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1. Introduction 

This paper considers the dynamics of the US real house price index and the ability of a dynamic 

stochastic general equilibrium (DSGE) model and different time-series models to forecast this 

price index. As a part of the analytical analysis, we consider how the researcher can incorporate 

large data sets into forecasting equations, using dynamic factor analysis or Bayesian-shrinkage 

vector autoregressive (VAR) models. The main focus, however, compares the relative 

effectiveness of the DSGE and various time-series models in out-of-sample forecasting and 

turning-point identification. 

Policy makers and academics desire accurate forecasts of economic variables. Economic 

theorists exploit the recent development in computation to write simple and complex models that 

can closely simulate reality. As such, an increasing need exists for large information sets to 

mimic economic relationships. Traditional econometric models, such as univariate time-series 

and multivariate VAR models, cannot easily accommodate large numbers of variables. Although 

popular when compared to traditional structural macroeconometric models for forecasting 

purposes, the VAR model exhibits serious limitations -- the issue of overparametrization. Thus, 

the main problem of small-scale models lies in choosing the correct variables to include. In 

practice, however, forecasters and policymakers believe that information from many series, 

which cannot be included simultaneously in a VAR model, can prove important in the 

forecasting exercise. 

Bernanke and Boivin (2003) argue that central banks monitor and analyze literally 

thousands of variables to inform their monetary policy decisions. Therefore, econometricians 

should consider the marginal benefits and marginal costs associated with increasing the amount 

of information brought to the forecasting exercise. The use of factor models significantly 

advances the accommodation of large panels of variables in forecasting exercises. Sargent and 
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Sims (1977) and Geweke (1977) introduce the dynamic factor approach to macroeconomics. 

They exploit the dynamic interrelationship of variables and then reduce the number of common 

factors even further. The method employed by Sargent and Sims (1977) and Geweke (1977), 

however, proves too restrictive, since it imposes orthogonality on the idiosyncratic components. 

Chamberlain (1983) and Chamberlain and Rothschild (1983) allow weak cross-sectional 

correlation of the idiosyncratic components. 

Recently, Stock and Watson (2002b), Kapetanios and Marcellino (2009) and Forni et al. 

(2005) propose improved methods to account for serial correlation and weak cross-sectional 

correlation of the idiosyncratic components. Since this innovation can accommodate a large 

panel of variables in the forecasting exercise, increasing interest arises amongst universities, 

international organizations, central banks, and government agencies in the usage of these models. 

Much divergence in opinion remains as to whether factor models with large cross-section of time 

series will outperform traditional econometric models with a limited number of variables. 

Giannone and Matheson (2007), Van Nieuwenhuyze (2006), Cristadoro et al. (2005), Forni et al. 

(2005), Schneider and Spitzer (2004), Kabundi (2004), Forni et al. (2001), Stock and Watson 

(2002a, 2002b, 1999, 1991, 1989), and Gupta et al. (2009) provide evidence of improvement in 

forecasting performance of macroeconomic variables using such factor analysis. Schumacher 

(2007), Schumacher and Dreger (2004), Gosselin and Tkacz (2001) and Angelini et al. (2001) 

find no or only minor improvements in forecasting ability.  

What explains this difference in outcomes? Banerjee et al. (2005), for example, find that 

small models forecast macroeconomic variables better than factor-augmented models. In 

addition, they also report that the performance of factor-augmented models differs across 

countries. Factor-augmented models perform better at forecasting real variables but worse at 

nominal variables in the US compared to the euro area. Furthermore, Boivin and Ng (2006) 
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claim that the composition of the dataset and the size of the cross-section dimension matter in 

producing better forecasts with factor-augmented models. In sum, the existing research suggests 

that idiosyncratic factors determine the best performing model. 

This paper uses a DSGE model developed by Iacoviello and Neri (2010) to forecast the 

US real house price index and its turning point in 2006:Q2 and compares the performance to that 

DSGE model to a series of time-series models. The Iacoviello and Neri (2010) model employs 

10 variables in their DSGE specification. We also exploit the information content of 120 

quarterly time-series variables, including the 10 variables in Iacoviello and Neri (2010) and the 

110 macroeconomic variables in Boivin et al. (2009), in some of our other forecasting models.1 

We evaluate the forecasting performance of the DSGE model and the various time-series models 

relative to the Root Mean Squared Error (RMSE) of the out-of-sample forecasts of the random 

walk (RW) model. Moreover, with the exception of Wang (2008) and Gupta and Kabundi 

(2008), the comparison of a factor-augmented models and a DSGE model occurs rarely and, 

hence, deserves more attention. Note, allowing for a DSGE model as an alternative forecasting 

framework, helps us to compare between the “atheoretical” models, like the factor-augmented 

VAR and Bayesian VAR (BVAR) models with a microfounded theoretical model.  

We next examine the explanatory power of including information from a large set of 

economic variables, using dynamic factors or Bayesian shrinkage approaches. More specifically, 

we compare the out-of-sample forecasting performance of various time-series models – VAR, 

FAVAR, and various Bayesian time-series models. For the Bayesian models, we estimate 

BVAR, Bayesian factor augmented VAR (BFAVAR), and small- and large-scale BVAR 

(SBVAR and LBVAR) models. Based on the average root mean squared error for the one-, two-, 

                                                 
1 Boivin et al. (2009) report 111 macroeconomic variables. One variable, the Treasury bill rate, also appears in the 
10 variables in Iacoviello and Neri (2010). 
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three-, and four–quarters-ahead forecasts, we find that the small-scale Bayesian-shrinkage model 

(10 variables) outperforms the other models, even outperforming the large-scale Bayesian-

shrinkage model. Finally, we use ex ante forecasts of each model to identify the turning point in 

2006:Q2, using the estimated model through 2005:Q2. Only the DSGE model actually forecasts 

a turning point with any accuracy, suggesting that attention to fundamentals and their 

interactions proves crucial in forecasting turning points. 

