Migration redefined? Seasonality, movements, and group composition of humpback whales *Megaptera novaeangliae* off the west coast of South Africa

Jaco Barendse¹*, Peter B Best¹, Meredith Thornton¹, Cristina Pomilla²,³, Inês Carvalho²,³,⁴ & Howard C Rosenbaum³,²

* Corresponding author: jaco.barendse@gmail.com

¹ Mammal Research Institute, University of Pretoria, c/o Iziko South African Museum, P.O. Box 61, Cape Town, 8000 South Africa.

² Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th street, New York, NY 10024, USA.

³ Ocean Giants Program, Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY 10460-1099, USA.

⁴ Faculdade de Ciências do Mar e Ambiente, Universidade do Algarve, Campus Gambelas, 8000-139 Faro, Portugal.
Abstract

The migration of Southern Hemisphere humpback whales between their feeding and breeding areas has thus far been considered a highly predictable and seasonal event. However, previous observations on the humpbacks that pass through the near-shore waters of the west coast of South Africa have revealed deviations from the behaviour and seasonality expected during a typical migration. This “anomaly” is hypothesised to be associated with prey availability in the region. Shore-based observations between July 2001 and February 2003 from North Head, Saldanha Bay yielded relative abundances that again did not support a classical migration pattern, with the highest sighting rates from mid-spring through summer. Movement parameters (actual swimming speed, direction and linearity) of humpback groups tracked by theodolite showed mid-spring to be a turning point in their behaviour, after which we observed a significant reduction in actual swimming speed, an increase in ‘non-directional’ movement, and a distribution further from shore than in other seasons. Additional data on group composition and sex collected between 1993 and 2008, showed a significantly female-biased sex ratio during mid-spring, the first such recorded for any region. Direct observation of feeding on crustacean prey during spring and summer months further supports the notion that humpbacks may have more flexible foraging habits than previously appreciated, and that the Southern Benguela upwelling region may function as an important feeding area for these whales.

Keywords

Benguela upwelling; Breeding Stock B; feeding; group composition; humpback whale; migration; Pythagoras; seasonality; sex-ratios; shore-based survey; South Atlantic; theodolite tracking.
Introduction

Humpback whales (*Megaptera novaeangliae*) in general are believed to undertake extensive and predictable migrations from polar feeding grounds in summer, to tropical over-wintering areas, displaying high fidelity to the same breeding and feeding areas (Clapham *et al.* 1993, Clapham 2000, Stevick *et al.* 2003, Rossussen *et al.* 2007). These migrations frequently follow near-shore migration corridors in the Southern Hemisphere (Dawbin 1966, Bryden 1985). Although behaviour associated with reproduction e.g. male-male competition (Brown and Corkeron 1995) and singing (Clapham and Mattila 1990) is often observed during migration, feeding behaviour during transit is only seen occasionally, and very rarely in the Southern Hemisphere (Best *et al.* 1995, Stockin and Burgess 2005, Stamation *et al.* 2007). The bulk of feeding is thought to occur in the areas of high productivity at high latitudes where the whales spend their summers (Clapham and Mead 1999) with the exception of the unique Arabian Sea population that is apparently resident year-round (Mikhalev 1997, Minton *et al.* in press, Rosenbaum *et al.* 2009).

The division of different populations of humpback whales in the Southern Hemisphere reflects their associated feeding and breeding areas and has been based on their previously-assigned summer feeding regions or Antarctic Areas numbered I to VI (Donovan 1991) and the more recently designated Breeding Stocks labelled A-G (IWC 1998). Whales from Breeding Stock B (BSB) found off western Africa are thought to feed in Areas II (60°W to 0°) and III (0° to 70°E). In some Breeding Stocks there has been some evidence for sub-structuring of stocks based by-and-large on ongoing mitochondrial DNA analyses (e.g. Rosenbaum *et al.* 2009). In the case of BSB the stock has been separated into B1 and B2 (IWC 2001) with the former located in the Gulf of Guinea (north of 18°S) while the humpback whales that migrate past the west coast of South Africa are presumably part of B2, found south of 18°S (see IWC 2009 for details of most recent BS sub-divisions).

Historical catches from shore-based whaling stations in the Saldanha Bay region have hinted that the whales here conform more or less to a classic migration pattern with two distinct seasonal peaks of abundance thought to correlate with the northward (July/August) and southward (October/November) migrations (Ølsen 1914, Harmer 1931). On the other hand, Ølsen (1914) based on his observation from 1911-1913 did comment that the whaling season at Saldanha was relatively long, lasting till mid-December. More recent and mounting evidence has added further support that this area does not function as a typical migration corridor, and that there
may be other contributory factors that influence the timing and duration of visits of humpback whales to this region (Best et al. 1995, Findlay and Best 1995).

This study was conducted to examine trends in humpback whale relative abundance, occurrence, and movement across seasons in the Saldanha Bay region, based mainly on shore-based observations. As such it represents the most extensive research effort to date on the species in the region, and, apart from a 6-week long pilot study in 1993 (Best et al. 1995), the first since the Discovery Investigations of the 1920s (Matthews 1938). Furthermore, data on group composition were obtained from the most comprehensive genetic collection available for the region, collected during boat intercepts of humpbacks between 1993 and 2008.

Materials and Methods

Description of study area and study period

The study was carried out from North Head, Saldanha Bay (33°02'S, 17°55'E) located on the west coast of South Africa, approximately 100km north of Cape Town (Figure 1). This is some 30km south of Cape Columbine, the western-most headland in the Western Cape Province of South Africa, and the site of an earlier pilot study (Best et al. 1995). The region has a Mediterranean-type climate (Kruger 2004) with an average rainfall of 298mm per annum recorded mostly during winter (Zucchini et al. 2003, Zucchini and Nenadić 2006). The wind blows from a predominantly southerly direction in summer and westerly in winter. Saldanha Bay was the site of two modern whaling stations, Donkergat and Salamander, which operated sporadically between 1909 and 1967 (Best 1994, Findlay 2000).

The highly exposed coastline has an approximate north-westerly/south-easterly orientation (330 - 150 degrees True) and is characterised by a rocky shore broken by a number of small bays with sandy or boulder beaches, and a few small near-shore islands and rocks. The tidal cycle is semidiurnal with an average tidal range of about 1.2m. The bathymetry of the area is shown in Figure 1.

In an attempt to gather data across all seasons, a shore-based watch was kept from North Head during two periods of fieldwork: the first for 5 months from 24 July to 20 December 2001, and the second for 9 months from 6 May 2002 to 15 February 2003. See below for seasonal division of sampling effort.
Observations of environmental and sighting conditions

A number of environmental observations were made at the lookout every hour in order to assess the sighting (searching and tracking) conditions, and the following variables recorded:

a) Surface wind speed (in knots) and direction (magnetic bearing): Measured with a handheld anemometer (analogue at first and digital from 25 August 2001 onward) and compass.

b) Cloud cover: Expressed as a fraction of eight (0/8 = no cloud, 8/8 = complete cover) over observation area only (i.e. over the sea).

c) Sea-state: Judged according to the Beaufort Scale over the entire observation area.

d) Glare: Magnetic bearing and estimated extent of reflection of sun off the water, expressed as percentage of total search area affected.

e) Swell: Estimated by judging the height of the average swell rising against a rocky islet (Schooner Rock) with a known height of 9m above sea level (a.s.l.).

f) Visibility at the midline: The midline was set perpendicular to the coastline, at a bearing of 240 degrees True from the lookout. The visibility at this line was the radial distance from the tower to the fix, calculated from the maximum vertical angle at which individual wavelets could clearly be distinguished through the theodolite eyepiece. This distance was assumed to be equivalent to the distance at which a whale could still be accurately tracked. This measurement was not made when the theodolite was being used for tracking whales.

g) Sightability: A subjective index on a scale from 1-5 (1=very poor, 5=very good) that summarised how good overall conditions were for spotting whales, and taking into account factors a) to f) above.

Search effort was classified into one of three categories, based on prevailing sighting and weather conditions:

a) Optimal watch: Full search effort during suitable conditions over the entire search area, with at least one person searching with binoculars and another with naked eye.

b) Sub-optimal watch: Equivalent to whale vessel surveys where masthead watch discontinued. Conditions were considered sub-optimal at average wind speeds >20 knots for extended periods, Beaufort sea-states of 5 or more, or when more than one half of the search area was obscured by mist or clouds. In practice this was when the sightability was estimated to be 2 or less (poor to very poor).

During sub-optimal watch, searching would be carried out as described above, but sightings would only
really be possible within the visible area or within a certain distance from shore. Both optimal and sub-optimal efforts were considered in the calculation of sighting rates.

c) Standby: This mode was entered into under the following conditions - when a sub-optimal watch continued for longer than two hours with no visible signs of improvement; at the sudden onset of extreme weather conditions e.g. continuous rain, thick mist, wind speeds > 30 knots, swell height > 7m; or where such extreme conditions already existed at the start of a day. During standby the team would remain at the lookout for some time to assess whether conditions were improving to acceptable levels or not. No searching with binoculars was attempted and any whales sighted during this time were regarded as incidental sightings and excluded from trackline analysis.

Climatic data

Further environmental measurements (daily minimum and maximum air temperatures in °C, twice daily air pressure in kPa) were obtained from the South African Weather Services as recorded at the nearest coastal weather station, Cape Columbine lighthouse (32°49′36″S 17°57′30″E, 68m a.s.l.). Hourly tidal measurements (in meters) as recorded by a tide meter situated in Saldanha Bay were obtained from the S.A. Naval Hydrographer’s office (http://www.sanho.co.za). These were all required for calculating the correction for the effect of refraction during trackline analysis (see below).

Data collection: shore-based observations

The primary lookout was at Baviaansberg, a hill 72.8 m a.s.l. about 700m (at 240 degrees) from the shoreline on the North Head of Saldanha Bay. The lookout position was located within a military small-arms firing range, and on the rare occasion when the range was active, a secondary observation post at Malgaskop (111.8 m a.s.l.), another hill set 2.65km further inland was used (Figure 1).

The search area was defined as the area of open ocean to the south, west and north of the lookout, stretching as far as visibility allowed (Figure 1). Though Saldanha Bay, Danger Bay, and visible parts of Langebaan Lagoon were also searched from time to time they were not considered as part of the primary search area, although groups of whales that entered these bays were still tracked. Only small sections of the search area were obscured by land, e.g. behind Jutten Island or extremely close inshore.
Teams of 2-4 observers searched for whales for alternating two-hour shifts, starting approximately one hour after sunrise and ending an hour before sunset, weather permitting. Half of the team searched by naked eye and the other half with 7x or 8x wide-angle binoculars, alternating roles every ten minutes. At least one experienced observer (who could also operate the theodolite) was always included with novices. The entire search area was searched by all on watch, regardless of the number of observers.

