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ABSTRACT

The Johannesburg Dome (JD) in the central Kaapvaal Craton (KC) is dominated by granitoid rocks of the tonalite-trondhjemite-
granodiorite (TTG) series. Based on modal analysis as well as a major and trace element investigation the JD granitoids could be
subdivided into three main suites, i.e. a Tonalitic gneiss suite (TG) around the southern boundary, a Granodiorite to Adamellite
Gneiss suite (GAG) across the northern part, and a Granodiorite/adamellite to Granodiorite suite (GG) occurring between the
TG and GAG suites. These rocks are dominantly I-type and peraluminous with the tonalites (TG and partly the GAG suites)
falling in the metaluminous field. TTGs of the JD are high-K calc-alkaline to calc-alkaline and are dominantly high silica rocks
(~70 weight %), aluminous (Al,O3 >15wt%) with low Yb (<Ippm), high La/Yb ratios (>30), high Na,O/K,O (>1), and have Na,O
contents of between 3wt% and 5Swt%, comparable to that of the average TTG. The JD tonalities (TG suite) have higher Al O3, Sr,
Na,O/K,0, Mg#, Ni, Cr and LILE contents compared to the more calc-alkaline granitoids (GG suite and trondhjemites of the GAG
suite), which are typically richer in HREE (lower REE fractionation), Y and show a negative Sr and Eu anomaly. Other characteristic
features of the JD TTG’s include HFSE depletion and distinct enrichment of fluid sensitive elements such as Pb. The strongly
fractionated REE pattern, high (La/Yb)y ratio and depletion in HREE (Yb) of the JD TTGs are characteristics shared with modern
adakites. The TG suite most probably formed through melting of a subducted oceanic slab with the melt interacting with mantle
peridotite during its accent through a thin mantle wedge. The remaining JD granitoids (GAG and GG) most probably formed

through the remelting of a TTG protolith, which has a subducted slab and mantle wedge signature (similar to the TG suite).

Introduction
Archaean cratons typically consist of three main rock
associations, i.e. greenstone belts, tonalite-trondhjemite-
granodiorite gneisses (termed “TTG suite” by Jahn et al.,
1981) and calc-alkaline K-rich granitoids (Windley, 1995
and Moyen et al., 2003). Based on studies of the
Barberton Mountain Land, De Wit (1998) referred to
the latter as granodioritic-granitic-monzogranitic (GGM)
suites. While TTG associations are the main components
of the Archaean continental crust generated between 4.0
and 2.5 Ga (Jahn et al., 1981; Smithies et al., 2003), the
calc-alkaline GGM or high K-granodiorite suites
dominate large parts of Archaean cratons formed
between 2.8 and 2.5 Ga. There is a general agreement
that the GGM suites form at mid to lower crustal levels
through partial melting of the preexisting TTG crust and
sediments (De Wit, 1998 and references therein).
Although information fundamental to understanding
Archaean tectonics and crustal evolution has been
steadily forthcoming over the last decade, the origin of
TTG magmas is still widely debated. Suggestions on the
origin of TTG magmas vary from fractional crystallisation
of basaltic melts (Arth et al, 1978), through partial
melting of mantle rocks (Moorbath, 1975), to partial
melting of pre-existing tonalites (Johnston and Wyllie,

1988). However, the most widely accepted mechanism is
that of partial melting of hydrous metabasaltic rocks,
i.e. greenstones, amphibolites and eclogites, under a
variety of fluid pressures in a variety of tectonic settings
(Martin, 1987; Wyllie, 1997; Condie, 2005). These
petrogenetic models are largely based on the fact that
the chondrite-normalised REE patterns of TTG rocks are
typically HREE-depleted and LREE-enriched. Growing
support for analogies drawn between present-day plate
tectonics and Archaean geotectonic processes has lead
to the re-evaluation of Archaean terrains world-wide
(De Wit et al., 1992; Moyen et al., 2003; Blewett, 2002;
Smithies et al., 2003; Poujol et al., 2003). Analogies
between Archaean TTG suites and modern adakites
strongly ~ suggest that modern-style subduction
processes, including interaction between slab-derived
components and the mantle wedge, occurred as far back
as ~3.3 Ga. (Condie, 1981; Martin, 1999; Martin et al.,
2005).

TTG suites are generally subdivided into a TTG
series and a high-Mg diorite (sanukitoid) series (Smithies
and Champion, 2000). The high-Mg diorite series was
first recognised by Shirey and Hanson (1984) as a Late
Archaean suite of felsic intrusives and volcanic rocks
from the Superior Province. The major element
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Figure 1. Locality map showing the position of the Jobannesburg Dome (JD) relative to the outline of the Kaapt
-entral domain (3) along with the Vredefort Dome (V). (Modified after Eglington and Armstrong,
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geochemistry of the high-Mg diorite series resembled
that of a Miocene high-Mg andesite (sanukite) from
Japan and was therefore referred to as “Archaean
sanukitoids” (Shirey and Hanson, 1984). Subsequently
similar suites of rock was recognized in other TTG
occurrences (such as the central Pilbara Craton) and are
now generally regarded as a minor, widespread
component of most Late Archaean terranes that post-
dates the dominant TTG series (Smithies and Champion,
1999; Smithies, 2000; Smithies et al., 2003; Martin et al.,
2005). These rocks, which resemble modern high
magnesian andesites (HMA), may constitute up to 25%
of Archarean plutonic rocks (Evans and Hanson, 1997).
Sanukitoid suite composition ranges from dioritic to
granodioritic (tonalite is subordinate). More recently a
rock type, which shares several characteristics with
sanukitoids, the Closepet-type granite, were recognised
from South India (Moyen et al., 2001), China and South
Africa (Limpopo) (Barton et al., 1992). Closepet-type
granite differs from sanukitoid in having higher
K;0O/Na,O ratios (<1) and being relatively enriched in Ti,
Nb and Zr. In contrast to TTG, sanukitoid and Closepet-
type granite follow a classical calc-alkaline trend in
the K-Na-Ca triangle (Martin, 2005). Furthermore the
high MgO, Mg#, Cr, Ni, and K,O distinguish sanukitoid
and Closepet-type granite from TTGs (Martin et al.,
2005).

Previous gechemical work recorded on the JD
gtranitoids is very limited with one dataset of major and
some trace element analyses available for the entire JD
(Anhauesser, 1973) and the occasional RE element
analyses of isolated areas on the western boundary
(Anhauesser, 1999). In this paper an attempt is made,
using a complete set of petrographic, mineral chemistry,
major-, trace- and RE element data, to identify the
subcomponents of the Archaean granitoid rocks of
the Johannesburg Dome (JD), to classify them within the
current framework of understanding of the TTG suites
and to propose processes involved in the petrogenesis
of these granitoids.

Geological background

The Kaapvaal Craton

The Kaapvaal Craton occupies the south central interior
of southern Africa and is one of only a few areas in the
world where pristine mid-Archaean rocks have been
preserved. The Craton is bound by the ~1.2 to ~1.0 Ga
Proterozoic Namaqua-Natal metamorphic province to
the south, by the ~1.8 Ga Kheis belt to the west and by
the Limpopo belt and the Archean Zimbabwe craton to
the north (Hartnady et al., 1985; Cornell et al., 1998;
Kusky, 1998) (Figure 1).

