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In industrial fuel gas preparation, several compositional properties must be controlled within specified
limits. This allows client plants to burn the gas safely and with consistent heat production. The variables to
be controlled are the higher heating value (HHV), Wobbe index (WI), flame speed index (FSI), and header
pressure. A plant in which six feed gasses are blended is considered. Four of the feeds are well-defined
makeup streams (costly but always available) and the other two are byproducts that would otherwise be
flared. The six feed rates comprise the manipulated variables (MVs) used to regulate the four controlled
ynamic model
odel-based control

tate-space model
alidation
eal-time optimisation

variables (CVs) while minimising the cost of the gas blend. The control system must compensate for feed
composition and fuel gas demand variability. The development and validation of an industrial fuel gas
header model is described, followed by a simulation study comparing three Model Predictive Control
(MPC) strategies. It is shown that when iterative linearisation is used to update the prediction model and
real-time optimisation (RTO) is used to update the CV and MV targets used in the MPC cost function, the

the o
PC
TO

plant is driven reliably to

. Introduction

The fuel gas used in industrial plants must satisfy several com-
ositional constraints in order for the gas to burn safely, reliably,
nd produce the expected heat output. Key properties include the
igher heating value (HHV or gross calorific value) [1], Wobbe index
WI), and flame speed index (FSI, using Weaver’s flame speed fac-
or) [2], all of which must stay within prescribed ranges. The fuel
as header pressure must also be kept within a target range.

The industrial syngas production process considered here
esults in two byproducts (tail gases) that may be burned to sat-
sfy heating needs elsewhere in the complex. Unused tail gases are
ared, so there is a strong incentive to maximise their utilisation as

uels. Their compositional properties are unfavourable, however,
nd they must be blended with makeup gases in order to satisfy
he constraints mentioned previously. In the syngas complex, four
Please cite this article in press as: C.J. Muller, et al., Modelling, validation, an
(2011), doi:10.1016/j.jprocont.2011.04.001

akeup gases are used, leading to a total of six blended gas streams,
he rates of which are termed the manipulated variables (MVs) in
he present context.
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ongress, Milan, 2011.
∗ Corresponding author at: Department of Electrical, Electronic, and Computer

ngineering, University of Pretoria, Pretoria, South Africa.
el.: +27 12 420 2172; fax: +27 12 362 5000.

E-mail addresses: nelis.muller@sasol.com, nelismuller@tuks.co.za (C.J. Muller),
craig@postino.up.ac.za (I.K. Craig), ricker@u.washington.edu (N.L. Ricker).

959-1524/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jprocont.2011.04.001
ptimal steady-state.
© 2011 Elsevier Ltd. All rights reserved.

Tail gas availabilities and compositions vary significantly as a
function of time. The primary goal of fuel gas blending is to com-
pensate for such disturbances by adjusting the MVs so as to satisfy
continuously the HHV, WI, FSI, and header pressure constraints. The
system must also respond to changes in fuel gas demand. Doing so
manually is a challenging task, even for the most experienced oper-
ators. A secondary goal is to minimise the cost of the blended gas.
Under manual control, this is often much higher than the optimum.

There are many publications on fuel gas properties and their
impact on combustion, but little regarding advanced control and
economic optimisation of fuel gas blending (although industrial
applications exist). There are, however, publications regarding the
control of liquid blends. For example, Chèbre et al. [3] describe con-
tinuous and batch blending of liquid fuels to produce mixtures with
prescribed properties while minimising the production cost. Their
algorithm is essentially a specialised version of Model Predictive
Control (MPC). A key aspect is the use of an estimator to deter-
mine uncertain parameters needed to predict the impact of MV
adjustments on blend properties.

There are two important differences between this and the prob-
lem considered in the present work. On one hand, the blended gases
behave as nearly ideal mixtures and their combustion properties
are known functions of composition. Moreover, periodic measure-
ments of the feed gas compositions are available. Thus, prediction of
d control of an industrial fuel gas blending system, J. Process Control

the impact of MV adjustments on blend properties is easier than in
liquid blending. On the other hand, the gas blending system’s mean
residence time is of order 2–4 min, whereas that in a typical liquid
blending system is hours or longer. Thus, the gas blending system
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Table 2
Typical inlet compositions (mol %).

NG RG H2 N2 TG1 TG2

CH4 91.1 1.5 – – 5.5 15.0
C2+ 6.8 0.0 – – 1.0 1.0
H2 0.0 62.0 100 – 62.0 57.0
N2 1.5 0.5 – 100 2.5 6.0
CO 0.0 31.0 – – 26.0 13.0
CO2 0.6 5.0 – – 3.0 8.0

HHV 43.02 11.78 12.10 0.0 13.96 15.39
Fig. 1. Process diagram of blending header.

laces more emphasis on measurement speed and frequency, and
equires relatively frequent MV adjustments.

