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Abstract 

In this paper we use constructal theory to determine the configuration of two rows of pin fins 

so that the total heat transfer rate is maximized. The heat transfer across the fins is by laminar 

forced convection bathed by a free-stream that is uniform and isothermal. The optimization is 

subjected to fixed total volume of fin materials. The dimensions of the optimized 

configuration are the result of balancing conduction along the fins with convection 

transversal to the fin. The resulting flow structure has multiple scales that are distributed non-

uniformly through the flow structure. Numerical results on the effect of Reynolds number and 

the thermal conductivity ratio on the optimal configuration are reported. The results predicted 

based on scale analysis are in good agreement with the numerical results. The results also 

show that the flow structure performs best when the fin diameters and heights are non-

uniform.  

Keywords: fins, constructal, multiscale design, optimized configuration, heat transfer 

augmentation, extended surfaces, heat transfer density 

Nomenclature 

D1 diameter of the first fin 

D2 diameter of the second fin 

h        heat transfer coefficient 

H1 height of the first fin 
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H2 height of the second fin 

Hu virtual extension on the upper boundary condition 

k thermal conductivity 

L the swept axial length 

n  normal 

P pressure 

Pr Prandtl number 

q total heat transfer rate 

q�  dimensionless heat transfer density, Eq. (13) 

 ReL Reynolds number (U∞L/ν) 

S1 spacing between the first cylinder and the trailing edge 

S2 spacing between the D1 and D2 cylinders 

T temperature 

Tw wall temperature 

T∞ free stream temperature 

u, v, w    velocity components 

U∞ free stream velocity 

V  total volume of the fins 

x, y, z      cartesian coordinates 

Greek symbols 

α thermal diffusivity 

µ viscosity 

ν kinematic viscosity 

ρ density 
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Ω interface between solid and fluid 

λ Langrage multiplier 

Subscripts 

1 leading row 

2 trailing row 

max maximum 

opt optimum 

s solid 

w wall 

Superscripts 

(~) dimensionless variables, Eqs. (3 - 13) 

1. Introduction 

Recent advances in the computational power of microprocessors have led to a 

significant increase in power densities in electronic devices and appliances. Under the 

conditions of high clock speeds and shrinking package size, the heat discharge per unit 

volume from these devices has increased dramatically over the past decade. As the power 

dissipation increases with shrinking package size, the density of the heat that is being 

discharged increases and the effective cooling technology becomes essential for reliable 

operation of electronic components. Therefore, various types of cooling systems and 

techniques [1-10] have been proposed and developed. One of the most recent techniques is  

constructal design [1, 2] which is now a growing field in thermal sciences. It is used as a 

method of discovering effective flow configurations for thermal and fluid systems. This 
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method is guided by the Constructal law: the progress made with this law to predict design in 

nature has been documented in the physics and biology literature. Reviews of this literature 

are provided by Refs. [11, 12].  

In this paper we show that by using the constructal design method it is possible to 

optimize the electronic configuration to give maximum heat transfer subject to fixed volume 

and weight. The maximization of heat transfer rate subject to constant fin volume has 

attracted considerable attention. Schmidt [8] agued intuitively that there exists not only an 

optimum fin size when the profile shape is specified, but also an optimum profile shape that 

maximizes the total heat transfer rate. The optimum shape must be such that the temperature 

varies linearly along the fin. The optimum profile shape of fins with temperature-dependent 

conductivity was determined by Jany and Bejan [9], who showed that the fin shaped 

optimization has an important analog in the design of a long duct with fluid flow. The 

optimum dimension for a plate fin with fixed volume with a transversal laminar boundary 

layer was determined by Bejan [10].  