When a whale or group of whales was spotted, the first cue (i.e. blow, body, splash, breach, slick) was recorded, the species identified if possible and the group size estimated. The most experienced observer would then track the group, using a Wild T1 manual theodolite (equipped with a 22x telescope) that was mounted and levelled on a fixed base. The height of the focal plane at each lookout was calculated through triangulation using a geographically referenced orthophoto (1:10 000) produced by the South African Chief Directorate: Surveys and Mapping, and two reference points of known height and position in the field of view: a trigonometric beacon situated at North Head lighthouse, and the highest tip of Schooner Rock. The latter was also used as the fixed reference point of known position and bearing on which the horizontal azimuth was calibrated every day. The aim of the tracking was to obtain an accurate “fix” on the group on at least three different surfacing events, where an event was defined as a number of short-spaced surfacings bracketed by a longer submergence. A fix consisted of the recorded behavioural cue (body, blow, breach, splash or slick), an estimate of group size, the time (to the nearest second) and the vertical and horizontal angles (to the nearest second) as measured by the theodolite. A series of such fixes was termed a “track”. Searching would resume once a reliable fix was made on the group being tracked. Although groups were tracked for a minimum of three fixes, tracking could continue for several hours if no other groups were seen, or up to an interception by the boat (see below). Revised group size estimates were made as tracking progressed. The group size recorded at the first fix was considered the minimum estimate, whilst the number at the final fix (excluding any feedback from the boat if the group was intercepted) was taken as the best group size estimate available. In the event of a group splitting, the two resultant groups would be treated as new groups. During tracking the search area was still scanned for new sightings by watchers not operating the theodolite, and although the search effort during this time could be considered somewhat reduced, it was assumed during analyses that search effort remained constant during both searching and tracking.
Spatial analyses

Tracks were inspected and for each surfacing event a single fix was selected based on the type of cue recorded at the fix, in the following order of priority: body, splash, and blow. In the few instances where no fixes on such cues were available, a fix on a breach or slick would be used. The horizontal and vertical angles and time recorded at the selected fixes were imported into and analysed using the software program Pythagoras (Gailey and Ortega-Ortiz 2000, 2002). The algorithm used is based on the work of Lerzak and Hobbs 1998, and takes into account tidal height (in metres, measured at the nearest hour), and a refraction correction (Glen Gailey pers. comm., Leaper and Gordon 2001): the latter was based on the air temperature (°C) and pressure (kPA) measured daily at 14:00 at Cape Columbine. The refraction correction was applied to all fixes from both tracks and midline visibility measurements.

The co-ordinates (latitude and longitude) of each fix were calculated by Pythagoras, and these positions along with associated sighting data were imported into a Global Information System (GIS) (ESRI® ArcMap™ 9.2 and ESRI® Arcview™ 3.3). Accurate digital versions of the coastline, depth soundings and depth contours of the study area were obtained from the S.A. Naval Hydrographer’s Office (as used for marine navigational chart SAN 117, scale 1:150 000). Due to its irregular nature, it was necessary to create an “idealised” version of the coastline before calculating the distance of a fix from the shore. This was done by joining the heads of bays within the search area, thus essentially “removing” these bays in order to provide a more accurate estimate of the distance from this “smoothed” coastline. In the few cases where whale groups were inside these bays, the distance from the shoreline would be indicated as a negative measurement. At least one reliable fix was taken for 259 groups of humpback whales and the position of this first fix (in some cases the only reliable fix) was used to calculate the distance of the group to the nearest shoreline in a GIS, using the Transverse Mercator Projection with central meridian set at 17.9 degrees east.

Seasonality

Conventional austral seasons, viz. autumn (March to May), winter (June to August), spring (September to November) and summer (December to February) were considered. The prefixes ‘early’-, ‘mid’-, or ‘late’- were added to the season name for the first, middle and last month in a season respectively (i.e. mid-spring = October). Where observations were carried out in the same month in different years, these duplicate months were combined into a single seasonal sample, e.g. October 2001 and 2002 formed the mid-spring sample.
Sample sizes of tracked whale groups varied considerably between months due to the timing of study periods, variability in sighting rates and associated effort. Some months/seasons with very low sample sizes (ca. <15) were therefore combined in order to increase the available sample size, resulting in seven seasonal groupings: late autumn to mid-winter = May 02, June 01/02, July 01/02 (n = 23); late winter = August 01/02 (n = 25); early spring = September 01/02 (n = 16); mid-spring = October 01/02 (n = 55); late spring = November 01/02 (n = 31); early summer = December 01/02 (n = 36); mid-to late summer = January 03, February 03 (n=26). The term “season” will be used to refer to these seasonal groupings, unless stated otherwise.

Trackline analysis

Three or more reliable fixes at different surfacings could be obtained for 212 groups and these were used in trackline analyses in *Pythagoras* (refer to Gailey and Ortega-Ortiz 2002), and separated according to the seasons described above.

For each trackline the following parameters were calculated:

a) **Actual swimming speed (= “leg” speed):** The unweighted mean of the swimming speeds calculated for each “leg” (the distance travelled between two consecutive fixes in a track) by dividing the distance covered between a pair of fixes, by the time it took to travel between them;

b) **Linearity:** A form of migration index, calculated by dividing the net distance covered by a track (i.e. the direct measurement between the first and last fix) by its cumulative distance (the sum of all legs). Linearity values range between 0 and 1, with values close to 1 representing a straight track-line, while a value close to 0 represents a track with no constant direction;

c) **Net course:** The true bearing in degrees of a track, calculated between the first and last fixes;

d) **Net speed:** Calculated by dividing the linear “distance made good” between the first and last fixes of a track, by the time it took to travel between them (i.e. total duration of track).

Data collection: boat-based observations

For the duration of the study, when weather and personnel availability permitted, whale groups were intercepted using a 6m semi-rigid inflatable boat *Balaena* powered by twin outboard motors. The boat was directed from its mooring inside Saldanha Bay to whale groups by the land-based observers via VHF radio, as soon as they had
made an accurate fix on the group. The boat was dispatched to any sighting that appeared to be within
reasonable range of a small boat (about 15km) and that, based on its direction and speed, would not disappear
from the search area or field of visibility before the boat could reach it. Groups would generally be intercepted
in the order of being spotted; in the case of simultaneous sightings priority would be given to groups that were
most likely to be lost (i.e. further away or faster moving). If other groups were spotted by the boat crew during
an intercept, these groups would be visited after data collection was completed.

Intercepts were used to confirm group size, take individual identification photographs and collect skin biopsies
using a Paxarms biopsy rifle (Krützen et al. 2002). Skin samples were placed into individual cryogenic tubes
filled with a NaCl-saturated, 20% dimethylsulfoxide (DMSO) solution. At the end of each day all skin samples
were stored in a domestic freezer (-5°C) until they could be transferred to a -15°C freezer at the laboratory in
Cape Town.

At periodic intervals while the Balaena was at sea during or between humpback sightings, a
hydrophone would be deployed and an acoustic watch maintained for approximately 10 mins at a time.

Group composition and behaviour

A group was considered to be one or more animals that displayed noticeable co-ordinated movement or
behaviour and where individuals were no further than an estimated 100 meters from each other (after Whitehead
1983, Corkeron et al. 1994). Cow-calf pairs were defined as two whales, one of which was less than half the
length of the other.

All humpback whale groups from which genetic skin and photo-identification samples were collected
during other boat-based cetacean studies of the Mammal Research Institute (MRI) in the same region (between
1993 and 2008) were included in the group composition analyses.

Total genomic DNA was extracted from the epidermal layer of biopsies using proteinase K digestion
followed by a standard Phenol/Chloroform extraction method (Sambrook et al. 1989) or using DNAeasy tissue
kit (Qiagen). Sex determination was carried by PCR amplification followed by TaqI digestion of the ZFX/ZFY
region of the sex chromosomes (Palsbøll et al. 1992), or using multiplex PCR amplification of the ZFX/ZFY
sex linked gene (Bérubé and Palsbøll 1996).
Behavioural observations made from the shore were limited to estimating group size and recording overall group behaviour (such as travelling, milling, surface activity, breaching, and possible feeding). Group size, behaviour and composition were also recorded during all boat intercepts. Any incidents of defecation were noted and a faecal sample collected when possible.

Results

Sightings, search effort, and sighting conditions

Shore-based observations were carried out on 102 (or 68 %) of the available days between 24 July and 20 December 2001 and on 177 (or 61.9 %) of the available days between 6 May 2002 and 15 February 2003 for a total of 1 802.18 hours. A total of 1 197 groups of baleen whales was sighted, the majority being southern right whales *Eubalaena australis* (669) followed by humpbacks (289), four mixed species (humpback and right whale) groups, and a single blue whale (*Balaenoptera musculus*). Positive species identification was not possible for 234 other groups of large whales, though 15 of these were recorded as “like-humpback”, 16 as “like-right whale” and 12 as Bryde’s or minke whales (*B. brydei* or *B. bonaerensis*). Only groups that were positively identified as comprising solely humpback whales were considered in the analyses.

Effort during both field seasons was very discontinuous, with gaps of up to seven days with no watch, mainly due to poor sighting conditions. In order to create approximately equivalent sub-samples to calculate mean sighting rates and measures of variance during a month or season, daily search effort for days 1-7, 8-14, 15-21, and 22-end were summed, this resulting in four sub-samples in a full month. Sightings per Unit Effort (SPUE) was calculated by dividing the number of whale groups seen by the total number of hours watched (including both optimal and sub-optimal effort) in a sub-sample, and transformed to groups per 10 hours of searching (Figure 2). This SPUE is not an absolute measure of humpback whale abundance, since *inter alia* it includes all sightings within the search area, not only those that crossed the mid line during the watch period, and does not exclude the possibility that a group may have been resighted on more than one occasion on or between days. Furthermore, the number of groups passing through the search area when there was no search effort, or at night, is unknown. A between-season comparison of the mean daily sightability index (calculated by dividing the sum of hourly sightability estimates, by the number made on that day) showed a slight decrease in mean sightability from autumn/mid-winter (2.95 ± 0.102 SE) through to late summer (2.46 ± 0.14 SE), though this difference was
not significant (ANOVA df = 6, $F = 2.69, P = 0.0163$). Sightability therefore appeared to be constant enough across seasons to allow us to use SPUE as an index of relative abundance.

In general, effort levels were higher and more consistent during the first part (autumn and winter months) of both study periods, but the SPUE was low with only slight peaks in late July-August. During both study periods search effort became more variable from September onwards, mainly due to the frequent occurrence of unfavourable weather conditions that interrupted or prevented searching. Prominent peaks in SPUE were seen at the end of October in both years (peaks A and C in Figure 2) and both times these stretched into November. The highest overall SPUE was recorded during the fourth week of October 2002 (peak C) when at least one group was seen per hour. Other above-average peaks in SPUE occurred in December 2002 (peak B) and at the end of January/beginning February 2003 (peak D) despite low and very discontinuous search effort (Figure 2).

The mean SPUE by season showed an apparent increase in whale availability from mid-spring onwards, despite a strongly decreasing trend in total hours watched from winter to summer (Table 1). There were fewer suitable watching days from late-spring onward. All seasons with the exception of mid-spring experienced weeks with no sightings (min SPUE = 0) and despite higher mean sighting rates in mid-spring, and summer (Table 1) no significant difference was detected between seasons (Kruskal-Wallis statistic = 10.05229, $n = 57, P = 0.1225$). Given the small and variable sample sizes and the big difference in range between minima and maxima of the seasonal groupings (Table 1), the median may be a more appropriate measure of central tendency than the mean (Zar 1996), and the multisample median test showed a significant difference between seasons ($\chi^2 = 12.62920, df = 6, P = 0.0493$). When samples were combined into only two seasonal blocks, namely autumn/winter (mean SPUE = 0.96 ± 0.22, $n = 20$) and spring/summer (2.03 ± 0.40, $n = 37$), a t-test showed a significantly higher SPUE for the latter grouping ($P = 0.0477, t$-value $= -2.0252$).

