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Theory that successfully explains the magnitude and range of estimates of protein retention (PR) efficiency from the cost of
turnover of existing protein indicates that conventional curves for growth description are inappropriate for protein growth.
A solution to this problem is found in the consideration that the rate-limiting steps for protein synthesis (PS) and breakdown
are likely to be associated with the diffusion of metabolites in and between cells. The algebraic scaling of nuclear and cellular
diffusion capacity with tissue or total body protein leads to a parameterization of the primal differential equation for PR (kg/day)
based on two terms representing PS and breakdown, viz.

PR 5 cQ½ðP=aÞX 1 Z� ð4=9ÞY
� ðP=aÞX 1 Z

�:

where c is an arbitrary constant, Q is the proportion of nuclei active in cell growth or division in a tissue or the whole body,
a is the limit mass for protein (P, kg) in a tissue or the whole body, the power X 1 Z represents the rate-limiting steps in protein
breakdown and Y is the power of the relationship between cell volume and the amount of tissue protein. For the whole body, the
contribution of the different tissues should be weighted in proportion to their PS rates with, on average, Y 5 1/2. The constant 4/9
arises from the scaling of the specific diffusion rate of DNA activator precursors from nuclear dimensions and from the relationship
between nuclear and cell volume. Experimental evidence on protein breakdown rate as well as protein and body mass points
of inflection indicates that the range of theoretically possible numerical values of the rate-limiting powers X 1 Z 5 ( i 1 3)/9 for
i 5 1, 2,y ,12 seems adequate for the description of the range of observed whole body protein and body mass growth patterns
for mammals. Q 5 1 represents maximal protein retention, and for 0 , Q , 1, experimental evidence exists in support of a
theoretical relationship between Q and food ingestion. The conclusion follows that some knowledge of the protein limit mass (a)
and of the point of inflection (related to X 1 Z) is the main requirement for the application of the theory for description and
prediction in animal nutrition and breeding.
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Implications

Growth equations are derived from basic concepts in mole-
cular cell biology for different tissues classified as viscera,
skin or bone and skeletal muscle. Their contributions can be
weighted in proportion to synthesis contribution to accom-
modate variable body composition in the prediction of total
body protein growth. Differences in point of inflection due to
the type of animal or breeding improvement are accom-
modated by a family of curves. The deviation from maximum
protein retention is quantified in terms of the proportion of

growth-active nuclei (Q), and a relationship between Q and
food intake is available for intake or growth prediction.

Introduction

Previous work (Roux, 2005a, 2005b and 2006) successfully
explained the pronounced difference between the estimates
of protein retention (PR) efficiency and protein synthesis (PS)
efficiency as being due to the continuous replacement of
existing protein by newly synthesized protein. Moreover, this
approach allowed the algebraic derivation of theoretical
retention efficiencies from the generally accepted truth in
molecular biology that the rate of PS depends mainly on the- E-mail: ina.goosen@up.ac.za
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rate of gene transcription, which in turn depends mainly on
activators bound to DNA enhancers. It is, furthermore, rea-
sonable to suppose that PS is proportional to activator con-
centration in the nucleus, which in turn may depend on
nuclear volume due to the diffusion of activator precursors
into the nucleus. The consequent hypothesis of PS propor-
tional to nuclear volume and the scaling of nuclear volume
with cell volume and hence tissue or organ size allowed the
mathematical derivation of theoretical PR efficiencies for the
whole body as well as constituent body tissues. These the-
oretical PR efficiencies could be verified by direct calculation
from experimental estimates of PS and breakdown rates
(PB), as well as from multiple regression procedures invol-
ving the measurement of body mass and food ingestion
together with protein and fat retention.

The mathematical derivation of theoretical PR efficiencies
depends, however, on an algebraic description of the rela-
tionship of the ratio PB/PS with protein mass (P), whereas for
protein growth description one needs the relationship of the
difference PS2PB 5 PR with P. The relationship between PB/
PS and P is simpler than that of PS2PB as the ratio allows
terms very important in the description of PB, but common to
both PB and PS, to cancel. It is the primary purpose of the
present communication to derive algebraic formulas from
cellular diffusion considerations for terms that appear in
PR 5 PS2PB, but which cancel in the ratio PB/PS. The sec-
ondary purpose is to show that the theoretically derived
protein growth represents an adequate description of
experimentally observed protein growth patterns for both
the whole body and its constituent tissues.

The primal growth differential equation of von Bertalanffy
(1960) can be transcribed to protein growth in the form

PR ¼ dP=dt ¼ c2P
b�c1P

a; ð1Þ

with PR measured in units of kg/day being denoted by PR,
and protein measured in kg being denoted by P. Equation (1)
was used for the investigation of PR efficiency (kP) with the
incorporation of turnover (Roux, 2005a, 2005b and 2006),
without attention to deriving or assuming particular values
of a and b. Instead, a relationship between kP and a 2 b was
formulated for which it was found that for total body protein
a 2 b < 2/9, with equality at maximum PR. This is in con-
tradiction to the difference a 2 b 5 1 for the logistic or the
monomolecular, to a 2 b 5 1/3 for the von Bertalanffy
(1960) curve on the basis of a surface and volume argument
and to a 2 b- 0 for the Gompertz, which can be derived
from equation (1) for a 5 1 and b-1 Hence, the conclusion
follows that an argument based on the quantification of PR
efficiency with the incorporation of protein turnover renders
all the best known members of the Richards (1959) family of
curves inappropriate for protein growth description. It
therefore seems worthwhile to investigate what sort of
scaling of physiological processes can characterize a family
of curves resulting in a 2 b 5 2/9 or a 2 b 5 (4/9)Y, with
Y representing the power in the relationship between cell
volume and total protein in different tissues (Roux, 2006).

In this endeavor, care is taken to bring into consideration the
basic rate-limiting steps in the control of PS and breakdown
involving gene transcription and the diffusion of metabolites.
Furthermore, the need to characterize a whole family of
curves is indicated by the necessity to use the Richards’
(1959) family of growth curves in investigations of body
mass growth (Gaillard et al., 1997). Applicability considera-
tions also suggest that the effect of deviation from maximum
PR should be taken into consideration in such a way that it
can be quantified in relation to food intake.

