
A Polar Coordinate Particle Swarm Optimiser

Wiehann Matthysen and Andries P. Engelbrecht

Department of Computer Science, University of Pretoria, South Africa
engel@cs.up.ac.za

Abstract

The Particle Swarm Optimisation (PSO) algorithm consists of a population (or
swarm) of particles that are “flown” through an n-dimensional space in search of a
global best solution to an optimisation problem. PSO operates in Cartesian space,
producing Cartesian solution vectors. By making use of an appropriate mapping
function the algorithm can be modified to search in polar space. This mapping
function is used to convert the position vectors (now defined in polar space) to
Cartesian space such that the fitness value of each particle can be calculated ac-
cordingly. This paper introduces the Polar PSO algorithm that is able to search in
polar space. This new algorithm is compared to its Cartesian counterpart and the
experimental results show that the Polar PSO outperforms the Cartesian PSO in
low dimensions when both algorithms are applied to the search for eigenvectors of
different n× n square matrices.

Key words: Particle Swarm Optimization, Polar Coordinates, Boundary
Constraints

1 Introduction1

Optimisation algorithms such as Differential Evolution (DE) [1] and Particle2

Swarm Optimisation (PSO) [2] were originally designed to find solutions to3

problems that are defined in n-dimensional Cartesian space. However, modified4

versions of these algorithms appeared as the benefits that these algorithms5

offered were sought in other problem areas as well. The standard versions of6

the algorithms were adapted by either modifying their underlying logic or by7

introducing an appropriate mapping function.8

An example of algorithm modification is where Kennedy and Eberhart [3]9

modified the PSO algorithm to enable it to search for discrete solutions in10

binary space (Binary PSO or BinPSO). Each component of a particle’s velocity11

vector is used to determine a probability that the bit in that same dimension12

Preprint submitted to Elsevier 19 February 2010

of its position vector will flip from a zero to a one and vice versa. For example,13

a velocity component vij = 0.8 of particle i at index j implies that the position14

component at the same index has a 69% chance to be bit one.15

An example of incorporating a mapping function into the PSO algorithm is16

the Angle-Modulated PSO (AMPSO) [4]. The original discrete problem is17

redefined such that the search is now carried out in 4-dimensional Euclidean18

space to locate the coefficient vectors of an n-dimensional trigonometric bit19

string generator. This mapping technique was later applied to the Differential20

Evolution (DE) algorithm [5].21

This paper introduces the Polar PSO that is both a modification of the stan-22

dard PSO algorithm as well as making use of an appropriate mapping function23

that takes particle positions in polar space and convert it to Cartesian space.24

Similar research has already been done to enable Evolutionary Algorithms25

(EAs) to search in polar space. An example of this is the Polar Evolutionary26

Strategy (Polar ES) [6]. Empirical results show that the Polar ES outperforms27

its Cartesian counterpart when both algorithms are applied to the search for28

unit-length projection vectors.29

What sets this research apart is that the PSO algorithm itself as well as its30

behaviour during the search process are fundamentally different from an EA31

[7]. This means that specialised modifications that are unique to the PSO al-32

gorithm are required to enable it to search in polar space. These modifications33

are needed to address some of the difficulties that are inherent in changing34

from Cartesian to polar space.35

The first of these difficulties is that the new polar search space is a distorted36

version of the original Cartesian space. Local optimum regions near the Carte-37

sian origin become enlarged in polar space while global optimum regions fur-38

ther away are reduced in size. This distortion causes the PSO algorithm to39

prematurely converge to these larger local optimum regions. The other side40

effect of this distortion is that random particle positions in polar space are41

not uniformly distributed when converted to Cartesian space and vice versa.42

This causes a decrease in initial swarm diversity which results in less efficient43

exploration. The third issue is related to the way in which the bounded polar44

position vectors should be handled. A näıve approach of allowing the particles45

to search beyond the search space bounds increases the size of the search space46

which results in lower quality solutions to be produced.47

All of these issues as well as the modifications required to address them are48

discussed in the following sections: Section 2 describes the PSO, BinPSO and49

AMPSO algorithms. The polar conversion function is defined in Section 350

while Section 4 describes the effects of converting to polar coordinates. Section51

5 describes the modifications required to correctly handle the bounded angular52

2

components. The complete Polar PSO algorithm is summarised in Section 653

while Sections 7 and 8 discuss the experimental setup and the results obtained.54

Finally, Section 9 concludes with some remarks.55

2 Background56

2.1 Particle Swarm Optimisation57

PSO is an algorithm that models the social behaviour of birds within a flock.58

The algorithm was first introduced by Kennedy and Eberhart [2] as a sim-59

ulation of this behaviour, but quickly evolved into one of the most powerful60

optimisation algorithms in the Computational Intelligence field.61

The algorithm consists of a population (or swarm) of particles that are “flown”62

through an n-dimensional space. The position of each particle represents a po-63

tential solution to the optimisation problem and is used in determining the64

fitness (or performance) of a particle. These fitness values are used in record-65

ing the neighbourhood as well as personal best positions. The neighbourhood66

best position represents the best position found by the neighbourhood of par-67

ticles connected to the current particle per execution of the algorithm, whereas68

the personal best position represents the historic best position of the particle.69

Different neighbourhood topologies have been defined which led to the lbest70

(ring topology) and gbest (entire swarm as neighbourhood) variants of the al-71

gorithm. The neighbourhood and personal best positions are used in guiding72

a particle through the search space allowing it to discover more promising re-73

gions that will lead to further exploration as this information is shared among74

the rest of the particles in the swarm.75

The velocity of each particle i is calculated using the following rule:76

vi,j(t) = wvi,j(t− 1) + α1(t)(yi,j(t)− xi,j(t)) + α2(t)(ŷi,j(t)− xi,j(t)) (1)77

for dimensions j = 1, . . . , n, where w (referred to as the momentum or inertia78

weight) determines the influence that the velocity at the previous time-step79

has on the current velocity, and α1(t) and α2(t) determines the influence that80

the personal best position yi,j(t) and the neighbourhood best position ŷi,j(t)81

has. These values are defined as α1(t) = c1 · r1(t) and α2(t) = c2 · r2(t) where82

c1 and c2 are the acceleration constants and r1(t), r2(t) ∼ U(0, 1).83

The current position of particle i is then calculated by adding this updated84

3

velocity to the previous position:85

xi,j(t) = xi,j(t− 1) + vi,j(t) (2)86

resulting in a new position that is potentially closer to a local or global opti-87

mum.88

2.2 Binary PSO89

The first PSO able to search in binary space were developed by Kennedy90

and Eberhart [3]. This version of the PSO is a modification to the original91

algorithm where the particle positions are equal length bit strings and the92

velocity of each particle is used to determine the probability that a bit at a93

certain index in the bit string will change from a zero to a one, and vice versa.94

These modifications are captured in the following position update rule:95

xi,j(t+ 1) =

 0 if ri(t) ≥ f(vi,j(t))

1 if ri(t) < f(vi,j(t))
(3)96

where97

f(vi,j(t)) =
1

1 + e−vi,j(t)
(4)98

and ri(t) ∼ U(0, 1).99

For large velocity values of vi,j the corresponding values of f(vi,j(t)) will be100

close to 1.0 which means that the pseudo-random number generated by ri(t)101

will have a high probability of being less than this value giving a position102

component of 1. A similar argument can be made to derive the conditions for103

a 0 to be generated.104

2.3 Angle Modulated PSO105

The Angle Modulated PSO (AMPSO) [4] was developed to enable the stan-106

dard PSO algorithm to search in binary space. However, AMPSO is different107

from BinPSO in that it makes use of an appropriate mapping function to108

achieve this goal as opposed to modifying the logic of the original algorithm.109

4

The mapping is performed by defining an n-dimensional trigonometric bit110

string generator of the form:111

g(x) = sin(2π(x− a)× b× cos(A)) + d (5)112

where113

A = 2π × c(x− a) (6)114

and x are the evenly spaced values determined by the number of bits to be115

generated. The bits are generated according to the following rule:116

bi =

 0 if g(xi) ≤ 0

1 if g(xi) > 0
(7)117

The standard PSO algorithm is then used to search in 4-dimensional Euclidean118

space to locate the coefficient vector (a, b, c, d) needed in equations (5) and (6).119