Visibility at midline and spotting distance of whale groups

Overall 1834 hourly theodolite readings were taken at the midline as indication of the theoretical maximum visibility during periods of optimal and sub-optimal watch. The average visibility from the tower over the entire period was 8.21 ± 0.08 km (SE) ranging from 1.29 to 26.46 km. The average distance from the tower (the “sighting distance”) for all 251 humpback groups on which a reliable fix was made (excluding the eight sighted and fixed inside Saldanha Bay) was 7.24 ± 0.26 (SE) and ranged between 1.24 - 25.11 km (Table 2). A
Comparison of the frequency distribution of all midline visibility measurements and radial sighting distances to all humpback groups (placed in 0.5km bins) showed similarly shaped distributions, with the highest number of visibility observations recorded in the 7.5-8.0km bin, though there was an extended peak from about 5.5 to 8.5km. The distribution of whale sighting distance showed a much flatter peak with a wider range of 2-8.5km, with 5-5.5km the bin containing most groups. Whale groups, in general, appeared to be seen at shorter distances from the tower than the recorded visibilities (Figure 3) with a fairly abrupt fall-off of sighting distances beyond 8.5km, while visibility measurements showed a much steadier decrease from 8.5km and further. To determine whether the theoretical visibility limited our ability to spot and track whales, we compared the distance at which a group was sighted with the visibility taken at the nearest hour to the time of the fix at which the group distance was calculated (the “prevailing visibility”). These measurements were sorted into 1km bins according to the prevailing visibility, and the mean distance from the tower for whale groups within each bin calculated. A plot of mean sighting distance against prevailing visibility showed that up to about 7km from the tower, sighting distances were on average higher than the visibility, but after this whale groups were seen at distances well below the prevailing visibility (Figure 4). However, the mean distances of whale groups to the nearest shoreline (i.e. perpendicular distance) at prevailing visibility, were considerably less compared to prevailing midline visibility (Figure 4).

Seasonal variations of visibility at the midline were tested and showed a highly significant difference (ANOVA \(df = 6, F = 14.4918, P < 3.24 \times 10^{-16}\)) with significant differences in mean visibility between a number of seasons shown by Tukey’s HSD test for unequal \(n\) (Table 3). The best visibility was measured in late winter with a clear decreasing trend in visibility from late spring to late summer, with the poorest mean visibility recorded in mid-late summer (Table 2).

Distance distribution of whales from the shore

Whale groups were seen beyond 15km from the shore on only six occasions, once in both late winter and early summer, and four times in mid-spring. For all seasons except late winter and mid-spring groups were closer to shore than the overall mean (Table 4). Between-season ANOVA showed a highly significant difference of distance of groups from shore (\(df = 6, F = 4.41, P < 0.0003\)) and Tukey’s HSD test for unequal samples sizes indicated that this difference was between mid-spring (highest) and early summer (lowest) \((P < 0.004)\). A quarter of whales were sighted within 2km from the shore, including the eight sightings within Saldanha Bay (negative distances). More than half the groups were seen in the range 2-6km and the remaining 25% further...
than 6km and up to a maximum of 20.75km. There was a rapid fall-off in number of sightings from 10km onward with only about 6% of groups recorded in this zone (Figure 3). When groups were sorted into four distance zones viz. inside bays to 5km, 5-10km, 10-15km, and further than 15km, a seasonal pattern in distance offshore became evident (Figure 5). The majority of groups were seen within 5km from the shore in all seasons, and the hypothesis that the proportion of groups within and beyond the 5km mark did not differ significantly (Chi-square test) was rejected for all except late winter, mid and late spring (Figure 5).

Group size and composition

The size of 289 groups observed from shore ranged between one and six, with the notable exception of the maximum group size recorded of 15 individuals, and another of 10. These apparent outliers were probably loose association of several smaller groups rather than single groups. The most frequent group size (n = 122) was two animals (10 of which were identified as cow-calf pairs by the boat crew) followed by singletons (83). The mean group size based on these best estimates was 2.2 ± 0.08 (SE) (n = 289) and excluding the outliers mentioned above, 2.12 ± 0.06 (SE) (n = 287). The largest mean group sizes were recorded in mid-spring (2.44 ± 0.12) and early summer (2.5 ± 0.19) and the smallest in late winter (1.69 ± 0.15) and late spring (1.75 ± 0.11) with an overall significant difference between seasons (Kruskal-Wallis H = 25.5825, df = 6, p = 0.0003). Dunn’s multiple comparison post-hoc test showed late winter (August) to have a significantly smaller mean group size than both mid-spring (z = 3.540, P < 0.0084) and early summer (z = 3.1402, P < 0.036), while the mean of mid-spring was also significantly higher than late spring (z = 3.1903, P < 0.03) (Figure 6).

Group sizes recorded during the 116 boat intercepts ranged from one to seven, except for one grouping recorded as 20, which in reality was a dynamic aggregation of several smaller groups. Excluding this grouping, the mean group size encountered was 1.97 ± 0.084 (SE) (n = 115). Group size was recorded for the same group by both shore observations and boat intercepts 85 times; 61 of these were identical, in six cases boat estimates were higher than the corresponding land ones, and 18 times land estimates were bigger than boat ones. Although the mean size of these groups estimated from land (2.09 ± 0.12) was larger than that made during boat intercepts (1.85 ± 0.086) the difference was not significant (t-test, independent variables, two-sided, df = 168, t-value = -1.7145, P = 0.08843).
Sex determination was attempted for 216 skin biopsies collected between 1999 and 2006. The majority of samples (104) were taken at Saldanha Bay during the principal study, followed by 92 taken during a St Helena Bay study on southern right whale feeding (2003-2006). The balance was made up of six samples collected at Cape Columbine in 1993, a single sample from Walker Bay (1999) and 13 taken during boat transects for Heaviside’s dolphins (*Cephalorhynchus heavisidii*) along the coast (1999-2000, 2008). Overall 119 females and 91 males were identified while six samples did not yield results. Three duplicate samples of the same individual on the same day and/or from the same sighting were identified from genotyped individuals (using 10 microsatellite loci) (Po milla 2005, Carvalho *et al.* 2009) and these were removed, leaving a total of 207 sexed samples. The overall female (56.5%) to male (43.5%) ratio, including cow-calf pairs, did not vary significantly from parity (n = 207, $\chi^2 = 3.521739$, $P > 0.06057$, df = 1). A total of 32 groups were identified as cow-calf pairs and from these 20 cows and 12 calves were biopsied: the calves were comprised of 9 males and 3 females. A possible bias may exist towards the sampling of cow-calf pairs due to their generally slower movement (Noad and Cato 2007 and references therein) and more time spent at the surface. Cows and calves that were sampled (32 out of 64 animals) were therefore removed from the overall sample to test this, but the remaining female (53.7%) to male (46.3%) ratio still did not deviate significantly from an 1:1 ratio (n = 175, $\chi^2 = 0.9657143$, $P > 0.325752$, df = 1). Following this, the 20 cows were retained in the sample, but the 12 calves excluded. The reasons for this were the presence of calves was presumably dependent on their mothers, and that whaling data on gender included only mature whales. This resulted in a significant female bias in the overall sex-ratio (1.407 females: 1 male, n = 195, $\chi^2 = 5.584615$, $P < 0.018120$).

Cows with calves have also been shown to prefer areas closer to shore in a breeding area (Ersts and Rosenbaum 2003), perhaps introducing another source of bias, though this has not been illustrated during migration. To test this, we compared the mean distance from shore of all cow-calf pairs to other groups intercepted by boat between 1999 and 2006 at Saldanha Bay/St Helena Bay, during months when cow-calf pairs were sighted (see Figure 7). Distance (calculated using a GIS) was measured between the GPS position of the boat at the time of the intercept, and the nearest coastline. The mean distance to shore of cow-calf pairs (n = 30; $3.49 \pm 0.713 \text{ km} \pm \text{ SE}$) did not differ significantly from non cow-calf groups (n = 137; $4.98 \pm 0.359 \text{ km}$) (t-test, independent variables, two-sided, df = 165, t-value = -1.77487, $P = 0.0777633$).
To test whether group size affected the likelihood of being intercepted, thus introducing a bias through the selection of larger groups, the mean of the best estimates of group size made from land was compared for whale groups that were intercepted (n = 85; 2.094 ± 0.115) and not intercepted (104; 2.23 ± 0.101). There was no significant difference between the means of these groupings (t-test, independent variables, two-sided, df = 287, t-value = 0.7877, P = 0.4315).

In terms of a selection bias of humpback groups intercepts during the other studies, these were all incidental sightings (excepting the six samples from Cape Columbine) during effort directed at other target species, and thus we have to assume that these encounters were random.

A seasonal plot of the numbers of females and males (incl. cows with calves but excluding the calves themselves, Figure 7) suggests that during autumn, winter and early spring months, slightly more males than females were sampled, bearing in mind that sample sizes were very small. For the rest of spring and summer more females were available, and for mid-spring and mid- to late summer, this bias was significant (Table 5). The number of cow-calf pairs seen during boat intercepts increased from late spring onwards with most seen from December to February (Figure 7).

Genetic samples of 76 complete groups of whales (132 individuals) were collected and the overall sex ratio (excl. 8 calves but incl. cows) did not deviate significantly from parity (53 males, 71 females; $\chi^2 = 2.612903, P < 0.106$). Identical numbers (13) of males and females were recorded for lone animals. Most pairs (excluding cows with calves) consisted of a male and female (18) followed by female only pairs (14), and then male only (6). The eight cow-calf pairs included six male and two female calves, while two of the pairs were accompanied by single male escorts. Apart from these cow-calf pairs with escorts, groups of three individuals were completely sampled only another four times; one all-male, two with more males and one with more females. A seasonal breakdown of the gender composition of groups that were completely sampled (Figure 8) shows a decrease in the occurrence of single males after early spring, with none recorded in mid-spring. Female-biased groups were found in all seasons except late winter (however, note the low sample size). Male-female pairs and cow-calf pairs (incl. those with escorts) were only seen from mid-spring onwards. No single females were recorded after late spring. Mid-spring was the only season where there was a significant (female) biased sex-ratio of 2.88:1 (Figure 8, $\chi^2 = 7.258, P = 0.007059$).
Swimming speed

Actual swimming speed (=leg speed) ranged from 0.55 to 10.68 km h\(^{-1}\) (Table 6), with an overall mean of 4.6 ± 0.15 km h\(^{-1}\) (SE). An examination of leg speed by season reveals a strong decrease in mean swimming speed from autumn through to late summer, and Kruskal-Wallis analysis of variance showed a highly significant difference between seasons (Kruskal-Wallis statistic = 59.21, \(P < 0.0001\)). Dunn’s multiple comparison between the seasons showed significantly higher swimming speeds in autumn to winter compared with mid-spring to late summer (\(P < 0.05\)) (Table 6). Overall net speed averaged 3.91 km h\(^{-1}\) and ranged from 0.091 to 10.47 km h\(^{-1}\) (Table 6). Seasonal mean net speed was always lower than actual swimming speed, with the smallest difference between these parameters observed during autumn to late-winter, while the difference increased from early spring onwards, and was the greatest in mid- to late summer (Table 6).

Direction and linearity of movement

Net course and linearity of movement were calculated for all groups with three or more fixes made at different surfacing events (\(n = 212\)). A frequency distribution plot of net course (Figure 9) reveals a bi-modal distribution, with the larger mode at 100-200 ° and a second smaller peak at 280-360 °. Taking into account that the orientation of the coastline is at approximately 330 - 150 ° it may be assumed that the first mode (100-200 °) represents predominantly south-bound, and the second (280-360 °) north-bound animals. For linearity, the highest number of groups observed (Figure 10) had an index in the 0.7 - 1.0 range (where 1 = a straight line) with a definite peak between 0.9 and 1.0. Though there was some variation between 0 and 0.7 levels, the number of observations across this range remained relatively constant and much lower than the peak. It was therefore assumed that a linearity index of 0.9 and greater indicated migration-like movement (swimming in a more-or-less straight line) while indices of < 0.9 represented non-migrating groups

A plot of cumulative frequency of direction of movement by season, with three directional groupings based on the two modes (north and south), and another containing all groups heading in other directions, shows predominantly southwards movement in autumn to late winter (Figure 11). The null hypothesis that mean angles of movement by groups were distributed uniformly each season (i.e. no directionality) was tested using the Rayleigh’s test for circular uniformity (Zar 1996). This was rejected (\(P < 0.05\)) for autumn/mid-winter (\(n = 23\), avg. degrees = 155.14, Rayleigh’s \(R = 19.78\), Rayleigh’s \(z = 17.012\)) and winter (\(n = 25\), avg. degrees = 158.52, \(R = 16.61, z = 11.03\)) as well as late spring (\(n = 31\), avg. degrees = 148.51, \(R = 14.77, z = 7.04\)). Thus, in these...
seasons, distribution of the mean angle was not distributed uniformly and there was definite directionality in a predominantly southerly direction (Figure 11). In the other seasons there were more or less equal numbers of groups moving both north and south while there was an ever-increasing number of groups moving in other directions from early spring onwards.