Ratio control would appear to be an obvious automation strat-
gy, but the tail gas compositional variability is such that the use
f constant ratios would lead to constraint violations. One could
dd a multi-loop supervisory layer to adjust the ratios, but com-
ensation for changes in demand and availability would require
complex configuration of interconnected PID controllers and

verrides.
As suggested by Chèbre et al. [3] and others, MPC allows one to

ormulate a blending control problem directly. It also offers the
ossibility of simultaneous economic optimisation. The primary
ontribution of this application paper is to determine the extent
o which a standard MPC can achieve the technical and economic
bjectives in fuel gas blending. Several MPC formulations are tested
n order to evaluate and minimise the impact of process nonlinear-
ties, and to improve the economic performance.

. Process overview

Fig. 1 shows a process diagram of the system. Although the
eader is depicted as a vessel, it is actually a piping network of
xed volume. The flow rates are high so it is assumed that turbu-

ent flows facilitate perfect mixing such that the composition of
he exit stream equals the header composition (which is assumed
o be uniform within the header). Six gas streams enter the fuel gas
eader (shown with their fictional tag names in Fig. 1). These six

eed streams are natural gas (NG), reformed gas (RG, a hydrogen to
O ratio of between 1.8:1 and 2:1), hydrogen (H2), nitrogen (N2),
ail Gas 1 (TG1), and Tail Gas 2 (TG2). The first four are make-up
treams whereas the two tail gases are wild streams, varying in
vailability and composition. The six feeds must be mixed in cor-
ect ratios and quantities to control the output composition and
ressure. Table 1 shows the specified ranges for the CVs.

The NG, RG, and N2 streams have costs associated with them
hereas the H2 and tail gas streams would otherwise be flared and
Please cite this article in press as: C.J. Muller, et al., Modelling, validation, an
(2011), doi:10.1016/j.jprocont.2011.04.001

hus have zero cost. Therefore, the use of the NG, RG, and N2 streams
hould be minimised whereas the use of the tail gas streams and
2 should be maximised subject to their availabilities. Natural gas

s used continuously to increase the calorific value to specification.

able 1
ontrolled variable ranges.

Controlled variable Abbr. Range Units

Higher heating value HHV 16.5 – 18 MJ/Nm3

Wobbe index WI 25 – 27 MJ/Nm3

Flame speed index FSI 39 – 46 –
Pressure P 2000 – 2200 kPa
WI 52.62 17.87 45.73 0.0 21.60 22.92

Nitrogen is needed only when the FSI is too high. Reformed gas is
used when the tail gas streams are not available.

Important disturbances include changes in feed stream compo-
sition (especially the two tail gases) and total fuel gas demand (i.e.
the discharge flow rate from the header). Table 2 gives the typical
compositions and feed stream characteristics. The HHV, WI, and FSI
are functions of the molar composition of the fuel gas (see Section
3).

All gas flow rates as well as the HHV, WI, and header pressure are
measured continuously and sampled every 20 s. Feed and blended
fuel gas compositions are measured by mass spectrometry on a
10-min cycle. The fuel gas FSI is re-calculated each time a new
composition measurement becomes available, i.e., every 10 min.

As mentioned previously, for a typical fuel gas demand of
30 kN m3/h, the gas residence time is of order four minutes and
transport delays are negligible. The dominant delays are the anal-
yser measurement latencies, which are nearly constant.

3. Modelling

The header can be modelled with six states (the molar quantity
of each of the six chemical components in the header), six MVs (the
volumetric flow rates of the six inlet streams), and four CVs (HHV,
FSI, WI, and pressure). The state equations are given by

Ṅfg,i = ui − yfg,i.uT (1)

where i = 1 − 6, Nfg,i is the number of moles of component i in the
header, ui is the total molar flow of component i entering the header
(summed over all inlet steams), uT is the total molar discharge rate
from the header, and yfg,i is the molar fraction of component i in
the header. The actual MVs are volumetric flow rates measured in
kN m3/h, which are related to ui as follows:

ui = 44.64
6∑

j=1

yFj,i
.Fj (2)

for i = 1 − 6 where Fj is the volumetric flow rate of the jth feed stream
(kN m3/h), and yFj,i

is the molar fraction of component i in inlet
stream j. The j index refers to the sequence shown in Fig. 1.

The outputs are calculated according to the molar fractions of
the components in the system (and the total number of moles in
the case of pressure). The output calculations are

HHVfg =
6∑

i=1

HHVi.yfg,i (3)
d control of an industrial fuel gas blending system, J. Process Control

WIfg = HHVfg√
�fg

(4)

dx.doi.org/10.1016/j.jprocont.2011.04.001
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Table 3
Component characteristics.

HHV WI SG MWt A s

CH4 37.78 50.72 0.557 16.04 9.55 148
C2–C6 126.50 87.62 2.018 58.12 31.00 514
H2 12.10 45.88 0.069 2.02 2.39 339
N2 – – 0.973 28.02 – –
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Fig. 2. HHV analyser data versus simulation data.
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for it before it actually occurs) which complicates the validation
[12]. The model’s pressure variations are, however, based on well
established physical principles and will be assumed adequate for
the purposes of this simulation study.

