 0.3, d = 0.5. 

(iii) Money Market Rate: For the money market rate, the pattern of the results are exactly the 
same as with the per capita growth rate. Specifically, all the atheoretical models 
outperforms the SOENKDSGE, with the large-scale BVAR based on w = 0.2, d = 2, 
being the best performer amongst the five alternative types of models used for forecasting 
in terms of the RMSEs for at each of the one- to four-quarters-ahead forecasts, and, 
hence, also on average. 

(iv) Growth Rate of Nominal Effective Exchange Rate: Unlike in the case of the other three 
variables, the SOENKDSGE is the best performing model in case of predicting the 
growth rate of the nominal effective exchange rate. The small-scale BVAR with w = 0.1 d 
= 1 and the large-scale BVAR with w = 0.2, d = 2 comes in as the second and third best 
performing models respectively, based on the average RMSEs for one- to four-quarters-
ahead forecasts.  A closer look, however indicates that the large-scale BVAR with  w = 
0.2, d = 2 outperforms the SOENKDSGE and the “optimal” small-scale BVAR for all the 
quarters, except the first.    

 
To put these results into perspective, we draw comparison to the results of Gupta and Kabundi (2008a). 
The authors found the DFM to outperform the closed-economy NKDSGE model, the small-scale VAR 
and the BVAR models in terms of forecasting the interest rate, while, it did no worse than the VAR and 
the BVARs in forecasting the per capita growth rate and the inflation rate. Here, however, the 
SOENKDSGE model is found to outperform the DFM in terms of forecasting the exchange rate and 
the CPI inflation. So, when compared to Gupta and Kabundi (2008) open economy assumptions does 
help in improving the forecast performances of a microfounded model, at least for the CPI inflation and 
the growth rate of the nominal effective exchange rate. Moreover, the DFM is also outperformed by the 
small and large-scale VARs for all the four variables. Overall, the current study obtains results in  favor 
of large-scale BVAR models, pointing to the fact that information contained in data-rich environment, 
which also allows to incorporate asymmetric effects of foreign variables on domestic variables, help to 
enhance the prediction of macroeconomic variables in emerging market countries. 

 
An important question is, whether the differences we notice in the forecasting performances, based on 
the RMSEs, are indeed statistically significant. To answer this question, we compute the across model 
tests of forecast accuracy proposed by Diebold and Mariano (1995). Given that there are five 
alternative models, we use a parsimonious approach while reporting the Diebold-Mariano (1995) test 
statistic.16 We compare each of the one- to four-quarters-ahead forecasts generated by the best or 
“optimal” model, i.e. the model with the lowest average RMSE, to those of the second best model. The 
exception to this rule, is, however, the case of the growth rate of the nominal effective exchange rate. 
In this case, we compare the best three models. The reason being that we would like to see how the 
performance of the large-scale BVAR, which produces the third best average RMSEs in this case even 

                                                           
16 The test statistic is defined as follows: For instance, let 1{ }b T

t te =  denote the associated forecast errors 
from the best model and 1{ }sb T

t te =  denote the forecast errors from the alternative, second-best model. The 
test statistic is then defined as 

l
ls σ= , where l  is the sample mean of the “loss differentials", T

ttl 1}{ = , 

using 2 2( ) ( )b sb
t t tl e e= −  for all Tt ...,,3,2,1= , and where lσ  is the standard error of l . The s  statistic 

is asymptotically distributed as a standard normal random variable and can be estimated under the null 
hypothesis of equal forecast accuracy, i.e. 0=l . Therefore, a negative value of s  would suggest that 
the best model outperforms the alternative model in terms of out-of-sample forecasting. 
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though being the overwhelming favorite in the other three cases, compares with two best models. As 
can be seen from Table 5, in case of the per capita growth rate, the large-scale BVAR with w = 0.2, d = 
2 outperforms the next-best model (the small-scale BVAR with w = 0.3, d = 0.5), with the Diebold and 
Mariano (1995) test statistics being significant at the 1 percent level for all the four quarters. Similarly, 
the Diebold and Mariano (1995) test statistics for the CPI inflation reveal that the large-scale BVAR 
with w = 0.3, d = 0.5 performs significantly better than the second best model, namely, the small-scale 
BVAR with w = 0.3, d = 0.5. However, for the money market rate, the performance of the large-scale 
BVAR with w = 0.3, d = 0.5 is statically superior to that of the small-scale BVAR with w = 0.1, d = 2 
only for the first three quarters.  The picture is different for the growth rate of the nominal effective 
exchange rate, where in the first quarter the large-scale BVAR with w = 0.2, d = 2 is outperformed 
significantly by both the small-scale BVAR with w = 0.1, d = 1 and the SOENKDSGE. However, for 
the next three quarters, even though the large-scale BVAR outperforms the other two models, the test 
statistic is significant only for the second quarter-ahead-forecast. 
  