We organize the rest of the paper as follows. Section 2 outlines the DSGE model of 

Iacoviello and Neri (2010). Section 3 provides a brief review of the literature on using large data 

sets in forecasting models. Section 4 discusses the literature on forecasting house prices. Section 

5 specifies the various time-series models estimated and used for forecasting. Section 6 discusses 

the data and the results. Section 7 concludes. 

2. The DSGE Model of Iacoviello and Neri (2010) 

Iacoviello and Neri (2010) develop a DSGE model of the US economy to consider how shocks in 

the macreoeconomy affect events in the housing market and then how housing market 

adjustments spill over and affect the macroeconomy. We adopt their structural model of the 

macroeconomy to determine how this model performs with respect to various time-series models 

in forecasting real house prices as well as predicting the turning point in real house prices that 

occurred in 2006:Q2. 

The model differentiates between housing and non-housing goods. The household sector 

divides into patient (lenders) and impatient (borrowers) households. Both types of households 

work, consume, and accumulate housing. Impatient households face a binding collateral 

constraint in equilibrium, because they only accumulate the minimum down payment to 

obtaining the financing to buy their housing. The production process for housing combines 

capital, labor, and land to produce new homes.  
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Wholesale firms operate under competitive flexible prices and produce both housing and 

non-housing goods, using separable production technologies. Nominal rigidities exist in the non-

housing goods market with the assumption of monopolistic competition. The housing market, on 

the other hand, operates with flexible prices (Barsky et al., 2007). The labor markets also adopt 

rigidities similar to the non-housing good market. Monetary policy uses a Taylor rule that adapts 

gradually to inflation and GDP growth. 

Heterogeneous trends exist in productivity across the consumption, non-residential, and 

housing sectors. Random shocks to productivity conform to first-order auto-correlated processes. 

Market equilibrium includes the consumption, housing, and loan markets, where goods market 

equilibrium includes consumption, business investment (accumulation of capital for consumption 

and housing production), and intermediate inputs.  

The final model includes 36 equations.2 The data for construction of the model requires 

10 variables – aggregate consumption, business fixed investment, residential investment, 

inflation, the nominal short-run interest rate, real house prices, hours in the consumption and 

housing sectors, and wage inflation in the consumption and housing sectors as well as a series of 

parameter choices. We adopt the same model, including the prior distributions on the 

parameters3, in our analysis. 

3. Forecasting with Large Data Sets 

For forecasting purposes, time-series models generally perform as well as or better than dynamic 

structural econometric specifications. Zellner and Palm (1974) provide the theoretical 

rationalization.4  An important issue involves determining how additional information can or 

                                                 
2 See Appendix B of Iacoviello and Neri (2010).  
3 See Tables 3 and 4 in Iacoviello and Neri (2010).  
4 Any dynamic structural model implicitly generates a series of univariate time-series models for each endogenous 
variable. The dynamic structural model, however, imposes restrictions on the parameters in the reduced-form time-
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cannot improve the forecasting performance over a simple univariate autoregressive or 

autoregressive-moving-average representation.  

One method uses “atheoretical” VAR models.5 These models do not impose exogeneity 

assumptions on the included variables. Unlike the single-equation ARDL model, the VAR 

approach assumes that lagged values of each variable may provide valuable information in 

forecasting each endogenous variable. VAR models, however, face problems of over-

parameterization, since the number of parameters to estimate increases dramatically with 

additional variables or additional lags in the system.6 Given this problem, one approach for using 

more data in the VAR model involves the extraction of common factors from a large data set that 

researchers can then add to the VAR specification (Bernanke et al., 2005, Stock and Watson 

2002, 2005). Adding several common factors from the large dataset to a VAR system 

economizes on the number of new parameters to estimate. 

BVAR models address the over-parameterization problem by specifying a small number 

of hyper-parameters that defines the relationships between all the parameters in the system. Since 

the Bayesian approach already solves the over-parameterization problem, researchers can add a 

large set of variables to the estimation of a BVAR system, obviating the need to extract common 

factors. Nothing prevents, however, the extraction of common factors from the large set of 

                                                                                                                                                             
series specification. Dynamic structural models prove most effective in performing policy analysis, albeit subject to 
the Lucas critique. Time-series models prove most effective at forecasting. That is, in both cases errors creep in 
whenever the researcher makes a decision about the specification. Clearly, more researcher decisions relate to a 
dynamic structural model than a univariate time-series model, suggesting that fewer errors enter the time-series 
model and allowing the model to produce generally better forecasts. 
5 A simple approach, which we do not adopt in this paper, uses an autoregressive distributed lag (ARDL) model 
(Stock and Watson 1999, 2003, 2004). That is, the researcher runs an ARDL, or transfer function, model, where the 
variable to forecast enters as an autoregressive process and one driver variable enters as a distributed lag. The 
researcher compares the baseline model, the pure autoregressive specification forecasts with the forecasts for the 
ARDL specification. Extending this further, the researcher can repeat the process for a whole series of potential 
driver variables. In this extended case, one aggregates across all of the individual forecasts to generate the combined 
forecast. Combination forecasts range from simple means or medians to more complicated principal-components- or 
mean-square-forecast-error-weighted forecasts. 
6 The implementation of the ARDL approach avoids the problem by only using bivariate transfer function models 
and then combining the forecasts from the different bivariate analyses.  
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macroeconomic variables to include in a factor-augmented VAR and BVAR systems, which we 

also do. 

In the factor-augmented approach, the researcher potentially leaves information on the 

table by only extracting the common factor information and leaving the remaining information 

out of the analysis. On the other hand, the Bayesian approach, includes all the information from 

the large set of data, but restricts the estimation by imposing conditions on the parameters of the 

estimating equation. In sum, all methods introduce restrictions on the way information from the 

large dataset affects the estimation process. Thus, any of the individual approaches may lead to 

better forecasts a priori. 