Geochronological and tectonic studies suggested that
the formation of Kaapvaal Craton, through subduction
and amalgamation of smaller crustal fragments, took
place in two distinct periods (de Wit, 1992; Smithies and
Champion, 2000; Bedard et al., 2003). The initial shield-
forming stage, which spanned from ~3.7 to ~3.1 Ga, was
followed by a stage of accretion of continental fragments

and stabilization between ~3.1 Ga and ~2.6 Ga (De Wit
et al, 1992; Thomas et al., 1993; Lowe, 1994;
Anhauesser, 1999; Poujol et al., 2003; Eglington and
Armstrong, 2004). These smaller crustal fragments
include the oldest ~3.5 Ga eastern domain (Barberton
Mountain Land, BML); a ~3.0 Ga northern domain
(Murchison-, MGB, Giyani-, GGB, and Pietersburg, PGB,
Greenstone Belts; a ~3.2 to ~3.0 Ga central domain
(granitoid domes such as the Johannesburg Dome (JD),
Rand anticline and Vredefort Dome); and the western
and youngest ~3.0 to ~2.7 Ga domain (Kraaipan-, KGB,
Amalia-, AGB, and Madibe, MaGB, Greenstone Belts)
(de Wit et al, 1992; Thomas et al, 1993; Brandl
and de Wit, 1997; Poujol et al., 1999: Eglington and
Armstrong, 2004; Poujol et al., 2003) (Figure 1).
The Colesberg and Thabazimbi-Murchinson lineaments
have been considered to represent suture zones
along which younger domains were accreted to
form the Kaapvaal Craton (Eglington and Armstrong,
2004).

The Jobannesburg Dome

Of all the Archaean rock occurrences in the central
Kaapvaal Craton, those of the Johannesburg Dome (JD),
a 700 km?-sized oval-shaped window of Archaean mafic
to ultramafic units intruded by tonalite, trondhjemites
and  granodiorite, is probably best exposed.
Consequently, this granitoid-greenstone terrain is well
suited for -studies of Archaean crustal evolution of
central Kaapvaal Craton (Figure 2).

Although the only nomenclature presently accepted
by the South African Committee for Stratigraphy (SACS,
1980) refers to this window of Archaean rocks as the
“Halfway House Dome” the term Johannesburg Dome
has been widely used in recent publications and is
therefore sustained in this publication.

The oldest recognisable rocks of the JD are described
as a variety of mafic and ultramafic rocks with komatiitic
to high-magnesian basaltic and tholeiitic affinities similar
to those seen in the BML and believed to have formed
in an Archaean oceanic or volcanic arc-like geotectonic
setting (Viljoen and Viljoen, 1969; Anhauesser, 1973;
1977; 1978; 1992; 1999). These mafic to ultramafic rocks
have limited exposures in the JD with larger occurrences
present mainly around its western, southwestern and
southeastern margins, i.e. the Roodekrans, Muldersdrift
and Zandspruit complexes (Figure 2). A unit of poorly
exposed metavolcanics, containing amygdales,
spherulites and locally developed pillow structures,
separates the Roodekrans and Muldersdrift Complexes
(Anhaeusser, 1977; 1978). Smaller isolated bodies
(centimeter- to meter-scaled) are found scattered across
the JD, in some instances aligned parallel to the
gneissosity (Anhauesser, 1973; 1977; 1978). Recent work
by Anhauesser (2004), however, suggests that the mafic-
ultramafic assemblages on the JD represent a suture or
oceanic crustal collisional zone between two colliding
crustal blocks, similar to that found in Phanerozoic
ophiolite complexes. This assumption is based on the
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Figure 2. Simplified geology map of the JD (not to scale).

fact that the JD mafic-ultramafic assemblages lack
evidence of other lithologies akin to greenstone
complexes. Through reassessment of the mafic-
ultramafic assemblages Anhauesser (op. cit.) showed
these rocks to be closely linked to upper mantle or
oceanic crust.

Supracrustals unconformably overlying the Archaean
lithologies dip radially away from the central dome
(Figure 2). The southern boundary of the JD is marked

by rocks of the Witwatersrand and Ventersdorp
Supergroups whereas the northern boundary of the JD
is constituted by quartzites and shales of the Black Reef
Formation, which occurs at the base of the Transvaal
Supergroup (Anhaeusser, 1973). Although a sedimentary
contact between the Witwatersrand Supergroup and the
granitoids of the JD has been established by earlier
studies (Corstophine, 1908), Hilliard (1994) as well as
Roering (1986) showed the contact is highly sheared.
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Deformation in the JD granitoids is evidenced by the
gneissic foliation as well as strike-slip shear movement
zones developed mainly in two prominent cross cutting
directions, i.e. northwest to southeast and northeast to
southwest (Hilliard, 1994) (Figure 2).

Hilliard (1994) proposed the shearing seen in the
JD granitoids pre-dates the deposition of the Black
Reef Formation, with later re-activation as brittle faults
displacing the Transvaal Supergroup in post-Black Reef
times (Hilliard and McCourt, 1995). The latter
deformation pre-dates the JD doming event which is
believed to have occurred after the Vredefort event
(McCarthy et al., 1986; Hilliard, 1994). The more
prominent deformation is, however, confined to the
supracrustals (McCarthy et al., 1982; Stranistreet and
McCarthy, 1986; Stranistreet and McCarthy, 1990;
McCarthy et al, 1990; Charlesworth and McCarthy,
1990).

Geochronology and field relationships

The central domain (JD, Rand anticline and Vredefort
Dome) of the KC was mainly active between ~3.2 to
~3.0 Ga during the craton accretion and stabilisation
period (3100 Ma to 2600 Ma) (De Wit et al., 1992;
Anhauesser, 1999; Thomas et al., 1993). Barton et al.
(1999) suggested that granitoid magmatism of this age
was widespread as JD granitoid magmatism is coeval
with magmatism in the Barberton area. Poujol et al.,
(2003) highlighted three main magmatic events over the
central part of the Kaapvaal Craton. These events
occurred at ~3.2 to ~3.18 Ga, ~3.12 to ~3.08 Ga and
~2.73 to 2.71 Ga respectively. Barton et al. (1999) also
showed neither the ~2.025 Ga Vredefort event (Koma
et al, 1996; Gibson et al., 1999) nor the ~2.06 Ga
intrusion of the Bushveld Complex (Kruger et al., 1987)
had a significant influence on the formation of the JD
granitoids.

In recent years the main focus of studies on the JD
granitoids was the geochronology of the various
granitoids, the most important findings from these
studies has been summarized in Table 1. Barton et al.
(1999) also proposed that granitoids of the JD were
genetically related and were derived from a ~3.35 to
~3.3 Ga year old source. The most recent (post-1999)
age determinations, utilizing the ““Pb/*®Pb single
zircon technique, showed two key periods of
magmatism across the JD. The oldest phase (3340 +
3 Ma; Poujol and Anhaeusser, 2001) is tonalitic to
adamellite and granodiorite gneiss around the northern
half of the JD and related tonalitic gneiss (3201 + 5 Ma;
(op cit)) around the southern edge of the JD. This phase
was followed by a second period of magmatism
manifested as a medium-grained homogeneous
granodiorite to adamellite (3121 + 5 Ma; (op cit)) across
the southeastern part of the JD and a porphyritic
granodiorite to adamellite and granite (3114 + 2 Ma;
(op ci), occurring generally in the southwestern part
of the JD (Table 2). Barton et al. (1999) also showed
through Sm-Nd isotopic analyses that the leucosome

of the migmatite (northern JD) is possibly cogenetic

with the youngest granodioritic to granitic magma.

These ages correspond to Poujol et al’s (2003) first

(~3.2 1o 3.18 Ga) and second (~3.12 to 3.08 Ga) phase

events for the central Kaapvaal Craton.