 
6. Conclusions 
 
This paper compares the forecasting ability of five alternative models in predicting per capita growth 
rate, the Consumer Price Index (CPI) inflation, the money market rate, and the growth rate of the 
nominal effective exchange rate for South Africa. Specifically, we compare a standard SOENKDSGE 
model with two small-scale and two large-scale atheoretical models. The two-small scale models are 
the classical and Bayesian VAR models involving only the above mentioned four key macroeconomic 
variables, while, the two large-scale models are the DFM and the large-scale BVAR, both of which 
exploit information contained in a large cross-section of time series. All the models are estimated over 
the period of 1983:01 to 2002:04 using quarterly data, and are then used to generate one- to four-
quarters-ahead out-of-sample forecasts over a 16 quarters horizon of 2003:01 to 2006:04. When the 
performance of the models are compared using the Root Mean Square Error (RMSE) statistic, our 
results indicate that data-rich large-scale BVARs are better suited in forecasting the key 
macroeconomic variables relative to the small-scale models involving only the few variables of 
interest.  
 
However, it is important to point out that, there are at least two major limitations to using a Bayesian 
approach for forecasting. Firstly, as it is clear from Tables 1 to 4, the forecast accuracy is sensitive to 
the choice of the priors. So if the prior is not well specified, an alternative model used for forecasting 
may perform better. Secondly, in case of the Bayesian models, one requires to specify an objective 
function, for example the average RMSEs, to search for the ‘optimal’ priors, which, in turn, needs to be 
optimized over the period for which we compute the out-of-sample forecasts. However, there is no 
guarantee that the chosen parameter values specifying the prior will continue to be ‘optimal’ beyond 
the period for which it was selected. Nevertheless, the importance of BVARs cannot be ignored, 
especially when one realizes that they can accommodate large number of time series, and in reality 
economic agents do monitor hundreds of economic variables in their decision-making process. 
 
 But, it is also important to check for the robustness of our conclusions, by redoing the exercise with 
BVARs based on alternative forms of priors, other than the Minnesota-type used in this paper. In this 
regard, a good starting point would be to use the double exponential priors as in De Mol et al. (2006). 
In addition to this, one might want to revisit the forecast performances of the BVARs by assuming a 
more general error structure, as in Gupta (2007), to account for non-constant variance of the variables, 
and, also look at Bayesian Vector Error Correction Models (BVECMs). As pointed out by LeSage 
(1990), Gupta (2006, 2008) and Zita and Gupta (2008), even though non-stationarity is not an issue 
with the Bayesian approach BVECMs, in general, tends to outperform BVARs, since Error Correction 
Models (ECMs) use long-run equilibrium relationships from economic theory to explain short-run 
dynamics of data. Finally, given that the large-scale BVAR, just like the other atheoretical models used 
in this paper, is not immune to the “Lucas Critique”,17  however capable it might be in handling large-
number of variables, one would want to develop a more modified SOENKDSGE model, which, in turn, 
would allow for habit persistence, wage rigidity, imperfect pass-through, and import price rigidity, 
amongst other things. 
 . 
 

                                                           
17 See Lucas (1976) for further details. 
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Table 1: RMSEs for Per Capita Growth (2003:01-2006:04) 
        
 QA 1 2 3 4 Average  
 SONKDSGE 2.2109 1.5174 1.3121 1.2867 1.5818  
 DFM 1.2479 1.2288 1.053 1.3337 1.2159  
 VAR 0.5851 0.6317 0.7127 0.7715 0.6752  

BVAR(S) 0.5235 0.5229 0.5706 0.6887 0.5764  w=0.3,d=0.5 
BVAR(L) 0.0686 0.1261 0.0074 0.0627 0.0662  
BVAR(S) 0.7709 0.7708 0.8089 0.9127 0.8158  w=0.2,d=1 
BVAR(L) 0.0337 0.1758 0.0757 0.0398 0.0813  
BVAR(S) 1.0338 0.9984 1.0059 1.0815 1.0299  w=0.1,d=1 
BVAR(L) 0.0316 0.1613 0.0922 0.0423 0.0819  
BVAR(S) 1.0085 1.0310 1.0524 1.1312 1.0558  w=0.2,d=2 
BVAR(L) 0.0078 0.1369 0.0506 0.0396 0.0587  
BVAR(S) 1.1310 1.0987 1.1101 1.1636 1.1258  

w=0.1,d=2 
BVAR(L) 0.0526 0.1342 0.0704 0.0097 0.0667  

Notes: QA: Quarters Ahead; BVAR(S): Small-Scale BVAR; BVAR(L): Large-Scale BVAR.  
 