In this paper, we consider the factor-augmented and large-scale Bayesian methods for 

incorporating the information from a large dataset.7 These methods provide the natural extension 

of the VAR and BVAR models.8  

4. Forecasting House Prices 

Traditionally, the housing market and its cycle played an important role in understanding the 

business cycle. More recently, several authors argue that asset prices help forecast both inflation 

and output (Forni et al., 2003; Stock and Watson, 2003, Gupta and Das, forthcoming, 2008, Das 

et al., forthcoming a, forthcoming b, and 2009). Since homes imbed much individual wealth, 

house price movements may provide important signals for consumption, output, and inflation. 

That is, housing market adjustments play an important role in the business cycle (Iacoviello and 

Neri, 2010), not only because housing investment proves a volatile component of demand 

(Bernanke and Gertler, 1995), but also because house price changes generate important wealth 

                                                 
7 We also include a small-scale Bayesian-shrinkage model that includes the 10 variables in the Iacoviello and Neri 
(2010) DSGE model. 
8 The ARDL model involves a single-equation, whereas the VAR and BVAR models involve multiple equations. 
Thus, we exclude the ARDL approach from our analysis. 
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effects on consumption (International Monetary Fund, 2000) and investment (Topel and Rosen, 

1988).  

In sum, models that forecast real house price inflation can give policy makers an idea 

about the future direction of the overall macroeconomy and, hence, can provide important 

information for designing better and more-appropriate policies. In other words, the housing 

sector acts as a leading indicator for the real sector of the economy. The recent world-wide credit 

crunch began with the end of the run-up in the US real house price index with a dramatic fall in 

that index, which, in turn, led the real sector of the world’s economy toward an economic slump. 

The existing literature on forecasting house prices considers whether economic 

fundamentals provide sufficient information. A large number of economic variables affect house 

price growth (Cho, 1996; Abraham and Hendershott, 1996; Johnes and Hyclak, 1999; and 

Rapach and Strauss, 2007, 2009). For instance, income, interest rates, construction costs, labor 

market variables, stock prices, industrial production, consumer confidence index, and so on act 

as potential predictors. On these issues, Quigly (1999) and Wheaton and Nechayev (2008) 

compare the forecasting performance of models with and without fundamentals. Quigley (1999) 

concludes that models including only fundamentals explain less than half of the movement in 

house prices. Further, he argues that explaining turning points in house prices improves in 

models that include fundamentals, but still do not predict such turning points well. Wheaton and 

Nechayev (2008) also consider the role of fundamentals in explaining house price movements. 

They estimate autoregressive models in the house price augmented by fundamentals. They 

conclude that in all 59 housing markets, the models that include fundamentals underpredict the 

house price run up from 1998 to 2005. 

Most models that forecast US house prices focus on regional, state, or MSA levels of 

analysis and do not consider the national house price index. Several papers implement techniques 
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that relate to our paper. Rapach and Strauss (2007, 2009) consider forecasting house prices in 

states, using a large data set of economic variables. Rapach and Strauss (2007) use an 

autoregressive distributed lag (ARDL) model framework, containing 25 determinants, to forecast 

real house price growth for the individual states of the Federal Reserve’s Eighth District – 

Arkansas, Illinois, Indiana, Kentucky, Missouri, Mississippi, and Tennessee. Given the difficulty 

in determining a priori the particular variables that prove the most important in forecasting real 

house price growth, the authors also use various methods to combine the individual ARDL 

model forecasts, which result in better forecast of real house price growth. Rapach and Strauss 

(2009) perform the same analysis for the 20 largest US states based on ARDL models containing 

large number of potential predictors, including state, regional and national level variables. Once 

again, the authors reach similar conclusions on the importance of combining forecasts. 

Das et al., (forthcoming b) consider the forecasting performance of regional real house 

price growth rates in the nine US Census regions, using FAVAR and LBVAR models. They find 

that the FAVAR models generally outperform the LBVAR models. Gupta, Kabundi, and Miller 

(2009) consider the forecasting performance of time-series models with and without 308 monthly 

variables and spatial specifications for the 20 largest US states and corroborate the general 

findings of Das et al. (forthcoming b) in that factor augmented models generally outperform 

large-scale models. Finally, based on principal component analysis and Bayesian regression, 

Gupta and Kabundi (2009) reach similar conclusions when forecasting the aggregate US real 

house price using 112 monthly variables. 

Our paper extends the above mentioned studies by considering a DSGE model in addition 

to various time-series models with and without fundamentals to forecast the US real house price 

index out of sample and to forecast the turning point of the run-up of the US real house price 

index. 
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5. VAR, BVAR, FAVAR, FABVAR, and LBVAR Specifications and Estimation9 

5.1  VAR, BVAR, and LBVAR: 

Following Sims (1980), we can write an unrestricted VAR model as follows: 

0 ( )t t ty A A L y ε= + + ,        (1) 

where y equals a ( 1n× ) vector of variables to forecast; 0A �equals an ( 1n× ) vector of constant 

terms; A(L) equals an ( n n× ) polynomial matrix in the backshift operator L with lag length p,10 

and ε  equals an ( 1n× ) vector of error terms. In our case, we assume that 2~ (0, )nN Iε σ , where 

In equals an ( n n× ) identity matrix. 

The VAR method typically use equal lag lengths for all variables, which implies that the 

researcher must estimate many parameters, including many that prove statistically insignificant. 

This over-parameterization problem can create multicollinearity and a loss of degrees of 

freedom, leading to inefficient estimates, and possibly large out-of-sample forecasting errors. 

Some researchers exclude lags with statistically insignificant coefficients. Alternatively, 

researchers use near VAR models, which specify unequal lag lengths for the variables and 

equations. 