This paper proposes that the JD is comprised of three
main suites based on the geochronological data and
field relationships. The extent of each suite is indicated
on the simplified geological map (Figure 2). The three
suites, broadly similar to those proposed by Robb et al.
(2008) are:

1. Granodiorite- to Adamellite Gneiss suite (GAG) with
local development of tonalite and trondhjemite
gneiss, i.e. probably the ~3.34 Ga rocks of the same
composition of Poujol and Anhaeusser (2001)
(Lanseria Gneiss, Robb et a.l., 2008) occurring over
much of the northern JD; and

2. Tonalite Gneiss suite (TG) i.e. the ~3200 Ma tonanlitic
gneiss of Poujol and Anhaeusser (2001) (Linden
Gneiss, Robb et al., 2008) occurring around the
southern edge of the JD;

3. Granodiorite-to-granite ~ suite  (GG)  occurring
between the TG suite in the south and the
GAG suite in the north, i.e. the ~3.1 Ga rocks of
Poujol and Anhaeusser (2001) (Bryanstone,
Honeydew and Victory Park Granodiorite, Robb et al.,
2008).

Unfortunately, due to generally poor rock exposure, the
contacts between the three main suites are largely
obscured. The field relationship of the three main suites
and locally occurring porphyritic, coarse-grained
pinkish-red and dioritic marginal varieties could only be
seen at isolated outcrops such as the Nooitgedacht
outcrop in the northwest. However, the significance of
the observed field relationships are uncertain as these
could not be extrapolated for the entire JD The relative
age relations suggested from previous work could not
be tested in the field.

Granodiorite-to-Adamellite Gneiss suite

(GAG)

This suite consists mostly of granodioritic to adamellitic
banded gneiss with tonalitic/trondhjemitic gneiss
“patches” (Figure 3a). “Patches” (<1m? sized areas) are
gradational into granodiorite and/or adamellite and form
a subordinate component not developed throughout the
GAG suite. The GAG suite is strongly foliated consisting
of alternating leucocratic and melanocratic bands
(2 to 20 cm thick) with widespread occurrences of
centi- to decimeter-sized, irregularly-shaped ultramafic
xenoliths. In many cases the foliation and banding have
been intricately folded suggesting that variable stress
fields have influenced the formation of these rocks.
The foliation in unfolded rocks has an average strike of
120° to 130°, which corresponds to that in the TG suite.
The dominant mineral assemblage in the GAG gneiss is
medium-grained quartz, K-feldspar, plagioclase and
biotite.
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Table 1. Summary of geochronological data for the HHD granitoids.

Locality

Age
(Ma)

Error Rock type Rock

classification
(this study)

Reference

North-western quadrant

2 087

Leucosome of GAG

migmatitic gneiss

Rb-Sr whole rock

Barton et al.

South-central (Witkoppen)

2 120

Granite GG

Rb-Sr biotite

Allsopp

North-western quadrant

2188

Leucosome of

migmatitic gneiss

Rb-Sr whole rock

Barton et al.

South-central

2 202
2117
2 240
2110
2 158

Granodiorite and granite

Rb-Sr biotite

whole rock

Barton et al.

South-central
(Waterval 5IR)

2236

Xenolith in granodiorite

Zmpb/Z%Pb

composite zircon

Burger
and Walraven

South Central

2261

Barton et al.

South-central
(Halfway House)

2310

Granite

Rb-Sr biotite

Allsopp

Southern rim

2 321

Tonalite

Rb-Sr biotite

Barton et al.

Southern rim

2 385

Tonalite

Rb-Sr whole rock

Barton et al.

South-central (Lone Hill)

2585

Homogeneous

granodiorite

207pp, /206pb

composite zircon

Burger
and Walraven

North-eastern quadrant

2 614
2 430

Leucosome of migmatitic

gneiss

Rb-Sr biotite

whole rock

Barton et al.

Southern rim

3 001

Tonalite

Pb whole rock

Barton et al.

South-central

3 081

Granodiorite and granite

Average Rb-Sr

whole rock

Barton et al.

South-central

3112

Granodiorite and granite

207ph, /2()6pb

whole rock

Barton et al.

North-western quadrant

3135

Leucosome of migmatitic

gneiss

Rb-Sr whole rock

1999

Barton et al.

Southern rim

3170

Tonalite gneiss

U-Pb multiple zircon

1982

Anhauesser
and Burger

South-central

3 200
3132

Granite GG

Rb-Sr whole rock

1961
1964

Allsopp
Allsopp

South-central

3158

Granodiorite and granite GG

Rb-Sr whole rock

1999

Barton et al.

Southern rim

2 947

Medium- to coarse-grained GG

homogeneous granodiorite

207ph/206ph zircon

2001

Poujol

and Anhauesser

North-western quadrant
(Nooitgedacht)

2997

Trondhjemite gneiss GAG

207ph/206ph zircon

2001

Poujol
and Anhauesser

South-central

3101

Granodiorite and granite

207ph/206ph zircon

2001

Poujol

and Anhauesser

South central

3121

Medium-grained grey

granodiorite

207ph/206ph zircon

2001

Poujol

and Anhauesser

South-western quadrant

3114

Porphyritic granodiorite

207ph/206ph zircon

2001

Poujol

and Anheasusser

Southern rim

31999

Tonalite gneiss

207ph/206ph zircon

2001

Poujol

and Anhauesser

North-western quadrant

3213

Trondhjemite gneiss

207ph/206ph zircon

2001

Poujol

and Anhauesser

South-western quadrant

3 227

Medium-grained grey
granodiorite

207ph/206ph zircon

2001

Poujol and
and Anhauesser

North-western quadrant

3 340

Trondhjemite gneiss

207ph/206ph zircon

2001

Poujol
Anhauesser
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Tonalite Gneiss suite (TG)

This suite of medium to coarse-grained tonalite to
granodiorite gneiss occurs as a homogeneous unit in
contact with Archaean mafic and ultramafic remnants
around the southern edge of the JD (Figure 2).
The tonalite gneiss is made-up of quartz, plagioclase,
amphibole and biotite, *K-feldspar and accessory
minerals such as apatite, zircon and alanite. The gneissic
fabric of the rock (Figure 3b) is defined by the preferred
orientation of amphibole and biotite. Smaller mafic
to ultramafic xenoliths are aligned parallel to the
foliation.

Figure 3. (a) Photograph of a typical foliated granodiorite/
adamellite gneiss from the GAG suite showing amphibolite to diorite
inclusions (arrow) (b) Photograph of a typical tonalitic gneiss of
the TG suite. Note the ultramafic xenolith (arrow), aligned with

Joliation. (c¢) Photograph of a typical porphyritic granodiorite of

the GG suite showing feldspar phenocrysts of up to 2 cm.
(d) Photograph of a typical medium to coarse-grained, pinkish-
grey granite of the GG suite (Lens cap diameter = 50 mm)
(e) Photograph of a typical medium-grained, bhomogeneous
adamellite/ granodiorite of the GG suite (Lens cap diameter

= 50 mm).

Granodiorite-to-Granite suite (GG)

From field observations it is possible to distinguish three
main rock types in the GG suite, i.e. 1) porphyritic
granodiorite occurring locally, but not exclusively, in the
south-western quadrant of the JD (Figure 3c¢), 2)
medium-grained pinkish-grey granite developed over
most of the south-western quadrant (Figure 3d), and 3)
medium-grained homogeneous adamellite/granodiorite
developed across the south-eastern part of the JD
(Figure 3e).

