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Abstract

We explore various aspects of the quantum entanglement dynamics of systems of two, three

and four qubits interacting with an environment at zero temperature in a non-Markovian regime,

as described by the paradigmatic model recently studied by Bellomo, Lo Franco, and Compagno

[Bellomo et al. Phys. Rev. Lett. 99 (2007) 160502]. We consider important families of initial

states for the alluded systems. The average, typical entanglement evolution associated with each

of these families is determined, and its relation with the evolution of the global degree of mixedness

of the multi-qubit system is explored. For three and four qubits we consider the family of initial

states equivalent under local unitary transformations to the |GHZ〉 and |W 〉 states, and compare

their average behavior with the average behavior exhibited by initial maximally entangled two-

qubits states. Furthermore, in the case of two qubits, the evolution of other manifestations of

entanglement, related to measurable quantities, is also investigated. In particular, we consider

the Mintert-Buchleitner concurrence lower bound and an entanglement indicator based upon the

violation of local uncertainty relations.
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I. INTRODUCTION

Entanglement and decoherence constitute two fundamental ingredients in the present un-

derstanding of the quantum fabric of the physical world [1–4]. The diverse manifestations

of quantum entanglement are nowadays the focus of intense theoretical and experimental

research efforts. Quantum entanglement plays an essential role, for example, in connection

with the emergence of the classical picture of the macroscopic world from a quantum me-

chanical substratum [4]. It also provides a deep physical justification for the basic tenets

of quantum statistical mechanics [5]. Moreover, intriguing recent developments suggest

that quantum entanglement may be relevant for explaining the origin of the macroscopic

“arrow of time” [6]. On the other hand, the actual creation and manipulation of multi-

partite entangled states in the laboratory lie at the heart of spectacular new technological

developments, such as quantum computation [2, 3], and quantum metrology [7]. Quantum

entanglement and decoherence are closely related to each other. In fact, the phenomenon

of decoherence basically consists of a family of effects that occur due to the interaction

(and associated entanglement-development) between quantum systems and their environ-

ments [3, 4]. Physical systems in Nature aren’t usually in complete isolation and interact

with their environments in some way. As a consequence of this interaction, in most cases,

some entanglement develops between the system and the environment (there are special

instances, however, where a system may interact with another system without developing

entanglement with it). The system-environment entanglement leads to the suppression of

typical quantum features of the system, such as the interference between different system’s

states. This constitutes the basic idea behind the “decoherence program” for explaining the

quantum-to-classical transition [4].

The amount of entanglement between the different constituent parts of a multipartite

quantum system tends to decrease as the alluded composite system undergoes decoherence.

This decay of entanglement has recently attracted the interest of many researchers [8–17]

because it constitutes one of the most difficult obstacles that have to be overcome to develop

quantum technologies requiring the controlled manipulation of entangled states [3]. A re-

markable recent discovery is that, in some cases, entanglement can disappear completely in

finite times. This effect is known as entanglement sudden death (ESD) [8–15] and has been

observed experimentally by Almeida et al. [16]. Besides its theoretical importance, ESD
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is also a phenomenon of considerable relevance from the practical point of view, because

the actual implementation of quantum computation and other quantum information tasks

crucially depends on the longevity of entanglement in multiqubits systems.

To study the consequences of the interaction between a quantum mechanical system and

its surroundings the system must be treated as an open quantum system (see [18] for an

excellent, comprehensive and updated discussion on open quantum systems). In order to

succeed in the development of useful devices for quantum information processing it is im-

perative to achieve a systematic characterization and understanding of the abovementioned

effects arising from the interaction with the environment. The aim of the present work is

to explore some typical features of the entanglement dynamics of systems of independent

qubits each interacting with a reservoir in a regime where the non-Markovian effects are

important. In other words, we are going to consider reservoirs whose correlation times are

greater than, or of the same order as, the relaxation time over which the state of the sys-

tem changes [18]. Interesting previous work on the entanglement dynamics of two-qubits

systems interacting with an environment in the non-Markovian regime has been reported

by Bellomo, Lo Franco, and Compagno (BFC) in a recent series of papers [10–12] (see also

[14]). A remarkable phenomenon studied by BFC is that, for certain initial states, there

is entanglement sudden death and afterwards entanglement sudden revival. BFC focused

their attention on initial states described by density matrices of the “X-form”, which admit

a particularly elegant analytical treatment. We will extend the work by BFC in various

directions. We will investigate the average, typical entanglement dynamics associated with

some relevant families of initial states of two-qubits, three-qubits, and four-qubits systems.

We will explore the relation between the time evolution of the amount of entanglement of

these multi-qubit systems and their degrees of mixedness. In the case of two qubits, we

will also investigate the possibility of detecting the disappearance of entanglement and its

subsequent revival using two recently advanced entanglement indicators.
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II. QUBITS-RESERVOIR MODEL

We are going to consider the paradigmatic model discussed in [10], which is based on the

“qubit + reservoir” Hamiltonian,

H = ω0σ+σ− +
∑

k

ωkb
†
kbk + (σ+B + σ−B†) (1)

where B =
∑

k gkbk, ω0 denotes the transition frequency of the two-level system (that is,

the qubit) and σ∓ stands for the system’s raising and lowering operators. The reservoir is

represented as a set of field modes, b†k and bk being the concomitant creation and annihilation

operators associated with the k-mode. These field modes are characterized by frequencies ωk

and coupling constants gk with the two-level system. The Hamiltonian (1) may describe, for

instance, a qubit consisting of the excited and ground electronic states of a two-level atom

that interacts with the quantized electromagnetic modes of a high-Q cavity. The assumed

effective spectral density of the reservoir is

J(ω) =
1

2π

γ0λ
2

(ω − ω0)2 + λ2
, (2)

where γ0 and λ are positive parameters with dimensions of inverse time. The parameter λ,

giving the width of J(ω), is related to the reservoir’s correlation time τB by τB ≈ λ−1. The

parameter γ0 is connected with the system’s relaxation time τR via τR ≈ γ−1
0 (see [10] for

details). In the strong coupling, non-Markovian regime we have γ0 > λ/2. The Hamiltonian