Bejan [13] showed that the optimum fin shapes and dimensions can be determined 

based on purely thermodynamic grounds. They determined the optimal pin fin diameter and 

length for which the thermodynamic irreversibility (entropy generation rate) of the fin-fluid 

arrangement is a minimum. During this optimization procedure, the heat transfer through the 

base was kept constant. Recently Yang and Peng [14] conducted a numerical study of a pin-

fin heat sink with non-uniform fin height, and concluded that the junction temperature can be 

reduced by increasing the pin height near the center of the heat sink. Furthermore the 

potential exists for optimizing the non-uniform fin height design. In recent years we are 

seeing an increase in the use of multi-objective algorithms [15-17] to solve optimization 

problems of extended surfaces for maximizing heat transfer and minimizing the hydraulic 

resistance. 
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The objective of this paper is to determine the optimal configuration of rows of pin 

fins that will maximizes the total heat transfer from the fins and the hot surfaces, subject to 

the constraints of fixed total volume and fixed volume of fin material. The pin-fin is bathed 

by a stream of fluid flowing over it. This work is based on balancing the transversal 

convective resistance and the conductive resistance along the fins. From this balance emerges 

the constructal configuration: rows of fins that have non-uniform dimensions, and are 

different than the convectional pin fins. 

2. Model 

 Consider the two rows of a multi-scale cylindrical pin fin assembly as shown in Fig. 1.  

The distance between the first row of fins and the leading edge is S1. The distance between the 

two rows is S2.  The fin heights are H1 and H2, while their respective diameters are D1 and D2. 

The swept length is L and it is fixed.  The flow assembly is bathed by a free stream that is 

uniform and isothermal. Because of symmetry we select an elemental volume that contains 

only two fins on a rectangular wall base of swept length L and width L/3.  

 The objective is to discover the configuration (i. e. all the dimensions) such that the rate 

of heat transfer from the solid to the fluid is maximum subject to the constraint that the total 

volume of fin volume (V) is fixed  

                                      
2 2

1 1 2 2

4
    D H D H V

π
+ =+ =+ =+ = ,  constant                                                    (1) 

This constraint is dictated by the weight and the material cost of the fins structure, which is a 

limiting parameter in the design of electronic devices and modern vehicles (e. g. aircraft, fuel 

efficient vehicles).   In addition, there is the overall size constraint  

                                          1 1 2 2        S D S D L+ + + =                                                             (2)                                     

 The configuration has six dimensions that can vary (S1, S2, H1, H2, D1, and D2). We fix 

S1 such that the first fin is close to the leading edge, and this leaves five dimensions in the 

design. Because of the two constraints (1, 2), the number of degrees of freedom is three. The 
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flow is assumed steady, laminar, incompressible and two-dimensional.  All the thermo-

physical properties are assumed constant.. The conservation equations for mass, momentum 

and energy occupied by the fluid are 

                                              0
u v w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂

� � �

� � �
                                                                   (3) 

                               2u u u P
Re u v w u

x y z x

 ∂ ∂ ∂ ∂
+ + = − + ∇ 

∂ ∂ ∂ ∂ 

�� � �
� � � �
� � ��

                                     (4) 

                                        2v v v P
Re u v w v

x y z y

 ∂ ∂ ∂ ∂
+ + = − + ∇ 

∂ ∂ ∂ ∂ 

�� � �
� � � �
� � ��

                                      (5) 

                                          2w w w P
Re u v w w

x y z z

 ∂ ∂ ∂ ∂
+ + = − + ∇ 

∂ ∂ ∂ ∂ 

�� � �
� � � �
� � � �

                                   (6) 

                                  2T T T
RePr u v w  T

x y z

 ∂ ∂ ∂
+ + = ∇ 

∂ ∂ ∂ 

� � �
�� � �

� � �
                                          (7) 

For the volume occupied by the cylindrincal fins, the energy equation reduces to 

                                             2 0T∇ =∇ =∇ =∇ =�                                                                                      (8) 

where 2 2 2 2= / x + / y + / z∇ ∂ ∂ ∂ ∂ ∂ ∂� � � .  The coordinate system ( x� , y� , w� ) and velocity components 

( u� , v� , w� ) are defined in Fig. 1. Equations (4)-(7) are non-dimensionalized by defining 

variables 

                    
( , ,  ) ( ,  ,  )

( , ,  ) ( , ,  )
x y z u v w

x y z u v w
L U∞

= =� � � � ��                                        (9) 

                             
/w

T T P
T P

T T U Lµ
∞

∞ ∞

−
= =

−
� �                                                      (10) 

where Pr is the Prandtl number ν/α, and Re is the Reynolds number 
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                             Re
U L

ν
∞=                                                                                          (11) 

 The flow boundary conditions are:  no slip and no penetration on the fins and the wall 

surfaces, and w�  = 1, / /u z v z∂ ∂ = ∂ ∂� �� �  = 0 at the inlet of the flow assembly; 

( , , ) / 0u v w x∂ ∂ =� � � �  at the exit and ( , , ) / 0u v w y∂ ∂ =� � � � , at the top of the computational domain 

and no flow and no penetration at the plane of symmetry.  The thermal boundary conditions 

are:  T�  = 1 on the wall surfaces, and T�  = 0 on the inlet plane of the computational domain.  