Petrography and mineralogy
Petrography
The rocks of the JD are generally medium to coarse

grained, and consists of variable amounts of granularly
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Figure 4. An-Ab-Or diagram for the electron microprobe data showing the plagioclase rim (red) and core (black) compositions for JD

suites.

arranged plagioclase, quartz, K-feldspar, +hornblende
and biotite with accessory minerals including epidote,
apatite, zircon, muscovite, allanite, and titanite. Table 2
summarizes the major textural and mineralogical
features of the various rock types of the JD. Modal
mineral composition of the various granitoid rocks of the
JD is reported in Table 2. Mineral abbreviations as
recommended by Kretz (1983) are used throughout. It is
of note that the TG suite of the JD is comparable to that
of typical Achaean TTG (after Clarke, 1992) for all
minerals except biotite and hornblende. The TTG is
depleted in hornblende (+ 0-5 %) and enriched in biotite
(5-10 %) relative to the TG rocks.

Mineral morphbology and chemistry

Plagioclase ranges from oligoclase to albite (as
determined by electron microprobe) and occurs as lath-
shaped to granular crystals ranging between 0.5 and
4.5 mm in size. Plagioclase in the TG suite is extensively
serisitized and saussuritized. The majority of plagioclase
grains in the GAG and GG suites show zoning with
cores altered to epidote, sericite and calcite (optically
clouded), followed by alternating moderately altered to
alteration-free  (optically clear) zones. Distinctly

alteration-free rims are developed exclusively on the
boundaries between plagioclase and K-feldspar and
absent where quartz is in contact with plagioclase or
K-feldspar in the GAG and GG suites. It is, however,
important to point out that there is a clear distinction
between normal oscillatory zoning (formed above
the solidus), generally observed in plagioclase
phenocrysts, and these rims which are sub-subsolidus
in origin.

Compositions of plagioclase from the three main JD
suites are plotted on an An-Ab-Or diagram (Figure 4).
The An-content of plagioclase increases slightly from the
TG suite to the GG and GAG suites (Table 3). Both core
and rim datasets are weakly bimodal with the
cores mainly Ang-An,, whereas the rims are Ang -Ang
and An-An,, The TG suite shows overlap in
plagioclase core and rim compositions whereas the GAG
and GG suites show a more distinct compositional
variation between core and rim as shown on the
An-content versus frequency histogram (Figure 5a and
b). Plagioclase rims in contact with K-feldspar is
dominantly lower in An compared to rims bordering
quartz or other plagioclase. This variation is attributed
to the existence of clear discontinuous rims on the
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Figure 5. (a) Histograms of the An content vs frequency in plagioclase for cores in all three JD granitoid suites (b) Histograms of the An

content vs frequency in plagioclase for rims in all three JD granitoid suites.

contacts between plagioclase and K-feldspar related to
sub-solidus exsolution.

K-feldspar occurs in all three suites but its proportions
and morphology vary. K-feldspar is mainly microcline
varying in size from fine to coarse-grained (0.5 to 4 mm).
It is present in small quantities in the TG suite
whereas it is one of the main constituents of the GG and
GAG suites. It is anhedral and interstitial to plagioclase
tablets in the TG suite but granular, poikilitically

enclosing smaller randomly orientated grains of
quartz and euhedral plagioclase, in the GAG and GG
suites.

Quartz occurs as fine to medium-grained (0.32 mm
to 5.8 mm in diameter) crystals and shows late magmatic
to sub-solidus deformation (undulose extinction and
sub-grain development along quartz-quartz grain
boundaries). Three morphological varieties of quartz
were identified in the JD granitoids, i.e. amoeboid,

Table 4. Representative major element analyses of amphibole from selected JD granitoids, recalculated on the basis of 24 oxygen atoms

per formula unit

Tonalite Gneiss Suite (TG)

Sample 16-2-1A 16-2-1B 16-2-1C  16-2-1D 50-1A 50-1B

Granodiorite to Adamellite Gneiss suite (GAG)

50-2C 50-2D 28-1A 28-2B 28-1C 28-3A 28-3B

SiO, 50.6 45.6 48.8
TiO, 0.41 0.99 0.26
Al,O3 4.78 8.28 6.69 9.66 6.2 8.92
Cry03 0 0 0 0.06 007 005
Fe,03 0 0 0 0 0 0
FeO 13 18 152 172
MnO 0.32 032 034
MgO 111 136 114
CaO 123 126 119
NaO 1.14 092 125
K,0 0.89 0.4 0.92

45.1 48.8
0.63 0.28

45.3
1.07

44.7 45.5 47.5 48 47.5 47.6 50.9
1.19 0.82 0.61 0.52 0.87 0.58 0.12
9.7 9.01 6.86 6.78 71 71 3.78
0 0 0.08 0.06 0.15 0.07 0.08
0 0 0 0 0 0 0

18 14.8 15.2 15.1 14.9 11.9
0.4 0.46 0.41 0.44 0.38
11 13.6 13.8 13.3 13.6 14.9
123 11.8 11.7 123 12.6
1.36 1.19 1.5 1.28 0.63
1 0.74 0.77 0.76 0.79 0.32

TOTAL 99.2 98.3 98.4

99.5 98.3 98.6 98.2 98.7 95.6

SI 6.98 7.46 7.05
TI 0.07 0.03 0.13
AL 0.86 1.76 1.12 1.64
CR 0 0 0 0.01 0.01 0.01
0 0 0 0 0 0
1.67 2.2 1.96 2.34 1.95 2.24
0.03 0.04 0.05 0.04 0.04 0.05
35 2.74 3.03 255 3.09 2.64
1.99 1.98 2.01 2.05 2.07 1.98
0.16 0.28 0.27 0.34 0.27 0.38
0.08 0.17 0.09 0.18 0.08 0.18
15.9 16.2 16.1 16.3 16.1 16.3

73 7.35 73 7.29 7.85

0.1 0.07 0.06 0.1 0.07 0.01

1.24 1.22 1.29 1.28 0.69

0 0 0.01 0.01 0.02 0.01 0.01
0 0 0 0 0 0 0

2.26 2.33 191 1.95 1.94 1.91 1.54

0.04 0.05 0.05 0.06 0.05 0.06 0.05

2.54 2.54 3.12 3.14 3.05 3.09 3.43

2.05 2.06 2.02 1.94 1.93 2.02 2.08

0.39 0.4 0.41 0.35 0.39 0.38 0.19

0.22 0.2 0.15 0.15 0.15 0.15 0.06

16.3 16.3 16.3 16.2 16.2 16.3 159
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Figure 6. Classification diagram for amphiboles from the TG
(solid black symbol) and GAG suite tonalite trondhjemite gneiss
(open red symbol) of the JD.

interstitial, and rounded to vermicular. Myrmekitic
intergrowths of plagioclase and quartz are developed
along plagioclase grain boundaries.

Biotite is fine-grained brown-green (0.1 to 0.2 mm in
size) and occurs as individual crystals or aggregates
associated with hornblende, sphene, apatite, chlorite,
epidote and zircon. These aggregates have a preferred
orientation contributing to the gneissic foliation
observed in the TG and GAG suites. Biotite is slightly
altered to chlorite, muscovite and titanite.

Amphibole is the dominant ferromagnesian mineral in
the TG suite and locally developed in the tonalitic to
trondhjemitic gneiss of the GAG suite. It forms pale-
green to dark yellow-green anhedral crystal aggregates
and isolated subhedral crystals. Amphibole grains are
either uniformly scattered throughout the rock or cluster
together with biotite, sphene, apatite, chlorite, epidote
and zircon defining the gneissic foliation. Amphibole
crystals commonly enclose mainly quartz in a poikilitic
fashion. Minor chloritization of hornblende and biotite
is not uncommon but chlorite generally makes up
<1 volume %. Microprobe analyses of the TG and GAG
suites showed amphiboles are calcic (Table 4).
Compositions in the TG suite range from actinolite to
magnesiohornblende, whereas in the GAG suite it is
mostly magnesiohornblende (Figure 6). The Mg/(Mg +
Fe?*) ratios of amphibole for both the TG and GAG
suites range from 0.52 to 0.70.