3 Polar Conversion Function120

Polar coordinates allow Cartesian vectors to be described in terms of indepen-121

dent angles and a positive radius. To enable a PSO to search in polar space122

a conversion function needs to be defined that maps the n-dimensional polar123

vectors back to Cartesian space. This conversion function (as formulated by124

Kendall [8]) is defined as:125

~x = µ(~θ)

x1 = r · sin(θ1) · sin(θ2) . . . sin(θn−2) · cos(θn−1)

x2 = r · sin(θ1) · sin(θ2) . . . sin(θn−2) · sin(θn−1)

x3 = r · sin(θ1) · sin(θ2) . . . cos(θn−2)

.

xj = r · sin(θ1) . . . sin(θn−j) . . . cos(θn−j+1)

.

xn = r · cos(θ1)

(8)126

5

with 0 ≤ r ≤ ∞, 0 ≤ θj ≤ π for j = 1, . . . , n − 2 and 0 ≤ θn−1 ≤ 2π. Simpli-127

fying this function gives the well known polar coordinates in two dimensions:128

x1 = r · cos(θ)

x2 = r · sin(θ)
(9)129

with 0 ≤ r ≤ ∞ and 0 ≤ θ ≤ 2π, and the spherical coordinates in three130

dimensions:131

x1 = r · sin(θ1) · cos(θ2)

x2 = r · sin(θ1) · sin(θ2)

x3 = r · cos(θ1)

(10)132

with 0 ≤ r ≤ ∞, 0 ≤ θ1 ≤ π and 0 ≤ θ2 ≤ 2π. The search is then car-133

ried out in n-dimensional polar space to locate position vectors of the form134

(r, θ1, θ2, . . . , θn−1).135

4 Effects of Polar Coordinate Conversion136

Converting the original Cartesian search space to polar coordinates have a137

number of implications. These implications are discussed in this section as138

well as the effect that it has on the performance of the PSO algorithm.139

4.1 Search Space Distortion140

The most prevalent issue in this search space transformation is that the new141

polar search space becomes a distorted version of the Cartesian space, caus-142

ing the search to be carried out in a space where it might be more difficult143

(depending on the problem) to locate a local or global optimum.144

As an example, consider the n-dimensional Ackley function formulated as:145

f(x) = 20 + e− 20 · e(−0.2
√

1
n

∑n

i=1
x2

i) − e(
1
n

∑n

i=1
cos(2π·xi)) (11)146

To search for the global optimum of the horizontally shifted version of this147

function (located at (10, 10) in Cartesian space as shown in Fig. 1) in polar148

coordinates, the mapping as defined in equation (8) is used. This results in 2-149

dimensional particle positions of the form (r, θ) to be used with 0 ≤ r ≤ ∞ and150

6

0 ≤ θ ≤ 2π. Plotting the function in this space results in a distorted version151

of the original as shown in Fig. 2.152

Fig. 1. The 2-dimensional Cartesian version of the Ackley function with horizontal
offset of -10.

Fig. 2. The 2-dimensional, distorted, polar coordinate version of the Ackley function
in Fig. 1.

The distorted version of the function has a number of characteristics:153

The function is stretched out along the radius-axis (shown here for values154

10 ≤ r ≤ 20) which has the effect that small steps along the θ-axis (for large155

values of r) will result in large corresponding steps in the original Cartesian156

search space. As the length of r increases the likelihood of particles missing a157

local or global optimum (as they move around) will also increase. The reason158

for this is that the distorted local or global optimum regions decrease in size as159

the distance of these regions from the Cartesian origin increases. This is shown160

in Fig. 2 where the contour located between θ-values 1.25 and 0.5 is slightly161

narrower at regions near r = 18 than compared to the opposite region of162

r = 10.5. At the other extreme, the Ackley function is significantly distorted at163

regions with small values of r such that any local or global optimum occurring164

at these regions becomes large in comparison with the rest of the optima165

occurring at positions further away from the Cartesian origin. This effect is166

clearly shown in Fig. 3.167

Fig. 3. Illustration of the increase in size of local minima at positions with small
values of r for the Ackley function in Fig. 1.

4.2 Implications168

The implications that this distortion hold are that particles may easily get169

stuck at local optimum regions near the Cartesian origin (positions with r170

close to 0), or may easily miss global optimum regions that are further away.171

This suggests that optimisation algorithms that operate in polar space are172

more suited to finding solutions of specialised problems. In particular, polar173

coordinates provide a convenient way to express fixed length Cartesian vectors174

by keeping the value of r fixed in the polar vector (r, θ1, θ2, . . . , θn−1).175

This was exploited in [6] where the standard Evolutionary Strategy (ES) al-176

gorithm was modified to enable it to search for unit length projection vectors177

in polar space. The outcome of this was that the Polar ES produced better178

results when compared to its Cartesian counterparts. The reason is that by179

constricting the search to a unit-length hypersphere resulted in the search180

7

space to be reduced enough to enable the Polar ES to explore more effectively181

and produce better solutions.182

4.3 Particle Position Initialisation183

The distortion of the search space also has the effect that polar and Cartesian184

diversities will differ. Thus, random particle positions in polar space will not185

be uniformly distributed when converted to Cartesian space and vice versa.186

(a) (b)

Fig. 4. Search space distortion effecting diversity of particle positions. (a) Random
positions in polar space converted to Cartesian space. (b) Random positions in
Cartesian space converted to polar space.

The diagrams in Fig. 4(a) and 4(b) illustrate the difference between polar and187

Cartesian diversity. Fig. 4(a) shows positions that were originally randomly188

generated in polar space (in terms of a radius and angle) and converted to189

Cartesian space using equation (9), while Fig. 4(b) illustrates how random190

2-dimensional Cartesian vectors look like in polar space. The elliptical shapes191

in Fig. 4(b) are due to the initialisation of these Cartesian vectors within a192

bounded hypercube. Thus, the diagrams illustrate that as soon as a trans-193

formation is made to a new search space and particle positions are randomly194

initialised in this search space, the diversity of these positions (when they are195

converted back to the original search space) will be less than when they were196

randomly initialised in the original search space.197

This distortion effect gets more severe as the number of dimensions increases.198

The reason for this is explained next. Suppose the particles in a swarm have199

n-dimensional polar position vectors. These position vectors are initialised200

randomly when the algorithm starts its execution such that each position201

vector are of the form (r, θ1, θ2, . . . , θn−1) with 0 ≤ r ≤ ∞, 0 ≤ θj ≤ π for j =202

1, . . . , n− 2 and 0 ≤ θn−1 ≤ 2π. Using the conversion function in equation (8)203

will result in Cartesian components of the form:204

x1 = r · sin(θ1) · sin(θ2) . . . sin(θn−2) · cos(θn−1)

x2 = r · sin(θ1) · sin(θ2) . . . sin(θn−2) · sin(θn−1)

x3 = r · sin(θ1) · sin(θ2) . . . cos(θn−2)

.

205

However, the effect that this conversion will have is that Cartesian compo-206

nents xi → 0 for small values of i. The reason for this can be seen by taking207

8

the calculation of x1 as an example: For x1 ≈ r the θj-values need to be such208

that θj ≈ π/2 for j = 1, . . . , n − 2 and θn−1 ≈ 0. If the θj values differ by a209

substantial amount from π/2 it will cause consecutive fractions to be multi-210

plied n−2 times giving a component value that is close to zero for large values211

of n.212

Thus, to force diversity in the original Cartesian space, particle positions need213

to be randomly initialised in this Cartesian space and by making use of an214

appropriate conversion function, the angle and radius values can be derived215

to give these positions in polar space. This function is the inverse of equation216

(8) and is defined as:217

~θ = η(~x)

r =
√
x2

1 + x2
2 + · · ·+ x2

n

θ1 = cos−1(xn/r)

θ2 = cos−1(xn−1/r · sin(θ1))

.

θj = cos−1(xn−j+1/(r · sin(θ1) . . . sin(θj−1)))

.