Litterman (1981), Doan et al., (1984), Todd (1984), Litterman (1986), and Spencer 

(1993) use the BVAR model to overcome the over-parameterization problem. Rather than 

eliminating lags, the Bayesian method imposes restrictions on the coefficients across different 

lag lengths, assuming that the coefficients of longer lags may more closely approach zero than 

the coefficients on shorter lags. If, however, stronger effects come from longer lags, the data can 

override this initial restriction. Researchers impose the constraints by specifying normal prior 

                                                 
9 The discussion in this section relies heavily on LeSage (1999), Gupta and Sichei (2006), Gupta (2006), Gupta and 
Miller (2009a, 2009b), and Das et al., (2009). 
10 That is, A(L) = 2

1 2 ... p
pA L A L A L+ + + ; 
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distributions with zero means and small standard deviations for most coefficients, where the 

standard deviation decreases as the lag length increases and implies that the zero-mean prior 

holds with more certainty. The first own-lag coefficient in each equation proves the exception 

with a unitary mean. Finally, Litterman (1981) imposes a diffuse prior for the constant. We 

employ this “Minnesota prior” in our analysis, where we implement Bayesian variants of the 

classical VAR models. 

Formally, the means of the Minnesota prior take the following form: 

2~ (1, )
ii N ββ σ  and 2~ (0, )

jj N ββ σ       (2) 

where iβ  equals the coefficients associated with the lagged dependent variables in each equation 

of the VAR model (i.e., the first own-lag coefficient), while jβ  equals any other coefficient. In 

sum, the prior specification reduces to a random-walk with drift model for each variable, if we 

set all variances to zero. The prior variances, 2
iβσ  and 2

jβσ , specify uncertainty about the prior 

means, iβ  = 1, and jβ  = 0. We also adopt the specification in Banbura et al. (forthcoming) and 

Bloor and Matheson (2008), whereby we set a white-noise prior (i.e., iβ  = 0) for those variables 

in the data sets (i.e., comprising of 10 or 120 variables) that exhibit mean-reversion. Otherwise, 

we impose the random walk prior, described above. 

Doan et al., (1984) propose a formula to generate standard deviations that depend on a 

small numbers of hyper-parameters: w, d, and a weighting matrix f(i, j) to reduce the over-

parameterization in the VAR models. This approach specifies individual prior variances for a 

large number of coefficients, using only a few hyper-parameters. The specification of the 

standard deviation of the distribution of the prior imposed on variable j in equation i at lag m, for 

all i, j and m, equals S(i, j, m), defined as follows: 
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ˆ
( , , ) [ ( ) ( , )]

ˆ
i

j

S i j m w g m f i j
σ
σ

= × × ,      (3) 

where f(i, j) = 1, if i = j and ijk  otherwise, with ( 0 1ijk≤ ≤ ), and g(m) = dm− , with d > 0. The 

estimated standard error of the univariate autoregression for variable i equals ˆiσ . The ratio ˆ
ˆ

i

j

σ
σ  

scales the variables to account for differences in the units of measurement and, hence, causes the 

specification of the prior without consideration of the magnitudes of the variables. The term w 

indicates the overall tightness, with the prior getting tighter as the value falls. The parameter 

g(m) measures the tightness on lag m with respect to lag 1, and equals a harmonic shape with 

decay factor d, which tightens the prior at longer lags. The parameter f(i, j) equals the tightness 

of variable j in equation i relative to variable i, and by increasing the interaction (i.e., the value of 

ijk ), we loosen the prior.11  

We estimate the alternative BVARs using Theil's (1971) mixed estimation technique. 

Essentially, the method involves supplementing the data with prior information on the 

distribution of the coefficients. The number of observations and degrees of freedom increase 

artificially by one for each restriction imposed on the parameter estimates. Thus, the loss of 

degrees of freedom from over-parameterization in the classical VAR models does not emerge as 

a concern in the alternative BVAR specifications. We consider the following VAR 

specifications: 

- VAR: In addition to the univariate autoregressive model (AR) with eight lags in 

the US real house price index, we also run a 10-variable VAR, 

incorporating the 10 variables in Iacoviello and Neri (2010); 

 

                                                 
11 For an illustration, see Dua and Ray (1995). 
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- UBVAR: This benchmark univariate BVAR model uses only the US real house 

price index; 

- SBVAR: The small-scale BVAR model includes only the 10 variables in Iacoviello 

and Neri (2010); and 

- LBVAR: The large-scale BVAR model includes the 10 variables in Iacoviello and 

Neri (2010) plus the 110 additional variables from Bovin et al. (2009). 

5.2 FAVAR and BFAVAR: 

This study also uses the Dynamic Factor Model (DFM) to extract common components between 

macroeconomic series and then uses these common components to forecast the US real house 

price index, adding the extracted factors to univariate and multivariate VAR and BVAR models 

to create FAVAR and BFAVAR models in the process. Furthermore, we estimate idiosyncratic 

component (see below) with AR(p) processes as suggested by Boivin and Ng (2005). 

The DFM expresses individual times series as the sum of two unobserved components: a 

common component driven by a small number of common factors and an idiosyncratic 

component for each variable. The DFM extracts the few factors that explain the co-movement of 

the US economy. Forni et al. (2005) demonstrate that for a small number of factors relative to 

the number of variables and a heterogeneous panel, we can recover the factors from present and 

past observations. 

Consider a 1n×  covariance stationary process 1( ,...., )'t t ntY y y= . Suppose that tX  equals 

the standardized version of tY . Under DFM, we write tX  as the sum of two orthogonal 

components as follows: 

  t t tX Fλ ξ= +          (4) 

where tF  equals a 1r ×  vector of static factors, λ equals an n r×  matrix of factor loadings, and 
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tξ  equals a 1n×  vector of idiosyncratic components. In a DFM, tF  and tξ  are mutually 

orthogonal stationary process, while, t tFχ λ=  equals the common component. 

Since dynamic common factors are latent, we must estimate them. We note that the 

estimation technique used matters for factor forecasts. This paper adopts the Stock and Watson 

(2002b) method, which employs the static principal component approach (PCA) on tX . The 

factor estimates, therefore, equal the first principal components of tX , (i.e., ˆ ˆ
t tF X′= Λ , where Λ̂  

equals the n r×  matrix of the eigenvectors corresponding to the r  largest eigenvalues of the 

sample covariance matrix Σ̂ ). 