In summary, therefore, the purpose of the present commu-
nication is to present protein growth equations derived from
fundamental concepts in molecular cell biology for the whole
body as well as four constituent protein pools or tissues clas-
sified as viscera, skin or bone and skeletal muscle. Different
values of the parameters of the primal growth differential
equation associated with equation (1) are shown to char-
acterize members of a family of protein growth curves with a
variety of forms that allow description of the diversity of
observed growth patterns. The deviation from maximum PR is
quantified in terms of the proportion of growth-active nuclei
(Q), and a relationship between Q and food intake is derived
for intake or growth prediction. To realize the possibility of
intake prediction, a description of fat growth can be derived
from a power relationship between body fat and protein. An
illustration of the fitting of a protein growth curve is given on
data from the literature in Table 5. Notation is summarized in
Appendix. Additional descriptions of fat retention and intake
prediction are explicated in Tables A3, A4 and A5 of an online
appendix available on the Animal website (Roux, 2010).

Theory and methods

Quiescent and active nuclei
A quiescent cell can be described as not being involved in
growth or division, although other functions generally may
continue as usual. By extension, a quiescent nucleus is
defined as one that does not contribute to an increase in cell
mass or cell division, that is, a nucleus for which the asso-
ciated synthesis (PS) and breakdown (PB) rates of protein are
equal (i.e. PS 5 PB). In contrast, an active nucleus can be
defined as one that contributes to an increase in cell mass or
number (i.e. PS . PB).

Let a be the amount of body or tissue protein at maturity,
so that (P/a) can be regarded as the degree of protein
maturity. For a quiescent nucleus, I assume that PS 5 PB
p (P/a)X, with the sign p meaning ‘proportional to.’ The
power X represents the rate-limiting step in breakdown rate
and it is possibly unequal to zero to allow for changes in
breakdown control associated with age or size due to
genetic, diet or other factors. It can also be assumed that the
number of nuclei (nn) in a tissue scales with protein amount
proportional to a power Z, nnp (P/a)Z. With all nuclei in a
tissue in the quiescent state, PS and PB will scale as

PS ¼ PB ¼ cðP=aÞXþZ ; ð2Þ
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with c a constant of proportionality and PS and PB measured
in kg/day.

In general, whole body or skeletal muscle nnp (P/a)2/3, that
is, Z 5 2/3 (Roux, 2006). To accommodate tissues with multi-
nucleate cells, like muscle, a DNA unit will be defined as having
a mass of P/nnp (P/a)1/3. For tissues with mononucleate cells,
a DNA unit will be identical to a cell. It follows that the diameter
of a whole body or skeletal muscle DNA unit will scale p(P/
a)1/9, surface area p(P/a)2/9, and from Fick’s law the diffusion
capacity is proportional to surface/distance 5 (P/a)2/9/(P/a)1/9

5 (P/a)1/9. Hence, specific diffusion capacity for a DNA unit
is proportional to (P/a)1/9/(P/a)1/3 5 (P/a)22/9, with specific
surface area being proportional to (P/a)2/9/(P/a)1/3 5 (P/a)21/9.

Control of breakdown rate
For the purpose of growth description, it is perhaps important to
distinguish between quantitative and qualitative control. Qua-
litative control would refer to the control of the breakdown of
different types of protein, whereas quantitative control refers to
the total amount of degraded protein. The total degradation
rate would therefore be dependent on the concentration of the
elements of the degrading system, which consists of lysosomes
as well as a pathway inside the cytoplasm often adjacent to
plasma or other membranes. It is therefore logical to expect
that total protein breakdown would be related to cell or DNA
unit mass, surface area or diffusion capacity. The scaling of the
different possibilities for the rate-limiting step in breakdown
rate (equation 2) is given in Table 1. They follow directly from
the preceding discussion on DNA unit scaling. The whole body
or skeletal muscle power Z is assumed to be equal to 2/3 (Roux,
2006). In line 1 (Table 1), it is assumed that the rate-limiting
step for breakdown rate is proportional to the specific diffusion
capacity for each DNA unit, that is, to (P/a)22/9, so that

X 5 22/9 and X 1 Z 5 4/9 for total specific diffusion capacity.
The argument for the derivation of lines 2 to 6 in Table 1 is
analogous to that for line 1.

To obtain lines 7 to 12, PB regulation by paracrine or
intercellular signaling is assumed in addition to the rate-
limiting steps indicated in lines 1 to 6, in such a way that the
magnitude of the effect on PB in a DNA unit is proportional
to the total number of nuclei in a tissue. Lines 7 to 12 can
then be obtained by increasing X in lines 1 to 6 by 2/3, the
power in the relationship nnp (P/a)2/3. The inflection points
in Table 1 will be discussed later .

For cells classified as viscera, skin or bone, separate values
obtained from Roux (2006) indicate that Z 6¼ 2/3. Hence,
different but analogous tables of both X and Z will have to be
constructed for them on the basis of Z 5 5/6 (viscera) or
Z 5 1/2 (skin or bone; see Tables A1 and A2 in Roux (2010)).

Protein synthesis
In the same way as protein breakdown, the control of PS can be
differentiated into qualitative and quantitative control. Quali-
tative control refers to the composition of synthesized proteins
that is mediated by the initiation of transcription by promoters.
Quantitative control, with reference to the rate of PS, mainly
depends on activators bound to DNA sequences called enhan-
cers. Generally, the control of the rate of PS would therefore
depend on activator concentration in the nucleus (Roux,
2005a). Activator precursors will have to diffuse into the
nucleus. Let nv denote nuclear volume. The nuclear surface will
scale proportionally to (nv)2/3 and nuclear diameter to (nv)1/3.
Then, from Fick’s law, diffusion rate into the nucleus will
be proportional to the concentration gradient and diffusion
capacity, with specific diffusion capacity 5 (surface/distance)/
volume 5 [(nv)2/3/(nv)1/3]/nv 5 (nv)22/3. Assume that for

Table 1 The WB or SM powers X 1 Z associated with different rate-limiting steps without and with IS for protein breakdown rate together with
inflection points from equation (9)