Table 4
Correlation coefficients for output data.
CO 11.97 12.17 0.968 28.01 2.39 61
CO2 – – 1.528 44.01 – –

SIfg =

6∑

i=1

yfg,i.si

6∑

i=1

yfg,i.Ai + 5
2∑

j=1

nfg,j − 18.8xO2 + 1

(5)

= NT RT

V
(6)

here si is the flame speed factor for component i, Ai is the molar
toichiometric air demand factor (for total combustion) for compo-
ent i, nfg,j is the molar fraction of inert component j in the fuel gas,
O2 is the mole fraction of oxygen in the gas (usually zero in this
pplication), NT is the total number of moles in the header, R = 8.314
s the gas constant, T is the header temperature (Kelvin) and V is
he header volume (m3, estimated at 100 m3). The fuel gas specific
ravity, �fg, is calculated as

fg =

6∑

i=1

MWti.yfg,i

MWtair
(7)

here MWti is the molar weight of component i and MWtair = 28.8 is
he standard molar weight of air. Table 3 lists some characteristics
f the components [1].

.1. Model validation

The integrity of the process model must be determined in order
o support the validity of the simulation study. For the validation,
period of operation was identified in which all the flow measure-
ents were reliable (either zero or greater than the turn-down of

he transmitters). The inlet flow rates, feed stream compositions,
nd header discharge rate were used as verification data and the
imulation output data compared to the plant measurements (the
ystem is at ambient temperature and diurnal temperature varia-
ions have a negligible impact). The initial model states were the
teady values corresponding to the average feed flow rates and
ompositions.

The sampling rate for the plant data is 20 s (1/180 h). Analyser
ead times (in measurements of HHV, WI, and FSI) were initially
stimated at 2 min each and the volume at 100 m3 (based on the
ate of change in pressure with regard to change in the inlet flow
ates). These parameters were adjusted recursively to improve the
t with regard to the correlation coefficients obtained. The final
ead-time estimates were 20 s for HHV, 1 min for WI, and 20 s for
SI. There was no need to adjust the total volume, which was kept
t 100 m3.

As shown in Figs. 2–4, the model’s open-loop predictions of HHV,
I, and FSI track the observed trends rather well. Computed cor-

elation coefficients for a validation period of 18 h are shown in
Please cite this article in press as: C.J. Muller, et al., Modelling, validation, an
(2011), doi:10.1016/j.jprocont.2011.04.001

able 4. Some factors contributing to the discrepancies between the
lant data and the model include infrequent feed stream and fuel
as composition measurements, errors in feed flow measurements
especially when close to the turn-downs of the flow transmit-
Time [h]

Fig. 4. FSI analyser data versus simulation data.

ters), and interpolation adjustments made when the plant’s data
historian recorded the data.

The presence of feedback control on the header pressure for all
plant data complicates the validation of the pressure model. Feed-
back can introduce non-causal effects from input to output (for
example an operator who anticipates an event and compensates
d control of an industrial fuel gas blending system, J. Process Control

Data set Correlation coefficient (%)

HHV 93.8
WI 84.8
FSI 83.1

dx.doi.org/10.1016/j.jprocont.2011.04.001
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.2. Linearising the model for control purposes

If the feed compositions, header pressure, and fuel gas demand
re constant, the state equation is linear, and the response of each
fg,i to a change in the corresponding ui is first-order. This is not
he case in general, however. Also, the relationships between the
tates and the WI and FSI are nonlinear. Therefore, a linear model
as derived as the starting point for controller design.

Several types of LTI (Linear Time-Invariant) models were con-
idered. As would often be the case in practice, first order plus dead
ime transfer function models were selected for HHV, WI, and FSI
nd an integrator was used to model the pressure dynamics. The
inearisation was performed around an operating point of [HHV,

I, FSI, P] = [16.75, 25.32, 43.47, 2085] which is a typical oper-
ting region for the plant. The resulting nominal model appears in
able 5, where the time unit is hours.

. Iterative linearisation

One of the MPC strategies to be described later adjusts its
odel gains to adapt to measured feed composition variations. The

xpected steady state values of the HHV, WI, and FSI can be calcu-
ated as a function of the MVs and the feed stream compositions.
hus, for a given set of feed stream compositions, one can compute
he steady-state gains of these CVs with respect to the MVs. The
ain calculations are described in the next sections [4–6].