For forecasting purposes, we use a univariate and a multivariate VAR augmented by 

extracted common factors using the Stock and Watson (2002a) approach. This approach is 

similar to the univariate static, unrestricted approach of Bovin and Ng (2005). Therefore, the 

forecasting equation to predict tY  is given by 

  
ˆ

ˆ ( )
ˆ
t h t

tt h

Y Y
L

FF
+

+

� � � �
= Φ� � � �

� � � �� �
,        (5) 

where h equals the forecasting horizon, ˆ ( )LΦ  equal lag polynomials, which we estimate with 

and without restrictions. As Boivin and Ng (2005) clearly note, VAR models are special cases of 

equation (5). With known factors and the parameters, the FAVAR approach should produce 

smaller mean squared errors. In practice, however, one does not observe the factors and we must 

estimate them. Moreover, the forecasting equation should reflect a correct specification. We 

consider the following DFM specifications: 
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- UFAVAR:  Includes the US real house price index and the common static factors;12 

- MFAVAR: Includes the 10 variables in Iacoviello and Neri (2010) and the common 

static factors; 

- BUFAVAR:  The Bayesian version that includes the US real house price index and the 

common static factors; and  

- BMFAVAR: The Bayesian version that includes the 10 variables in Iacoviello and Neri 

(2010) and the common static factors. 

6. Data Description, Model Estimation, and Results 

6.1  Data 

While the univariate VARs, both the classical and Bayesian variants, include data of only the 

annualized US real house price index, the large-scale BVAR and the factor-augmented models 

also include the 120 quarterly series. In between, we estimate small-scale VARs and BVARs in 

the 10 variables employed by Iacoveillo and Neri (2010), including the US real house price 

index. The nominal US house price index comes from the Census Bureau House Price Index 

deflated by the implicit price deflator for the nonfarm business sector. In addition, we also 

employ the other nine variables identified in Iacoviello and Neri (2010). See Appendix A in their 

paper for a discussion of sources of data for these 10 variables as well as the transformations 

made to these variables. 

For the remaining 110 quarterly macroeconomic series of the US economy, we use the 

data set constructed by Boivin et al. (2009) that covers the period of 1976:01 to 2005:02. The 

data set includes measures of industrial production, several price indices, interest rates, 

employment as well as other key macroeconomic and financial variables. To this data set we add 

                                                 
12 We also confirm the choice of the four factors by the cumulative variance share, under which, the fifth eigenvalue 
fell below the threshold of 5 percent. 
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10 of the variables used by Iacoviello and Neri (2010), implying a total of 120 variables. Note, 

we drop the Treasury bill rate from the original 111 variables in the Boivin et al (2009) data set, 

since it appears in the Iacoviello and Neri data set. Moreover, since the Boivin et al (2009) data 

set appears at a monthly frequency, we convert it into a quarterly frequency by taking averages 

for flow variables and the last month observation for the stock variables (i.e., we use temporal 

aggregation and systematic sampling, respectively, as suggested by the literature on frequency 

conversions). We seasonally adjust and transform all series to induce stationarity for the 

FAVAR.13 Since this data set ends in 2005:Q2, our sample also ends at the same point.  

6.2 Estimation and Results 

This section reports our econometric findings. First, we select the optimal model for forecasting 

the US real house price index, using the minimum average root mean squared error (RMSE) 

across the one-, two-, three-, and four-quarter-ahead out-of-sample forecasts. Second, we 

consider the ability of the best models to predict the turning point in 2006:Q2, using ex ante and 

recursive forecasts. 

One- to Four-Quarter-Ahead Forecast Accuracy.  

Following the existing literature on estimation of DSGE models and, of course, Iacoviello and 

Neri (2010), we consider the linearized DSGE model describing the equilibrium around the 

balanced growth path. Given the parameters, we represent the solution to the DSGE model in a 

state-space form that is used to compute the likelihood function. The estimation strategy follows 

a Bayesian approach, which involves transforming the data into a form suitable for computing 

the likelihood function, choosing prior distributions for the parameters of the DSGE model, and 

                                                 
13 Using non-stationary data, however, is not required with the BVAR. Sims et al. (1990) indicate that with the 
Bayesian approach entirely based on the likelihood function, the associated inference does not require special 
treatment for non-stationarity, since the likelihood function exhibits the same Gaussian shape regardless of the 
presence of non-stationarity.  
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estimating their posterior distribution using the random-walk version of the Metropolis-Hastings 

algorithm. We estimate the DSGE model over the in-sample of 1976:Q1 to 2000:Q4 and then 

recursively over the out-of-sample horizon of 2001:Q1-2005:Q2, based on a sample of 500,000 

draws. We use a normal jump distribution with the covariance matrix equal to the Hessian of the 

posterior density evaluated at the maximum. We choose the scale factor to obtain an acceptance 

rate of about 25 percent. We assessed convergence by comparing the moments computed by 

splitting the draws of the Metropolis into two halves.14  

Given the specification of priors in Section 4, we estimate the alternative univariate, 

small-, and large-scale models in our sample over the period 1976:Q1 to 2000:Q4 using quarterly 

data. We then compute out-of-sample one- to four-quarters-ahead forecasts for the period of 

2001:Q1 to 2005:Q2, and compare the forecast accuracy relative to the forecasts generated by 

the RW model. Note that the choice of the in-sample period, especially the starting date, depends 

on data availability. The starting point of the out-of-sample period precedes the rapid run-up and 

then collapse of the house price index experienced over the last decade. As indicated above, the 

end-point of the horizon is 2005:Q2, since the Boivin et al. (2009) data on the 110 

macroeconomic variables ends there.  