Non-directionality reached its peak in mid- to late summer when the number of groups moving north, south or in other directions each made up roughly a third of the total groups tracked (Figure 11). The incidence of “migration-like” movement predominated from autumn to early spring after which there were more or less equal numbers of “migrants” and “non migrants” for the remaining spring months (October/November), and a marked decline in groups moving in straight lines (Figure 11). Throughout summer “non-migrating” groups predominated.

Relationships between trackline parameters and other variables

The relationships between the various trackline parameters (linearity, leg speed and direction) and other variables (season, distance from shore and group size) were not always clear. There was no relationship between group size and leg speed \((r^2 = 0.0059, r = -0.0768, P = 0.2655) \), nor between distance from the shore and linearity \((r^2 = 0.006, r = 0.078, P = 0.2588) \); but there was a significant and positive correlation between leg speed and distance offshore (Figure 12a, \(r^2 = 0.0433, r = 0.2081, P = 0.0023 \)) with groups further offshore travelling at higher speeds. A separation of groups into near-shore (within 5km from land and inside bays, \(n = 156 \)) and offshore (beyond 5km, \(n = 56 \)) showed the latter to move significantly faster, at a mean leg speed of 4.99km.h\(^{-1}\) compared to the near-shore mean of 4.47km.h\(^{-1}\) (t-test, \(t\)-value = -1.4928, df = 210, \(P = 0.04775 \)).

Leg speed also showed a significant and positive correlation with linearity (Figure 12b, \(r^2 = 0.2103, r = 0.4586, P < 0.00005 \)) but there was no significant correlation between speed and net course \((r^2 = 0.0076; r = 0.0874, P = 0.2049) \). A significant and negative correlation between linearity and group size suggests that larger groups tended to display non-migratory movement (Figure 12c, \(r^2 = 0.0228, r = -0.1511, P = 0.0278 \)).

Seasonal patterns in movement

While the various trackline parameters considered independently showed seasonal differences between winter and summer, a movement pattern was more difficult to define for combined parameters. To test for seasonal patterns in movement, a post hoc multivariate approach was attempted using the software PRIMER v6 (Clarke 1993, Clarke and Warwick 2001, Clarke and Gorley 2006). Each whale group was considered a “sample” with
values for the three parameters leg speed, course, and linearity. Parameter values were normalised (the mean subtracted from each value and divided by the standard deviation) and the similarity between every pair of samples calculated based on Euclidian distance. In a non-metric multi-dimensional scaling (MDS) ordination of whale groups (Figure 13a; stress-value = 0.1 indicating a good 2-dimensional representation), with season selected as the identifying feature (or “factor”, see Clarke and Gorley 2006), the first outstanding feature is two major groupings of samples into the top and bottom halves of the plot. The second major feature is the clustering of most autumn/winter samples into the bottom right of the lower group. Mid-spring samples are the most dispersed, and more or less equally distributed between the top and bottom clusters. While the summer samples are also found in both clusters they are located more to the left of the plot particularly the mid- to late summer samples (Figure 13a, all to the left of line A). A one-way Analysis of Similarities (ANOSIM) was applied to samples according to the seven seasonal groupings. This is a non-parametric permutation procedure applied to a resemblance (= similarity) matrix based on the rank similarity of each sample. It calculates a global R-value and overall P-value, as well as a measure of significance of similarity for pair-wise tests between sample groups. The ANOSIM showed an overall significant difference (global $R = 0.055$, $P = 0.005$) between seasonal groupings. The pair-wise comparison between seasons (Table 7) showed no difference between groups from the two autumn/winter seasons. Late winter and early spring stood out as the least similar to any other seasons, differing significantly from all (including each other) except mid-spring. The latter (October) was the only season that did not differ from any other season. The similarity between late spring and early summer, and the significant difference between both these seasons with mid-to late summer is also noteworthy. To establish which of the three parameters were responsible for the groupings a Principal Component Analysis (PCA) was carried out on the data and the two factors responsible for most of the patterning (in the MDS ordination) shown as an XY scatterplot with the parameters overlaid (Figure 13b). From this we can conclude that differences in course were mostly responsible for the separation of the top (northbound) and bottom (southbound) clusters, accounting for 33.1% of the variation, while the strong grouping of winter samples was due to speed and linearity (49% of variation).

Migrators vs non-migrators

In order to show up possible differences in the movement patterns of “migrators” and “non-migrators” according to their linearity of movement, the groups were plotted in an MDS ordination (as described above), this time including the parameters: leg speed, course, and distance from shore, and using linearity as
distinguishing factor (migrators >0.9 and non-migrators <0.9). The plot (Figure 14a, stress value = 0.15 showing
a fairly reliable 2-dimensional representation, Clarke 1993) shows some degree of separation, firstly between
the two groupings (group A = non-migrators, group B = migrators), and secondly within migrators (groups B1
and B2). PCA analysis showed distance from shore and leg speed to be responsible for the separation between
migrators and non-migrators, while the two migratory subgroups separated out mainly due to differences in
course, B1 containing northbound and B2 southbound groups (Figure 14b). Migrators and non-migrators were
found to be significantly different when an ANOSIM was applied (global $R = 0.133, P = 0.001$).

Feeding behaviour

From land eight groups were observed to display apparent feeding behaviour, which included milling about
(slow movement of indeterminate direction) and faster erratic movement with frequent directional changes.
Nine groups intercepted by boat also appeared to be engaged in feeding though actual feeding behaviour (lunges
at surface) was directly observed during only five of these (Table 8). Fourteen groups were observed to engage
in surface activity other than feeding, including repeated breaching and competitive behaviour such as flipper
slapping. Defecation was observed 37 times for 23 groups intercepted during nine months from 2001-2006. All
defecating groups were seen during the months of October 2002/04 (5 times), November 2001/04/05/06 (11),
December 2001/04 (5) and January 2003 (3). The total number of defecating groups seen from the boat,
expressed as a fraction of the total humpback groups intercepted during these nine months (94 groups) results in
a defecation incidence of 24.47%. The groups included two of the groups observed to be feeding (Table 8). The
stools ranged in colour from dark/bright pink to brick red, presumably indicating crustacean prey. Most of the
faecal samples collected (preserved in 95% ethanol) were highly diluted and consisted of whitish to pink paste
in emulsion or as a particulate suspension. Four samples that contained slightly larger particles were examined
through a stereo-microscope and yielded unidentifiable crustacean (euphausid?) exoskeleton remains, with the
exception of one collected on 29 November 2006 that contained fairly intact specimens of a Hyperiid amphipod
(identified using keys in Dunbar 1963 and Gibbons 1999).

The possible relationship between observed/suspected feeding behaviour (including defecation), and whale
movement patterns and distribution was explored by labelling all groups tracked on the days where such
behaviour was recorded (all groups 30 October 2001 - 26 January 2003 in Table 8) as “feeding” groups, and all
groups on other days as “non-feeding”. Using the same MDS plot (Figure 14, based on the parameters leg speed,
course and distance from shore) this time with feeding/non-feeding as distinguishing factor, we see a strong similarity between the grouping based on linearity (Figure 14a) and feeding behaviour (Figure 14c).

Acoustic stations

Thirty-three acoustic stations of a minimum of 10 minutes each were held from 2001 – 2003 during the months of August, September, October, November, December and January. During a total time of 141 minutes monitored, no humpback vocalisations were detected.

Discussion

Despite variable and, at times, discontinuous search effort, the summer seasonal coverage of this study meant across year effort was more extensive than during any previous attempt at shore-based monitoring of southern humpback whales. All seasons, with the exception of autumn, were well surveyed. This allowed us to compare whether the observation of a ‘suspended migration’ made by Best et al. (1995) during spring was indeed unusual, or whether the observed whale availability and behavioural patterns were applicable to other seasons and years.

Sighting conditions, visibility and distance of whales from shore

On days where searching occurred the mean sightability, based on the various environmental observations, appeared to have been constant enough to allow comparison of sighting rates across seasons. The significant seasonal variation of mean visibility at the midline between some seasons may raise concerns about whether whale groups were missed in the search area due to limited visibility. Such conditions were most prevalent during summer months when not only the lowest visibility was recorded, but also the maximum distances at which whales were tracked exceeded visibility maxima estimates. It suggests that visibility was difficult to judge during these months, in all likelihood as a result of the frequent occurrence of coastal fog, persistent south-easterly winds, or strong refraction due to the strong gradient between high air and low sea temperatures. Despite this some of the highest sighting rates were still recorded during summer.

Compared to the radial sighting distances to whales, the overall mean visibility was always greater, excepting mid-spring and mid-to late summer. However when the mean sighting distance was compared to the mean visibility measurement prevailing at the time of sighting, it was greater than the visibility up to about 7km. This
apparent contradiction might be the consequence of the visibility measurements being taken on the midline, while most sightings were made well away from the midline. If alongshore visibility should be greater than offshore visibility in times of moderate-poor visibility (for instance, owing to the majority of haze being over the sea rather than the land) this could account for the apparent discrepancy. When visibility was good, i.e. 7km and further, this effect seem to disappear. Considering that the seasonal mean distance from shore of whale groups never exceeded 6km, and was less than 4km in all but two seasons (see below), and assuming that north- or southbound whales would remain at a more or less constant distance from the shore as they travel through the search area, it seems likely that the majority of whale would have passed within the visibility range at some stage. This is apparent when comparing the mean radial distance, at which whales were sighted, to the calculated distance to the nearest shoreline. Groups were evidently sighted well before they passed the nearest point to the tower. Visibility as measured through the theodolite is probably a conservative estimate of the distance at which whales may be sighted (but not necessarily tracked), given that cues such as blows are visible with the naked eye, and not only at the 22x magnification.

The mean distance of whales from the shore was fairly similar for most seasons at around 3.5km with the notable exceptions of late winter and mid-spring when it was about 5.5km. Not surprisingly these two seasons saw a greater proportion of groups in the 5 - 10km range. On the whole though, the majority of whales were still seen in the ‘inshore’ zone (<5km) with very few beyond 10km, and this was unlikely to be as a result of restricted visibility offshore. This is compatible with observations at Cape Columbine during mid- to late spring (Best et al. 1995) though the mean offshore distance of 3.1 ± 0.2km recorded in that study was lower than both our overall mean (4.41± 0.21km) and that of the same season (5.78 ± 0.48km). This may be because Cape Columbine is situated slightly more to the west than Saldanha Bay and so possibly acts as a headland that coastally migrating whales have to navigate around.

Seasonality of occurrence and movement patterns

Mid-spring (=October) stands out in more than one respect as a seasonal “turning point”. Firstly, the highest sighting rate was recorded at this time of year and it remained relatively high from then onwards, this despite the decreased search effort and reduced visibility. Secondly, there were also noticeable changes in the whale movement parameters from autumn to early spring, and the remaining seasons. Mean actual swimming speed started decreasing significantly from mid-spring onwards, from more than 6km.hr\(^{-1}\) in winter to less than 3km.hr\(^{-1}\) in late summer. The corresponding mean net swimming speeds are well within the range of recorded
“migration” speeds of humpback whales recorded off the east coast of South Africa (Findlay 1994), and elsewhere (see Noad and Cato 2007, Lagerquest et al. 2008 for discussions). However, the low actual and net speeds recorded in mid- to late summer certainly fall in the lower end of the range and are very similar to the low speeds recorded at Cape Columbine (Best et al. 1995).