The planes of symmetry of the computational domain are adiabatic, that is 0
T

n
Ω

∂
=

∂

�

 on the 

plane of symmetry. The continuity of the temperature and flux at the interface of the solid 

and fluid surfaces requires 

                                                    s
T T

k
n n

Ω Ω

∂ ∂
− = −

∂ ∂

� �
�                                                             (12) 

where k�  is the conductivity ratio ks /k. 

 The spacing between the fins varies, and the shapes of the fins are allowed to morph.  

We are interested in the geometric configuration 1 2 1 2 2( ,  ,  ,  ,  )D D H H S�� � � �  in which the overall 

heat transfer between the elemental wT�  and the fin surfaces and the surrounding flow is a 

maximum. The dimensionless measure of the overall heat transfer is  

                                                 
/

( - )w

q L
q

k T T∞

=�                                                                   (13)                           

where q is the total heat transfer rate integrated over the surface of the fins and the elemental 

surfaces. This q� formula is the dimensionless global thermal conductance of the volume 

element. 
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3. Numerical procedure 

 Equations (3)-(8) were solved by using a finite-volume computational fluid dynamics 

code [18]. The domain is discretized using polyhedral elements, and the governing equations 

are integrated on each control volume. Second order schemes are used for the diffusive terms. 

The pressure-velocity coupling is performed with the SIMPLE algorithm. Convergence is 

obtained when the normalized residuals for the mass and momentum equations are smaller 

than 10
-4

, and the residual of the energy equation becomes smaller than 10
-7

. 

Virtual extensions have been added to the upper part of the numerical domain in order to 

account adequately for possible outflow through the upper boundary. The length of the virtual 

extensions zone was chosen long enough so that a doubling of the length resulted in 

variations of the total heat transfer rate [Eq. (13)] smaller than 1%. For example when Re = 

10
2
, Pr = 0.71 and D2/D1 = 1, we found out that the required extension is  uH�  = 0.2. Grid 

independence tests were carried out for all the fin arrangements. The tests showed that for a 

control volume with a mesh size of 0.005 per unit length in the x -direction, 0.01 per unit 

length in the y-direction, and 0.01 per unit length in the z-direction assured a grid independent 

solution in which the maximum changes in total heat transfer rate are less than 1% when the 

mesh per unit length is doubled sequentially. To further ensure grid independence we refined 

the meshes in the vicinity of the optimal configurations so that the effect of grid size on the 

final numerical solution was essentially eliminated. 

4. Optimization of multi-scale pin fins 

The search for optimal flow and heat sink configurations was organized in three 

nested optimization loops.  The fin flow structure has three degrees of freedom which are 

designated as 2

1

H

H
, 2S�  and 2

1

D

D
.  We started by fixing the distance between the first fin and 

the leading edge, 1  = 0.05S� , with the total volume of the fins set at  = 0.01V� . The degrees of 
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freedom that remain are the ratios of the fins height, 2

1

H

H
, and the diameters ratio 2

1

D

D
, and 

the spacing between the cylinders, 2S� . The dimensions of the flow structure are set as 

follows: the non-dimensionalized flow length L�  is set equal to 1, the flow width (the distance 

between two symmetry planes, in the x-direction) is /3L� , c.f. Fig. 1,  and the virtual extension 

was fixed at  = 0.2uH� . For the first run of our numerical procedure we fixed the Reynolds 

number at 50, the non-dimensionless thermal conductivity ratio k�  at 100, and the diameter 

ratio 2

1

D

D
 at 1. The distance between the two pin fins 2S�  was set equal to 0.1, and then the fin 

height ratio was varied. An optimal height ratio was found for this configuration. This 

procedure was repeated for other 2S�  values in the range 0.05 ≤ 2S�  ≤ 0.2, as shown in Fig. 2, 

until an overall optimum was found for this configuration, i. e. the optimal height ratio 2

1

H

H
 

that corresponds with the maximum total heat transfer rate.  