Inflection points*

Lines Rate-limiting steps X X 1 Z X 1 Z (decimal) WB (Y 5 1/2) SM (Y 5 1)

Without IS
1 Specific diffusion capacity 22/9 4/9 0.444 0.044 0.000
2 Specific surface area 21/9 5/9 0.556 0.100 0.027
3 Constant per DNA unit 0 6/9 0.667 0.161 0.084
4 Diffusion capacity 1/9 7/9 0.778 0.220 0.149
5 Surface area 2/9 8/9 0.889 0.274 0.210
6 Protein mass 1/3 1 1.000 0.323 0.266

With IS
7 Adding 2/3 to line 1 4/9 10/9 1.111 0.366 0.317
8 Adding 2/3 to line 2 5/9 11/9 1.222 0.405 0.362
9 Adding 2/3 to line 3 6/9 12/9 1.333 0.440 0.401
10 Adding 2/3 to line 4 7/9 13/9 1.444 0.472 0.437
11 Adding 2/3 to Line 5 8/9 14/9 1.556 0.500 0.469
12 Adding 2/3 to line 6 1 15/9 1.667 0.525 0.498

WB 5 whole body; SM 5 skeletal muscle; IS 5 intercellular signaling.
*The inflection point is in terms of protein maturity (P/a); X, the power representing the rate-limiting step in protein breakdown associated with a single nucleus; Y,
the power in the relationship between cell volume and the amount of protein in a tissue or the WB; Z, the power in the relationship between the number of nuclei
and the amount of protein in a tissue or the WB.
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activator precursors the signaling cascade through the
cytoplasm always contains such a number of steps that the
activator precursor concentration in the cytoplasm does
not vary with cell size. On the basis of this premise, it is
reasonable to accept that the concentration gradient of
activator precursors will be invariant with cell size and hence
with time. Then, if activator lifetime is also constant during
growth, activator concentration will be proportional to spe-
cific diffusion capacity (Roux, 2005a):

½activator� / ðnvÞ�2=3: ð3Þ

It can be assumed that the rate of PS depends essentially on
the rate of gene transcription (Latchman, 2005). It is also rea-
sonable to expect that the specific rate of gene transcription
would be proportional to the concentration of activators bound
to enhancers. Analogous to hormone-binding kinetics (Darnell
et al., 1990), this activator–enhancer complex concentration
would, in turn, be proportional to activator concentration. The
rate of gene transcription per nucleus will then be determined by
the activator concentration in equation (3) (Roux, 2005a). Fur-
thermore, age- or size-related effects (age or size changes p(P/
a)X), as in equation (2), are also applicable to all nuclei. Then for
the total rate of PS (kg/day) with all nuclei (nnp (P/a)Z) in a
tissue activated by a cascading effect obtained from hormonally
mediated growth factors bound to receptors on the cell surface,
it follows from equation (3) (Roux, 2005a and 2006) that

PS / ðP=aÞXþZ
ðnvÞ�2=3: ð4Þ

From Teissier (1941), it generally holds for mammalian
cells that nuclear volume is proportional to cell volume (cv),
such that nvp (cv)2/3. If it is assumed that cv is related to a
power Y of the P/a of a tissue, such that cvp (P/a)Y,
equation (4) becomes

PS ¼ cðP=aÞXþZ�ð4=9ÞY : ð5Þ

The constants c in equations (2) and (5) are equal, since at
maturity (P/a) 5 1 and PS 5 PB.

The assumptions used in the derivation of equation (5) do
not seem to allow a gradient of responses for an active
nucleus. For differential growth in a tissue, it is therefore
assumed that the differential protein growth response eli-
cited by hormonal control is obtained by variation of the
proportion of active nuclei in a tissue. Let Q denote the
proportion of active nuclei in a tissue. Then, from the addi-
tion of active (equation 5) and quiescent nuclei (equation 2),
a tissue will have a total synthesis rate of

PS ¼ c½ð1�QÞðP=aÞXþZ
þQðP=aÞXþZ�ð4=9ÞY

�: ð6Þ

Protein retention
Since PR 5 PS2PB, the equation for PR (kg/day) can be
obtained from the difference between equations (6) and (2):

PR ¼ cQ½ðP=aÞXþZ�ð4=9ÞY
�ðP=aÞXþZ

�: ð7Þ

PR can be taken to be equal to the differential dP/dt,
which will allow equation (7) to be regarded as a differential
equation that can be solved for P, the amount of protein
in a tissue. The differential equation associated with equa-
tion (7) does not have an analytic solution for all powers of
(P/a). Values for the powers of (P/a) for which analytic
solutions exist, together with the solutions, are published in
Reiss (1989). For example, for X 1 Z 5 1 the solution of
equation (7) is

P ¼ af1�½1�ðP0=aÞ
h
� exp�ktg1=h; ð8Þ

(von Bertalanffy, 1960) with P0 representing the amount of
protein in a tissue at time zero, h 5 (4/9)Y and k 5 ch(Q/a).
Equation (7) has to be solved numerically for values of X 1 Z
for which no analytic solution exists.

The cellular or physiological basis of protein growth
parameters
Note that a cellular or physiological basis exists for all the
parameters of equations (7) and (8). The limit or mature
protein mass in equations (2) and (4) can be shown to arise
from the relationship between PS and PB described by the
parameterization of equation (1), namely a 5 (c2/c1)1/(a2b)

(Roux, 2005a). The explanation of the power of the whole
body breakdown rate X 1 Z is encompassed in Table 1. The
constant 4/9 arises from the scaling of the specific diffusion
rate of activator precursors from nuclear dimensions and
from the relationship between nuclear volume and cell volume.
The parameter Y is the power of the relationship between cell
volume and amount of tissue protein. The number of multi-
nucleate muscle cells does not increase after birth, so that
Y 5 1 for skeletal muscle (Roux, 2006). On the basis of
DNA–protein relationships, it is derived by Roux (2006) that
Y 5 1/3 for mononucleate cells on average, with Y 5 1/6 for
viscera and Y 5 1/2 for both skin and bone. For the whole body,
the contribution of the different tissues should be weighed in
proportion to their PS rates. On average, Y 5 1/2, approxi-
mately, for the whole body (Roux, 2006).