Epidote is a prominent accessory mineral and occurs as
faintly to conspicuously pleochroic crystals in all JD
granitoids, but more prominently in the TG suite. This
mineral not only forms the sub-solidus alteration of
plagioclase, but also as individual crystals in mafic
mineral clots or as rims on some allanites.

Whole rock geochemistry
Full major and trace element compositions are given in
Table 5.

Major element composition

The alumina saturation of the JD rocks is shown in
Figure 7, a plot of molar A/CNK vs wt% SiO2
(Chapell and White, 1974). The JD is dominantly I-type
(>1.1 A/CNK), peraluminous rocks but the older
tonalites (TG and GAG suites) fall in the metaluminous
field. Also shown on the diagram is published data from
across the JD (Anhaeusser, 1973) as well as the isolated
Nooitgedacht outcrop Anhaeusser, 1999). On the Q-P
(Q= Si/3-(K+Na+2Ca/3) and P= K-(Na+Ca)) major
element-based lithological classification diagram of
Debon and Le Fort (1982) (Figure 8) the TG suite
tonalite gneiss straddles the tonalite and granodiorite
fields. The GAG suite plots almost exclusively in the
adamellite and granodiorite field, whereas the locally
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Figure 7. Alumina-saturation diagram (A/CNK vs SiO2) (Chappel
and White, 1992) showing JD granitoids (excluding Nooitgedacht
rocks (blue symbols) fall dominantly in the I-type (<1.1 A/CNK) but
peraluminous granite (A/CNK>1) field with mainly tonalites
(TG and GAG suites) falling in the metaluminous (A/CNK<1) field.
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Legend
TG tonalite gneiss
GAG granodiorite/adamellite gneiss
GAG tonalite trondhjemite gneiss
GG homgeneous adamellite/granodiorite
GG porphyritic granodiorite
GG pink-grey granite
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Figure 8. The various plutonic units of the JD plotted on the Q-P major-element-based granitoid classification diagram of Debon and Le

Fort (1982) ((Q= Si/3-(K+Na+2Ca/3) and P= K-(Na+Ca)).

developed tonalite to trondhjemite gneiss falls within the

granodiorite and tonalite fields. The GG suite plots as

granite, adamellite and granodiorite.

The JD rocks are dominantly high silica (~70 weight
%), aluminous (A;03 >15wt%), high Na,O/K;0 (>1) rocks
with Na,O contents (3 weight % and 5 weight %), which
compare with the average TTG compositions (Table 5).
The geochemical compositions of the JD granitoids
define two broad groupings (with a minor overlap):

i. the first group is characterised by relatively high
content of MgO (>1 weight %) and SiO, ranging
between 60 and 70 weight % (mainly the older TG
suite and some GAG suite tonalite-trondhjemite
gneiss); and

ii. a second group characterised by much higher content
of SiO, (>70 weight %) but lower content of MgO
(<1 weight %) represented by the younger rocks
(GAG and GG suites):

Except for the relatively high MgO content (up to
>9 weight % in the TG suite and the GAG suite tonalite-
trondhjemite gneiss) the JD granitoids are generally
charcaterised by low contents (< 5 weight %) of
Fe,03+MgO+MnO+TiO, (Table 4). The majority of the
JD granitoids have FeO contents below that of
the average TTG suite (~3 weight %). The high-MgO
group (TG suite and tonalite-to-trondhjemite gneiss of
GAG suite) exhibits the characteristic Na,O/K,O >1 seen
in TTG suites.

A range of major element Harker variation diagrams
is used for characterization of JD rocks including data
from previous studies (Anhaeusser, 1973; 1999) and
shown in Figure 9. Most oxides in the JD suites are
negatively correlated with SiO; as shown in the Harker
diagrams for Al,Os3, MgO, TiO,, FeO, MnO and CaO vs
wt% SiO,. However, exceptions are observed
concerning the alkalis (Na,O and K,0), which show
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Table 6. Major, trace and RE element variations in average TTG and other relevant rock types

Avg Avg Avg Modern Avg Closepet  GGM HSA LSA Avg Avg Avg  Primitive
TG TG ™G Arc type upper lower continental Mantle
>3.5 Ga 3-3.5Ga <3 Ga  Granitoid Sanukitoid granite crust crust crust
1 2 3 4 5 6 7 8 9 10 11 12 13

SiO; 69.59 69.65 68.36 68.1 58.76 56.39  72.06 64.8 56.25 66 54.4 57.3
TiO, 0.39 0.36 0.38 0.74 1.2 0.34 0.56 1.49 0.5 1 0.9
Al,O4 15.29 15.35 15.52 15.07 15.8 1579 1459 16.64 15.29 15.2 16.1 15.9
Fe 04 3.26 3.07 3.27 4.36 5.87 7.34 - 4.75 3.26
FeO - - - - - - 1.75 - - 4.5 10.6 9.1
MnO 0.04 0.06 0.05 0.09 0.09 0.13 0.02 0.08 0.09
MgO 1 1.07 1.36 1.55 39 3.38 0.59 2.18 215 2.2 6.3 53
CaO 3.03 2.96 3.23 3.06 587 5.45 1.68 4.63 7.69 4.2 8.5 7.4
Na,O 4.6 4.64 4.7 3.68 4.42 3.94 4.87 4.19 411 39 28 31
K,O 2.04 1.74 2 3.4 2.78 337 4.18 1.97 2.37 3.4 0.3 1.1
P,0s5 0.13 0.14 0.15 0,15 0.39 0.72 0.1 0.2 0.66 0.1 0.1 0.1
Mg# 0.38 0.41 0.45 0.41 0.57 0.48 0.48 0.61
Na,O/K,0  0.44 0.38 0.43 0.92 0.63 0.8 0.47 0.58
Rb 79 59 67 110 65 93 139 19 52 110 11 61 0.635
Ba 449 523 847 715 1543 1441 796 1087 721 700 757 707 6.989
Nb 8 6 7 12.1 10 18 10.1 11 6 25 5 13 0.713
Sr 360 429 541 316 1170 978 291 2051 565 350 569 503 21.1
Zr 166 155 154 171 184 323 282 188 108 240 202 210 11.2
X 12 14 11 26 18 37 18.9 13 10 22 7 14 4.55
Ni 12 15 21 10.5 72 38 7 103 20 20 135 105
Cr 34 21 50 23 128 50 10.4 157 41 35 235 185
Vv 39 43 52 76 95 129 19.4 184 95 60
La 35.3 314 30.8 31 59.9 90.9 729 41.1 19 30 22 28 0.687
Ce 61.7 55.1 585 67 126 188 144 89.8 37.7 64 44 57 1.775
Nd 25.8 19.6 23.2 27 54.8 84.9 49.3 47.1 18.2 26 185 23 1.354
Sm 4.2 33 35 53 9.8 14.5 7.64 7.8 3.4 45 3.3 4.1 0.444
Eu 1 0.8 0.9 1 2.3 32 1.23 2 0.9 0.88 1.17 1.1 0.168
Gd 3.2 24 2.3 55 6 9.2 5.41 4.8 2.8 38 313 33 0.596
Dy 1.8 1.9 1.6 5.2 3.2 5.6 3.65 2.8 1.9 35 3.6 3.7 0.737
Er 0.77 0.77 0.75 3 1.41 2.68 1.97 1.21 0.96 23 2.2 2.2 0.48
Yb 0.78 0.63 0.63 32 1.32 2.05 19 0.93 0.88 22 13 1.53 0.493
Lu 0.2 0.13 0.12 0.5 0.26 0.34 0.29 0.08 0.17 0.32 0.29 0.3 0.074
Sr/Y 30.45 31.44 51.1 63.89 26.58 162.21 55.65
(La/YDN  29.85 32.86 32.52 29.92 29.32 29.32 14.44