The diameter ratio 2

1

D

D
 

was then increased to 1.1 and the procedure was performed in 

the range 0.05 ≤ 2S�  ≤ 0.2, as shown in Fig. 3. A new optimal configuration was  found with a 

corresponding maximum total heat transfer rate. Figure 4 shows the behavior of the optimal 

configuration for 2

1

D

D
 = 1.2.  Figures 2-4 show that as the 2

1

D

D
 increases the optimal 2

1

H

H
 

decreases. The optimal pin-fin configuration for Re = 50, and k�  = 100 lies in the design 

domain 0.05 ≤ 2S�  ≤ 0.2, 1 ≤ 2

1

D

D
≤ 1.2., and 0.9 ≤  2

1

H

H
 ≤ 1.2.  

Figure 5 summarizes the optimal designs, and shows the effect of the diameter ratio 

on the maximum total heat transfer rate for the range of parameters given. The best 2

1

D

D
  

value is approximately 1.1, but at this late stage of optimization the effect of 2

1

D

D
 is weak. 
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The optimization procedure was extended to higher Reynolds number, for example Re = 200 

in Fig. 6. The influence of the Reynolds number on the optimal fin to fin distance 2,optS�  is 

insignificant over the Re range considered. Similarly, the optimal height ratio, 2

1 opt

H

H

 
 
 

is 

robust, as the effect of Reynolds number on this parameter is fairly  insignificant. In this 

range of Reynolds numbers 2

1 opt

H

H

 
 
 

is equal to 0.9. It indicates that the height of the second 

row of fins should be slightly lower than that of the first rows. Figure 6 also shows that 

2

1 opt

D

D

 
 
 

  increases with Re. This is an important result, as this establishes that the diameters 

of the fins must not be uniform. The results of Fig. 6 were correlated within an error of less 

than one percent by 

                       0.1462

1

0.62

opt

D
   Re

D

    
====    

    
                                                                    (14) 

 

The maximum total heat transfer rate increases with the Reynolds number, and from Fig. 6 

this trend was correlated with an error of less than one percent by  

                                   0.32
max 2.16q  =  Re�                                                                                 (15) 

5. Effect of dimensionless conductivity ratio 

 The effect of the thermal conductivity ratio k�  was also investigated. In Fig. 7 the 

results are reported for  the range 30 ≤ k�  ≤ 300 at a Reynolds number of 100. The figure 

shows that the optimal height ratio is fairly constant for the k�  range considered. The 

relationship between the dimensionless thermal conductivity and the optimal diameter ratio 

shows that as k�  increases the optimal diameter ratio decreases. This relationship is correlated 

by 
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                                   0.162

1

  2.54 

opt

D
k

D

−−−−    
====    

    

�                                                                          (16) 

The optimal spacing between the pin fins shows that as k�  increases the optimal spacing 2,optS�  

also increases. The effect of k�  on the maximum total heat transfer rate shows a similar trend 

as with respect to the Reynolds number. From Fig. 7 this can be correlated with an error of 

less than one percent by the relation 

                                       0.29
max   2.48 q k==== ��                                                                              (17) 

 Figure 8 shows the temperature distribution in the centre plane of the pin-fin assembly, 

for different Reynolds numbers and different dimensionless thermal conductivity ratios. All 

the temperature profiles are presented for Pr = 0.71. The temperature ranges between two 

colors, red ( 1T ====� ) and blue ( 0T ====� ).  The temperature profiles and the fin configurations 

change with the Reynolds number. As Re increases the fin heights decrease and the fins 

diameters increase. Similarly, as Re increases the blue color of the temperatures profiles 

penetrates the fin structure, and this can be attributed to the increase in the flow strength and 

the flattening of the thermal boundary layers.  

 The effect of the thermal conductivity ratio is displayed in Fig. 9. As the dimensionless 

thermal conductivity ratio increases, the fin height increases and results in the decrease in the 

diameters of the pin-fins.  