Point of inflection
Expressed in terms of protein maturity, the protein mass at
the point of inflection of equation (7) is as follows from von
Bertalanffy (1960)

P=a ¼ ½ðX þ Z�ð4=9ÞYÞ=ðX þ ZÞ�1= 4=9ð ÞY : ð9Þ

The values of P/a at the inflection point for whole body
Y 5 1/2 and skeletal muscle Y 5 1 are given in Table 1 for
the different postulated values of X 1 Z.

Experimental evidence

Evidence for the postulated values of Y
The first question that needs to be answered here is whether
equation (7) with theoretical average Y 5 1/2 for whole
body protein can explain the range of experimental results
recorded in the literature. Evidence in confirmation of Y 5 1/2,

Roux
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together with (4/9)Y 5 2/9, from PS or retention efficiency
experiments for pigs, cattle and sheep as well as a weighted
average from different tissues is available from Roux (2005a,
2005b and 2006). In this approach, problems with the
separate estimation of a or b in equation (1) were largely
ignored, with attention instead focused on estimation of the
difference a2b.

As in the present approach, Oltjen et al. (1985) also
modelled PR in terms of PS and PB. With reparameterization,
their results provide evidence in favor of the present
approach. On account of the generally high correlation
between estimates of its parameters, it is difficult to obtain a
direct fit to equation (1) by the conventional methods of
estimation of a and b. Oltjen et al. (1985) circumvented the
problem by using an independent estimate of protein
breakdown to obtain an estimate of PS from the rat data of
Enesco and Leblond (1962). By adding PB to PR to obtain PS,
they effectively obtained equation (7), if Q 5 1 is assumed.
Transposed to the present notation, Oltjen et al. (1985)
assumed X 1 Z 5 0.72 and estimated X 1 Z2(4/9)Y 5 0.48.
Solving this gives Y 5 0.54, near to the average value
derived by Roux (2006). Oltjen et al. (1985) also estimated
PSp (DNA)0.72 from birth onward and PSp (DNA)0.75 from
weaning onward. Taking DNAp P2/3(derivation of equa-
tion 2), this gives PSp P 0.48(0.48 5 0.72 3 2/3) as before
from birth onward, but PSp P 0.50(0.50 5 0.75 3 2/3) from
weaning onward. This gives X 1 Z2(4/9)Y 5 0.50 and with
the Oltjen et al. (1985) assumption of X 1 Z 5 0.72, it fol-
lows that Y 5 0.50 identical, from weaning onward, to the
value suggested by Roux (2006).

Confirmation derived from experimental estimates of PS
and PB for the theoretical estimates of Y 5 1 (muscle),
Y 5 1/2 (skin or bone), Y 5 1/6 (viscera) and 1/3 (average for
mononucleate cells) is available in Roux (2006).

Di Marco et al. (1989) aggregately considered two protein
pools: body and viscera. Body consisted mainly of skin,
muscle and bone; viscera included blood, liver, digestive
tract, heart and lungs. When Di Marco et al.’s (1989)
descriptions by complex equations of body and viscera were
approximated by equation (1), values of a2b 5 0.324 for
the body and a2b 5 0.078 for the viscera were obtained in
reasonable agreement to theoretical expectations of 0.296
and 0.074 derived from weighted synthesis contributions
from the viscera, skin or bone and skeletal muscle (Roux,
2006).

The tenability of the derived range of theoretical
X 1 Z powers
An alternative approach to the estimation of parameters of
equation (7) is via its components PB (equation 2) and PS
(equation 6). Unless Q is known and equal to 1, equation (6)
will be difficult to fit, for the same reason as equation (1). To
this will be added the additional problem that, due to mea-
surement difficulties, the available experimental observa-
tions tend to be concentrated at few points. Hence, iterative
methods may fail to converge or may result in poor estimates
and therefore no attempt will be made to fit equation (6). In
contrast, equation (2) is easy to fit with linear regression
under logarithmic transformation. This will provide valuable
evidence on the tenability of the theoretically predicted
values of X 1 Z in Table 1. Estimates from equation (2) of
the powers of the whole body protein breakdown rate X 1 Z
are in Table 2 and those of the powers of muscle breakdown
rate X 1 Z are in Table 3.

The confidence intervals in Table 2 for the powers of the
whole body breakdown rate indicate that the mammalian
observations are in agreement with the theoretical value of
X 1 Z56/9 in Table 1, whereas the chicken value is indicated
to be in agreement with values of 8/9 to 10/9.

Applied to the values of X 1 Z for muscle in Table 3, an
F-test for heterogeneity of regression coefficients indicates
significance at the 0.01 level with F 5 9.81 with 7 and 22 d.f. To
get enough degrees of freedom for reliable confidence intervals
of the regression coefficients, a common standard deviation
from regression of 0.1558 with 22 d.f. was calculated.

Note that for muscle the significant heterogeneity F-value
together with non-overlapping confidence intervals indicates
that no single theoretical value of X 1 Z in Table 1 can
explain the observed values in Table 3. Instead, agreement
to the whole range of values in Table 1 from lines 1 to 6 is
indicated, with each estimate in Table 3 an s.e. or less away
from a theoretical value in Table 1. The only difference
between the well-fed rats (line 1) and the marginally mal-
nourished rats (line 5) from the same laboratory is in the
dietary protein concentration of their food, indicating that
nutritional influences may cause significant differences in
the observed values of X 1 Z. In contrast, the significant
difference between the slow-growing well-fed rats in line
1 as well as the fast-growing rats in line 2 with the Wistar
rats in line 8 suggests the importance of genetic differences
in observed X 1 Z-values.