1. Average of 108 TTGs (Martin et al., 2005)
2. Average of 320 TTGs (Martin et al., 2005)
3. Average of 666 TTGs (Martin et al., 2005)
4
5

. Average of 250 arc granitoids (Martin, 1994)

. Average of 31 sanukitoids (Martin et al., 2005)
6. Average of 31 Closepet-type granites (<62% SiO,) (Martin et al., 2005)
7. Nelspruit pluton (Kleinhans et al., 2003)
8. Average of 267 High Silica Adakites (Martin et al., 2005)
9. Average of 77 Low Silica Adakites (Martin et al., 2005)
10. Taylor and McLennan (1981)
11. Weaver and Tarney (1984)
12. Weaver and Tarney (1984)
13. Sun and McDonough (1989)

scattered trends. In the case of K,O vs SiO,, however, and Na,O relative to the of the younger (GAG
there is a slight correlation for the major part of the data. granodiorite/adamellite gneiss and GG) suites, The plots
A strong inverse correlation trend exists between K,O of wt% FeO and MgO vs wt% SiO, broadly show
and Na,O. The older (TG and GAG tonalite trondhjemite decreasing FeO and MgO with increasing SiO;. The Mg#
gneiss) rocks are enriched in most elements accept K,O for the JD rocks ranges between 0.1 and 0.5 with the
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Figure 9. Major element Harker variation diagrams for the JD
granitoids. Also included are data from previous studies
(including average TTG, average adakite and average high Mg
adakite).

highest Mg# recorded for the older suites, i.e. tonalite-
trondhjemite gneiss of the GAG suite and the TG suite
(Figure 9). A negative correlation exists between Mg#
and weight % SiO, for the JD granitoids.

Trace and RE element composition
A complete set of trace and REE analyses of the JD
granitoids are presented in Table 5. In addition to the
new dataset, selected data from the Nooitgedacht
outcrop (Anhauesser, 1999) and other sites across the JD
where available (Anhaeusser, 1973) (see Figure 2 for
locality) were used to illustrate the trace element
variation across the JD. Additionally, the average TTG
and adakite (Table 6) compositions are plotted along the
JD data.

The LILE concentrations (both Sr and Ba) are high
(=500 ppm) in the TG suite. These values are
comparable to the average TTG suite which has been
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Figure 10. (a) Sr/Y versus La/Yb diagrams for the JD (Symbols as in Figure 9) (b) Sr/Y versus Y diagrams Jor the JD (Symbols as in

Figure 9).

described as having high LILE (Sr, Rb, Ba) contents with
Sr and Ba both >500 ppm. Although the GG and GAG
suites have high Ba concentrations (200 to 500 ppm),
the Sr values are generally lower, ranging between 100
and 300 ppm. The majority of the Nooitgedacht rocks do
not reflect high Ba content; however, they do have
relatively high Sr compositions.

The TG suite has low Rb (<100 ppm) content with
Rb/Sr ratios ranging between 0.08 and 0.12 (similar to
values typical for high-Al TTG suites) (Table 5), whereas
the Rb/Sr ratio for the rest of the JD is >0.5. High Sr and
low Y and Yb concentrations, and correspondingly high
Sr/Y ratios as shown by the TG suite, is characteritic of
adakites and high-Al TTG suites (Table 5 and Table 6).
The GAG trondhjemite-tonalite gneiss and TG suites
generally show overlap in major element compositions
but can be differentiated on the basis of low St/Y ratio
demonstrated by the GAG suite and evidenced on the
St/Y vs La/Yb diagram (Figure 10). Unfortunately no Y
values were available for the Nooitgedacht rocks.
Elemental ratios such as low Rb/Sr (<0.15), elevated Sr/Y
(>40), (La/Yb)y >1 have been suggested to be
characteristic of TTG suites as is evident from the
TG suite and GAG suite tonalite trondhjemite gneiss
(Table 5 and 6).

Harker-type variation diagrams for selected trace
elements vs wt% SiO, are given in Figure 11. In general
the trace elements vs wt% SiO, diagrams show trends
that are less clearly defined compared to the major
elements, although some elements do display linear
distribution patterns. For instance Rb and Pb show
broad positive correlations with increasing SiO, whereas
Sr, Cr and Ni are negatively correlated with SiO,.
The plots for Ba, Sr and Zr vs wt% SiO, demonstrate
bell-shaped data arrays with two distinct groupings,
ie. the older TG suite and GAG suite tonalite

trondhjemite gneiss, and the GAG granodiorite/
adamellite gneiss and GG suites respectively.
This indicates that these elements behaved incompatibly
during the crystalisation of the protolith of the older
TG suite and GAG suite tonalite trondhjemite gneiss,
and compatibly during the crystalisation of the younger
more felsic GAG granodiorite/adamellite gneiss and GG
suites. The mafic TG suite and tonalite-trondhjemite
gneiss of the GAG suite (including Nooitgedacht
diorite-tonalites) is enriched in highly compatible
element (Cr and Ni) compared to the second grouping
of GG granodiorite/adamellite gneiss and GAG
suites.

In general, the majority of the JD granitoids displays
a moderately fractionated REE pattern, illustrated by the
slight LREE-enrichment (La) ((La/Yb)y = 1 and 25) and
more or less flat HREE pattern (relative to chondritic
concentrations), shown on the chondrite-nromalized
REE-diagram (Figures 12a to e). The TG suite and GAG
suite tonalite trondhjemite gneiss (high-MgO suites)
display a stronger fractionated REE pattern (high
Lan/Yby ratios) compared to the rest of the GAG suite
and the GG suite (specifically the homogenous
adamellite/granodiorite), which show a depleted LREE
and relatively elevated HREE pattern. Although the GAG
granodiorite/adamellite gneiss and GG suites are
relatively undistinguishable based on major element
compositions the REE pattern differs in such a way
that discrimination between these suites is possible in
that the GAG suite displays a steeper pattern on
the chondrite-normalised REE diagram compared to the
GG suite.

The GG suite and most of the GAG suite have a
strong negative Eu anomaly shown on the chondrite-
normalised REE diagram whereas the high-Mg suites,
ie. TG suite and tonalite-trondhjemite gneiss of the GAG
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suite show a slight positive anomaly. The negative Eu
anomaly is an indication that plagioclase fractionation
probably occurred during the evolution of the younger
GAG and GG suites.

The multi-element diagram show trace element
variations normalised to primitive mantle values of Sun
and McDonough (1989) (Figure 13). The distinctive
features shared by most of the JD granitoids, as shown
on the primitive mantle normalised diagram, include
strong depletion in fluid-sensitive elements such as Pb as
well as consistent negative Nb anomaly and a positive U
and Y anomalies. However, the TG suite and some of
the GAG suite tonalite-trondhjemite gneiss display an
enrichment of Pb. The strongly fractionated REE pattern,
high (La/Yb)y ratio and depletion in HREE (Yb) of the
JD rocks are characteristics shared with modern adakites
and TTG suites. The GG suite and some of the GAG
suite (granodiorite to adamellite gneiss) rocks display a
strong negative anomaly for Sr and Eu. In contrast the
TG suite shows a strong positive Sr and the absence of
a Eu anomaly. The pattern exhibited by the GAG suite
differs from the rest of the JD rocks in that there is
“fanning” at the HREE end of the diagrams.