We estimate the univariate and multivariate versions of the classical VAR, the small-

scale BVARs, the large-scale BVARs, and the classical and Bayesian FAVARs over the period 

1976:Q1 to 2000:Q4, and then forecast from 2001:Q1 through 2005:Q2. Since we use eight 

lags15, the initial eight quarters from 1976:Q1 to 1976:Q4 feed the lags. We re-estimate the 

models each quarter over the out-of-sample forecast horizon in order to update the estimate of 

                                                 
14 See Appendix C of Iacoviello and Neri (2010) for more details.  
15 The choice of 8 lags reflects the unanimity of the sequential modified LR test statistic, Akaike information 
criterion (AIC) and the final prediction error (FPE) criterion and the Hannan-Quinn (HQ) information criterion 
applied to the stable small-scale VAR estimated with ten variables. Note, stability, as usual, implies that no roots lie 
outside the unit circle. We retain the eight lags for all the “atheoretical” models. 
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the coefficients, before producing the four-quarters-ahead forecasts. We implemented this 

iterative estimation and the four-quarters-ahead forecast procedure for 15 quarters, with the first 

forecast beginning in 2001:Q1. This produced a total of 15 one-quarter-ahead forecasts, …, up to 

15 four-quarters-ahead forecasts.16 We calculate the root mean squared errors (RMSE)17 for the 

15 one-, two-, three-, and four-quarters-ahead forecasts for the real house price index of the 

models. We then examine the average of the RMSE statistic for one-, two-, three-, and four-

quarters ahead forecasts over 2001:Q1 to 2005:Q2.  

For the various Bayesian time-series models, we start with a value of w = 0.1 and d = 1.0, 

and then increase the value to w = 0.2 to account for more influences from variables other than 

the first own lags of the dependant variables of the model. In addition, as in Dua and Ray (1995), 

Gupta and Sichei (2006), Gupta (2006), and Gupta and Miller (2009a, 2009b), we also estimate 

the BVARs and BFAVARs with w = 0.3 and d = 0.5. We also introduce d = 2 to increase the 

tightness on lag m. In addition, we follow Banbura et al. (forthcoming), Bloor and Matheson 

(2008), and De Mol et al. (2008) in setting the value of the overall tightness parameter to obtain 

a desired average fit for the variable of interest (i.e., real US house price, in the in-sample period 

from 1976:Q1 to 2000:Q4). We retain the optimal value of w(Fit) (=0.006) 18  obtained in this 

fashion for the entire evaluation period. Specifically, for a desired Fit, w comes from the 

following optimization: 

                                                 
16 For this, we used the Kalman filter algorithm in RATS, version 7.1. 
17 Note that if t nA +  denotes the actual value of a specific variable in period t + n and t t nF +  equals the forecast made 

in period t for t + n, the RMSE statistic equals the following: ( )2
1
N

t t n t nF A
N

+ +
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We select the model that produces the lowest average RMSE values as the ‘optimal’ 

specification. 

Table 1 reports the average of the one-, two-, three-, and four-quarter-ahead RMSEs 

across the various specifications. The benchmark for all forecast evaluations is the RW model 

forecast RMSEs. Thus, the 0.672 entry for the UFAVAR model for the four-quarter-ahead 

forecast means that the UFAVAR model experienced a forecast RMSE of only 67.2 percent of 

the forecast RMSE for the RW model.  

Several observations emerge. First, the Bayesian models forecast better than the 

benchmark RW model, whereas the non-Bayesian models generally do not. That is, the VAR, 

MVFAVAR, and the DSGE models perform worse than the benchmark. The AR(8) and 

UFAVAR models do perform better than the benchmark model, but they perform worse than 

every Bayesian model, save two – the LBVAR models with (w=0.3, d=0.5) and (w=0.2, d=1). 

Second, the SBVAR model with (w=0.3, d=0.5) posts the best forecasting performance 

at all horizons, including the overall average, except for the four-quarter-ahead forecasts, where 
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the LBVAR model with (w=0.006, d=2) does the best. In other words, the Bayesian models that 

include fundamentals utilized by Iacoviello and Neri (2010) in their DSGE model does the best 

job of forecasting out of sample. The average RMSE sees the SBVAR model improving over the 

benchmark RW model by 47 percent. 

Forecasting the Turning Point. Figure 1 illustrates that the US housing market experienced a 

marked reversal of the real house price index after the peaks in 2006:Q2. That is, the run-up in 

the house price index reverses itself in 2006:Q2 and then proceeds to fall. We expose our optimal 

forecast models to the acid test – predicting turning point. We estimate the optimal models based 

on the average RMSE from Table 1, using data through 2005:Q2. Next we forecast prices from 

2005:Q3 through the end of the sample period in 2009:Q1, the last equal to a 15-quarter-ahead 

forecast. The results of this forecasting experiment appear in Tables 2. 

Examining the actual data, we see that the US real house price index peaked in 2006:Q2 

at 102.41, but we also see secondary peaks in 2005:Q4 at 102.22 and 2007:Q1 at 102.08. After 

2007:Q1, the index falls monotonically through the end of the sample in 2009:Q1, reaching a 

level of 83.72. 

The ex ante forecasting results exhibit several observations. First, most of the optimal 

forecasting models do not predict a turning point and rather forecast a continual rise in the index 

through the end of the sample in 2009:Q1. Two exceptions exist – the DSGE model and the 

optimal MVFAVAR model. Only the DSGE model, however, forecasts a turning point (i.e., 

2006:Q3) close to the actual turning point. Moreover, the MVFAVAR model forecasts exceed 

the actual data by large margins (e.g., 130.73 versus 83.72 in 2009:Q1). Further, examining the 

correlations between that actual series and each of the forecast series, we see that only the DSGE 

model exhibits a positive correlation (i.e., 0.81). All other forecasts report a negative correlation 

with the actual series. In sum, the DSGE model performs better than the other models in 
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forecasting the actual series, which includes the turning point in 2006:Q2. On the other hand, 

while the DSGE model shows a turning point one quarter after the actual turning point, its 

forecasts uniformly over-predict the actual index numbers after the turning point (e.g., 100.67 

versus 83.72 in 2009:Q1). 