Table 2 The WB estimates of the powers of protein breakdown rate X 1 Z together with 95% CI from regression coefficient estimates obtained by
logarithmic transformation according to equation (2) on protein breakdown data from the literature

Lines Animals References X 1 Z d.f. s.e. 95% CI

1 Cattle Di Marco et al. (1989) 0.62 3 0.051 0.46 to 0.78
2 Pigs Reeds et al. (1980) 0.63 2 0.058 0.38 to 0.88
3 Rats Goldspink and Kelly (1984) 0.74 1 0.015 0.55 to 0.93

Weighted average (lines 1 to 3) 0.64 6 0.032 0.56 to 0.72

4 Chickens Marumatsu and Okumura (1985) 0.98 2 0.045 0.79 to 1.17

WB 5 whole body.
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Tables 2 and 3 do not provide any evidence for X 1 Z-
values substantially above unity. With X 1 Z 5 1, the max-
imum value of the point of inflection is the Gompertz value
of P/a 5 0.368 with Y-0. However, fitting a Bridges curve
with a flexible point of inflection, Knap (2000) obtained
values for the inflection point on modern pig protein growth
data, given in Table 4, with inflection points showing an
increasing trend above the Gompertz value. On the
assumption of Y 5 1/2, equivalent inflection points from
equations (7) and (9) will require values of X 1 Z sub-
stantially above unity. Consequently, the observations in
Table 4 are in agreement with lines 7 to 10 in Table 1.

In evaluating the information in Table 4, it is important to
realize that the 1976 population represents unimproved pigs
before the initiation of modern selection programs. It
therefore gets the first position in the improvement time
rank. The 1969 values represent one of the first populations
to be systematically selected for growth and body composi-
tion traits and therefore gets the second improvement time
rank. The values for 1984, 1990 and 1993 represent pigs
with greater periods of improvement from their populations
of origin behind them, and therefore obtain larger time
ranks. The X 1 Z rankings represent the magnitude of the
numerical values of X 1 Z. Note that the two rankings are in
complete agreement. This corresponds to a Spearman’s rank
correlation coefficient of unity, rs 5 1. With n 5 5, rs 5 1 is
significant for a one-tailed test at the 0.01 level of sig-
nificance. This means that the trend in X 1 Z with time due
to breeding improvement is not likely to be a chance event.
The likely proximate cause of larger X 1 Z values is that
breeding improvement causes faster growth at more

advanced ages in improved pigs compared with unimproved
ones, indicating the importance of genetic influence on the
point of inflection.

The general conclusion follows that Tables 2 to 4 provide
substantial experimental support for the range of the theo-
retical values of X 1 Z postulated in Table 1. This means
that a whole range or family of protein growth curves exists
for mammals given by equation (7) with postulated values of
X 1 Z like Table 1 and values of Y according to the type of
tissue or whole body tissue composition.

The interpretation and estimation of Q
From equation (7), it is evident that, other things being equal,
the maximum PR will occur with Q 5 1, that is, with all nuclei
in the active state. Experimental evidence for the existence of a
maximum PR (PRmax) is summarized by Moughan (1999). In
growing pigs, several hyperalimentation studies indicate that
the supply of a balanced diet at a level exceeding normal
ad libitum ingestion leads to an increased growth rate, but not
an increased retention of body protein. These studies imply the
operation of a maximal rate of PR (Moughan, 1999).

At present, no method exists for the direct estimation of Q.
Indirect estimates have therefore been devised by Roux
(2005a and 2006) to comply with the basic property of a
proportion, that is, to vary between zero and one. Here, a
generalization will be presented, derived from a theory
developed for pigs (Kyriazakis and Emmans, 1992) that
contains Roux’s (2005a and 2006) formula based on intake
rate as a simplification applicable to protein-limiting foods.

From equation (7), it follows that PR 5 QPRmax, or Q 5 PR/
PRmax. From Sandberg et al. (2005), PR 5 eP (IPI2IPM), with IPI

Table 3 The muscle estimates of the powers of protein breakdown rate X 1 Z together with 95% CI from regression coefficient estimates obtained
by logarithmic transformation according to equation (2) on protein breakdown data from the literature

Lines References Animals Muscles n X 1 Z s.e. 95% CI

1 Millward et al. (1975) Well-fed rats Gastrocnemius 5 0.43 0.066 0.29 to 0.57
2 Bates and Millward (1981) Fast-growing rats Gastrocnemius 5 0.59 0.078 0.43 to 0.75
3 Kang et al. (1985b) Turkey poults Breast 4 0.70 0.052 0.59 to 0.81
4 Kang et al. (1985b) Turkey poults Leg 4 0.81 0.056 0.69 to 0.93
5 Millward et al. (1975) Malnourished rats Gastrocnemius 5 0.83 0.054 0.72 to 0.94
6 Kang et al. (1985a) Broiler chickens Breast 4 0.89 0.066 0.75 to 1.03
7 Kang et al. (1985a) Broiler Chickens Leg 4 0.93 0.067 0.79 to 1.07
8 Siebrits and Barnes (1989) Wistar rats Gastrocnemius 7 0.96 0.088 0.78 to 1.14

F-test for heterogeneity: F 5 9.81xx with 7 and 22 d.f.

Table 4 Time trends in inflection points obtained by Knap (2000) on protein growth data for modern pigs together with the powers of protein
breakdown rate X 1 Z that would result in equal inflection points from equation (9) under the assumption of Y 5 1/2

References Years Improvement time rank Inflection points s.e. X 1 Z (equation 9) (X 1 Z) 2 rank

Doornenbal (1971) 1969 2 0.379 0.100 1.146 2
Tullis (1981) 1976 1 0.364 0.267 1.105 1
Noblet et al. (1994) 1984 3 0.385 0.072 1.163 3
Quiniou and Noblet (1995) 1990 4 0.405 0.100 1.221 4
Van Lunen (1994) 1993 5 0.462 0.056 1.409 5

Y, the power in the relationship between cell volume and the amount of protein in a tissue or the whole body.
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indicating ideal protein (IP) intake and IPM indicating IP intake
at protein maintenance when PR 5 0. Kyriazakis and Emmans
(1992) made the marginal efficiency of retaining IP (ep), a
function of the ratio of the metabolizable energy (ME) content
(MEC, MJ/kg), to the digestible crude protein (DCP) content
(DCPC, kg/kg) of the food, R (MJME/kgDCP). The proposed
relationship is eP 5 mR, with m a constant and a maximum
value for eP of en

P when R is above a specific value R*. With
this notation, PRmax¼ en

P (IPO2IPM), with IPO the optimal
IPI when PR 5 PRmax. It follows that

Q ¼ PR=PRmax ¼ ðeP=e
n

PÞðIPI� IPMÞ=ðIPO� IPMÞ: ð10Þ

Two special cases of equation (10) are of interest. The first
is for protein-limiting foods when R . R* and consequently
eP ¼ en

P , so that

Q ¼ IPI� IPMð Þ= IPO� IPMð Þ

or for PR and PRmax on different levels of the same diet

Q ¼ MEI�MEMð Þ= MEO�MEMð Þ; ð11:1Þ

with MEM the ME intake at body protein maintenance and
MEO the ME intake at PRmax, since on levels of the same diet
the ratios involving IP and ME will be the same.