.1. Heating value

The fuel gas heating value is calculated as

HVfg =

6∑

i=1

Fi · HHVFi

FT
(8)

here Fi and HHVFi
are the volumetric flow rate (kN m3/h) and heat-

ng value (MJ/Nm3) of the ith inlet stream and FT =
∑i=1

6 Fi is the
otal inlet volumetric flow rate. The gains are then calculated as

∂HHVfg

∂Fi
= HHVFi

− HHVfg

FT
(9)

.2. Wobbe index

The Wobbe index is calculated as (same as Eq. (4))

Ifg = HHVfg√
�fg

(10)

here HHVfg is given in Eq. (8) and �fg is the relative density of the
uel gas, calculated with regard to inlet flow rates as

fg =

6∑

i=1

Fi · �Fi

FT
(11)

here �Fi
is the relative density of inlet gas i. Taking the derivative

f WIfg with regard to Fi gives

∂WIfg
∂Fi

= 1√
�fg

.
∂HHVfg

∂Fi
− HHVfg

2.�1.5
fg

.
∂�fg

∂Fi
(12)

∂HHV
Please cite this article in press as: C.J. Muller, et al., Modelling, validation, an
(2011), doi:10.1016/j.jprocont.2011.04.001

ith fg

∂Fi
given in Eq. (9) and

∂�fg

∂Fi
= �Fi

− �fg

FT
(13)
 PRESS
Control xxx (2011) xxx–xxx

4.3. Flame speed index

The flame speed formula is shown in Eq. (5), with the values
for Ai and si given in Table 3. To calculate the FSI in terms of the
inlet volumetric flow rates, the molar components in the fuel gas
are calculated using

yfg,i =

6∑

j=1

Fj.yFj,i

FT
(14)

where yFj,i is the molar fraction of component i in inlet stream j. The
derivative can then be determined as

∂FSIfg
∂Fi

=
4∑

x=1

∂FSIfg
∂yfg,x

.
∂yfg,x

∂Fi
+

2∑

k=1

∂FSIfg
∂nfg,k

.
∂nfg,k

∂Fi
(15)

where yfg,x refers to the molar fraction of combustible component
x in the fuel gas and nfg,k is the molar fraction of inert component k
in the fuel gas. The individual terms in Eq. (15) are given by

∂FSIfg
∂yfg,x

= sx − Ax.FSIfg
6∑

i=1

yfg,i.Ai + 5
2∑

j=1

nfg,j − 18.8xO2 + 1

(16)

∂yfg,x

∂Fi
= yFi,x − yfg,x

FT
(17)

∂FSIfg
∂nfg,k

= −5.FSIfg
6∑

i=1

yfg,i.Ai + 5
2∑

j=1

nfg,j − 18.8xO2 + 1

(18)

∂nfg,k

∂Fi
=

nFi,k
− nfg,k

FT
(19)

5. Control

5.1. MPC overview

Since the early description of MPC (Model Predictive Control)
in the late 1970s by [7] and its application in the refining indus-
try by Shell Oil [8], significant attention has been given to the
development of this powerful advanced control technique. MPC
is a model-based control strategy that uses a dynamic model of
a system to predict its future behaviour and then calculate the
optimal control moves to minimise a cost function, subject to con-
straints [9]. Advantages of MPC include flexibility in formulating
the objective function and defining the process model, the ability
to include equality and inequality constraints directly in the control
law, accommodation of multivariable systems, and the possibility
of dealing with large disturbances quickly (due to its feed forward
control capability). The main drawbacks in using MPC are the com-
putational burden associated with it (especially when considering
large systems and large control and prediction horizons) and the
need for a reliable model of the process [10].

There are many MPC variants, differing mainly in the type of
model used, the form of the cost function and constraints, and
the way the controller handles noise and disturbances [10]. An
overview of commercial MPC technologies can be found in [11].

5.2. Nominal MPC design for the fuel gas blending process
d control of an industrial fuel gas blending system, J. Process Control

The focus of the paper is a solution implementable using stan-
dard tools readily available to the process industries (see e.g. [11]).
As a first step, the nominal LTI model described in Section 3.2

dx.doi.org/10.1016/j.jprocont.2011.04.001
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Table 5
Linearised model matrix.

NG RG H2

HHV 24.61
s+28.62 e−s/180 −4.42

s+23.12 e−s/180 −5.04
s+26.44 e−s/180

WI 30.73
s+28.69 e−s/60 −6.23

s+23.39 e−s/60 2.25
s+26.29 e−s/60

FSI −59.21
s+28.57 e−s/180 11.05

s+22.92 e−s/180 32.26
s+27.14 e−s/180

P 1120
s

1120
s

1120
s

N2 TG1 TG2

HHV −13.27
s+23.09 e−s/180 −3.31

s+25.78 e−s/180 −1.66
s+22.64 e−s/180

WI −30.42
s+23.00 e−s/60 −4.04

s+25.62 e−s/60 −2.45
s+22.85 e−s/60

FSI −33.59
s+23.00 e−s/180 10.40

s+26.72 e−s/180 2.23
s+22.17 e−s/180

P 1120
s

1120
s

1120
s

Table 6
Relative costs of inlet streams [cost/kN m3].

Feed stream Relative cost

NG 0.678
RG 0.254
H2 0
N2 0.068
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Table 8
Weights on CVs.

CV Weight

HHV 100
WI 80
TG1 0
TG2 0

as used to define a base-case MPC. The specific MPC algorithm
sed was the MATLAB Model Predictive Control Toolbox [12]. The
ominal model presents no unusual characteristics, and a stan-
ard finite-horizon cost function was expected to provide adequate
ominal performance and stability.