Discrimination diagrams, distinguishing between and
comparing various granitic rocks and their tectonic
environments, have become a fundamental part of any
granitoid study. According to some studies (Twist and
Harmer, 1987; Arculus, 1987; Clarke, 1992; Roberts
and Clemmens, 1993) caution should be taken in the use
of trace element tectonic discrimination diagrams using
Rb and even Y + Nb due to the influence of source rock
composition and the generative processes on the
chemistry. Furthermore these diagrams show the setting
in which the protoliths were formed rather than the
tectonic setting when the granitoid magmas were
produced.

Despite this concern the trace element discrimination
procedures suggested by Pearce et al. (1984), the
elements Rb, Y and Nb the Nb versus Y, for intrusive
rocks is widely used and therefore employed in the
present study to indicate the probable tectonic settings
of the JD granitoids. The majority of the JD granotoids
cluster in the VAG (Volcanic Arc Granite) + syn-COLG
(syn-collisional Granite) and WPG (Within Plate Granite)
field on the Nb versus Y diagram (Figure 14a). Further
discrimination between these fields is shown by the Rb
versus Y+ Nb diagram, which points to a VAG tectonic
environment for the majority of the JD granitoids
(Figure 14b). From these diagrams it is proposed that the
formation of JD granitoids in an Oceanic Ridge
environment can be ruled out.

Interpretation and discussion

Comparison of JD with other TTG

The majority of the TG suite, GAG suite tonalite-
trondhjemite gneiss as well as the Nooitgedacht rocks
show major element characteristics similar to high-Mg
adakites and typical TTG suites such as the Barberton
plutons (Nelspruit, Kaap Valley and Nelshoogte),

Superior Province, Pilbara Craton, Dharwar Craton and
Zimbabwe Craton, which are generally siliceous
(8iO, ~70 weight %), aluminous (Al,O3 ~15 weight %),
with high Na,O (3 to 7 weight %) and is marked by a
high Na,O/K,O (>1) ratio. Furthermore the high MgO>5
weight %, FeO, Mg#, Cr and Ni contents shown by the
TG suite, GAG suite tonalite-trondhjemite gneiss as well
as the Nooitgedacht rocks are characteristic of high-Mg
adakite (sanukitoid) and high-Mg diorites such as those
described from the Barberton TTG suites, Pilbara high-
Mg diorite and melanodiorite and Superior Province
high-Mg diorite.

The TG and GAG suites to some extent reflect the
high LILE (Sr, Rb, Ba) contents characteristic to TTG
suites although the Sr and Ba content is slightly lower
than typically expected for TTG suites. The high Ba, Sr
and the slightly less elevated Rb trend exhibited by the
TG and GAG suites is similar to that observed for TTG's
from Vredefort, Barberton, the high Mg-diorites of the
Superior Province and Pilbara Craton as well as for
Closepet granite. The TG and GAG suites show
a fractionated REE pattern (higher Lay/Yby ratios), a
characteristic generally shared by modern adakites
and TTGs. However, the JD granitoids show a relatively
flat REE pattern, suggesting no garnet fractionation.
The TG suite and tonalite-trondhjemite gneiss of the
GAG suite have high Sr/Y and high La/Yb ratios, a
characteristic shared by adakites, TTG suites and high
Mg-diorites such as Barberton Mountain Land and high
Mg-diorites of the Superior Province and Pilbara Craton.

The role of fractional/partial melting in creating
observed chemical variations

The high Ni and Cr content together with the high Mg#
of TTG suites are considered an indication of interaction
with the mantle wedge (Smithies and Champion, 2000).
Partial melts of hydrated mantle were shown to contain
a high Ni, Co and Cr concentration, which can be
attributed to the high concentrations of these elements
in the source region combined with a high degree of
melting rather than partial melting of garnet-amphibolite
or eclogite, which are both depleted in these elements
(Kleinhans et al., 2003). Partial melts from garnet-
amphibolite and eclogite would be even more depleted
in these elements and could only acquire elevated Ni,
Co and Cr contents through assimilation of peridotite.
This is however, not supported by the trace element
characteristics of TTG suites. High LILE concentrations
are considered an indication of crustal contamination of
magmas (Martin et al., 2005).

The GAG (granodiorite to adamellite gneiss) and GG
suites display a strong negative anomaly for Sr and Eu,
typical of a GGM suite, whereas the TG suite shows a
strong positive Sr and the absence of a Eu anomaly,
typical of TTG suites, adakite, high-Mg diorite/
sanukitoid. The negative Eu anomaly and the absence of
a positive Sr anomaly for the GAG and GG suites could
reflect the presence of plagioclase in the source.
The negative Eu anomaly is an indication that
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Figure 11.
granitoids.

Trace element Harker variation diagrams for the JD
Also included are data from previous studies

(including average TIG, average adakite and average high Mg

adakite.
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plagioclase fractionation probably occurred during the
evolution of the GAG and GG suites. The negative Sr
anomaly recorded in the calc-alkaline GGM suites and
the GAG (granodiorite to adamellite gneiss) and GG
suites therefore suggests these JD rocks did undergo
some plagioclase fractionation. Furthermore the HFSE
depletion and distinct enrichment of fluid sensitive
elements such as Pb, observed in all three HHD
granitoid suites, are generally considered to indicate an
arc signature. This signature of the fluid mobile elements
can not easily be reconciled with direct melting of
oceanic crust.

Discussion of likely tectonic setting, peterogenesis
High-Mg diorites are considered to be relatively scarce
(<5% of all Archaean TTGs) with very few, if any,
pre-3 000 Ma TTG suites showing this trend. The scarcity
of high-Mg diorites suggests that the conditions for
formation were not met in all Archaean terranes.
The recognition of high-Mg diorites on the JD is
therefore noteworthy as it signifies that the conditions
necessary for high-Mg diorite formation were met during
the formation of the TG suite, which is present in a
limited area along the southern edge of the JD
(and Nooitgedacht outcrop in the centre of the JD).
The TG suite most probably formed through melting of
a subducted oceanic slab, rather than underplated
basalt, with the melt interacting with mantle peridotite
during its accent through a thin mantle wedge.

Compared to the average TTG suite a typical GGM
suite, such as the Barberton plutons (Dalmein, Mpageni,
Nelspruit), has high SiO, (>70wt%) and K,O (3 to
5 wt%), low Na,O/K,O (<1) ratios and lower Al,Os
contents. The majority of the GAG and GG suite share
these characteristics. GGM suites are characteristically
richer in HREE compared to typical TTG suites. The high
La/Yb and Sr/Y ratios of TTG suites are thought to be
the result of partial melting of an eclogitic basaltic crust.
High Sr and low Y concentrations, with the
corresponding high Sr/Y ratios are characteristics
defining adakites and considered an indication of their
origin as slab-melt under high pressure (Defant and
Drummond, 1990).

TTG suites and GGM suites have strong similarities
such as over enrichment in fluid sensitive elements such
as Pb (Martin, 1994; Kleinhans et al., 2003). Kleinhans
et al. (2003) suggested the characteristic features of
TTG’s include HFSE depletion and distinct Pb
enrichment signature seen on the chondrite-normalised
REE diagram, as reflected in all JD suites, is evidence
that these rocks are derived from refertilised mantle
above subducion zones.

HREE depletion can be explained by three approaches
i.e. the melting of garnet-amphibolite eclogite in the slab
or lower crust, inherited REE pattern of the slab derived
fluid or by fractional crystallization of garnet/amphibole
in hydrous mantle melts. The last two suggest TTG
originate from hydrated mantle melts with LREE
preferentially transferred to mantle wedge and HREE
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Figure 12. Chondrite normalized REE diagrams for the JD rocks.

retained in garnet and amphibole as the magma becomes
more Si-rich. An important geochemical feature typical of
Archaean crust (TTG and GGM suites) is its rare earth
element (REE) pattern. Incompatible elements are more
sensitive to assimilation than major elements and may
serve as tracers for crustal contamination. Furthermore
certain characteristics such as HREE and HFSE depletion
or high concentration of strongly compatible elements
would not survive large degrees of assimilation.