Finally, we also report recursive forecasts from 2005:Q2 to 2009:Q1. That is, we first 

estimate the models through 2005:Q2 and then forecast one-quarter ahead to 2005:Q3. Then we 

add the observation 2005:Q3 to the sample and re-estimate the models and forecast one-quarter 

ahead to 2005:Q4. We continue this process until we estimate the models through 2008:Q4 and 

forecast 2009:Q1. Since the 110 variables reported in Boivin et al. (2009) only run through 

2005:Q2, we only report recursive forecasts that use up to the 10 variables employed in 

Iacoviello and Neri (2010). We chose to report the results for the optimal SBVAR model with 

w=0.3, d=0.5 and the DSGE model. 

Table 3 reports the findings and Figure 3 illustrates the actual data as well as the DSGE 

and SBVAR forecasts. We see that the DSGE and SBVAR models follow the actual data more 

closely than for the ex ante forecasts, which is not a surprise since we update the estimation with 

new data in the recursive forecasts. The correlations between the actual series and the DSGE and 

the SBVAR models equal 0.93 and 0.87, respectively. Thus, although the margin is closer, the 

DSGE model still outperforms the SBVAR model in forecasting the movement in the actual 

data. 

Gupta and Miller (2009a, 2009b) in their analysis of Los Angeles, and Phoenix as well as 

8 Southern California MSAs report that ex ante forecasts continuing increases in housing prides 

beyond the peaks in those series. Only for the recursive forecasts do they find estimates that 

follow the decline in house prices after their peak. In that regard, our DSGE ex ante forecasts 

provide the exception to the rule in that they follow the downward movement in the US real 



 24 

house price index after its peak, albeit with an underprediction. 

7. Conclusion 

We forecast the US real house price index, using various time-series models, both with and 

without the information content of 10 or 120 additional quarterly macroeconomic series. Two 

approaches exist for incorporating information from a large number of data series – extracting 

common factors (principle components) in a Factor-Augmented Vector Autoregressive 

(FAVAR) or Factor-Augmented Bayesian Vector Autoregressive (FABVAR) models or 

Bayesian shrinkage in a large-scale Bayesian Vector Autoregressive (LBVAR) models.19  In 

addition, we also employ the DSGE model of Iacoviello and Neri (2010) as a dynamic structural 

method of forecasting the US real house price index. 

Using the period of 1976:Q1 to 2000:Q4 as the in-sample period and 2001:Q1 to 

2005:Q2 as the out-of-sample horizon, we compare the forecast performance of the alternative 

models for one- to four-quarters ahead forecasts. Based on the average root mean squared error 

(RMSE) for the one-, two-, three-, and four–quarter-ahead forecasts, we find that the SBVAR 

model performs the best for the one-, two-, and three-quarter-ahead forecasts as well as for the 

average across all four horizons. The MVFAVAR model performs the best only at the four-

quarter-ahead forecast horizon. The DSGE model performs poorly, never beating the benchmark 

RW model at any horizon. 

Finally, we also report ex ante and recursive forecasts of the actual US real house price 

index from 2005:Q3 to 2009:Q1. Interestingly, now the DSGE model performs better than the 

other forecasting models, even though the DSGE model exhibit a one- to four-quarter ahead 

                                                 
19 Another approach also exists, the ADRL method. This approach estimates a series of bivariate transfer function 
models with forecasted variable as the dependent variable and then aggregates forecasts with various weighting 
methods. We do not pursue this single-equation method and only consider the multiple-equation FAVAR and 
LBVAR models. 
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forecasting performance that does not beat the benchmark RW model. 

In sum, the utilization of fundamental economic variables improves the forecasting 

performance over models that do not use such data. This conclusion, however, does not hold for 

the large data set of 120 macroeconomic variables, but seems to hold for the 10 fundamental 

economic variables in the DSGE model of Iacoveillo and Neri (2010). In other words, 

macroeconomic fundamentals do seem to matter when forecasting real house prices, but only 

certain fundamentals. Moreover, to forecast the peak of a house price run-up requires a forward-

looking microfounded dynamic stochastic (DSGE) model in the fundamental variables. 
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Table 1: One to Four-Quarters-Ahead RMSEs for the Real US House 
Price Index 