The MPC sampling period was fixed at the plant sampling
eriod: 20 s. The average settling time for the HHV, WI, and FSI

s about 12 min. The initial values for the prediction and control
orizons were chosen according to the guidelines in [13], which
uggested a prediction horizon of 44 control intervals with 5 control
oves. These values were changed by trial and error (to prevent the

ontroller from being too aggressive), arriving at a final prediction
orizon of 39 intervals and 3 control moves. Control horizon block-

ng was used to distribute the control moves over the prediction
orizon (a block is one or more successive sampling periods over
hich the MVs are kept constant [12]). The final block durations
ere 2, 6, and 31 intervals.

In an attempt to include economic considerations, MV weights
ere chosen in proportion to the feed costs (given in Table 6) with

dentical rate weights (see Table 7). According to the standard cost
unction, the MV weights penalise the deviation of each MV from a
pecified target value. The base-case MPC used constant MV targets
f [0 0 5 0 30 30].

The CVs were weighted to penalise deviations from nominal tar-
ets, which were chosen to be mid-range (i.e. HHVnominal = 17.25,
Inominal = 26, FSInominal = 42.5, and Pnominal = 2100). The numerical

alues were chosen according to priority of the CVs where the high-
Please cite this article in press as: C.J. Muller, et al., Modelling, validation, an
(2011), doi:10.1016/j.jprocont.2011.04.001

st priority is given to HHV and the lowest to pressure (see Table 8).
ote that this discourages the controller from driving the CVs to

heir limits, which is often necessary for economic optimisation.

able 7
eights on MVs.

MV Weight Rate weight

NG 67 1
RG 25 1
H2 0 1
N2 7 1
TG1 0 1
TG2 0 1
FSI 70
P 20

The rationale was that the base-case MPC, which uses an LTI model,
might not be accurate enough to allow operation near constraint
boundaries. The CV weights were adjusted by trial to arrive at the
values shown in Table 8.

Finally, hard bounds were defined for the MVs and soft bounds
were defined for the CVs. The MV lower bounds were zero and their
upper bounds were the availabilities of each MV (see Table 9). The
CV bounds were the ranges shown in Table 1.

To summarise, the base-case MPC formulation was

p−1∑

i=0

(
Sy,i (k) + S�u,i (k) + Su, i (k)

)
+ �εε2 (20)

with

Sy,i(k) =
ny∑

j=1

|wy
j
(yj(k + i + 1|k) − rj(k + i + 1))|2 (21)

S�u,i(k) =
nu∑

j=1

|w�u
j �uj(k + i|k)|2 (22)

Su,i(k) =
nu∑

j=1

|wu
j (uj(k + i|k) − ujtarget

(k + i))|2 (23)

subject to

ujmin
(i) − �Vu

jmin
(i) ≤ uj(k + i|k) ≤ ujmax (i) + �Vu

jmax
(i) (24)
d control of an industrial fuel gas blending system, J. Process Control

�ujmin
(i) − �V�u

jmin
(i) ≤ �uj(k + i|k) ≤ �ujmax (i) + �V�u

jmax
(i) (25)

yjmin
(i) − �Vy

jmin
(i) ≤ yj(k + i + 1|k) ≤ yjmax (i) + �Vy

jmax
(i) (26)

Table 9
Limits on MVs [kN m3/h].

MV Low limit High limit Units

NG 0 15 kN m3/h
RG 0 20 kN m3/h
H2 0 5 kN m3/h
N2 0 5 kN m3/h
TG1 0 30 kN m3/h
TG2 0 30 kN m3/h

dx.doi.org/10.1016/j.jprocont.2011.04.001
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= 0, . . . , p − 1 (27)

(k + h|k) = 0, h = m, . . . , p − 1 (28)

≥ 0 (29)

here �u(k + i | k) is the MV change vector at time k + i based on the
nformation available at time k, m is the control horizon, p is the pre-
iction horizon, � is a slack variable, �� is the weight on the slack
ariable, r(k) is the CV reference vector at time k, wy

j
, w�u

j
, and wu

j

re weighting matrices for the CVs, MV rates (or increments), and
he MVs, ny is the number of CVs, and nu is the number of MVs. The
ectors ujmin

, �ujmin
, yjmin

, ujmax , �ujmax , and yjmax are the minimum
nd maximum values for the inputs, input changes, and outputs
hereas Vu

jmin
, V�u

jmin
, Vy

jmin
, Vu

jmax
, V�u

jmax
, and Vy

jmax
are the ECR (Equal

oncern for Relaxation) vectors that govern how much constraint
iolations can be tolerated [12]. The default disturbance model pro-
ided in the MPC Toolbox was used, which assumes an integrated
hite noise disturbance on each measured CV.