θn−2 = cos−1(x3/(r · sin(θ1) . . . sin(θn−3)))

(12)218

with cos(θn−1) = x1/(r·sin(θ1) . . . sin(θn−2)) and sin(θn−1) = x2/(r·sin(θ1) . . . sin(θn−2)).219

To calculate the value of θn−1 both the values of cos(θn−1) and sin(θn−1) are220

used in determining the quadrant that θn−1 is located in.221

5 Bounded Angular Components222

The polar position vector of each particle in the swarm is defined as (r, θ1, θ2, . . . , θn−1)223

with 0 ≤ r ≤ ∞, 0 ≤ θj ≤ π for j = 1, . . . , n−2 and 0 ≤ θn−1 ≤ 2π. These an-224

gular constraints need to be incorporated into the position as well as velocity225

update rules (refer to equations (2) and (1) respectively) to keep particles226

within the defined search region. This will have the effect of reducing the size227

of the search space to enable the algorithm to explore more effectively.228

9

5.1 φ-Boundary229

The φ-angle refers to the last angle (θn−1) in the polar position vector (r, θ1, θ2, . . . , θn−1)230

with 0 ≤ θn−1 ≤ 2π. To update this angle during the position update step,231

modular arithmetic is used to ensure that the angle stays within its defined232

region. Thus, the new position update rule that implements this mechanism233

is given as:234

xi,j(t) = xi,j(t− 1) + vi,j(t) (13)235

for dimensions j = 1, . . . , d− 1 and236

xi,d(t) =


(xi,d(t− 1) + vi,d(t)) mod 2π + 2π

if xi,d(t− 1) + vi,d(t) < 0,

(xi,d(t− 1) + vi,d(t)) mod 2π otherwise.

237

which is similar to Periodic mode as described in [9]. Negative φ-angles are238

handled appropriately by adding 2π to give the equivalent positive angle as239

equation (13) shows.240

However, if this new position update rule is used without any modification to241

velocity update rule (1), then the search will be carried out inefficiently. The242

reason for this is explained next. Suppose the neighbourhood best particle is243

located at a position with a φ-angle close to 2π. If another particle in the244

swarm moves towards this position it may easily overstep the φ-boundary,245

causing position update rule (13) to give a position that is close to zero again246

(due to modular arithmetic).247

(a) (b)

Fig. 5. (a) Swarm movement using standard velocity update rule. (b) Illustration
of φ-angle movement.

The effect that this will have is illustrated in Fig. 5(a) for the Ackley function.248

A sample of five particle positions from the swarm shows that the particles249

move (or spin around) such that they stay within a disk-shaped region in250

Cartesian space.251

To solve this problem, the velocity update rule as defined in equation (1)252

needs to be modified such that the particles move more efficiently with regard253

to their φ-angles. The required update is illustrated in Fig. 5(b). The arrow254

pointing upwards in an anti-clockwise direction indicates the direction of the255

φ1-angle of a particle moving towards φ2 (its personal or neighbourhood best256

10

position). If the particle moves in the opposite φ-direction it will take a shorter257

route towards the φ2-angle as the arrow pointing downwards illustrates. This258

modification is captured in the following velocity update rule:259

vi,j(t) = wvi,j(t− 1)

+ α1(t)(yi,j(t)− xi,j(t))

+ α2(t)(ŷi,j(t)− xi,j(t))

(14)260

for dimensions j = 1, . . . , d− 1 and261

vi,d(t) = wvi,d(t− 1)

+
α1(t)(yi,d(t)− xi,d(t)) if (yi,d(t)− xi,d(t)) ≤ π

α1(t)(sign(xi,d(t)− yi,d(t))× 2π − xi,d(t) + yi,d(t))

otherwise

+
α2(t)(ŷi,d(t)− xi,d(t)) if (ŷi,d(t)− xi,d(t)) ≤ π

α2(t)(sign(xi,d(t)− ŷi,d(t))× 2π − xi,d(t) + ŷi,d(t))

otherwise

262

5.2 θ-Boundaries263

The θ-angles refer to the angles θ1, θ2, . . . , θn−2 of the polar position vec-264

tor (r, θ1, θ2, . . . , θn−1). These angles are defined such that 0 ≤ θj ≤ π for265

j = 1, . . . , n− 2.266

If an update is made to these angles that is similar to the φ-angle update267

in equation (13) then particles close to the θ-boundary will be moved by a268

large amount if they overstep the boundary only by a small amount. The269

reason for this is explained next. Suppose an angle in the second quadrant is270

given by θ = π − 0.1. If the angular velocity is 0.15 then the new angle given271

by modular arithmetic will be equal to θ = ((π − 0.1) + 0.15) mod π = 0.05.272

This new angle is π−0.15 distance away from the original angle. To solve this273

boundary constraint issue, a number of methods can be used to update the274

θ-angle more effectively [10]:275

11

5.2.1 Random mode276

With Random mode, the j-th θ-component of the polar vector that oversteps277

a boundary (i.e. θj < 0 or θj > π) is randomly re-initialised to keep it within278

the boundaries. This method of boundary enforcement is illustrated in Fig.279

6(a).280

5.2.2 Boundary mode281

If a particle oversteps any of its j-th component’s boundaries the particle282

is re-initialised such that the j-th component is equal to the value of the283

overstepped boundary. Thus, if θj < 0 then θj = 0 or if θj > π then θj = π as284

illustrated in Fig. 6(b). An additional turbulence factor can be incorporated285

which will perturb this boundary position with a low probability to introduce286

some diversity.287

5.2.3 Shr288

A particle can have the magnitude of its velocity vector scaled such that it289

exactly reaches the boundary upon the next position update. This is illustrated290

in Fig. 6(c).291

(a) (b) (c)

Fig. 6. The different methods of handling the boundary constraints with (a) Random
mode, (b) Boundary mode and (c) Shr

In all of the above situations the velocity needs to be updated to reflect the292

updated position that are now within the boundaries of the search space.293

This is done by subtracting the original position from the new position (after294

boundary enforcement has been applied).295

Algorithm 1 Polar Coordinate Boundary Transformation

Let polarVector = n-dimensional vector with indices i = 0, . . . , n− 1; Let
φ = NumberOfDimensions − 1; i = NumberOfDimensions − 2
downto 1 polarVectori > π j = i to NumberOfDimensions − 1
polarVectorj = π − (polarVectorj mod π); polarVectorφ = (polarVectorφ +
π) mod 2π; polarVectori < 0 polarVectori = |polarVectori|; j = i + 1
to NumberOfDimensions − 1 polarVectorj = π − (polarVectorj mod π);
polarVectorφ = (polarVectorφ + π) mod 2π;

12

5.2.4 Polar mode296

A characteristic of the methods just discussed is that a transformed particle297

position does not correspond to its untransformed position if both positions298

are converted back to Cartesian coordinates. To achieve this the following299

transformation function is defined:300

~θb = τ(~θu) (15)301

with 0 ≤ ru ≤ ∞, θu,j < 0 or θu,j > π for j = 1, . . . , n− 2 and 0 ≤ θu,n−1 ≤ 2π302

and also with 0 ≤ rb ≤ ∞, 0 ≤ θb,j ≤ π for j = 1, . . . , n−2 and 0 ≤ θb,n−1 ≤ 2π.303

The vector ~θu represents the unconstrained polar coordinate vector and ~θb the304

resulting constrained polar coordinate vector. The requirement of the trans-305

formation function is that the relation µ(θb) = µ(θu) must hold (see equation306

(8)) to ensure that equivalent vectors will be produced in Cartesian space.307

Pseudo code for the transformation function τ is listed as Algorithm 1.308

6 The Polar PSO Algorithm309

The steps of the Polar Coordinate PSO Algorithm are summarised in Algo-310

rithm 2.311

Algorithm 2 Polar PSO Algorithm

Let m = size of swarm; each particle i = 1 to m Let cartesianVector = random
n-dimensional vector; Let polarVector = η(cartesianVector); (equation (12))
Set position vector ~xi of particle i equal to polarVector; Set r in ~xi equal to
a fixed value; Initialise particle i’s velocity vector ~vi using some initialisation
scheme; each particle i = 1 to m Let tempCartesianVector = µ(~xi); (equation
(8)); Evaluate fitness f(tempCartesianVector) and set particle i’s fitness value
Fi to be equal to this value; Using the fitness value Fi update particle i’s
personal and neighbourhood best positions; each particle i = 1 to m Update
the velocity ~vi using equation (14); Update the position ~xi using equation (13);
Transform the position ~xi by applying one of the boundary constraint methods
to constrain the θ-angles as discussed in Section 5.2; If the position ~xi changed
as a result of this transformation, calculate new velocity by subtracting original
position from transformed position; stopping condition is true;