Sightings in mid-spring were distributed almost evenly between the near and offshore zones, recording the overall highest mean distance from shore. It was also the month where non-directionality in movement became a prominent feature and where almost equal numbers of groups either milled around or moved in near-straight lines, in all major directions. Multivariate representation of the movement variables in combination confirms mid-spring as a period where whale movement was less distinctive than in any other seasons, sharing similarities with both the preceding and following seasons. This is in strong contrast with groups from the winter months that all displayed movement patterns that were, with few exceptions, very alike in terms of speed, course and linearity. From this one could speculate that mid-spring represents a period where we observed an overlap of two behaviourally distinctive “sub-groups” of humpbacks; one component migratory, although judging by the observed direction both north- and southbound, and the other distinctly non-migratory, and each perhaps occurring at different distances from the shore. Ølsen (1914) had made mention of similar “anomalous” behaviour off Saldanha during 1912/13, and speculated that there may be two components to humpbacks moving past during the northern migration. One consisted of animals that moved straight to the north and had empty stomachs when caught, while the other was seen to move “wildly back and forth” along the coast apparently in search of food (see later discussion on feeding).

Ølsen (1914) also reported on whales frequently seen by vessels further offshore that presumably met the coastline north of South Africa on their northward migration. Reeves et al. 2004 made similar inferences during an estimate of historical seasonal distributions of humpbacks and blue whales from 18th and 19th century logbooks of catches in the North Atlantic. They concluded that the humpbacks migrated over an extended period making use of both near-shore and offshore routes, and that sporadic feeding took place well south of “traditional” feeding grounds, a behaviour that may persist to the present. Our finding that groups further offshore moved slightly faster may support this, though the distance that Ølsen refers to was presumably well beyond the visibility range of our station. It therefore remains difficult to distinguish different “components” of the population based on movement patterns alone.
Defining migrators/non-migrators

High availability or relative abundance of whales in an area, whether based on direct observations or historical catches, is not necessarily conclusive evidence of a migration peak, but could represent a local feeding aggregation (see later discussion on feeding). The multivariate comparison of migrators versus non-migrators did show a difference between these groupings on the basis of actual swimming speed and distance from shore. Furthermore, within the “migratory” group two sub-groups separated out on the basis of their course; this suggests the existence of two migrational streams heading in opposite directions. Although we saw a definite increase in the proportion of groups showing non-migratory (non-linear) movement from autumn through to late-summer, linearity alone can thus not be considered a reliable indicator of migrational behaviour without taking into account direction of movement, and speed. For example in early spring more groups showed linearity >0.9 but the number of groups heading south and in other directions were about equal.

Our observations in October/November (mid- to early spring) are consistent with those made earlier at Cape Columbine (Best et al. 1995) during the same months, in that the groups showed both southerly and northerly directionality. Perhaps more difficult to explain is the dominance of south-bound groups, moving at higher speed during the winter months, at a time when we would still expect to observe at least the tail-end of a northern migration (Ølsen 1914). It would appear that although groups that displayed both strong directionality and linearity were present during almost all the seasons, there was a shift in movement pattern from October/November onwards when we saw both strong directed movement (both north and south), as at Cape Columbine, but also an increase in the “non-migrating” and slow swimming components. Whether the “fast-and-straight” swimmers were actually migrating or simply moving up or down the coast, perhaps between Cape Columbine and Saldanha, in a determined manner (as suggested by Ølsen 1914) remains uncertain. What is clear is that the dominant movement pattern changed between winter and summer: fast movers became fewer towards summer, especially ones heading south, and by mid- to late summer almost all groups moved slowly. This is supported by the significantly low average speed of 2.9km.hr\(^{-1}\) and the virtual disappearance of the fast-moving and straight-swimming component that characterised groups sighted during winter months.

Other behaviours observed elsewhere during migration have included singing (Clapham and Mattila 1990) and non-acoustic means of communication such as breaching, tail slapping and other surface behaviour (Dunlop et al. 2007, 2008). Although surface active behaviour was observed, we did not detect any
vocalisations, though we have received a reliable report of singing on 29 December 2003 from an observer in a steel-hulled yacht near Dassen Island, approx. 50 km south of Saldanha (P. Evans pers. comm.).

Group size, sex-ratio, and composition

The changes observed in mid-spring were not limited to movement patterns alone. Group sizes recorded were larger than average, and it was the only season where the overall sex-ratio varied significantly from parity with a strong female bias of about 2:1 even when cow-calf pairs were excluded. This is in marked contrast to the findings of Brown et al. 1995 who described a migration (both north- and southward) off the Eastern Australian coast from May-October that was overall highly skewed towards males. Similar apparent male-dominated sex ratios have been seen on breeding grounds (Craig and Herman 1997, Palsbøll et al. 1997). With no evidence for any stock-level deviations from an approximate 1:1 sex ratio (see discussion in Clapham and Mead 1999) it has been speculated that male bias during migration may be a result of some females possibly remaining in “feeding” areas (presumably high latitude) throughout winter. On the breeding grounds such a bias might be explained by a longer residence time of males (Craig and Herman 1997). Our discovery of a region with a significant female bias may offer a plausible explanation as to where the “missing” females go while males complete the full migration, with mid-spring falling roughly between the northward and southward migrations.

Compared to ours, the study site of Brown et al. 1995 was situated much closer to the Group V northern destination (breeding area), but unfortunately they did not provide a seasonal (monthly) breakdown of recorded sex-ratios which prevents more detailed comparisons. A number of questions thus still remain: (1) Where were these females during winter? Did they spend time in an unknown area or merely travel at a more leisurely pace from the feeding grounds, compared to males, to reach the coast of Saldanha during mid-spring? (2) Do male-biased sex ratios occur at localities further up the west coast of Africa? Whaling data from ‘Congo’ (now Gabon) at about 1°S indicated that in 1949 males made up nearly 65% of all catches, 47.55% in 1950 and about 50% in 1951 (Budker and Collignon 1952), implying that the situation is not markedly different than in the breeding grounds for humpbacks. Pomilla and Rosenbaum (2006) however, more recently reported a male-biased sex-ratio at breeding grounds off Gabon, as well as Madagascar.

Apart from the sex ratio at any given site, a number of authors have commented on differential timing of migrating humpbacks based on sex, age and reproductive state (see summaries in Clapham 1996, 2000), as well as group composition (Brown and Corkeron 1995). Typically, for southern hemisphere humpbacks, lactating females with ‘yearling’ calves are believed to head north from the feeding grounds first. They are
followed by immature whales of both sexes; then mature males and resting females, and finally pregnant females (Dawbin 1997). The southward migration occurs in more or less the same sequence, except that some females may now be pregnant, thus expediting their departure. The last to leave breeding areas are cows with new-born calves (Chittleborough 1965, also Dawbin 1966). Bearing in mind that we could not assess the reproductive condition of female whales except when they were accompanied by small calves, we did observe seasonal changes in composition of completely sampled groups, suggesting some staggering in migrational timing. The proportion of singletons (both males and females) decreased from winter to summer, with single females disappearing altogether after late spring. Again, mid-spring stands out with the first appearance of male/female pairs; this was also the most commonly recorded grouping off East Australia (Brown and Corkeron 1995), especially during the northward migration. The decrease in singletons of both sexes and increase in mixed gender pairs from mid-spring may be evidence of increased breeding interactions. This may be due to ‘mate guarding’, as suggested by Brown and Corkeron (1995), a notion supported by Clapham’s (1993) finding of male-female dyads on feeding grounds (also see discussion in Valsecchi et al. 2002). We did not test for the relatedness of pairs, so males accompanying females could conceivably include some large male yearlings not identified as calves.

From late spring onwards the number of cows accompanied by calves was highest, although some cow-calf pairs were sighted in most months. The peak birth month for southern hemisphere humpbacks is early August (Matthews 1938, Chittleborough 1958, 1965). Though not explicitly measured, the size of calves observed off Saldanha (estimated relative to the size of the accompanying female) ranged from about new-born size in a few instances (3.96 - 4.57m) to the suggested size at independence (between 8 and 10m) (Clapham et al. 1999) with the majority falling in roughly “half the mother’s length” or between 5 and 6 metres. This suggests considerable variation in the departure time from breeding areas, and arrival at, or transit through the study area, or may reflect some yearlings or second-year animals still accompanied by their mothers. There is some support for the latter possibility from the records of adult female humpback whales accompanied by calves/juveniles, as described in a Norwegian Whaling Statistics form (obtained from Sue Burkett, IWC), annotated by the manager of the Hangklip whaling station (K. Bernsten) in 1913 (Table 9). Between 21 October and 19 November, eight small whales were landed that were described as being accompanied by their mothers (or whales assumed to be their mothers) at the time they were taken, seven of which were also killed and proved to be females of adult size (12.8-15.24 m). Six of the small whales were 8.53 – 8.84 m long, or about the size humpback whales at 10-11 months of age (8 – 10 m, Clapham et al. 1999). These were presumable calves from
the previous year. The other two were considerably smaller (7 – 7.3 m), and may represent calves-of-the-year, about 3 months old, a finding not inconsistent with some estimates of early growth in humpback whales (Stevick 1999).

Feeding behaviour

Humpback whales have been observed to shift their feeding areas as a response to changes in prey availability in the Gulf of Maine, North Atlantic over a period of less than 10 years (Weinrich et al. 1997). At traditional feeding grounds in the Southern Ocean, Murase et al. (2002) showed that humpback whales associate strongly with high concentrations of euphausiids and that their distribution was determined by the availability and location of prey species. They suggested that humpbacks should be able to feed equally efficiently during migration in high-density krill swarms. Such swarms of the krill belonging to the dominant species in the Southern Benguela, *Euphausia lucens*, do occur periodically off Saldanha (Stuart 1986, Pillar et al. 1989, 1992), though numerous other meso- and macro zooplanktonic crustaceans (other euphausiids, amphipods, mysids) and small pelagic fish are found in the area that could be potential candidates for humpback prey (Hutchings et al. 1991, Gibbons et al. 1995, Gibbons and Hutchings 1996). Historical records of humpback stomach contents from the region (Olsen 1914) include copepods (‘rodaate’ in Norwegian) and fish: a stomach full of ‘herrings’ from a humpback whale taken at Donkerget in 1912 or 1913 was illustrated by Olsen (1914), while the stomach contents of four humpbacks examined there in 1926 were empty (2) or contained fish (2). One of the latter, taken on 25 June was crammed with fish noted as ‘?clupeoids’, while the other (taken on 20 September) was filled with a pasty mass of fish scales and bones (Matthews 1938). However, four stomachs examined at Donkerget in 1962 and 1963 in the months of June (1), July (2) and August (1) were all empty (Best 1967).

Feeding by humpbacks during migration has thus far been considered opportunistic, such as the surface feeding on small “baitfish” by a single humpback associated with bottlenose dolphins (*Tursiops aduncus*) observed off Queensland, Australia (Stockin and Burgess 2005) and the more recent description of a ‘supplemental’ feeding ground by Stamation et al. (2007), also for the Area V stock. However, Dawbin (1956) suggested that feeding opportunities could cause deviations or interruptions in the southward migration of humpback whales past New Zealand, recently confirmed by satellite telemetry (Gales et al. 2009), and a similar situation seems to occur off the west coast of South Africa. Although we observed actual feeding only five times, defecations were observed in almost a quarter of all groups, during months when defecation was recorded. In many cases we saw movements and concentrations of whales that suggested feeding, similar to
observations at Cape Columbine in 1993 (Best et al. 1995). These groups almost always consisted of two or more animals, and on several occasions these smaller “sub”-groups formed loose aggregations of up to 20 animals that moved around in a fairly large general area. Such aggregations were first seen in December 2001, and again in the months of October 2002 and November 2007. The strong correspondence of groups seen or suspected to be feeding (based on behavioural observations) and “non-migratory” groups (based on movement parameters) as shown by multivariate analysis, suggests that most groups in the general area were probably engaged in feeding.