Equation (11.1) is identical to the estimate previously
suggested by Roux (2005a). An estimate based on insulin-
like growth factor (IGF) concentration in the blood is similar
with (IGF) replacing ME. For energy-limiting foods when
R . R* equation (10) or an ME equivalent will have to be
used, with eP=en

Po1, equation (11.1) will overestimate Q.
The second special case of interest from equation (10) is

when R . R*, but the levels of IPI on the different diets are
the same and equal to IPO. The last term of equation (10)
then cancels so that it becomes

Q ¼ eP=e
n

P ¼ MEI=MEO; ð11:2Þ

as follows from the definition of R. Experimental evidence
for the validity of equation (11.2) follows from the approx-
imate linear relationship between PR and MEI with zero
intercept for pigs between 45 and 100 kg live mass and MEI
of 0.7, 0.8, 0.9 and 1.0 3 MEO, with approximate constant
CPI, obtained by Quiniou et al. (1996).

For cattle (Roux, 2005b), the available evidence on the
application of equation (11.1) indicates Q 5 1 in equation
(7) at ad libitum intake on diets adequate for maximal
growth. In contrast, some evidence exists for sheep (Roux,
2005b) that either Y , 1/2 or Q , 1 at ad libitum intake,
except for compensatory growth during realimentation after
diet restriction. The application of equation (11.1) is illu-
strated in Roux (2005b) for cattle and sheep.

General protein growth curves for mammals
In Table 2, the average value for X 1 Z for mammals is near
to 2/3. Since none of them is significantly different from 2/3,
equation (2) can be fitted for each species for PB and by
calculating a according to the formulas in Roux (2005a). The

constant c, calculated by assuming X 1 Z52/3, together
with a is as follows

a (kg) c (kg/day) c /a 3/4

Cattle 118.6 2.071 0.0576
Pigs 28.61 0.9816 0.0794
Rats 0.0879 0.00916 0.0567.

A logarithmic regression of c on a gives a slope of 0.768
(s.e. 5 0.0462), not significantly different from 3/4. Assuming a
slope of 3/4, c 5 0.0638a3/4 can be calculated. By the argu-
ments leading to equation (7) and assuming (4/9)Y 5 2/9, a fit
by equation (7) to the three mammalian species becomes

PRðkg=dayÞ ¼ 0:0638a3=4Q½ðP=aÞ4=9
�ðP=aÞ2=3

�: ð12Þ

The 3/4 power assumed in equation (12) is near to a value
of 0.72 (n 5 6; s.e. 5 0.017) for the mature body mass
relationship calculated by Waterlow (1984) for the protein
turnover of six species, from mouse to man and cattle.

The pigs of Table 2 and equation (12) have a point of
inflection P/a 5 0.161 (Table 1). This is much lower than the
values calculated for pigs by Knap (2000) from the Bridges
equation. In contrast to equation (12), the growth data of
Quiniou et al. (1996; Table 5) indicate a point of inflection
during their period 2, which cannot be reconciled with a
value of P/a 5 0.161. It therefore seems worthwhile to
illustrate the fit of equation (7) on the data of Quiniou et al.
(1996) in Table 5.

Roux (2005a) gives an example in which the fitting of
power curves for the description of PB and PS gives esti-
mates of limit or mature protein mass in agreement with the
estimates from the fitting of Gompertz curves by Knap
(2000). Knap’s (2000) collation of data from the literature
contains that of Tullis (1981) with some observations very
near to maturity. The estimates obtained from Tullis (1981)
are well contained within the confines of the total collection
of estimates. It seems, therefore, that the somewhat pre-
mature truncation of growth records in other cases did not
cause any serious bias in Knap’s (2000) estimates of protein
limit mass. However, Knap’s (2000) limit masses show clear
sex differences with averages of a 5 26.4 for castrates,
a 5 30.3 for females and a 5 32.9 for males, with n 5 3 for
both males and castrates and n 5 4 for females, on discarding
an outlying male estimate of a 5 38.5. Since estimates of
protein limit mass show no time trend indicative of selection
improvement, these estimates can be used when estimates for
specific types or breeds are unavailable or not reliable.

As estimates of PR are subject to measurement error as
well as individual variability and the differences are small in
the body mass range under consideration, I fitted curves to
averages over all sexes, breeds and nutritional treatments.
One-third of the pigs were male and two-thirds were castrates,
so that limit protein mass is estimated by a 5 1/3 3 32.9 1 2/
3 3 26.4 5 28.6 (Table 5). Protein mass is obtained by
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assuming it to be a fraction of 0.16 of live body mass (Agri-
cultural Research Council (ARC), 1981). Table 5 shows that PR
is maximum in period 2 with an approximate value of P/
a 5 0.359. Table 1 indicates consonance with X 1 Z 5 10/9 for
(4/9)Y 5 2/9 for whole body protein. Hence, from equation (7),
one would like to fit

PR ¼ cQ½ðP=aÞ8=9
�ðP=aÞ10=9

�: ð13Þ

This can be done by regression of PR on (P/a)8/92(P/a)10/9

through the origin. To test for goodness of fit, an ordinary
regression analysis was performed. The highly significant
correlation coefficient of 0.9918 indicates excellent fit and
the non-significant intercept indicates the acceptability of a
fit through the origin. The slope through the origin is esti-
mated by the ratio of the averages of the y and x regression
variables and Q is the ratio of total experiment average PR to
the ad libitum average PR. Analysis by Quiniou et al. (1996)
suggests that ad libitum PR is equivalent to PRmax in their data.
It follows that c in equation (13) can be estimated by 1.8544/
0.8746 5 2.1203. Accepting as in equation (12) a 3/4 power
relationship with a, the constant c becomes c 5 2.1203/
(28.6)3/4 5 0.1714a3/4. Hence, equation (13) becomes

PR ¼ 0:1714a3=4Q½ðP=aÞ8=9
�ðP=aÞ10=9

�: ð14Þ

Inclusion of the term a3/4 would allow for comparison
with or prediction between species, breeds or types with
different limit protein masses but the same powers for (P/a)
in equations (7) or (14). Such a scaling of PR with protein
limit mass is, furthermore, in agreement with Taylor’s (1980)
genetic scaling rules in animal growth. This matter will be
further discussed in Roux (2010).