.3. MPC with iterative model linearisation

The base-case MPC described above is designed for the nominal
TI plant. The fuel gas blending system is nonlinear and base-case
PC performance would be expected to degrade when conditions

re far from nominal. There are several established ways to com-
ensate for a nonlinear plant. The most general is to use a nonlinear
ynamic plant model in combination with an appropriate nonlinear
rogramming code to perform the optimisation.

In the fuel gas blending application, however, the primary
ource of nonlinearity is a feed gas composition disturbance, which
an cause transfer function gains to change sign. Feed composition
isturbances are measurable but cannot be anticipated. Once such
change has occurred, the plant behaves in a near-linear manner.

Thus, the present work adapts the controller’s LTI model in
esponse to the measured feed compositions, i.e., every 10 min.
therwise, the MPC definition remains unchanged from the nom-

nal case, and the standard quadratic programming (QP) approach
olves the optimisation problem. This is less computationally inten-
ive than the more general nonlinear MPC approach described
bove, and avoids the possibility of convergence difficulties,
.e., non-convex nonlinear programming problems with multiple
ptima.

In initial tests it was observed that for the typical range of fuel
emand and feed gas compositions the response times and delays
hange very little. To a good approximation, it is sufficient to adapt
he transfer function gains only. Section 4 describes the way in
hich these depend on the feed compositions. The dynamic param-

ters in the base-case transfer functions (the time constants and
elays) were held constant. Moreover, all other parameters used
o define the base-case MPC were retained in the iterative lineari-
ation case. Thus, observed differences are due to the impact of
terative linearisation only.

.4. Results

In all simulations, the nonlinear state-space model described in
ection 3 represented the real fuel-gas blending process. Two per-
ent peak-to-peak variability was assumed in the fuel gas demand
ut for simplicity, actuator dynamics were neglected, perfect flow
anipulation was assumed for the MVs, and CV and composition
easurements were assumed noise-free.
In the test scenario, two demand disturbances (changes in the
Please cite this article in press as: C.J. Muller, et al., Modelling, validation, an
(2011), doi:10.1016/j.jprocont.2011.04.001

otal discharge) occur at times 1 and 3 h respectively, each of a
kN m3/h magnitude (see Fig. 5). A step disturbance in the NG

eed occurs at time 2 h, changing its composition from [CH4, C2 + ,
2, N2, CO, CO2] = [0.911, 0.068, 0.0, 0.015, 0.0, 0.006] to [0.841,
Time [h]

Fig. 5. Header discharge flow.

0.088, 0.01, 0.035, 0.01, 0.016]. The composition of Tail Gas 1
changes at time 4 h from [CH4, C2 + , H2, N2, CO, CO2] = [0.055,
0.01, 0.62, 0.025, 0.26, 0.03] to [0.075, 0.04, 0.57, 0.025, 0.26, 0.03].
This changes the HHV of TG1 from 13.98 to 17.98 which causes the
gain of the model from TG1 to HHV to change sign (from negative
to positive).

Figs. 6–8 compare the performance of the base-case MPC to that
using iterative linearisation. For the most part, performance is sim-
ilar. Fuel gas demand changes and the NG composition disturbance
are handled easily. Both controllers stay within the defined CV con-
straints at all times. This is surprising for the base-case MPC, for
which the nominal LTI model becomes inaccurate when the first
composition disturbance occurs at time 2 h. In fact, the base-case
MPC remains stable with reasonable performance even when one
of its transfer function gains has an incorrect sign (from hour 4
onward). Recall that the gain in question is the one relating the Tail
Gas 1 MV to the HHV CV.

The explanation is that the base case MPC predicts (incorrectly)
that the use of Tail Gas 1 would decrease the HHV, and thus uses
natural gas instead, holding Tail Gas 1 at zero flow. In contrast, the
MPC with iterative linearisation uses significant amounts of both
tail gases from hour 4 onward. If other circumstances had forced
d control of an industrial fuel gas blending system, J. Process Control

0 1 2 3 4 5 6
Time [h]

Fig. 6. NG, RG, and H2 flows for the constant LTI model (dotted) versus using iterative
linearisation (solid). The dashed lines indicate the limits.

dx.doi.org/10.1016/j.jprocont.2011.04.001
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The primary advantage of iterative linearisation in this test
ppears in the operating costs (calculated from the flow rates and
Please cite this article in press as: C.J. Muller, et al., Modelling, validation, an
(2011), doi:10.1016/j.jprocont.2011.04.001

ormalised costs), which are shown in Fig. 9. For perspective, the
ptimal steady-state cost for the time-varying feed compositions
s included.
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ig. 8. Controlled variables for the constant LTI model (dotted) versus using iterative
inearisation (solid). The dashed lines indicate the limits.
Fig. 9. Operating cost and ideal optimal cost (dashed line) for the constant LTI model
(dotted) versus using iterative linearisation (solid).

The cost plots show that a rather small feed composition dis-
turbance can cause a significant change in the optimal strategy. For
example, the Tail Gas 1 HHV increase at 4 h would, in theory, allow
the NG feed to be turned off, reducing the fuel gas cost to zero.