The regular incidence of defecations seems to support the fact that feeding occurred over a number of days in the vicinity (following the reasoning of Danilewicz et al. 2008). We observed swarms of zooplankton containing euphausids, mysids and gelatinous organisms at the surface on at least one occasion next to feeding humpback whales (17 October 2002). Massive swarms of the krill species *Euphausia lucens* were also observed to wash up on the beach of North Bay inside Saldanha Bay during October 2002 and 2006. A plankton haul carried out near a feeding group on 26 January 2003 contained specimens of *E. lucens* and the amphipod *Parathemisto gaudichaudi* (Gibbons 1999). These findings, along with the amphipod remains found in one faecal sample, and an earlier record by Findlay and Best (1995) of an entangled juvenile humpback that had fed on stomatopods before its death, suggests that crustacean prey is not confined to euphausids.

As in October/November 1993 (Best et al. 1995), an examination of humpback movement patterns off the South African west coast failed to provide strong supporting evidence for a conventional bi-directional humpback migration, this despite longer seasonal coverage and clear seasonal peaks in relative abundance during early-spring and summer. These peaks, when considered in combination with the observed movement pattern pointed to activities other than migration, in particular localised feeding. In the light of this, it seems that Ølsen’s (1914) observations nearly a century ago, as well as those of Best et al. (1995) were not anomalous for the region, and that a significant component of humpback whales may make use of the area as a feeding ground. This occurs at least from October to February/March, well beyond the expected peak of the southern migration. The prevalence of this behaviour during the time when the southward migration should take place may relate to the nutritional condition of the animals, as suggested by the much lower oil yields of southward migrating humpbacks compared to north-bound ones off West Australia (Chittleborough 1965). Specifically, females that are either pregnant or nursing are likely to have a greater urgency to feed at the first available opportunity. Males humpbacks would presumably also have expended considerable energy in the breeding areas, as
demonstrated for sei whales *Balaenoptera borealis* heading south that had significantly reduced testis-mass compared to during the northern migration (Best and Lockeyer 2002).

The spatial extent of this feeding/non-migratory behaviour remains unclear. If we assume it to be associated with upwelling cells of high productivity in the southern Benguela system (Weeks *et al.* 2006), the range could span for about 1 000km from Lüderitz in the north, to Cape Point in the south. Some historical observations in summer of humpback whales off the Namibian coast at Hollams Bird Island (see John Keeler’s 1830 account mentioned in Best and Shaugnessy 1979), and catches in the 19th century off Walvis Bay up to January (Townsend 1935) may support this. There are notable differences in the nature of these upwelling cells: Cape Columbine and the Cape Peninsula cells are synchronous but seasonally variable, with highest upwelling in spring and summer while the Namaqua cell (Lüderitz) is more perennial and extends further offshore (Weeks *et al.* 2006). Movement between different cells could explain the determined northerly and southerly directionality seen from mid-spring through summer.

The movement patterns and behaviour observed in this study do not exclude the presence of a strictly migratory population component, but make it virtually impossible to identify it from these data. Grey whales (*Eschrichtius robustus*) that feed opportunistically in “pockets” along their migrational route in the eastern Pacific (Moore *et al.* 2007) are now considered to be flexible foragers. The putative migration of humpbacks appears to represent not only a continuum in terms of breeding behaviour as suggested by Brown and Corkeron (1995), but also includes a component of foraging. Based on our findings, as well as an ever-growing number of records of feeding during migration (such as Stamation *et al.* 2007), in traditional “wintering” areas (Danilewicz *et al.* 2008, de Sá Alves *et al.* 2009) and “rediscoveries” of previously unknown feeding grounds (Gibbons *et al.* 2003), “flexible forager” is a label which seems equally appropriate for humpback whales.

The possibility exists that such feeding behaviour may occur at other mid-latitude locations with similar oceanographic conditions to the southern Benguela, provided that suitable prey organisms are present at sufficiently high densities: The resident population of humpback whales of the Arabian Gulf certainly proves that they are able to subsist off the monsoon and upwelling driven productivity found off Oman (Mikhalev 1997). A better understanding of the scale of this behaviour off the west coast of South Africa may only be achievable through satellite telemetry or a sub-region wide survey (ship or aerial) during the peak spring to summer months, similar to the study by Moore *et al.* (2007) on grey whales.
Acknowledgements

The fieldwork at Saldanha was supported by the National Research Foundation, South Africa (Grant number 2047517), and in 2002/03 also by the Earthwatch Institute, the Mazda Wildlife Fund (through the provision of a field vehicle), and SASOL (through the donation of two four-stroke engines). PADI Project AWARE (UK) provided funding for refurbishing the lookout. JB gratefully received a grant-in-aid from the Society for Marine Mammalogy and University of Pretoria post-graduate bursaries (2001-2003).

We are extremely indebted to the South African Navy for granting access to the lookout positions at Baviaansberg and Malgaskop, and allowing us to use a mooring at the Präsident Jetty, and Prof J. Malan and Col N. Slabber of the South African Military Academy for the provision of logistical help, including access to computer facilities and accommodation.

Data collection would have been impossible without the enthusiastic assistance of a total of 13 Earthwatch and nearly 100 other local and international volunteers, to all of whom we owe a big debt of gratitude. Particular thanks are due to Maria Sabo, Erich Koch, Simon Elwen, Shaun Dillon, Theoni Photopoulos, Laura Beskers, Isabelle Fontaine, Pauline De los, André du Randt, Jenny Brash, and Nick van Barneveld who all volunteered for longer than four weeks.

We are grateful to the Sackler Institute for Comparative Genomics, American Museum of Natural History, in particular Dr George Amato, Dr Rob DeSalle, Matt Leslie and Jacqueline Ay-Ling Loo.

Lara Atkinson is thanked for assistance with multivariate analyses and PRIMER.

This work was carried under permits issued to PBB by the Minister for Environmental Affairs & Tourism, in terms of Regulation 58 of the Marine Living Resources Act, 1998 (Act no. 18 of 1998).
References

Rosenbaum HC, Mate B (submitted manuscript) From north of the equator to the Antarctic: unique and unexpected movements from humpback whales off the coast of West Africa and throughout the eastern South Atlantic Ocean. *Proceedings of the Royal Society B*.

1 **Tables**

Table 1. Summary of mean sightings per unit effort (SPUE, whale groups per 10hrs of search effort), range and search effort by seasonal grouping based on monthly sub-samples (four per month)

<table>
<thead>
<tr>
<th>Season</th>
<th>n</th>
<th>Mean SPUE ± SE</th>
<th>Min – Max</th>
<th>Total hrs on watch</th>
<th>Days on watch</th>
<th>Hrs/day on watch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(groups per 10hrs)</td>
<td>(SPUE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late autumn to mid-winter</td>
<td>12</td>
<td>0.69±0.28</td>
<td>0 - 3.06</td>
<td>459.08</td>
<td>69</td>
<td>6.65</td>
</tr>
<tr>
<td>Late winter</td>
<td>8</td>
<td>1.19±0.32</td>
<td>0 - 2.46</td>
<td>293.3</td>
<td>46</td>
<td>6.38</td>
</tr>
<tr>
<td>Early spring</td>
<td>8</td>
<td>0.71±0.18</td>
<td>0 - 1.45</td>
<td>260.8</td>
<td>38</td>
<td>6.86</td>
</tr>
<tr>
<td>Mid-spring</td>
<td>8</td>
<td>3.07±1.25</td>
<td>0.43 - 10.46</td>
<td>242.23</td>
<td>42</td>
<td>5.77</td>
</tr>
<tr>
<td>Late spring</td>
<td>8</td>
<td>1.51±0.40</td>
<td>0 - 2.99</td>
<td>238.63</td>
<td>35</td>
<td>6.81</td>
</tr>
<tr>
<td>Early summer</td>
<td>7</td>
<td>2.46±1.16</td>
<td>0 - 8.73</td>
<td>180.95</td>
<td>32</td>
<td>5.65</td>
</tr>
<tr>
<td>Mid to late summer</td>
<td>6</td>
<td>2.59±0.92</td>
<td>0 - 6.48</td>
<td>127.18</td>
<td>20</td>
<td>6.36</td>
</tr>
<tr>
<td>All seasons</td>
<td>57</td>
<td>1.63±0.28</td>
<td>0 - 10.46</td>
<td>1802.18</td>
<td>282</td>
<td>6.35</td>
</tr>
</tbody>
</table>
Table 2. Seasonal mean radial sighting distance from the tower to humpback groups on which a reliable theodolite fix was made (n=251, shaded columns), and mean hourly visibility measured at the midline (all in km). Eight whale groups sighed within bays were excluded from this analysis. Seasons between which sighting distances from tower to whales were significantly different are indicated in bold ($P < 0.05$, Tukey’s HSD test for unequal samples sizes)

<table>
<thead>
<tr>
<th>Season</th>
<th>Means ± SE (km)</th>
<th>n whales</th>
<th>visibility</th>
<th>Minimum (km)</th>
<th>Maximum (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>whales</td>
<td>whales</td>
<td>visibility</td>
<td>Whales</td>
<td>whales</td>
</tr>
<tr>
<td>Late autumn to mid-winter</td>
<td>7.46±0.74</td>
<td>27</td>
<td>496</td>
<td>2.68</td>
<td>18.98</td>
</tr>
<tr>
<td>Late winter</td>
<td>8.61±0.74</td>
<td>25</td>
<td>293</td>
<td>2.16</td>
<td>16.62</td>
</tr>
<tr>
<td>Early spring</td>
<td>5.29±0.82</td>
<td>16</td>
<td>256</td>
<td>1.77</td>
<td>11.46</td>
</tr>
<tr>
<td>Mid-spring</td>
<td>8.67±0.55</td>
<td>71</td>
<td>237</td>
<td>1.24</td>
<td>23.28</td>
</tr>
<tr>
<td>Late spring</td>
<td>6.40±0.60</td>
<td>32</td>
<td>233</td>
<td>1.34</td>
<td>13.89</td>
</tr>
<tr>
<td>Early summer</td>
<td>6.18±0.56</td>
<td>49</td>
<td>185</td>
<td>2.21</td>
<td>25.11</td>
</tr>
<tr>
<td>Mid to late summer</td>
<td>6.22±0.59</td>
<td>31</td>
<td>134</td>
<td>2.25</td>
<td>17.47</td>
</tr>
<tr>
<td>All seasons</td>
<td>7.24±0.26</td>
<td>251</td>
<td>1834</td>
<td>1.24</td>
<td>25.11</td>
</tr>
</tbody>
</table>
Table 3. Between-season comparison of visibility measurements at midline using Tukey’s HSD test for unequal sample sizes (shading indicates significant difference between seasons, P value < 0.05)