The GAG and GG suites most probably formed
through the remelting of a TTG protolith, which has a
subducted slab and mantle wedge signature (similar to
the TG suite). This is proven by negative Eu anomaly
and the absence of a positive Sr anomaly for the GAG
and GG suites furthermore reflect the presence of
plagioclase in the source. The negative Sr and Eu
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anomalies and enriched Pb and depleted HFS
elements may also be the result of partial melting of a
basaltic source without the need for plagioclase
fractionation.

Disequilibrium textures, such as discontinuous rims
on plagioclase/ K-feldspar contacts, reaction rims,
coronas, overgrowths and zonations, observed in the
granitoids of the JD suggest crystal-fluid interaction
occurred at various stages during their formation.
Furthermore the coronas of secondary titanite developed
around magnetite and ilmenite grains are evidence that
the JD has gone through a pervasive metasomatic phase.
The deuteric alteration and likely late stage interaction
between the magma and the host rock of the JD rocks
can be expected to have had some impact on the mobile
elements (K, Rb, Sr, Ba and Na). These elements are
mainly associated with leachable minerals such as
feldspars and micas. The slight difference in mineral
proportions of JD TTG’s, identified through the
geochemical investigation, and typical TTG suites can
therefore possibly be attributed to the alteration process
and late stage interaction between the magma and
the host rock. The slight inconsistency seen in the
classification diagram (Figure 8) where rocks with field
labels “tonalite” plot as granodiorite is possibly an
artefact of the widespread alteration. Barton et al. (1999)
also showed that the deuteric alteration of the feldspars
affected the Rb-Sr whole rock system.

Conclusion

The macro and microscopic investigation of the JD
showed that this window of Archaean rock consists of a
mosaic of granitoids manifest by the differences in areal
extent, mineralogy, texture, composition and age. Due
to poor exposure the contact relationships between the

various granitoids could not be confirmed. Based on

the microscopic and geochemical investigation the

JD granitoids could be subdivided into three main

suites:

e The Tonalitic Gneiss suite (TG) around the southern
boundary;

e The Granodiorite to Adamellite Gneiss suite (GAG)
across the northern part;

e The Granodiorite/adamellite to Granite suite (GG)
occurring between the TG and GAG suites and
consisting of;

— porphyritic granodiorite;

— medium-grained pinkish-grey granite;

— homogeneous adamellite/granodiorite.

The new major, trace and REE element data from across
the JD provide confirmation that the JD granitoids
represent TTG suites at the centre of the Kaapvaal
Craton. Petrography and geochemistry is in agreement
that the Archaean JD granitoids can be subdivided into
a tonalite-trondhjemite-granodiorite or GGM series
(GG suite and trondhjemites of the GAG suite) and a
high Mg-diorite series (tonalities TG suites and tonalite-
trondhjemite gneiss of the GAG suite and Nooitgedacht
diorite-tonalite). ~ Similarities exist between the
composition of the GG and trondhjemite gneiss of
the GAG suite with plutonic rocks in the Barberton area
and Vredefort structure. The geochronological study by
Barton et al. (1999) showed that these rocks were
emplaced coeval and may be genetically related. The TG
suite represents high-Mg diorites similar to those
described for the Pilbara Craton and Superior Province.

In this paper, sanukitoid (high-Mg diorite) rocks are
documented for the first time in the Archaean of the
central Kaapvaal Craton.
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The high Mg#, Ni and Cr as well as enrichment in Pb
and HFSE depletion of TG suite suggests that it is
unavoidable that these rocks were derived from melts
which were in contact with the mantle wedge in a
subduction environment.

The most appropriate model for the formation of the
TG suite is that of subduction of an oceanic slab and
the interaction with the mantle wedge. The presence of
restite phases (such as plagioclase cores) and
approximate TTG geochemistry in the GAG and GG
suites suggests that it is most likely that these rocks were
derived from remelting of a TTG protolith. This is
supported by the proposed cogenetic formation from a
3300 to 3500 Ma source proposed by Barton et al.
(1999). The most appropriate model for the formation of
the GAG and GG suites are the partial melting of a TTG
protolith with a subducted slab and mantle wedge
signature (similar to the TG suite). However, the absence
in strong enrichment in Pb, which normally show mantle
wedge enrichment by slab fluids suggest an alternative
setting and can not rule out formation through
foundering of lower crust or mantle pluming.

Although not part of this investigation, previous data
from rocks of the Nooitgedacht exposure were
evaluated along with the current JD data. It can be
concluded that the rocks from this exposure show some
differences in the geochemistry when compared to the
rest of the JD. Extrapolation of a petrogenic model for
the entire JD based solely on this outcrop should
therefore be considered with care. Prevec et al. (2004)
suggested that the derivation of the TTG-dyke package
from the Nooitgedacht outcrop at c¢. 3120 Myr can be
inferred to involve partial melting of an eclogitic
(garnetiferous) lower crust, probably related to basalt-
producing partial melting of the mantle.
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Appendix 1

Analytical methods

Electron microprobe conditions

Mineral compositions were determined on carbon-

coated polished sections using the JEOL733 superprobe

at the Council for Geoscience, Pretoria. Operating

conditions were:

1. a) plagioclase — 15 kV, 20 nA beam current, and beam
diameter of 2 to 3um;

. b) amphibole — 15 kV, 40 nA beam current, beam
diameter of 2 to 3um;

. 2) counting time at the element peak position was ten
seconds and five seconds at two symmetrical
background positions;

. 3) Si, Al, Na and Mg were analyzed with a TAP crystal
and a gas flow detector, Ti and Cr with a PET crystal
and xenon counter, Mn and Fe with a LiF crystal and
xenon counter, and Ca and K with PET crystal and gas
flow counter;

. 4) An on-line Fortran program, supplied by JEOL
(FZAFOC), utilizing the absorption correction of
Philibert (1963) and Heinrich (1968), the atomic
number correction of Duncumb and Reid (1968) and
the fluorescence correction of Reed (1965), was used
for the calculation of the final element concentrations;

.'5) Estimation of Fe’*/Fe** content in oxide phases
was done using the method of Droop (1987);

. 6) Amphibole end-member classification was done
using the program, which uses the amphibole

classification scheme by Leake (1978).

X-ray Fluorscence spectrometry

Fresh unaltered rock samples ranging from 5 to 15 kg
collected during fieldwork were crushed and powdered.
Major element data were obtained from fusion disks
using the Philips PW1480 X-ray fluorescence (XRF)
spectrometer and trace-element data from pressed
powder pellets using a Philips PW1400 XRF
spectrometer, at the Council for Geoscience.
The preparation of the fusion disks as well as the
calibration method used for determination of major and
trace elements are described by Cloete and Truter
(200D).

Inductively Coupled Plasma Mass Spectroscopy
Selected trace elements and Rare-earth-elements data
were obtained by Inductively Coupled Plasma Mass
Spectroscopy (ICP-MS) at the Council for Geoscience.
The details of the calibration and sample preparation are
described by Jordaan, Maritz and Lehaha, (2005).
Accuracy of the technique — average recovery (measured
value/certified value * 100, in%) between 97 to 104% on
4 crm’s included in batch of samples. Reproducibility of
the method is between 10 to 13% relative standard
deviation (RSD).

All analytical data were processed using the
GRAPHER 3 software (2002).

Modal analysis

Modal point counting analysis on selected granitoid
samples were done according to the method described
by Hutchinson (1974).
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