Neither controller achieves this, however. For MPC with itera-
tive linearisation the total cost (i.e., the operating cost integrated
over the 6-h test) is 0.2172, 13.1% less than for base-case MPC, but
well above the optimal cost of 0.1294. Considering only the period
after the composition change at 4 h, the cost for MPC with iterative
linearisation is 0.0225 per kN m3, a reduction of 45.8% relative to
the base case, but well above the true value, 0.

This is due to the optimisation problem formulation used
in these two controllers. It is difficult to determine controller
parameters that provide adequate transient performance (e.g., no
constraint violations) while also minimising the steady-state cost.
The mid-range CV targets with non-zero CV penalty weights, and
the constant MV targets are examples of parameters necessary
for adequate dynamic performance but these also limit the con-
troller’s ability to reach the theoretical optimal cost. The next
section provides a solution to this problem by introducing real-time
steady-state optimisation (RTO).

5.5. Real-time optimisation (RTO)

In order to push the operating cost towards the true minimum
as operating conditions change, an online economic optimisation
technique is employed in concert with MPC. This is often termed
real-time optimisation (RTO) [14–16].

Most RTO applications involve the use of nonlinear models con-
taining uncertain parameters that must be estimated in order to
determine the optimum operating condition [14,17]. In the gas
blending case, however, the economic cost is a linear function of the
MVs with known, constant coefficients, and model predictions can
be performed effectively using iterative linearisation, as described
above.

Thus, a straightforward extension of the original MPC strategy is
employed to incorporate RTO. Each time a feed composition mea-
surement becomes available (every 10 min), a nonlinear program
(NLP) is solved to determine the optimal steady-state MV and CV
targets. The NLP cost function is linear (convex) but some con-
straints are non-convex, making it impossible to guarantee a unique
solution. No instances of multiple optima have been observed in
this application, however.

The calculated CV and MV targets are employed in the MPC cost
function (recall that these targets were constant for the test simu-
lations reported above). Otherwise, the controller tuning remains
unchanged, preserving the original transient performance.
d control of an industrial fuel gas blending system, J. Process Control

Figs. 10–13 show the results (for the iterative linearisation ver-
sion only). For the 6-h test, the total cost drops from 0.2172 to
0.1369 (a reduction of 37.0%). For perspective, if it were possible
to drive the system to the optimum steady-state instantly follow-

dx.doi.org/10.1016/j.jprocont.2011.04.001
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Fig. 12. Controlled variables with RTO. The solid lines are the CV values with the
dashed lines indicating the limits.

0.1
Operating cost
ig. 10. NG, RG, and H2 flows with RTO. The solid lines are the MV values with the
ashed lines indicating the limits.

ng each feed composition disturbance, the cost would have been
.129. Thus, the introduction of RTO enables operation close to the
ptimal cost.

This is also evident from Fig. 13, which shows that the controller
ventually reaches the optimal steady-state cost in all cases. The
rimary cause of sub-optimal performance is the delay in the feed
Please cite this article in press as: C.J. Muller, et al., Modelling, validation, an
(2011), doi:10.1016/j.jprocont.2011.04.001

omposition measurements, which causes the CV and MV targets to
e sub-optimal from 4 h until the next feed composition measure-
ent becomes available. This suggests that there would be little to
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Fig. 13. Operating cost and ideal optimal cost (dashed line) with RTO.

gain through the use of a more general dynamic RTO strategy. This
remains as a possibility for future research.

From Fig. 12, it is clear that transient performance is still excel-
lent with negligible constraint violations, even though the HHV,
WI, and FSI have been driven to bounds for most of the 6-h test
d control of an industrial fuel gas blending system, J. Process Control

(the header pressure has no impact on the cost, so it stays near its
constant mid-range target).

Table 10 summarises and compares the average costs per hour
interval for the three cases and the optimal steady-state cost. These

Table 10
Time averaged costs per 1 h interval for the constant LTI case, the iterative lineari-
sation case, the RTO case, and the steady-state optimal values.

Interval Const. LTI Iter. Lin. RTO SS Opt.

0–1 h 0.0411 0.0411 0.0324 0.0322
1–2 h 0.0422 0.0430 0.0330 0.0322
2–3 h 0.0425 0.0433 0.0327 0.0325
3–4 h 0.0415 0.0413 0.0326 0.0325
4–5 h 0.0415 0.0259 0.0060 0.0000
5–6 h 0.0415 0.0225 0.0002 0.0000

dx.doi.org/10.1016/j.jprocont.2011.04.001
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alues are calculated by adding the cost values in each one hour
nterval and dividing by the number of samples in the interval.

. Conclusion

The proposed first-principle nonlinear state-space model for the
uel gas blending process provides an adequate representation of
he real industrial plant. The correlations between simulation and
lant data indicate that the key assumptions (ideal gas, uniform
ixing) are reasonable. Therefore, the simulation allows realis-

ic tests of advanced control and optimisation strategies. The fuel
as blending application is similar to other blending operations
escribed in the literature, but it offers unique dynamic and eco-
omic characteristics.