 
 
 
 
 
 
 
 
 
 
 
Table 2: RMSEs for CPI Inflation (2003:01-2006:04) 
        
 QA 1 2 3 4 Average  
 SONKDSGE 10.7136 10.0648 9.4701 8.1346 9.5958  
 DFM 6.1856 9.9879 13.6062 13.3206 10.7751  
 VAR 2.7881 4.1060 4.5577 4.5720 4.0059  

BVAR(S) 2.8041 4.1013 4.4749 4.4619 3.9605  w=0.3,d=0.5 
BVAR(L) 1.2349 1.2496 2.4090 3.4792 2.0932  
BVAR(S) 3.0139 4.1096 4.4846 4.5670 4.0438  w=0.2,d=1 
BVAR(L) 1.0500 1.3637 2.8961 3.3117 2.1554  
BVAR(S) 3.2353 4.1741 4.4986 4.6313 4.1348  w=0.1,d=1 
BVAR(L) 1.2353 1.6271 3.0225 3.5651 2.3625  
BVAR(S) 3.0794 4.1459 4.6215 4.8613 4.1770  w=0.2,d=2 
BVAR(L) 0.9137 1.7741 3.4467 3.7163 2.4627  
BVAR(S) 3.2699 4.2006 4.5538 4.7349 4.1898  

w=0.1,d=2 
BVAR(L) 1.2005 2.0940 3.2406 3.8519 2.5967  

Notes: QA: Quarters Ahead; BVAR(S): Small-Scale BVAR; BVAR(L): Large-Scale BVAR.   
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Table 3: RMSEs for Money Market Rate (2003:01-2006:04) 
        
 QA 1 2 3 4 Average  
 SONKDSGE 7.5557 7.4517 7.4525 6.9300 7.3475  
 DFM 3.7583 5.32881 6.8937 9.7891 6.4425  
 VAR 1.3135 2.8008 4.4624 5.8660 3.6107  

BVAR(S) 1.0396 2.2496 3.5061 4.6329 2.8570  w=0.3,d=0.5 
BVAR(L) 0.1056 0.5333 1.6328 3.0729 1.3361  
BVAR(S) 0.9417 1.9649 2.9883 3.9090 2.4510  w=0.2,d=1 
BVAR(L) 0.0631 0.5236 1.7007 3.1278 1.3538  
BVAR(S) 0.9260 1.8402 2.6982 3.4515 2.2290  w=0.1,d=1 
BVAR(L) 0.1040 0.6075 1.7581 3.1176 1.3968  
BVAR(S) 0.8632 1.7040 2.4573 3.0977 2.0306  w=0.2,d=2 
BVAR(L) 0.0291 0.5558 1.8639 3.2962 1.4362  
BVAR(S) 0.8868 1.6814 2.3546 2.9197 1.9606  

w=0.1,d=2 
BVAR(L) 0.1148 0.6352 1.8090 3.1465 1.4264  

Notes: QA: Quarters Ahead; BVAR(S): Small-Scale BVAR; BVAR(L): Large-Scale BVAR.   
 
 
 
 
 
 
 
 
 
Table 4: RMSEs for Growth of Nominal Effective Exchange Rate (2003:01-2006:04) 
        
 QA 1 2 3 4 Average  
 SONKDSGE 5.6498 5.2368 5.1672 5.3588 5.3532  
 DFM 45.0636 41.2822 32.3305 34.8166 38.3732  
 VAR 6.7466 7.4535 7.1799 6.9594 7.0849  

BVAR(S) 6.0516 6.5777 6.4149 6.2175 6.3154  w=0.3,d=0.5 
BVAR(L) 4.6223 16.5174 12.8449 17.8902 12.9687  
BVAR(S) 5.7568 6.0506 5.9232 5.7861 5.8792  w=0.2,d=1 
BVAR(L) 8.4419 11.3937 10.2379 14.4618 11.1338  
BVAR(S) 5.3985 5.5239 5.7868 5.4942 5.5509  w=0.1,d=1 
BVAR(L) 9.9391 10.3474 11.9508 13.7865 11.5060  
BVAR(S) 5.8387 6.0363 5.9239 5.7961 5.8988  w=0.2,d=2 
BVAR(L) 12.3804 4.2143 4.6067 5.3568 6.6395  
BVAR(S) 5.4219 5.5156 5.7722 5.5218 5.5579  

w=0.1,d=2 
BVAR(L) 14.4099 5.5958 10.4346 5.5269 8.9918  

Notes: QA: Quarters Ahead; BVAR(S): Small-Scale BVAR; BVAR(L): Large-Scale BVAR.   
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Table 5:  Diebold-Mariano (1995) Tests (2003:1-2006:4) 
 

            Quarters Ahead 
Models 1 2 3 4 
Per Capita Growth 
      BVAR(L) [w=0.2,d=2]  
                      vs  
      BVAR(S) [w=0.3,d=0.5] 

-6.9700*** -5.9263*** -6.8026*** -9.1415*** 

CPI Inflation 
      BVAR(L) [w=0.3,d=0.5]  
                      vs  
      BVAR(S) [w=0.3,d=0.5] 

-2.3801** -5.2382*** -4.6121*** -2.3041** 

Money Market Rate 
      BVAR(L) [w=0.3,d=0.5]  
                      vs  
      BVAR(S) [w=0.1,d=2] 

-3.4747*** -2.3983** -2.0381** -1.3809 

Growth of Nominal Effective Exchange Rate 
      BVAR(L) [w=0.2,d=2]  
                      vs     
      BVAR(S) [w=0.1,d=1] 

2.913*** -1.8031* -1.5125 -1.3469 

       BVAR(L) [w=0.2,d=2]  
                      vs   
             SONKDSGE 

2.9159*** -1.8041* -1.5128 -1.3472 

***, ** and * indicates significance at 1, 5 and 10 percent levels respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