13

7 Experimental Approach312

The experiments that were conducted focused on comparing the performance313

of the standard PSO algorithm operating in Cartesian space with the per-314

formance of the Polar PSO algorithm 1 . Control parameter values for both315

algorithms (as listed in equation (1)) were selected according to the guidelines316

in [11] with a value of 1.496180 being assigned to both c1 and c2 and w being set317

to 0.729844. These values satisfies the condition that will allow for convergent318

particle trajectories where the condition is [11]: 1 > w > 1
2
(c1 + c2)−1 ≥ 0, as319

well as being the most optimal control parameters for a number of benchmark320

functions as empirically shown in [12]. For both algorithms, the velocity vector321

of all the particles were initialised to zero. A collection of 20 particles were322

configured in a gbest topology. Each algorithm was allowed to execute for a323

maximum of 1000 iterations and each experiment consisted of 100 of these324

executions. The results were averaged and reported with a 95% confidence325

interval using the t-test.326

7.1 Benchmark functions327

Table 1
PSO Settings for the Ackley function

Setting Number Setting Description

S1 Cartesian Coordinates.

S2 Polar Coordinates.

S3 Polar Coordinates and Cartesian Initialisation.

S4
Polar Coordinates, Cartesian Initialisation

and φ-position update. (see equation (13))

S5

Polar Coordinates, Cartesian Initialisation

and bounded φ-component.

(see equations (13) and (14))

S6
Polar Coordinates, Cartesian Initialisation

and bounded φ and θ-components.

1 Both algorithms have been implemented in the Computational Intelligence Li-
brary (CIlib) (http://cilib.sourceforge.net).

14

http://cilib.sourceforge.net

7.1.1 Ackley Function328

The first benchmark function is the horizontally shifted version of the Ackley329

function that was introduced in Section 4.1. Table 1 lists the different settings330

for the PSO algorithm that were used to produce the corresponding results331

that are shown in Table 3.332

Setting S1 corresponds to the standard gbest PSO that operates in Cartesian333

space while setting S2 corresponds to the same PSO, but makes use of the334

mapping function defined in equation (8) to enable it to operate in polar space.335

No modifications were made to the underlying PSO algorithm for setting S2.336

The settings S3 through to S6 correspond to the modifications that were made337

to the PSO algorithm to enable it to search more effectively in polar space338

and were discussed in detail in Sections 4 and 5.339

For the PSO operating in Cartesian space (corresponding to setting S1), the340

position vector of each particle were randomly initialised as xj ∼ U(−30, 30)341

for j = 1, . . . , n.342

The Polar PSO algorithm (shown as Algorithm 2) was slightly modified for343

this particular benchmark function. The radius r of each polar position vector344

were not initialised to a fixed value as the algorithm describes, but was instead345

calculated from a random Cartesian vector using equation (12). These Carte-346

sian vectors were generated in the same way as the Cartesian position vectors347

were generated for the PSO corresponding to setting S1 as just discussed. The348

θ-component values of the particle position vectors for the PSO corresponding349

to setting S6 were constrained by making use of the Random mode boundary350

constraint method.351

7.1.2 Eigenvector Function352

The second set of benchmark functions involve finding an eigenvector for dif-353

ferent n× n matrices. These n× n matrices are generated by making use of a354

pseudo-random number generator (Mersenne Twister [13]).355

The fitness function is defined as the length of the vector calculated by sub-356

tracting a unit length input vector ~x′ from the unit length resultant vector ~u′357

that is obtained from multiplying the input vector ~x with the random matrix358

and normalising. This function is formally defined as:359

f(~x) =

∥∥∥∥∥ ~u

‖~u‖2
− ~x

‖~x‖2

∥∥∥∥∥
2

(16)360

15

where361

ui =
n∑
j=1

(xj × U(α, β))362

for i = 1, . . . , n and ~x is an n-dimensional input vector. The goal of an opti-363

misation algorithm is then to minimise the value of f(~x). When the value of364

f(~x) is sufficiently close to zero the vector ~x can be considered an eigenvector365

of the matrix.366

Each call to the function f(~x) needs to ensure that the pseudo-random number367

generator U is re-seeded with the same value to produce identical matrices in368

consecutive calls. The value of α and β determines the lower and upper bound369

values produced by the generator. Three different seed values combined with370

two different ranges were used to produce six different matrices per dimension.371

The PSO operating in Cartesian space was initialised with random particle372

position vectors (input vector to f(~x)) of the form xj ∼ U(−1, 1) for j =373

1, . . . , n.374

For the Polar PSO, the r values were set to 1.0 during initialisation and kept375

fixed during execution. The experiments were conducted using the Random,376

Boundary and Polar mode boundary constraint methods. A turbulence prob-377

ability of 0.5 were used for the Boundary mode constraint method. This value378

determines the probability that a particle that is placed on the boundary of379

the search space (due to the particle overstepping the boundary) will move380

away from this boundary. The amount of turbulence was randomly sampled381

from the range (0, π) and was either added or subtracted from the lower or up-382

per boundary values depending on whether the component value was greater383

or less than the upper or lower boundary.384

8 Results385

8.1 Ackley Function386

The values in Table 3 show the performance results that were obtained from387

applying the PSO algorithm to the problem of locating the global minimum388

of the horizontally shifted version of the Ackley function (as previously intro-389

duced) using the different settings listed in Table 1. The mean and best fitness390

values for the different runs are shown in Figures 7(a) - 13(b).391

The results corresponding to settings S1 and S2 empirically illustrate the effect392

16

that the distortion of the search space has on the performance of the PSO393

algorithm. Performance results for setting S2, corresponding to the standard394

PSO algorithm operating in polar space, are significantly worse than compared395

to the results for S1, the PSO operating in Cartesian space. However, when396

both algorithms were executed in one hundred dimensional space, the PSO397

operating in Cartesian space produced slightly worse results than compared398

to the PSO operating in polar space.399

In an attempt to improve these results, the PSO operating in polar space400

had the position vectors of its particles initialised in Cartesian space before401

being converted to polar coordinates using equation (12). The results obtained402

from this initialisation scheme are listed as setting S3 in Table 3 and are a403

significant improvement compared to the results obtained from using setting404

S2. This improvement is especially apparent for dimensions five through to405

thirty as the results show.406

The next improvement to the polar PSO algorithm involved reducing the size407

of the search space by restricting the range of valid values for the angular408

components of each particle position vector in the swarm.409

The first attempt at this improvement involved using modular arithmetic to410

restrict the range of values for the φ-component. This modification was cap-411

tured in position update rule (13). However, Section 5.1 illustrated that if412

this position update rule is used without any modification to velocity update413

rule (1), then the search will be carried out inefficiently. This is confirmed in414

Table 3 with the results corresponding to setting S4 being significantly worse415

than compared to the previous results for dimensions three through to ten. By416

making use of velocity update rule (14) the performance of the PSO (corre-417

sponding to setting S5) was improved to the point where it outperformed the418

results of the previous polar PSO settings for the majority of the dimensions.419

The final improvement to the polar PSO algorithm involved restricting the420

range of values for the θ-components. The Random mode boundary constraint421

method (discussed in Section 5.2) was used to restrict these values and pro-422

duced the results that are shown as setting S6 in Table 3. For dimensions five423

through to one hundred the results for this setting were either significantly424

better than compared to the results of setting S5, or were only sightly worse.425

What is interesting to note is that this also resulted in the polar PSO algo-426

rithm to outperform its Cartesian counterpart in one hundred dimensional427

search space. This can be confirmed by referring to Figure 13(a) that shows428

the mean fitness value for the Ackley function in 100 dimensional search space.429