Body mass evidence
Body and protein mass. Owing to the cost and measurement
problems, there is far more evidence available on body mass
itself than for body composition. However, body and protein
mass are often strongly related during growth, so that body
mass growth can be a fair indication of protein mass growth.

Let W indicate empty body mass. Then, on average, Pp
W 0.89 for cattle (ARC, 1980), PpW 0.86 for sheep (ARC,
1980) and PpW 1.00 for pigs (ARC, 1981). Siebrits (1984)
found PpW 1.09 for lean pigs and PpW 0.93 for obese
pigs. Taking PpW 0.9, it can be shown for equation (1) that,
for a 5 1 and b 5 7/9, there will be a shift in inflection from
0.323 for protein to 0.318 for body mass, a relative difference
of 0.025. The conclusion, therefore, is that body mass growth
will often give a fair indication of body protein mass growth.

Fish body mass growth. Ursin (1979) used equation (1) with
body mass as a variate to describe fish body mass growth
and estimated a and b together with 95% confidence limits
from a detailed analysis of the growth curves of 81 fish
species as

a ¼ 0:83� 0:06 and b ¼ 0:59� 0:02: ð15Þ

Since the fish’s empty body does not contain much fat, it is
assumed that PpW1.09 or WpP 0.92 like lean pigs (Siebrits,
1984). Then dW /dt 5 P20.08dP /dt, so that substitution of W
with P0.92 in dW /dt 5 c4W

0.592c3W
0.83 (equation 15) gives

dP=dt ¼ c2P
0:62�c1P

0:84; ð16Þ

with c1, c2, c3 and c4 as arbitrary constants. From equation (7), it
follows that X 1 Z 5 0.84 and X 1 Z2(4/9)Y 5 0.62. Solving
for Y gives Y 5 1/2, or (4/9)Y 5 2/9, in agreement with the
mammalian estimates. According to Fauconneau and Arnal
(1985), muscle provides a fraction of 0.22 of PS in Rainbow
trout, near enough to the 0.25 fraction assumed in Roux (2006)
for the derivation of Y 5 1/2 for total body protein in mammals.
Hence, equations (15) and (16) are in agreement with the
theory encompassed in equation (7).

Variation in body mass growth form. Variation in body mass
growth form has been investigated by Gaillard et al. (1997) by
fitting the Richards (1959) growth curve family from birth to
adulthood to 69 species of eutherian mammals. They showed

Table 5 The fitting of equation (7) to average protein retention and protein maturity (P/a) in four growth periods on data
published by Quiniou et al. (1996)

Periods
Mean body mass

(kg)
PR (kg/day)
(y-variate)

P/a
(kg/kg)

(Equation 7)
(P/a)8/92(P/a)10/9 (x-variate)

1 48.1 0.145 0.269 0.0788
2 64.2 0.153 0.359 0.0819
3 79.3 0.149 0.444 0.0802
4 94.2 0.139 0.527 0.0751

Intercept 20.0153
s.e. 0.0147
Slope 2.0478
s.e. 0.1865
r 0.9918xx

ratio �y= �x 1.8544
Q 0.8746

Q, the ratio of the total experiment protein retention (PR) to the ad libitum average PR.
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that growth form differs significantly among eutherian mammals
and concluded that ‘the commonly used Gompertz model can no
longer be considered as the general model for the description of
mammalian growth.’ For each species, the inflection point was
calculated according to von Bertalanffy (1960). From the inflec-
tion points, values of X 1 Z were calculated from equation (9)
and are given in Table 6, on the supposition of a fit by equation
(7) with Y 5 1/2 on the assumption of whole body PpW.

Inflection points before birth can only be accurately esti-
mated from prenatal observations. Hence, inaccurate or
unrealistic negative estimates were replaced by the best avail-
able approximate estimates of (birth mass)/(adult body mass)
for the estimation of X 1 Z in Table 6. This creates consonance
between the lowest values in Table 6 and those in Table 1.

Judged by the significance of the Richards shape para-
meter (Gaillard et al., 1997), only two estimates of X 1 Z
larger than 1.7 in Table 6 are significantly larger than the
maximum value of Table 1 in line 12 at the 0.05 level and
none at the 0.01 level. For a sample of 69, this is about what
one would expect to occur by chance, from the definition of a
type 1 error. In addition, seven of the nine outliers larger
than 1.7 are rodents, either squirrels or chipmunks, known as
hibernators to build up body fat to survive the winter asleep.
This possibly fast increase in body fat near maturity may
explain a late point of inflection in body mass, not neces-
sarily approximately coinciding with a point of inflection in
protein mass. Hence, without further evidence on whole
body protein growth, the outliers in Table 6 cannot be
regarded as evidence of a possible inadequacy of Table 1 in
the explanation of whole body protein growth.

It is clear from equation (7) that variable values of Q will
distort the observed growth pattern. The relationship of Q to
nutrition is given by equation (10). Presumably, animals are
customarily fed to the ad libitum level in growth studies. Since
PRmax is achievable in pigs (Moughan, 1999), ad libitum
intake on nutritious food could generally result in Q 5 1.
Hence, the assumption of approximate constancy of Q during
growth from birth to maturity may be realistic for many of the
growth curves of Gaillard et al. (1997). Overall, the evidence
in Table 6 may therefore indicate that most species have X 1 Z
values according to lines 1 to 6 in Table 1, but that a sig-
nificant minority has to be accommodated by lines 7 to 12.
This is in agreement with the evidence in Tables 2 to 4.