<table>
<thead>
<tr>
<th>Season</th>
<th>Autumn/mid-winter</th>
<th>Late winter</th>
<th>Early spring</th>
<th>Mid-spring</th>
<th>Late spring</th>
<th>Early summer</th>
<th>Mid-to late summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn/mid-winter</td>
<td>0.010203</td>
<td>0.592470</td>
<td>0.999879</td>
<td>1.000000</td>
<td>0.091302</td>
<td>0.000111</td>
<td></td>
</tr>
<tr>
<td>Late winter</td>
<td>0.752770</td>
<td>0.010471</td>
<td>0.025587</td>
<td>0.000026</td>
<td>0.000026</td>
<td>0.000026</td>
<td></td>
</tr>
<tr>
<td>Early spring</td>
<td></td>
<td>0.409064</td>
<td>0.581084</td>
<td>0.000538</td>
<td>0.000026</td>
<td>0.000026</td>
<td></td>
</tr>
<tr>
<td>Mid-spring</td>
<td></td>
<td></td>
<td>0.999984</td>
<td>0.186617</td>
<td>0.000309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late spring</td>
<td></td>
<td></td>
<td></td>
<td>0.113501</td>
<td>0.000147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.259254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-to late summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Seasonal mean distance from position of first reliable theodolite fix on whale groups to nearest coastline (km) and minimum and maximum distances of whales from shore

<table>
<thead>
<tr>
<th>Season</th>
<th>Mean ± SE (km)</th>
<th>n</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late autumn to mid-winter</td>
<td>3.69±0.35</td>
<td>27</td>
<td>0.48</td>
<td>9.34</td>
</tr>
<tr>
<td>Late winter</td>
<td>5.58±0.75</td>
<td>25</td>
<td>1.34</td>
<td>15.65</td>
</tr>
<tr>
<td>Early spring</td>
<td>3.35±0.58</td>
<td>16</td>
<td>0.58</td>
<td>9.93</td>
</tr>
<tr>
<td>*Mid-spring</td>
<td>5.81±0.48</td>
<td>71</td>
<td>0.37</td>
<td>19.01</td>
</tr>
<tr>
<td>Late spring</td>
<td>3.74±0.43</td>
<td>32</td>
<td>0.37</td>
<td>7.73</td>
</tr>
<tr>
<td>*Early summer</td>
<td>3.36±0.45</td>
<td>49</td>
<td>0.038</td>
<td>20.75</td>
</tr>
<tr>
<td>Mid to late summer</td>
<td>3.86±0.56</td>
<td>31</td>
<td>0.58</td>
<td>14.55</td>
</tr>
<tr>
<td>All seasons</td>
<td>4.42±0.21</td>
<td>251</td>
<td>0.37</td>
<td>20.75</td>
</tr>
</tbody>
</table>
Table 5. Seasonal sex-ratios in humpback whales biopsied in the region of Saldanha Bay, South Africa 1999-2006 (Shading indicates $P < 0.05$)

<table>
<thead>
<tr>
<th>Season (months)</th>
<th>% female</th>
<th>% male</th>
<th>n</th>
<th>χ^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All seasons combined</td>
<td>56.52</td>
<td>43.48</td>
<td>207</td>
<td>3.5220</td>
<td>0.06057</td>
</tr>
<tr>
<td>Autumn/ mid-winter (Mar-Jul)</td>
<td>21.43</td>
<td>78.57</td>
<td>14</td>
<td>4.5700</td>
<td>0.03251</td>
</tr>
<tr>
<td>Late winter (Aug)</td>
<td>40.00</td>
<td>60.00</td>
<td>5</td>
<td>0.2000</td>
<td>0.654721</td>
</tr>
<tr>
<td>Early spring (Sep)</td>
<td>45.45</td>
<td>54.55</td>
<td>11</td>
<td>0.0910</td>
<td>0.763025</td>
</tr>
<tr>
<td>Mid-spring (Oct)</td>
<td>66.00</td>
<td>34.00</td>
<td>50</td>
<td>5.1200</td>
<td>0.023652</td>
</tr>
<tr>
<td>Late spring (Nov)</td>
<td>57.69</td>
<td>42.31</td>
<td>52</td>
<td>1.2310</td>
<td>0.267258</td>
</tr>
<tr>
<td>Early summer (Dec)</td>
<td>51.43</td>
<td>48.57</td>
<td>35</td>
<td>0.0286</td>
<td>0.865772</td>
</tr>
<tr>
<td>Mid to late summer (Jan, Feb)</td>
<td>65.00</td>
<td>35.00</td>
<td>40</td>
<td>3.6000</td>
<td>0.057780</td>
</tr>
</tbody>
</table>

Excluding calves (n=195)

<table>
<thead>
<tr>
<th>Season (months)</th>
<th>% female</th>
<th>% male</th>
<th>n</th>
<th>χ^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All seasons combined</td>
<td>58.46</td>
<td>41.54</td>
<td>195</td>
<td>5.5850</td>
<td>0.018120</td>
</tr>
<tr>
<td>Autumn/ mid-winter (Mar-Jul)</td>
<td>23.08</td>
<td>76.92</td>
<td>13</td>
<td>3.7690</td>
<td>0.052205</td>
</tr>
<tr>
<td>Late winter (Aug)</td>
<td>40.00</td>
<td>60.00</td>
<td>5</td>
<td>0.2000</td>
<td>0.654721</td>
</tr>
<tr>
<td>Early spring (Sep)</td>
<td>45.45</td>
<td>54.55</td>
<td>11</td>
<td>0.0910</td>
<td>0.763025</td>
</tr>
<tr>
<td>Mid-spring (Oct)</td>
<td>67.35</td>
<td>32.65</td>
<td>49</td>
<td>5.8980</td>
<td>0.015159</td>
</tr>
<tr>
<td>Late spring (Nov)</td>
<td>57.14</td>
<td>42.86</td>
<td>49</td>
<td>1.0000</td>
<td>0.317311</td>
</tr>
<tr>
<td>Early summer (Dec)</td>
<td>51.52</td>
<td>48.48</td>
<td>33</td>
<td>0.0303</td>
<td>0.861805</td>
</tr>
<tr>
<td>Mid to late summer (Jan, Feb)</td>
<td>74.29</td>
<td>25.71</td>
<td>35</td>
<td>8.2570</td>
<td>0.004059</td>
</tr>
</tbody>
</table>
Table 6. Mean actual swimming speed ("leg speeds") (km.h\(^{-1}\)) and net speed by season, with Dunn's multiple comparison post-test on actual swimming speeds (seasons with significant differences \(P < 0.05\), indicated by shading)

<table>
<thead>
<tr>
<th>Season</th>
<th>n</th>
<th>Mean ± SE</th>
<th>Mn</th>
<th>Max</th>
<th>Dunn's multiple comparison of actual swimming speeds between seasons: z-value ((P) value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autumn/mid-winter Late winter Early spring</td>
</tr>
<tr>
<td>Autumn/mid-winter</td>
<td>23</td>
<td>6.07 ± 0.35</td>
<td>1.68</td>
<td>8.47</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>Late winter</td>
<td>25</td>
<td>6.53 ± 0.29</td>
<td>3.46</td>
<td>9.32</td>
<td>ns - ns</td>
</tr>
<tr>
<td>Early spring</td>
<td>16</td>
<td>5.77 ± 0.61</td>
<td>1.89</td>
<td>9.62</td>
<td>ns ns -</td>
</tr>
<tr>
<td>Mid-spring</td>
<td>55</td>
<td>4.14 ± 0.33</td>
<td>0.55</td>
<td>10.68</td>
<td>3.19 (0.00313) 4.71 (0.53x10(^{-4})) ns</td>
</tr>
<tr>
<td>Late spring</td>
<td>31</td>
<td>4.23 ± 0.37</td>
<td>0.91</td>
<td>8.62</td>
<td>3.13 (0.0367) 3.92 (0.00183) ns</td>
</tr>
<tr>
<td>Early summer</td>
<td>36</td>
<td>4.28 ± 0.31</td>
<td>1.04</td>
<td>8.37</td>
<td>3.09 (0.0417) 3.91 (0.00191) ns</td>
</tr>
<tr>
<td>Mid-to late</td>
<td>26</td>
<td>2.67 ± 0.20</td>
<td>1.01</td>
<td>5.28</td>
<td>5.5 (0.1x10(^{-5})) 6.31 (0.6x10(^{-6})) 4.24 (4.78x10(^{-4})) ns</td>
</tr>
<tr>
<td>All seasons</td>
<td>212</td>
<td>4.61 ± 0.15</td>
<td>0.55</td>
<td>10.68</td>
<td>ns ns ns</td>
</tr>
</tbody>
</table>
Table 7. Summary results from ANOSIM of pairwise, between-season comparisons based on the trackline parameters speed, course and linearity. Significant differences indicated by shading ($P < 0.05$)

<table>
<thead>
<tr>
<th>Season</th>
<th>Autumn to mid-winter</th>
<th>Late w inter</th>
<th>Early spring</th>
<th>Mid-spring</th>
<th>Late spring</th>
<th>Early summer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>R</td>
<td>P</td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Late w inter</td>
<td>-0.023</td>
<td>0.937</td>
<td>0.189</td>
<td>0.003</td>
<td>0.014</td>
<td>0.352</td>
</tr>
<tr>
<td>Early spring</td>
<td>0.174</td>
<td>0.007</td>
<td>0.059</td>
<td>0.106</td>
<td>0.115</td>
<td>0.003</td>
</tr>
<tr>
<td>Mid-spring</td>
<td>0.017</td>
<td>0.371</td>
<td>0.017</td>
<td>0.371</td>
<td>0.188</td>
<td>0.038</td>
</tr>
<tr>
<td>Late spring</td>
<td>-0.038</td>
<td>0.878</td>
<td>-0.014</td>
<td>0.681</td>
<td>-0.018</td>
<td>0.814</td>
</tr>
<tr>
<td>Early summer</td>
<td>0.038</td>
<td>0.878</td>
<td>0.003</td>
<td>0.878</td>
<td>-0.038</td>
<td>0.878</td>
</tr>
</tbody>
</table>
Table 8. Description of groups showing feeding or feeding-like behaviour seen from land and/or boat. Asterisk indicates direct observation of feeding; Def. = defecation seen, yes (y) or no (n).