17

8.2 Standard Benchmark Functions430

The values in Tables 4 - 10 show the performance results that were obtained431

from applying the same PSO algorithm as listed in Section 8.1 to different432

standard benchmark functions. The same settings as listed in Table 1 were433

used. However, to ensure fair results, some of the standard benchmark func-434

tions were shifted in the same manner as the Ackley function and these settings435

are listed in Table 2.436

Table 2
Horizontal shift applied to standard benchmark functions

Function Horizontal Shift

Griewank -300.0

Quadric -50.0

Quartic -0.5

Rastrigin -10.0

Rosenbrock 0.0

Salomon -300.0

Spherical -10.0

For the Griewank, Quadric, Quartic, Rastrigin, Salomon and Spherical func-437

tions a similar trend can be observed in Tables 4 - 7, and Tables 9 - 9 when438

compared to the Ackley function, except for the 100 dimensional case, where439

the Cartesian PSO outperformed all of the polar PSO algorithms. However,440

with the Rosenbrock function a different trend can be observed as shown in441

Table 8. In this particular instance the polar PSO corresponding to setting S6442

managed to outperform the Cartesian PSO in the majority of cases. The polar443

PSO also managed to outperform the Cartesian PSO at higher dimensional444

cases when compared to the rest of the benchmark functions, including the445

Ackley function.446

The mean and best fitness values for the different runs of the Rastrigin function447

are shown in Figures 14(a) - 20(b). These figures show a similar trend to the448

Ackley function except for the 100 dimensional case where the Cartesian PSO449

clearly outperforms the polar PSO in all instances.450

8.3 Eigenvector Function451

Tables 11 - 16 summarise the accuracy obtained from performing the experi-452

ments to locate the eigenvectors of six different n×n matrices. Figures 21(a) -453

18

23(b) show the mean fitness values for the eigenvector function where α = 0.0454

and β = 1.0 and a seed value of 1000 were used.455

The results obtained from using values of α = 0.0 and β = 1.0 in equation456

(16) clearly indicates that the Cartesian PSO outperformed its polar coor-457

dinate counterparts in higher dimensions ranging from forty to one hundred458

dimensions. In lower dimensions the polar coordinate versions of the PSO459

outperformed the Cartesian PSO in all three cases corresponding to the dif-460

ferent seed values, except for the case where a seed value of 10000 in twenty461

dimensions were used. The Random mode boundary constraint method ap-462

plied to the θ-angles proved to be an effective way of keeping the particles463

within the search space as Random Mode dominated in this particular setting464

and produced the best overall accuracy results when compared to Polar or465

Boundary mode. This is also evident in Figures 21(a) - 23(b) where the Ran-466

dom mode boundary constraint method’s mean fitness value outperformed467

the other boundary constraint methods as well as the Cartesian PSO in ten468

to thirty dimensions.469

The results obtained from using values of α = −1.0 and β = 1.0 were slightly470

different when compared to the previous results. The Cartesian PSO produced471

the best results in the lowest and highest dimensional versions of the problem472

in all three cases corresponding to the different seed values. In the remainder473

of the cases corresponding to dimensions twenty through to forty the Polar474

PSO produced better results. The Polar mode boundary constraint method475

proved to be more effective in sixteen out of the eighteen cases when compared476

to Random mode.477

Boundary mode did not perform very well when compared to the other bound-478

ary constraint methods or the Cartesian PSO in this particular case.479

9 Conclusion and Future Work480

This paper investigated the consequences of making use of an appropriate481

mapping function to allow a PSO to search in polar space. A major effect482

of transforming a Cartesian search space to polar coordinates is that the new483

search space is a distorted version of the original. This resulted in the problem484

that searching for the global minimum of the horizontally shifted version of485

the Ackley function became significantly more difficult in polar space than486

compared to Cartesian space.487

In an attempt to address this problem a number of modifications were made488

to the standard PSO algorithm to enable it to search more effectively in polar489

space.490

19

The first of these modifications addressed one of the side effects of transforming491

to polar coordinates. This side effect is that random particle positions in polar492

space are not uniformly distributed when converted back to Cartesian space.493

The effect that this had was that the initial particle positions of the swarm494

were not diverse enough to cover a sufficiently large portion of the search space.495

This resulted in lower quality solutions to be produced. To force Cartesian496

diversity a collection of vectors were randomly initialised in Cartesian space497

and by making use of an appropriate mapping function the radius and angular498

components of these vectors were extracted to form the polar position vectors499

of the particles in the swarm.500

The second modification were made to reduce the size of the search space501

by restricting particles to search within valid ranges of the different angular502

components in a polar position vector. Modifications were made to both the503

position as well as velocity update rules to achieve this.504

Despite the above mentioned modifications, the polar PSO could still not505

outperform its Cartesian counterpart when both algorithms were applied to506

well-known benchmark functions such as the Ackley function. However, polar507

coordinates provide a convenient way to express fixed-length Cartesian vectors508

by keeping the value of the radius fixed in the corresponding polar coordinate509

vector. This lead to the definition of a new benchmark function that involved510

finding the eigenvector of different n × n matrices. By keeping the value of511

the radius fixed in each polar position vector the search space was reduced512

enough to allow the Polar PSO algorithm to search within a unit-length hy-513

persphere to produce results that outperformed its Cartesian counterpart at514

lower dimensions in the majority of the cases. As the number of dimensions515

increased the Polar PSO struggled to perform good. The reason for this can516

be attributed to the loss in floating point accuracy as consecutive sin and cos517

terms were multiplied in the conversion function that converted polar coor-518

dinates to Cartesian coordinates as shown in equation (8). This means that519

the benefits that the Polar PSO algorithm offer can only be exploited in lower520

dimensional problems.521

Future research will be undertaken to determine the effect of search space522

transformations on the performance of certain EAs, particularly where the523

search space transformation could allow the EA to exploit the search land-524

scape to improve its performance relative to other Optimisation algorithms525

not making use of the transformation.526

20

Table 3
Performance results for the Ackley function (95% Confidence)

PSO Setting Dimensions

Number 3 5 10 20 30 50 100

S1 4.4409E-16 8.7041E-16 1.7825E-01 1.7600E+00 4.0594E+00 9.9076E+00 1.7670E+01

6.6063E-32 2.3021E-16 9.1187E-02 2.3132E-01 4.4569E-01 5.7276E-01 2.9121E-01

S2 4.7073E-15 8.9017E-02 9.4197E+00 1.6829E+01 1.7079E+01 1.7170E+01 1.7238E+01

3.1681E-16 7.8290E-02 1.4107E+00 1.7536E-01 2.0970E-02 1.0383E-02 4.8329E-03

S3 4.6008E-15 8.2311E-02 2.4430E+00 1.4070E+01 1.6809E+01 1.7175E+01 1.7266E+01

3.6198E-16 7.1542E-02 9.7952E-01 1.0420E+00 2.0363E-01 4.2711E-02 8.2416E-03

S4 1.0838E-01 7.0124E-01 4.0496E+00 1.3847E+01 1.6644E+01 1.7188E+01 1.7260E+01

9.2122E-02 1.9657E-01 1.0850E+00 9.8492E-01 2.6274E-01 3.4909E-02 9.7871E-03

S5 3.9968E-15 6.5849E-02 3.0491E+00 1.3901E+01 1.6639E+01 1.7163E+01 1.7257E+01

5.2850E-31 6.4325E-02 1.0968E+00 1.0351E+00 3.3741E-01 3.3315E-02 1.0275E-02

S6 4.1034E-15 1.6462E-02 9.3402E-01 1.2627E+01 1.6297E+01 1.7148E+01 1.7275E+01

1.2085E-16 3.2661E-02 4.9169E-01 1.2424E+00 5.1512E-01 1.6310E-01 6.1906E-03

Table 4
Performance results for the Griewank function (95% Confidence)