6. Scale analysis  

 The scaling trends discovered numerically in the preceding sections can be explained 

on the basis of scale analysis. First, each fin achieves its highest thermal conductance at fixed 

volume (or minimal volume at fixed conductance) when its entire volume is active in 

transferring heat. This happens when the distance of heat conduction penetration along the 

fins matches the lateral length engaged in convective heat transfer, 
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                                   2 1
1 1 1 1 1

1

 ~   s

T
k D h D H T

H

∆
∆                                                                        (18) 

                                 2 2
2 2 2 2 2

2

 ~   s

T
k D h D H T

H

∆
∆                                                                        (19)     

These equations yield 

                                  1 1 2 2

2 2
1 2

 ~  ,          ~   
s s

D h D h

k kH H
                                                          (20, 21)     

The heat transfer coefficients (h1, h2) depend on the fin diameters (D1, D2) and the free stream 

velocity (U∞), which is the same for both fins. If we assume that D1 is not much different than 

D2, then we approximate h1 as being nearly the same as h2,  

                              1 2     h h h= == == == =                                                                                          (22) 

After combining Eqs. (18) – (22), the total heat transfer rate vehicled by the two fins is 

                               

                                  
2

3 3
1 1 2 2  (   )

s

h
q H T H T

k
∆ ∆∼ +∼ +∼ +∼ +                                                                    (23) 

Here we make a distinction between the temperature difference spanned by the first fin, ∆T1 = 

Tw − T∞, and the temperature difference spanned by the second fin, ∆T1 = Tw – Ti. The 

intermediate temperature Ti falls between Tw and T∞ because the second fin is in the thermal 

wake of the first. In other words, the first fin warms up the free stream that bathes the second 

fin. In sum, ∆T1 and ∆T2 are of the same order but  

                                1 2  T T∆ ∆≥≥≥≥                                                                                              (24)  

 The objective is to maximize the q expression (23) subject to the total fin volume 

constraints (1), which in view of Eqs. (20, 21) becomes 

                              

2

5 5

1 2  (   ),
s

h
V H H

k

    
∼ +∼ +∼ +∼ +    
    

 constant                                                          (25) 
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Based on the method of Lagrange multipliers, the maximization of the expression (23) 

subject to the volume constraints (25) yields 

                                  

1/2

1 1

2 2

  
H T

H T

∆

∆

    
====     

    
                                                                                 (26) 

In view of Eq. (24), the conclusion is that H1  ≥ H2, which agrees with the results displayed in 

Figs. 6 and 7. An additional implication of this scale analysis is with respect to anticipating 

the ratio 2

1

D

D
, which according to the scaling rules (20, 21) should be  

                                  

2

1 1

2 2

  
D H

D H

    
    
    

∼                                                                                     (27) 

In view of Eq. (26), the ratio of diameters should be 

                                    1 1

2 2

    1
D T

D T

∆

∆
∼ ≥∼ ≥∼ ≥∼ ≥                                                                               (28) 

This conclusion agrees in an order of magnitude sense with the data plotted in Figs. 6 and 7. 

The ratio 1

2

D

D
 becomes smaller than 1 when k�  increases (Figs 7) and when Re decreases 

(Fig. 6).  

7. Conclusions 

 In this paper we described the procedure for the conceptual design of a new generation 

of multi-scale pin arranged in a row using the principles of constructal theory. The pin-fins 

are cooled by laminar forced convection. The total fin volume of the pins was fixed. 

Numerical optimization was performed to determine the optimal configuration (relative 

diameters, heights and spacings between fins).  The optimized configuration is the result of 

balancing conduction along the fins with convection transversal to the fins. The resulting 

flow structure has multiple scales that are distributed non-uniformly throughout the flow 

structure.  
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 The results predicted by using scale analysis are in agreement with the numerical 

results, however, future work may consider the more general situation in which the 

assumption 1 2  h h�  [ Eq. (22)] is not made. In conclusion, the pin-fins flow structure 

performs best when the pin-fin diameters and heights are non-uniform. Future work may also 

consider the optimization of arrays of multiscale fins with more than two rows.  
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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