  Quarters Ahead 

Models 1 2 3 4 Average 

AR(8) 0.8974 0.7976 0.7379 0.7784 0.8028 

VAR 1.3565 1.2213 1.0199 0.8888 1.1216 

UFAVAR 0.9480 0.8730 0.7210 0.6721 0.8035 

MFAVAR 1.6070 1.2293 1.1515 0.9186 1.2266 

  DSGE 1.1666 1.1888 1.1863 1.1193 1.1653 

UBVAR 0.8540 0.7372 0.6534 0.6878 0.7331 

BUFAVAR 0.8017 0.6694 0.5421 0.5711 0.6461 

BMFAVAR 0.7580 0.6337 0.4438 0.4472 0.5706 

SBVAR 0.7372* 0.5810* 0.3880* 0.4119 0.5295* 

w=0.3,d=0.5 

LBVAR 0.8952 0.9540 0.7514 0.6776 0.8195 

UBVAR 0.8631 0.7517 0.6633 0.6902 0.7421 

BUFAVAR 0.8655 0.7640 0.6713 0.6988 0.7499 

BMFAVAR 0.7711 0.6651 0.5056 0.5434 0.6213 

SBVAR 0.7732 0.6410 0.4868 0.5239 0.6062 

w=0.2,d=1 

LBVAR 0.9064 0.9153 0.7218 0.7124 0.8140 

UBVAR 0.8696 0.7567 0.6606 0.6792 0.7415 

BUFAVAR 0.8808 0.7771 0.6867 0.7089 0.7634 

BMFAVAR 0.8531 0.7612 0.6504 0.6762 0.7352 

SBVAR 0.8453 0.7368 0.6221 0.6443 0.7121 

w=0.1,d=1 

LBVAR 0.9332 0.8892 0.6772 0.6886 0.7971 

UBVAR 0.8614 0.7379 0.6303 0.6406 0.7175 

BUFAVAR 0.9026 0.7972 0.7042 0.7124 0.7791 

BMFAVAR 0.8062 0.7309 0.5896 0.6200 0.6867 

SBVAR 0.8153 0.7191 0.5874 0.6136 0.6839 

w=0.2,d=0.2 

LBVAR 0.9095 0.8579 0.6842 0.7116 0.7908 

UBVAR 0.8598 0.7349 0.6269 0.6347 0.7140 

BUFAVAR 0.8809 0.7645 0.6659 0.6783 0.7474 

BMFAVAR 0.8664 0.7819 0.6758 0.6935 0.7544 

SBVAR 0.8611 0.7632 0.6554 0.6692 0.7372 

w=0.1,d=2 

LBVAR 0.9138 0.8251 0.6170 0.6490 0.7512 

w(Fit)=0.006,d=2 LBVAR 0.8174 0.6249 0.4139 0.3909* 0.5618 
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Table 1: One to Four-Quarters-Ahead RMSEs for the Real US House 
Price Index (continued) 

 
Note: The numbers equal the ratio of the root-mean square error (RMSE) of the Model in the row 

divided by the RMSE of the random walk (RW) model. The starred and bolded numbers 
equal the minimum values in each column. AR(8) is the autoregressive model with 8 lags. 
VAR is the vector autoregressive model. UFAVAR is the univariate factor-augmented VAR 
model. MFAVAR is the multivariate FAVAR model. DSGE is the dynamic structural general 
equilibrium model. UBVAR is the univariate Bayesian VAR model. BUFAVAR is the 
Bayesian univariate FAVAR model. BMFAVAR is the Bayesian multivariate FAVAR. 
SBVAR is the small Bayesian VAR model and the LBVAR is the large BVAR model. The 
average column computes the average RMSE of the one-, two-, three-, and four-quarter-ahead 
RMSE reported in columns 1, 2, 3 and 4. 
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Table 2: Ex Ante Forecasts for the Real US House Price Index 

Date Actual RW AR(8) VAR DSGE UFAVAR MFAVAR UBVAR BUFAVAR SBVAR BMFAVAR LBVAR 

2005:Q2 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 99.59 

2005:Q3 100.74 101.88 101.77 104.47 101.04 101.97 110.92 101.97 103.51 103.91 102.50 102.31 

2005:Q4 102.22 102.71 102.42 103.16 101.36 102.53 105.38 102.47 102.88 105.12 103.18 103.48 

2006:Q1 101.58 103.52 103.88 104.96 101.70 103.64 105.95 103.58 104.64 106.58 104.49 104.62 

2006:Q2 102.41* 104.34 104.97 105.67 101.92 104.81 115.66 104.86 105.21 107.45 105.27 105.73 

2006:Q3 101.07 105.17 105.94 104.27 102.01* 105.37 116.64 105.29 104.31 106.84 105.59 106.85 

2006:Q4 99.75 105.98 106.84 107.62 101.95 105.98 124.36 106.02 106.92 109.10 106.99 108.01 

2007:Q1 102.08 106.80 107.52 107.25 101.81 106.95 127.76 106.98 106.85 111.46 107.73 109.21 

2007:Q2 100.54 107.63 108.35 105.78 101.63 107.69 123.78 107.52 106.15 111.77 108.18 110.47 

2007:Q3 97.51 108.46 109.19 108.35 101.45 108.41 130.48 108.43 108.15 113.90 109.26 111.79 

2007:Q4 96.22 109.29 109.89 108.13 101.26 109.48 122.66 109.55 108.23 113.65 110.14 113.15 

2008:Q1 92.61 110.13 110.59 108.89 101.10 110.20 113.17 110.40 108.78 114.40 111.01 114.56 

2008:Q2 95.39 110.97 111.29 109.90 100.94 111.21 132.24* 111.59 109.70 116.77 111.91 115.99 

2008:Q3 93.39 111.81 111.99 109.66 100.81 112.48 127.87 112.86 109.96 118.47 112.86 117.47 

2008:Q4 88.29 112.67 112.67 111.15 100.72 113.56 123.91 114.06 111.10 120.34 113.75 118.94 

2009:Q1 83.72 113.52* 113.35* 111.61* 100.67 115.13* 130.73 115.71* 111.69* 121.65* 114.74* 120.43* 

             

Correlation  -0.88 -0.84 -0.88 0.81 -0.90 -0.49 -0.91 -0.89 -0.89 -0.89 -0.90 
Note: The starred and bolded numbers equal the maximum values in each column. The correlation measures the correlation between the column’s forecasted 

values and the actual values. 
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Table 3: Recursive Forecasts for the Real US House Price Index 

 Actual DSGE 
Optimal 
SBVAR 

(w=0.3,d=0.5) 
2005:Q2 99.59 99.59 99.59 
2005:Q3 100.74 100.97 103.50 
2005:Q4 102.22 100.16 101.54 
2006:Q1 101.58 100.92 104.29* 
2006:Q2 102.41* 101.38 101.80 
2006:Q3 101.07 101.87 103.59 
2006:Q4 99.75 101.58 100.51 
2007:Q1 102.08 103.33* 99.49 
2007:Q2 100.54 102.15 99.59 
2007:Q3 97.51 100.39 101.58 
2007:Q4 96.22 97.30 100.07 
2008:Q1 92.61 96.00 100.01 
2008:Q2 95.39 92.41 93.36 
2008:Q3 93.39 95.20 94.55 
2008:Q4 88.29 93.27 91.17 
2009:Q1 83.72 88.26 88.11 
    
Correlation  0.93 0.87 

Note: The starred and bolded numbers equal the maximum values in 
each column. The correlation measures the correlation between 
the column’s forecasted values and the actual values. 
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Figure 1: The US Real House Price Index 
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Figure 2: Out-of-Sample Ex Ante Forecasts: US Real House price Index 
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Figure 3: Out-of-Sample Recursive Forecasts: US Real House Price Index 

 