PSO Setting Dimensions

Number 3 5 10 20 30 50 100

S1 8.2792E-03 4.6167E-02 9.6656E-02 4.2939E-02 1.8432E-01 1.0995E+00 1.1722E+02

1.2534E-03 6.4873E-03 1.2718E-02 1.4927E-02 1.5196E-01 2.2848E-01 1.4190E+01

S2 2.4053E-02 1.0718E-01 1.2380E-01 1.4222E-01 6.9949E+00 1.9449E+02 1.3724E+03

2.7751E-03 1.4059E-02 1.5019E-02 1.0433E-01 6.1301E+00 3.0517E+01 3.4995E+01

S3 2.3585E-02 9.9147E-02 1.3616E-01 1.4949E-01 1.9890E+00 4.9562E+01 7.8701E+02

4.2079E-03 1.1532E-02 2.0692E-02 9.5071E-02 1.7340E+00 1.6958E+01 5.1328E+01

S4 7.4730E-02 2.2711E-01 3.3630E-01 5.5178E-01 3.9824E+00 7.8747E+01 7.9551E+02

1.6123E-02 3.3891E-02 6.7298E-02 1.7337E-01 1.5770E+00 1.8438E+01 5.2443E+01

S5 2.4171E-02 1.0113E-01 1.3113E-01 6.1493E-02 1.6073E+00 6.0871E+01 8.1697E+02

4.5012E-03 1.1161E-02 1.6374E-02 2.9338E-02 2.1200E+00 1.7888E+01 4.6613E+01

S6 2.4530E-02 1.0629E-01 1.2566E-01 4.3857E-02 2.3358E+00 4.5992E+01 6.4760E+02

3.5680E-03 1.2964E-02 1.3978E-02 1.0758E-02 2.4081E+00 2.1213E+01 5.5755E+01

21

Table 5
Performance results for the Quadric function (95% Confidence)

PSO Setting Dimensions

Number 3 5 10 20 30 50 100

S1 0.0000E+00 6.3109E-32 1.5661E-15 2.9074E-01 3.3600E+02 9.7179E+03 1.1811E+05

0.0000E+00 8.8087E-32 1.0416E-15 1.2824E-01 9.4513E+01 6.9953E+02 7.5015E+03

S2 6.6138E-29 3.2564E-28 1.8156E-20 1.9832E+01 5.2643E+03 5.3971E+05 7.5018E+07

1.2549E-29 1.5620E-29 3.5419E-20 3.1841E+01 1.9691E+03 1.8355E+05 9.5087E+06

S3 2.2416E-28 3.2362E-28 2.5604E-20 6.6812E-01 5.7901E+02 2.6919E+04 4.0715E+06

3.2847E-28 1.3363E-29 5.0734E-20 1.0085E+00 1.3310E+02 3.9990E+03 6.9195E+06

S4 2.4392E-03 1.8288E-01 5.1719E+01 1.7313E+03 7.8280E+03 5.4973E+04 6.4308E+05

2.0873E-03 1.3814E-01 2.8372E+01 5.2187E+02 1.8903E+03 9.5900E+03 1.0728E+05

S5 5.0487E-29 3.0494E-28 5.9655E-24 1.6688E-02 5.8246E+02 2.6987E+04 7.3322E+06

5.2751E-45 1.9727E-30 4.8058E-24 1.1788E-02 1.2732E+02 3.8454E+03 9.3778E+06

S6 5.0487E-29 3.0646E-28 1.4093E-24 9.6982E-03 1.0831E+03 2.6721E+04 5.2217E+05

5.2751E-45 2.5686E-30 1.0880E-24 7.6336E-03 1.2534E+03 5.6126E+03 1.0101E+05

Table 6
Performance results for the Quartic function (95% Confidence)

PSO Setting Dimensions

Number 3 5 10 20 30 50 100

S1 0.0000E+00 0.0000E+00 0.0000E+00 2.2226E-39 2.4319E-20 4.7863E-07 3.2922E+00

0.0000E+00 0.0000E+00 0.0000E+00 2.5109E-39 1.7974E-20 2.7404E-07 9.3234E-01

S2 7.5015E-66 1.9789E-64 9.2923E-60 3.5592E-04 2.5877E-02 3.0240E+00 8.8770E+01

5.9653E-66 5.6999E-65 1.8410E-59 7.0570E-04 2.2585E-02 7.9001E-01 5.0418E+00

S3 2.1610E-61 3.3869E-52 6.6859E-62 8.7390E-08 2.2945E-02 1.3789E+00 5.3951E+01

2.8909E-61 6.7197E-52 8.3985E-62 1.0756E-07 2.5638E-02 4.9525E-01 4.7181E+00

S4 7.5686E-59 1.4608E-22 1.7648E-14 1.0246E-05 2.7293E-02 1.2334E+00 4.8040E+01

1.5007E-58 2.8983E-22 3.5015E-14 1.6606E-05 2.8653E-02 3.7626E-01 3.5102E+00

S5 1.0359E-61 2.8795E-62 1.0331E-62 2.7056E-05 1.2133E-02 9.3566E-01 5.2052E+01

1.1101E-61 4.8647E-62 3.6076E-63 5.2691E-05 1.3992E-02 2.9917E-01 5.5530E+00

S6 4.3021E-62 3.9996E-62 1.8810E-03 1.0074E-02 8.8031E-02 1.2521E+00 4.9195E+01

6.2903E-62 7.6570E-62 3.7319E-03 1.4490E-02 6.7156E-02 7.8145E-01 6.0005E+00

22

Table 7
Performance results for the Rastrigin function (95% Confidence)

PSO Setting Dimensions

Number 3 5 10 20 30 50 100

S1 1.9899E-01 1.4128E+00 9.6327E+00 6.1617E+01 1.6331E+02 5.5043E+02 2.6077E+03

8.4172E-02 2.3336E-01 1.0818E+00 5.2329E+00 1.2317E+01 3.3825E+01 1.1170E+02

S2 6.4672E-01 3.9841E+00 3.0465E+01 6.0667E+02 1.6955E+03 3.6432E+03 8.6692E+03

1.4133E-01 5.9516E-01 4.6412E+00 6.3095E+01 5.9897E+01 6.3825E+01 5.4568E+01

S3 7.1637E-01 3.2093E+00 2.5972E+01 4.4388E+02 1.2530E+03 3.3820E+03 8.4540E+03

1.5891E-01 4.5381E-01 3.2248E+00 7.1331E+01 9.5032E+01 1.0487E+02 1.3826E+02

S4 1.3068E+00 5.7532E+00 3.6224E+01 4.6861E+02 1.3892E+03 3.3587E+03 8.4437E+03

2.7238E-01 8.7865E-01 4.5645E+00 6.8434E+01 9.4581E+01 1.1588E+02 1.4770E+02

S5 6.3861E-01 3.7063E+00 3.3372E+01 4.3175E+02 1.4001E+03 3.2277E+03 8.4341E+03

1.2985E-01 4.8544E-01 1.0046E+01 6.8829E+01 9.9559E+01 1.1326E+02 1.4707E+02

S6 6.8659E-01 3.5819E+00 2.1967E+01 2.3738E+02 1.1404E+03 3.1169E+03 8.2199E+03

1.3656E-01 4.4891E-01 1.9833E+00 4.7557E+01 1.1524E+02 1.3281E+02 1.6253E+02

Table 8
Performance results for the Rosenbrock function (95% Confidence)

PSO Setting Dimensions

Number 3 5 10 20 30 50 100

S1 5.9914E-05 2.9397E-01 1.6186E+00 1.4356E+01 3.1660E+01 8.5061E+01 5.0179E+02

1.0737E-05 1.9969E-01 3.2920E-01 2.3676E+00 3.7055E+00 7.4577E+00 2.3399E+01

S2 1.2539E-05 1.4981E-02 1.0967E+00 1.3527E+01 2.7546E+01 4.8617E+01 9.8632E+01

1.2683E-05 1.6305E-03 2.0057E-01 3.1249E-01 2.4295E-01 1.7350E-02 1.3002E-02

S3 1.0036E-02 5.4767E-02 1.0491E+00 1.3609E+01 2.7305E+01 4.8567E+01 9.8491E+01

1.9406E-02 5.7616E-02 1.7471E-01 3.1097E-01 2.6092E-01 1.5984E-02 2.0580E-02

S4 1.8532E-01 6.0284E-01 3.9097E+00 1.5911E+01 2.7918E+01 4.8572E+01 9.8481E+01

2.4569E-01 1.8583E-01 6.9819E-01 5.5094E-01 2.3426E-01 1.7005E-02 1.7343E-02

S5 5.6686E-04 1.4276E-02 1.0364E+00 1.4968E+01 2.7178E+01 4.8562E+01 9.8490E+01

9.6144E-04 1.3379E-03 1.7975E-01 3.0991E+00 2.6138E-01 1.8227E-02 2.2103E-02

S6 4.5988E-06 1.4027E-02 9.4917E-01 1.7526E+01 2.6574E+01 4.9998E+01 1.1241E+02

8.4955E-07 1.3283E-03 2.0617E-01 4.6065E+00 2.9127E-01 2.9482E+00 2.7698E+01

23

Table 9
Performance results for the Salomon function (95% Confidence)