<table>
<thead>
<tr>
<th>Date</th>
<th>Seen from</th>
<th>Group size</th>
<th>Def.</th>
<th>Description of behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Oct 01</td>
<td>Land</td>
<td>2</td>
<td>n</td>
<td>Milling about, apparently feeding</td>
</tr>
<tr>
<td>03 Nov 01</td>
<td>Boat</td>
<td>3</td>
<td>y</td>
<td>Dark pink defecation</td>
</tr>
<tr>
<td>10 Nov 01</td>
<td>Boat</td>
<td>2</td>
<td>y</td>
<td>Bright pink defecation</td>
</tr>
<tr>
<td>06 Dec 01</td>
<td>Land</td>
<td>3</td>
<td>n</td>
<td>Slowly moving south, apparently feeding. Associated with 7 dusky dolphins (Lagenorhynchus obscurus)</td>
</tr>
<tr>
<td>16 Dec 01</td>
<td>Boat</td>
<td>2 and 2</td>
<td>y</td>
<td>Two groups seen defecating</td>
</tr>
<tr>
<td>17 Dec 01</td>
<td>Land/boat</td>
<td>±20 and 3</td>
<td>y</td>
<td>Large, loosely associated group identified as 11 smaller groups from land. Milling and suspected feeding behaviour nearby</td>
</tr>
<tr>
<td>19 Dec 01</td>
<td>Land</td>
<td>15-20</td>
<td>n</td>
<td>At least two sub-groups of animals scattered over large area, milling about</td>
</tr>
<tr>
<td>11 Sept 02</td>
<td>Land/boat</td>
<td>1</td>
<td>n</td>
<td>Small animal with erratic movements, long dives, spending brief time at surface, Cape fur seals (Arctocephalus pusillus), seabirds and unidentified dolphins displaying feeding behaviour nearby</td>
</tr>
<tr>
<td>*17 Oct 02</td>
<td>Boat</td>
<td>8</td>
<td>y</td>
<td>Combination of 7 earlier sightings. Pairs of animals doing sideways coordinated surface lunges, mouths open and ventral grooves distended. Jellies, euphausids and mysids seen in water. Defecation seen.</td>
</tr>
<tr>
<td>29 Oct 02</td>
<td>Land</td>
<td>2 and 3</td>
<td>y</td>
<td>Two separate groups, one milling and possibly feeding. Second group surface active, defecation seen</td>
</tr>
<tr>
<td>30 Oct 02</td>
<td>Boat</td>
<td>6 and 2</td>
<td>y</td>
<td>Defecation seen in first group that was made up of a cow-calf pair and escort, later joined by another pair and singleton. Later sighting of two also defecated.</td>
</tr>
<tr>
<td>*13 Dec 02</td>
<td>Land/boat</td>
<td>2</td>
<td>n</td>
<td>Milling and feeding lunges, erratic movement in circles, apparently along thermal divide (16°C on one side and 17°C on other)</td>
</tr>
<tr>
<td>10 Jan 03</td>
<td>Boat</td>
<td>2 and 1</td>
<td>y</td>
<td>Cow-calf pair and later single animal. Bright, brick red defecation by both groups.</td>
</tr>
<tr>
<td>*26 Jan 03</td>
<td>Land/boat</td>
<td>3 and 2</td>
<td>y</td>
<td>One group seen from land to be lunging, also surface active and milling about. A different group seen from boat also lunged. Bright pink defecation seen during intercept. Blue whale (Balaenoptera musculus). sighted displaying suspected feeding behaviour, swimming along a foam line parallel to shore</td>
</tr>
<tr>
<td>12 Oct 04</td>
<td>Boat</td>
<td>5</td>
<td>y</td>
<td>Two humpbacks and three southern right whales. Defecation seen</td>
</tr>
<tr>
<td>08 Nov 04</td>
<td>Boat</td>
<td>2 and 2</td>
<td>y</td>
<td>Defecation seen in two groups</td>
</tr>
<tr>
<td>29 Nov 04</td>
<td>Boat</td>
<td>1</td>
<td>y</td>
<td>Individual travelling slowly while defecating, Later resighted and defecated whilst lobtailing (5 stools produced in 5 mins)</td>
</tr>
<tr>
<td>*23 Mar 05</td>
<td>Boat</td>
<td>9</td>
<td>y</td>
<td>Single humpback with 8 southern rights, defecation by both spp.</td>
</tr>
<tr>
<td>24 Nov 05</td>
<td>Boat</td>
<td>3</td>
<td>n</td>
<td>Lunge feeding</td>
</tr>
<tr>
<td>*12 Oct 06</td>
<td>Boat</td>
<td>3</td>
<td>n</td>
<td>One animal slightly separate from others and evasive. Defecation seen</td>
</tr>
<tr>
<td>19 Nov 06</td>
<td>Boat</td>
<td>1 and 5</td>
<td>y</td>
<td>Single animal, later resighted as part of larger group, defecation seen both times</td>
</tr>
<tr>
<td>22 Nov 06</td>
<td>Boat</td>
<td>2</td>
<td>y</td>
<td>Defecation seen</td>
</tr>
<tr>
<td>26 Nov 06</td>
<td>Boat</td>
<td>2</td>
<td>y</td>
<td>Evasive group, defecation seen</td>
</tr>
<tr>
<td>29 Nov 06</td>
<td>Boat</td>
<td>1</td>
<td>y</td>
<td>Evasive pair, apparently feeding. Defecation seen</td>
</tr>
<tr>
<td>14 Nov 07</td>
<td>Boat</td>
<td>14-20</td>
<td>n</td>
<td>Large association of several sub-groups, apparently feeding, associated with feeding seabirds</td>
</tr>
</tbody>
</table>
Table 9. Details of humpback whales accompanied by “calfes” taken at Hangklip whaling station, South Africa, in 1913 (length data converted from whole feet or inches) from notes by the manager of the station, K. Bernsten.

<table>
<thead>
<tr>
<th>Date</th>
<th>Length of adult female (m)</th>
<th>Accompanying “calf” Length (m)</th>
<th>Sex</th>
<th>Notes on records (translated from Norwegian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 October</td>
<td></td>
<td>8.53</td>
<td>F</td>
<td>In company of mother that escaped</td>
</tr>
<tr>
<td>31 October</td>
<td>14.33</td>
<td>8.53</td>
<td>M</td>
<td>These two animals together so assumed to be mother and calf</td>
</tr>
<tr>
<td>01 November</td>
<td>14.63</td>
<td>7.32</td>
<td>M</td>
<td>“ “</td>
</tr>
<tr>
<td></td>
<td>12.80</td>
<td>7.01</td>
<td>F</td>
<td>“ “</td>
</tr>
<tr>
<td>10 November</td>
<td>15.24</td>
<td>8.84</td>
<td>M</td>
<td>Young one shot 1st then the mother. Adult pregnant with 12.7cm foetus</td>
</tr>
<tr>
<td>15 November</td>
<td>14.02</td>
<td>8.53</td>
<td>F</td>
<td>These two animals together so assumed to be mother and calf</td>
</tr>
<tr>
<td>18 November</td>
<td>14.02</td>
<td>8.84</td>
<td>M</td>
<td>“ “</td>
</tr>
<tr>
<td>19 November</td>
<td>14.63</td>
<td>8.84</td>
<td>M</td>
<td>“ “</td>
</tr>
</tbody>
</table>
Figure legends:

Figure 1. The location of the study area on the west coast of South Africa (BB=Baviaansberg, MK=Malgaskop, CC=Cape Columbine, DG=Donkergat, SM=Salamander, SR=Schooner Rock). Approximate extent of the search area is indicated by lightly shaded area.

Figure 2. Sightings per unit effort (SPUE) of humpback whale groups and search effort per week for two field seasons 24 Jul – 20 Dec 2001 (wks 1-21) and 6 May 2002 to 15 Feb 2003 (wks 22-58). Solid line is average SPUE (1.63) over entire study period. Peaks marked A - D are referred to in the text.

Figure 3. Frequency distribution of radial sighting distances measured to all humpback groups fixed by theodolite (n = 251, excluding eight groups sighted within bays) and hourly midline visibility measurements taken (n = 1834) per 0.5km bin.

Figure 4. Mean radial sighting distances (km ± SE) from shore, and calculated distances to nearest shoreline, of whale groups at prevailing visibility at the midline (per 1km bin) as measured by theodolite. Dotted line indicates theoretical visibility limit.

Figure 5. Seasonal breakdown of distance from shore (km) of humpback groups (n = 259). Seasons where numbers of groups within and beyond 5km zones differ significantly (Chi-Square, $P < 0.05$) are indicated by asterisk.

Figure 6. Seasonal mean, (range = whiskers and standard error = boxes) of best estimates for group size (sample sizes in brackets) as observed from land, excluding two outlier groups (n = 287). Shaded rectangles below plot summarise significant results from multiple comparison post-hoc test with arrows indicating significantly different seasons.

Figure 7. Numbers of male (white bars) and female whales (shaded bars, including 20 cows, as indicated by the solid lines) per season as determined genetically (n=195). Calves (12) were excluded, but total number of cow-calf pairs seen per season is indicated by line plot.

Figure 8. Seasonal composition of humpback whale groups that were completely sampled genetically, 2000 - 2006. Female: male sex ratio and total number of individuals (in parenthesis) indicated below each season. Asterisk = significant female bias ($\chi^2 = 7.258, P < 0.05$). Key to legend: CC = cow calf pairs,
incl. two with (male) escorts. M + F pair = male and female, >F = groups of 3 or more with female bias, >M = groups of 3 or more with male bias, single male (M) and single female (F).

Figure 9. Frequency distribution of net course in degrees true of 212 humpback whale groups tracked from North Head, Saldanha Bay.

Figure 10. Frequency distribution of linearity of movement of 212 humpback whale groups tracked from North Head, Saldanha Bay.

Figure 11. Directionality (net course) and linearity of movement of humpback whales groups (n = 212) by season. Bars show cumulative frequency of occurrence of groups that were south-bound (100-200 °), north-bound (280-360 °) or heading in other directions, based on net course (degrees True). Asterisk indicates seasons with significant (P < 0.05) directionality as determined by Rayleigh’s test. Line plots show percentage of “migrating” (linearity > 0.1) or “non-migrating” (<0.9) groups seen.

Figure 12(a). Relationship between mean swimming speed (km.hr\(^{-1}\)) and distance of whale groups from the shoreline (km).

Figure 12(b). Relationship between mean swimming speed (km.hr\(^{-1}\)) and linearity of movement of humpback groups.

Figure 12(c). Relationship between size of humpback groups and linearity of movement.

Figure 13(a). Non-metric multi-dimensional scaling (MDS) ordination plot of seasonal samples based on the combination of movement parameters (normalised, Euclidian distance, stress-value = 0.1). Dashed lines indicate the top and bottom groupings and shaded shape encloses the majority of autumn/winter samples. Line A represents the right-hand limit of all mid- to late summer samples. Shape B1 includes the northbound (280-360 °) groups and B2 the southbound (100-200 °) groups. Figure 13(b). Principal Component Analyses of seasonal samples of whale movement parameters with those responsible for most variation (speed and linearity horizontally and course vertically) overlaid onto the scatter plot.

Figure 14(a). Non-metric MDS ordination of migrators (linearity >0.9) and non-migrators (<0.9) based on the parameters speed, course and distance from shore (normalised, Euclidian distance, stress-value = 0.15). Group A (enclosed by the solid line) indicates non-migratory grouping, and group B (dashed line)
migrators. Figure 14 (b) shows the PCA axis and parameters that best explain the clustering seen in 14(a).

Figure 14 (c) shows the same MDS plot with “feeding” and “non-feeding” as the distinguishing factor.
Figure 1
Figure 2

![Graph showing effort and SPUE over different weeks and seasons.](image)

Week/Season

Distance from tower (km)

Visibility at midline

Humpback whale groups

Figure 3

![Graph showing hourly measurements and distance from tower.](image)
Figure 4

- Mean radial sighting distance ± SE
- Theoretical visibility limit
- Mean distance to shore

Visibility at midline (km)

Distance of whales (km)

Mean radial sighting distance ± SE

Theoretical visibility limit

Mean distance to shore

Figure 5

Humpback groups (%)

Season

- >15km
- 10-15km
- 5-10km
- Inside bays to 5km

*autumn to mid-winter
*late winter
*early spring
*mid-spring
*late spring
*early summer
*mid to late summer
Figure 6

Season

Best group size

- Mean
- Mean±SE
- Min-Max

autumn to mid-winter
late winter
early spring
mid-spring
late spring
early summer
mid to late summer

(30)
(32)
(18)
(85)
(40)
(42)
(40)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(40)
(30)
Figure 7

Season and F:M sex ratio

- autumn/mid-winter: 1:2.33 (10)
- late winter: 1:1 (2)
- early spring: 1:1.25 (9)
- mid-spring: 2.88:1 (31)
- late spring: 1.36:1 (33)
- early summer: 1:1.71 (19)
- mid-to late summer: 2.33:1 (20)

Figure 8

Groups sampled

- CC/+escort
- single M
- M+F pair
- >M (2+)
- >F (2+)
- single F

Season and F:M sex ratio

- autumn/mid-winter: 1:2.33 (10)
- late winter: 1:1 (2)
- early spring: 1:1.25 (9)
- mid-spring: 2.88:1 (31)
- late spring: 1.36:1 (33)
- early summer: 1:1.71 (19)
- mid-to late summer: 2.33:1 (20)
Figure 11

Figure 12a
Figure 12b

Mean swimming speed (km.h\(^{-1}\)) vs. linearity

Figure 12c

Group size vs. linearity
Figure 14 b

Figure 14(b)

PCO1 (41.9% of total variation)

PCO2 (36.2% of total variation)

Course Speed Distance

Figure 14 c

Figure 14(c)

feeders
non-feeders