The significant differences in body protein X 1 Z powers
obtained in Tables 3 and 4 also argue against the possibility
that the significantly different body mass fit of different
members of the Richards family is solely due to nutrition, body
composition or other environmental effects, masking the only
true mammalian body protein growth curve. The alternative to
a single growth curve is a family or distribution of growth
curves based on Table 1. The distribution in Table 6 suggests
either X 1 Z 5 8/9 or slightly less likely X 1 Z 5 1, from Table
1, as the median or modal values of such a distribution.

Growth of other chemical components and intake prediction
By assuming power relationships between body protein and
other chemical components, appropriate growth curves for

these chemical components can be derived. This is illustrated
for fat growth in Roux (2010), together with applications of
protein and fat growth descriptions in intake prediction.

Discussion

Possible genetic, nutritional, environmental and age
influences on the growth parameters X 1 Z, Y and Q
Variation in X 1 Z. The growth parameter X 1 Z can
experimentally be estimated from the power in the rela-
tionship between PB and the body component or tissue
protein mass. The postulated theoretical values of X 1 Z in
Table 1 are determined by the possible rate-limiting steps
associated with protein breakdown in skeletal muscle or the
total body. Evidence is presented in Table 3 for the possibility
of a nutritional effect on X 1 Z, and in Tables 3 and 4 for
genetic effects. X 1 Z is important in determining the
inflection point in the protein growth curve. That selection
for growth rate may change X 1 Z is evident from Table 4.
This suggests the influence of natural selection in the
explanation of species differences (Table 6) in points of
inflection determined by X 1 Z, as it may be advantageous
to have fast growth coinciding with favorable seasonal
effects such as temperature or food supply.

Break points. von Bertalanffy (1960) provides evidence that
breaks or changes in mammalian growth curves generally
occur with the onset of puberty. Changes in protein meta-
bolism have also been observed at such a break in the
growth curve by Siebrits and Barnes (1989). It follows that
an estimate of X 1 Z from equation (2) may vary according
to measurements before, after or straddling the break. The
estimate of Siebrits and Barnes (1989) in Table 3 is from
points after the break, since very few measurements before
the break were taken. Straddling the break will, in this case,
lower the estimate of X 1 Z appreciably. The possibility of

Table 6 The distribution of values of the powers of protein breakdown
rate X 1 Z estimated from the inflection points of the family of curves
fitted to mammalian body mass growth data by Gaillard et al. (1997)

X 1 Z interval n Fraction

0.4 to 0.5 6 0.09
0.5 to 0.6 5 0.07
0.6 to 0.7 6 0.09
0.7 to 0.8 5 0.07
0.8 to 0.9 8 0.12
0.9 to 1.0 11 0.16
1.0 to 1.1 3 0.04
1.1 to 1.2 7 0.10
1.2 to 1.3 1 0.01
1.3 to 1.4 2 0.03
1.4 to 1.5 3 0.04
1.5 to 1.6 1 0.01
1.6 to 1.7 2 0.03
.1.7 9 0.13
Total 69 0.99
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the existence of different growth curves before and after the
prepubertal break needs consideration. Owing to lack of
information, this possibility was ignored in the present
publication.

The parameter Y. The parameter Y is the power of the rela-
tionship between cell volume and tissue protein content.
Values for Y for different tissues have been derived by Roux
(2006). For the whole body, the contribution of the different
tissues should be weighted in proportion to their PS rates. An
average Y 5 1/2 for the whole body is given by Roux (2006),
but Y may very well differ between types, breeds or species.
Evidence of approximate Y 5 1/2 exists for mammals and
fish (the present communication), but more uncertainty
exists for chickens or birds in general.

Variation in Q. The growth parameter Q is the proportion of
nuclei active in either cell enlargement or multiplication. It
can be estimated from equation (10) or its derivations,
equations (11.1) and (11.2), as well as from intake and
maintenance rates and diet properties. It is evident from
equation (7) that a constant Q , 1 will merely cause a con-
stant proportional change in PR during growth. On the other
hand, a variable Q during growth may disguise the true
growth form as determined by the rest of the parameters
X 1 Z and Y.

Practical utility
Perhaps the greatest practical utility of the theory developed
in this study is the possibilities for intake and growth
description and prediction shown in the construction of Table
5 together with Tables A4 and A5 in Roux (2010). With some
information on limit masses and inflection points, fairly
general equations such as equation (13) together with a fat
analog are easily obtainable with the aid of Table 1 and can
be adapted to specific circumstances by calculation of the
constant c from available experimental observations, even at
a single growth point. In contrast to the multiple points of
inflection available from Table 1, the Gompertz, for example,
is only applicable to the situation of a point inflection at P/
a 5 0.368. Furthermore, the papers of Ursin (1979) and
Oltjen et al. (1985) illustrate that the fitting of general
equations such as equation (1) or (7) will be difficult without
information on limit mass or point of inflection. Technically,
this problem arises from the intra-correlation between the
structural parameters of curvilinear functions.
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Appendix

A description of the most important variables, their abbreviations and their units of measurement for the prediction of body
component growth and food intake

Abbreviations Description

a The limit or mature protein mass of the total body, body component or tissue (kg)
p proportional to
b The limit or mature total body fat mass (kg)
c Arbitrary constants, sometimes with subscripts to differentiate between them
cv Cell volume
DNA unit The amount of protein associated with a nucleus, equal to P/nn in multinucleate tissues; identical to a cell in mononucleate tissues
F Fat mass (kg)
FR Fat retention (kg/day)
ME Metabolizable energy (ME, MJ)
MEI ME intake (MJ/day)
MEO Optimal ME intake at PR 5 PRmax

MEM The ME intake at body protein maintenance with PR 5 0 (MJ/day)
nn Nuclear number
nv Nuclear volume
P The protein mass in a tissue, body component or whole body (kg)
P/a Protein maturity (kg/kg)
PB Protein breakdown (kg/day)
PR Protein retention (kg/day)
PS Protein synthesis (kg/day)
Q The proportion of nuclei active in cell growth or division
W Empty body mass (kg)
X The power associated with the DNA unit rate-limiting step in protein breakdown
Y The power of the relationship between cell volume and tissue, body component or whole body protein amount
Z The power of the relationship between the number of nuclei and tissue, body component or whole body protein amount
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