PSO Setting Dimensions

Number 3 5 10 20 30 50 100

S1 8.5891E-02 9.9873E-02 1.8687E-01 5.9887E-01 1.7264E+00 1.2151E+01 7.1723E+01

6.9101E-03 2.6071E-17 1.2502E-02 1.5851E-01 5.4659E-01 2.3483E+00 3.4537E+00

S2 8.2895E-02 1.0387E-01 1.9087E-01 1.7390E+00 1.2713E+01 1.1863E+02 2.4791E+02

7.4806E-03 3.9074E-03 1.3842E-02 1.0444E+00 3.9640E+00 5.4919E+00 2.4937E+00

S3 8.5891E-02 1.0187E-01 2.0787E-01 1.7404E+00 7.8842E+00 6.7673E+01 1.9478E+02

6.9101E-03 2.7916E-03 2.7727E-02 1.1174E+00 2.5984E+00 7.0808E+00 5.8066E+00

S4 1.7229E-01 4.0948E-01 7.9776E-01 4.6223E+00 1.6995E+01 6.9386E+01 1.9748E+02

2.9918E-02 9.2939E-02 2.1866E-01 1.3263E+00 3.2231E+00 5.8831E+00 5.3992E+00

S5 7.5283E-02 1.0487E-01 2.3990E-01 2.0119E+00 7.6752E+00 6.0843E+01 1.8912E+02

8.5247E-03 4.3458E-03 6.6179E-02 2.5006E+00 2.3423E+00 6.4858E+00 4.7252E+00

S6 7.3920E-02 1.0287E-01 1.8887E-01 6.8493E-01 6.6100E+00 3.8604E+01 1.7709E+02

8.7308E-03 3.4015E-03 1.4894E-02 2.8430E-01 2.6819E+00 5.7192E+00 5.9854E+00

Table 10
Performance results for the Spherical function (95% Confidence)

PSO Setting Dimensions

Number 3 5 10 20 30 50 100

S1 0.0000E+00 0.0000E+00 0.0000E+00 1.4482E-17 4.2009E-07 1.7560E+00 2.8495E+02

0.0000E+00 0.0000E+00 0.0000E+00 2.8056E-17 6.3320E-07 2.4718E+00 4.1050E+01

S2 3.9128E-30 2.4392E-29 6.0269E-29 1.4824E-01 2.3448E+01 7.5088E+02 5.9384E+03

5.9770E-31 2.2961E-30 1.3411E-29 2.0725E-01 2.3473E+01 1.3413E+02 1.3289E+02

S3 4.7016E-30 2.3445E-29 4.0926E-29 2.6403E-02 2.6110E+00 2.8237E+02 4.5005E+03

8.1793E-31 1.9214E-30 2.8578E-30 5.2382E-02 2.5978E+00 7.6116E+01 1.7765E+02

S4 3.6544E-06 6.5487E-04 8.2435E-03 2.3232E+00 1.6394E+01 3.8002E+02 4.6468E+03

4.2354E-06 4.6760E-04 7.0895E-03 2.9425E+00 1.0968E+01 7.4605E+01 1.8386E+02

S5 3.3763E-30 1.9185E-29 3.6130E-29 8.5724E-18 9.6292E-01 2.9769E+02 4.5780E+03

2.0398E-31 5.3151E-31 2.1639E-30 1.1671E-17 1.4923E+00 8.1270E+01 1.7291E+02

S6 3.2817E-30 1.8964E-29 3.2249E-29 3.6193E-05 4.7194E+01 2.9913E+02 4.1586E+03

1.7617E-31 6.2604E-32 6.5133E-31 7.1807E-05 4.2743E+01 1.2553E+02 2.0512E+02

24

(a) (b)

Fig. 7. Mean (a) and best (b) fitness values for Ackley function in 3 dimensions.

(a) (b)

Fig. 8. Mean (a) and best (b) fitness values for Ackley function in 5 dimensions.

(a) (b)

Fig. 9. Mean (a) and best (b) fitness values for Ackley function in 10 dimensions.

(a) (b)

Fig. 10. Mean (a) and best (b) fitness values for Ackley function in 20 dimensions.

25

(a) (b)

Fig. 11. Mean (a) and best (b) fitness values for Ackley function in 30 dimensions.

(a) (b)

Fig. 12. Mean (a) and best (b) fitness values for Ackley function in 50 dimensions.

(a) (b)

Fig. 13. Mean (a) and best (b) fitness values for Ackley function in 100 dimensions.

26

(a) (b)

Fig. 14. Mean (a) and best (b) fitness values for Rastrigin function in 3 dimensions.

(a) (b)

Fig. 15. Mean (a) and best (b) fitness values for Rastrigin function in 5 dimensions.

(a) (b)

Fig. 16. Mean (a) and best (b) fitness values for Rastrigin function in 10 dimensions.

(a) (b)

Fig. 17. Mean (a) and best (b) fitness values for Rastrigin function in 20 dimensions.

27

(a) (b)

Fig. 18. Mean (a) and best (b) fitness values for Rastrigin function in 30 dimensions.

(a) (b)

Fig. 19. Mean (a) and best (b) fitness values for Rastrigin function in 50 dimensions.

(a) (b)

Fig. 20. Mean (a) and best (b) fitness values for Rastrigin function in 100 dimensions.

28

Table 11
Results for the eigenvector function (95% Confidence) for α = 0.0, β = 1.0

Seed Dimensions Cartesian PSO
Polar PSO

Polar Mode Random Mode Boundary Mode

1000

10 4.1860E-03 2.3556E-03 2.9117E-16 2.3951E-16

8.3049E-03 2.7357E-03 8.7004E-17 2.4437E-17

20 2.0299E-02 2.7226E-02 1.8283E-02 1.7394E-02

8.7276E-03 1.2748E-02 7.8985E-03 1.5622E-02

30 3.7509E-02 6.4655E-02 3.5889E-02 6.1059E-02

1.4421E-02 1.8489E-02 1.3793E-02 2.4258E-02

40 2.8304E-02 5.0193E-02 5.8064E-02 1.0390E-01

1.1317E-02 1.5373E-02 1.9190E-02 3.3909E-02

50 2.6903E-02 5.0193E-02 6.6596E-02 1.4360E-01

1.0053E-02 1.5373E-02 1.9133E-02 3.2415E-02

100 2.0132E-01 3.8411E-01 3.8225E-01 4.0434E-01

1.4305E-02 1.9070E-02 2.3275E-02 2.5463E-02

Table 12
Results for the eigenvector function (95% Confidence) for α = 0.0, β = 1.0

Seed Dimensions Cartesian PSO
Polar PSO

Polar Mode Random Mode Boundary Mode

5000

10 1.9810E-02 1.7334E-02 2.2287E-02 1.9810E-02

1.3395E-02 1.2598E-02 1.4131E-02 1.3395E-02

20 1.2026E-02 1.2647E-02 4.4800E-03 2.4268E-02

6.7315E-03 7.1128E-03 3.8262E-03 1.5784E-02

30 2.0533E-02 1.9760E-02 1.9213E-02 4.4925E-02

9.4130E-03 1.2917E-02 1.3405E-02 2.6886E-02

40 2.2588E-02 2.5762E-02 3.9557E-02 8.3531E-02

1.0615E-02 1.0261E-02 2.1061E-02 3.1630E-02

50 4.3604E-02 6.0571E-02 7.6254E-02 1.2968E-01

1.5272E-02 1.4275E-02 2.1009E-02 3.4310E-02

100 1.8873E-01 3.4526E-01 4.0692E-01 4.1676E-01

1.5090E-02 1.8452E-02 2.5726E-02 2.7672E-02

29

Table 13
Results for the eigenvector function (95% Confidence) for α = 0.0, β = 1.0