The use of iterative linearisation (a form of nonlinear MPC) pro-
ides excellent compensation for the fuel gas blending system’s
onlinear characteristics. The four CVs are regulated well despite

eed gas disturbances and fuel gas demand variations. This is the
ase even when one or more CVs is driven to a boundary in order
o achieve minimum-cost operation. There are minor-short term
iolations of the soft CV constraints, but these would be acceptable
n the real plant. If this were not the case, safety margins could be
mposed but this would increase the operating cost.

When RTO is used to update long-term CV and MV targets, MPC
with iterative linearisation) drives the plant reliably to the optimal
teady-state condition following a disturbance. Although there is
otential for even better economic performance, the results suggest
hat the primary limiting factor is the measurement system, not
he controller. Thus, it is unlikely that a more general nonlinear
ynamic RTO approach would be justified. Whether this is indeed
he case is a possible area for future research.
Please cite this article in press as: C.J. Muller, et al., Modelling, validation, an
(2011), doi:10.1016/j.jprocont.2011.04.001

cknowledgements

Thanks to Adolf Wolmarans from Sasol Infrachem for giving
ermission to use the plant data and to Paul Hughes from Sasol

[

 PRESS
Control xxx (2011) xxx–xxx 9

Technology for his advice and guidance (especially with regard to
the iterative linearisation).

References

[1] D.W. Green, et al., Perry’s Chemical Engineers’ Handbook, Seventh Edition,
McGraw-Hill, 1997, pp. 2-7–2-44.

[2] F. Johnson, D.M. Rue, Gas Interchangeability Tests: Evaluating the Range of
Interchangeability of Vaporized LNG and Natural Gas, Gas Technology Institute
for Gas Research Institute, April 2003.

[3] M. Chèbre, Y. Creff, N. Petit, Feedback control and optimization for the pro-
duction of commercial fuels by blending, J. Process Control 20 (4) (2010)
441–451.

[4] P. Hughes, Sasol Fuel Gas Optimiser: APC Controller Feasibility Study, Sasol
Technology, Sasolburg, May 2008.

[5] P. Hughes, SCI Fuel Gas Optimiser: Engineering Documentation, Sasolburg,
Sasol Technology, March 2010, pp. 30–32.

[6] P. Hughes, Discussion on the derivatives of HHV, WI, and FSI, Personal commu-
nication, Sasol Technology, Sasolburg, June 2010.

[7] J. Richalet, A. Rault, J.L. Testud, J. Papon, Algorithmic control of industrial pro-
cesses, in: IFAC, Proc. 4th IFAC Symp. Identif. Syst. Parameter Estim., 1976, pp.
1119–1167.

[8] C.R. Cutler, B.L. Ramaker, Dynamic matrix control—a computer control algo-
rithm, in: Proc. Jt. Auto. Control Conf., San Francisco, 1980.

[9] J.B. Rawlings, Tutorial Overview of Model Predictive Control, IEEE Control Syst.
Mag. 20 (3) (June 2000) 38–52.

10] E.F. Camacho, C. Bordons, Model Predictive Control, Second Edition, Springer,
London, 2007, pp. 1–10.

11] S.J. Qin, T.A. Badgwell, A survey of industrial model predictive control technol-
ogy, Control Eng. Pract. 11 (July 7) (2003) 733–764.

12] A. Bemporad, M. Morari, N.L. Ricker, Model Predictive Control Toolbox 3: User’s
guide, The MathWorks, Inc., 2010.

13] D.E. Seborg, T.F. Edgar, D.A. Mellichamp, Process Dynamics and Control, Second
Edition, Wiley, NJ, 2004.

14] V. Adetola, M. Guay, Integration of real-time optimization and model predictive
control, J. Process Control 20 (2) (2010) 125–133.

15] J.H. Lee, J.M. Lee, T. Tosukhowong, J. Lu, On interfacing model predictive con-
trollers with a real-time optimizer, Comput. Aided Chem. Eng. 15 (C) (2003)
910–915.

16] C.R. Cutler, R.T. Perry, Real time optimization with multivariable control is
d control of an industrial fuel gas blending system, J. Process Control

663–667.
17] G. De Souza, D. Odloak, A.C. Zanin, Real time optimization (RTO) with

model predictive control (MPC), Comput. Chem. Eng. 34 (July 12) (2010)
1999–2006.

dx.doi.org/10.1016/j.jprocont.2011.04.001

	Modelling, validation, and control of an industrial fuel gas blending system
	Introduction
	Process overview
	Modelling
	Model validation
	Linearising the model for control purposes

	Iterative linearisation
	Heating value
	Wobbe index
	Flame speed index

	Control
	MPC overview
	Nominal MPC design for the fuel gas blending process
	MPC with iterative model linearisation
	Results
	Real-time optimisation (RTO)

	Conclusion
	Acknowledgements
	References