Seed Dimensions Cartesian PSO
Polar PSO

Polar Mode Random Mode Boundary Mode

10000

10 2.3848E-02 2.1512E-02 1.3405E-02 1.8207E-02

8.7415E-03 9.6211E-03 6.6356E-03 7.9909E-03

20 1.3681E-03 1.1266E-02 7.1368E-03 1.3784E-02

1.0297E-03 1.1760E-02 8.1060E-03 1.2113E-02

30 1.8492E-02 2.2698E-02 1.4978E-02 5.2538E-02

7.7146E-03 1.1003E-02 9.1301E-03 2.6387E-02

40 3.3897E-02 6.1326E-02 4.6534E-02 9.6507E-02

1.2746E-02 1.9072E-02 1.7845E-02 4.1353E-02

50 3.6867E-02 8.5597E-02 6.2310E-02 1.3576E-01

1.3234E-02 1.9147E-02 1.8952E-02 3.6901E-02

100 3.6867E-02 8.5597E-02 6.2310E-02 1.3576E-01

1.3234E-02 1.9147E-02 1.8952E-02 3.6901E-02

Table 14
Results for the eigenvector function (95% Confidence) for α = −1.0, β = 1.0

Seed Dimensions Cartesian PSO
Polar PSO

Polar Mode Random Mode Boundary Mode

1000

10 5.6356E-17 2.4340E-16 2.4936E-16 2.5084E-16

6.0559E-18 1.3031E-18 3.6825E-18 4.7195E-18

20 3.7294E-08 6.7271E-12 1.0782E-12 8.9624E-03

7.3538E-08 1.0277E-11 1.0259E-12 1.3002E-02

30 5.2497E-05 7.1351E-06 8.1647E-03 3.1170E-02

6.3831E-05 5.0518E-06 1.1424E-02 2.3983E-02

40 1.4505E-03 5.0548E-03 7.2093E-03 5.8142E-02

9.6928E-04 5.1709E-03 6.5170E-03 2.9186E-02

50 9.7062E-03 2.5944E-02 4.5194E-02 1.3262E-01

3.1056E-03 9.3444E-03 1.6963E-02 3.8288E-02

100 1.5725E-01 3.5267E-01 4.6498E-01 4.6887E-01

9.6010E-03 2.1217E-02 2.7096E-02 3.1190E-02

30

Table 15
Results for the eigenvector function (95% Confidence) for α = −1.0, β = 1.0

Seed Dimensions Cartesian PSO
Polar PSO

Polar Mode Random Mode Boundary Mode

5000

10 4.9441E-17 2.2204E-16 2.4971E-16 2.2410E-16

6.8835E-18 5.1318E-32 3.3950E-18 1.6808E-18

20 9.2531E-12 1.6965E-12 1.7721E-12 1.5141E-02

8.6386E-12 1.2695E-12 1.0643E-12 1.5430E-02

30 1.2571E-04 1.7009E-06 2.7456E-03 3.6330E-02

1.1003E-04 6.4499E-07 5.4233E-03 2.4597E-02

40 3.4782E-03 1.1849E-03 1.3456E-02 5.7214E-02

2.7275E-03 7.3123E-04 1.2559E-02 3.2035E-02

50 1.0916E-02 2.0723E-02 4.3335E-02 1.9858E-01

4.0822E-03 6.3167E-03 1.8697E-02 4.6962E-02

100 1.6976E-01 3.5468E-01 4.4065E-01 4.7312E-01

9.2625E-03 2.1266E-02 2.7846E-02 3.1420E-02

Table 16
Results for the eigenvector function (95% Confidence) for α = −1.0, β = 1.0

Seed Dimensions Cartesian PSO
Polar PSO

Polar Mode Random Mode Boundary Mode

10000

10 5.0569E-17 2.2374E-16 2.3751E-16 4.5061E-03

6.9136E-18 1.7538E-18 4.9979E-18 8.9401E-03

20 5.5674E-10 9.2701E-13 7.5148E-12 3.9398E-03

1.0478E-09 4.8142E-13 9.3831E-12 7.8166E-03

30 5.7262E-05 2.5624E-06 2.4886E-06 6.3704E-03

5.4529E-05 1.2484E-06 1.1786E-06 9.0245E-03

40 1.3039E-03 1.2746E-03 9.3630E-03 4.4826E-02

5.0892E-04 5.5057E-04 9.5705E-03 2.4732E-02

50 8.4320E-03 2.0034E-02 4.6414E-02 1.1549E-01

2.0571E-03 5.0830E-03 1.9575E-02 3.8421E-02

100 1.6614E-01 3.4307E-01 4.2897E-01 4.6495E-01

9.4576E-03 1.7428E-02 2.9183E-02 3.0485E-02

31

(a)(b)

Fig. 21. Mean fitness values for eigenvector function in 10 (a) and 20 (b) dimensions.

(a)(b)

Fig. 22. Mean fitness values for eigenvector function in 30 (a) and 40 (b) dimensions.

(a)(b)

Fig. 23. Mean fitness values for eigenvector function in 50 (a) and 100 (b) dimensions.

References527

[1] R. Storn and K. Price, “Differential Evolution - A Simple and Efficient528

Heuristic for global Optimization over Continuous Spaces,” Journal of Global529

Optimization, vol. 11, no. 4, pp. 341–359, Dec. 1997.530

[2] J. Kennedy and R. C. Eberart, “Particle Swarm Optimization,” in Proc. IEEE531

International Conference on Neural Networks, vol. 4, Nov. 1995, pp. 1942–1948.532

[3] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle533

swarm algorithm,” in Proc. IEEE International Conference on Computational534

Cybernetics and Simulation, vol. 5, Oct. 1997, pp. 4104–4108.535

[4] G. Pampara, N. Franken, and A. P. Engelbrecht, “Combining particle swarm536

optimisation with angle modulation to solve binary problems,” in Proc. IEEE537

Congress on Evolutionary Computation, vol. 1, Sept. 2005, pp. 89–96.538

[5] G. Pampara, A. P. Engelbrecht, and N. Franken, “Binary Differential539

Evolution,” in Proc. IEEE Congress on Evolutionary Computation, July 2006,540

pp. 1873–1879.541

[6] A. Sierra and A. Echeverŕıa, “The Polar Evolution Strategy,” in Proc. IEEE542

Congress on Evolutionary Computation, July 2006, pp. 2301–2306.543

[7] D. Srinivasan and T. H. Seow, “Particle swarm inspired evolutionary algorithm544

(PS-EA) for multiobjective optimization problems,” in Proc. IEEE Congress545

on Evolutionary Computation, vol. 4, Dec. 2003, pp. 2292–2297.546

[8] M. G. Kendall, A Course in the Geometry of n Dimensions. Dover547

Publications, 2004.548

[9] W.-J. Zhang, X.-F. Xie, and D.-C. Bi, “Handling boundary constraints for549

numerical optimization by particle swarm flying in periodic search space,” in550

Proc. IEEE Congress on Evolutionary Computation, vol. 2, June 2004, pp.551

2307–2311.552

32

[10] S. Helwig and R. Wanka, “Particle Swarm Optimization in High-Dimensional553

Bounded Search Spaces,” in Proc. IEEE Swarm Intelligence Symposium, Apr.554

2007, pp. 198–205.555

[11] F. van den Bergh, “An Analysis of Particle Swarm Optimizers,” Ph.D.556

dissertation, Department of Computer Science, University of Pretoria, South557

Africa, 2002.558

[12] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors559

in particle swarm optimization,” in Proc. IEEE Congress on Evolutionary560

Computation, vol. 1, July 2000, pp. 84–88.561

[13] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally562

equidistributed uniform pseudo-random number generator,” ACM Transactions563

on Modelling and Computer Simulation, vol. 8, no. 1, pp. 3–30, 1998.564

33

	Introduction
	Background
	Particle Swarm Optimisation
	Binary PSO
	Angle Modulated PSO

	Polar Conversion Function
	Effects of Polar Coordinate Conversion
	Search Space Distortion
	Implications
	Particle Position Initialisation

	Bounded Angular Components
	-Boundary
	-Boundaries

	The Polar PSO Algorithm
	Experimental Approach
	Benchmark functions

	Results
	Ackley Function
	Standard Benchmark Functions
	Eigenvector Function

	Conclusion and Future Work
	References