(1) was previously studied by Garraway [19] who obtained the analytical solution for the

concomitant dynamics. The dynamics of the single qubit is described by the density matrix

ρ(t) =

 ρ11(0)Pt ρ10(0)
√

Pt

ρ01(0)
√

Pt ρ00(0) + ρ11(0)(1 − Pt)

 , (3)

where ρij(0) are the initial density matrix elements of the qubit and the function Pt is given

(in the non-Markovian regime [10]) by

Pt = e−λt

[
cos

(
dt

2

)
+

λ

d
sin

(
dt

2

)]2

(4)

with d =
√

2γ0λ − λ2. The time evolution of two non-interacting qubits, each of them in

contact with an independent reservoir and, consequently, individually evolving according to
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(3), is then given by a time dependent statistical operator whose elements with respect to

the computational basis {|1〉 ≡ |11〉, |2〉 ≡ |10〉, |3〉 ≡ |01〉, |4〉 ≡ |00〉} are [10]

ρT
11(t) = ρT

11(0)P 2
t ; ρT

22(t) = ρT
22(0)Pt + ρT

11(0)Pt(1 − Pt),

ρT
33(t) = ρT

33(0)Pt + ρT
11(0)Pt(1 − Pt) ; ρT

44(t) = 1 − [ρT
11 + ρT

22 + ρT
33],

ρT
12(t) = ρT

12(0)P
3/2
t ; ρT

13(t) = ρT
13(0)P

3/2
t ,

ρT
14(t) = ρT

14(0)Pt ; ρT
23(t) = ρT

23(0)Pt,

ρT
24(t) =

√
Pt[ρ

T
24(0) + ρT

13(0)Pt(1 − Pt)],

ρT
34(t) =

√
Pt[ρ

T
34(0) + ρT

12(0)Pt(1 − Pt)], (5)

with ρT
ij(t) = ρT∗

ji (t) (that is, the matrix ρT (t) is Hermitian). It is possible to derive equa-

tions similar to (5) corresponding to the time dependent density matrix associated with

the evolution of a set of N non-interacting qubits each of them interacting with its “own”

reservoir. In Section V we are going to consider the three-qubit case.

III. TYPICAL ENTANGLEMENT DYNAMICS FOR TWO QUBITS

A. Generation of Random States Within a Family of Initial States.

In order to investigate the average features characterizing the entanglement dynamics

associated with a given family of initial states we compute the average properties of the

concomitant evolutions. To determine these averages we generate random initial states

(within the alluded family) uniformly distributed according to the Haar measure [20, 21]. We

shall consider a family of maximally entangled initial states, a family of partially entangled

pure initial states all sharing the same amount of entanglement, and a family of Werner

states.

To study the typical, average behavior of the entanglement dynamics of a pair of qubits

evolving from an initial maximally entangled state we represent the initial states |Ψe〉 as [20]

|Ψe〉 = (I2 ⊗ U1) |Ψ0〉 (6)

where |Ψ0〉 = 1√
2
(|01〉 + |10〉), I2 denotes the two-dimensional identity matrix and U1 is a
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unitary matrix on SU(2). This unitary matrix can be conveniently parameterized as

U1 =

 − sin ϑe−iθ2 cos ϑeiθ1

cos ϑe−iθ1 sin ϑeiθ2

 (7)

where θ1,2 ∈ [0, 2π] and ϑ =∈ [0, π/2]. In terms of the three parameters θ1, θ2, and ϑ, the

maximally entangled state reads,

|Ψe〉 =
1√
2


cos ϑeiθ1

sin ϑeiθ2

− sin ϑe−iθ2

cos ϑe−iθ1

 , (8)

where |Ψe〉 is represented as a column vector in terms of its coefficients with respect to the

computational basis. To generate the initial states we generate random (single-qubit) unitary

matrices U uniformly distributed according to the Haar measure. The angles θi are generated

randomly such that they are uniformly distributed in [0, 2π], while ϑ is distributed in the

interval [0, π/2] according to the distribution sin(2ϑ). This distribution can be obtained by

setting ϑ = arcsin[ε1/2] with ε uniformly distributed in [0, 1].

More generally, random pure states exhibiting a fixed, prescribed amount of entanglement

can be generated using the representation

|Ψα〉 = (I2 ⊗ U1)
(√

1 − α2|01〉 + α|10〉
)
, (9)

which leads to the parameterization

|Ψα〉 =


√

1 − α2 cos ϑeiθ1

√
1 − α2 sin ϑeiθ2

−α sin ϑe−iθ2

α cos ϑe−iθ1

 (10)

where one can change the degree of entanglement by using different values of α. For in-

stance the value α = 1√
2

will give the maximally entangled states above. The parameters

θ1,2 and ϑ appearing in (10) have to be generated in the same way as in the case of the

maximally entangled states. Note that we are not sampling the full space CP 3 of pure

states of two-qubits. We are only sampling a family of states equivalent under local unitary

transformations to a given, prescribed state.
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B. Maximally Entangled Initial States.

In this section we are going to explore the typical, average entanglement dynamics corre-

sponding to maximally entangled initial states. To this end we generate random maximally

entangled initial states according to the procedure described in the previous section and

compute, for different times, the averages of the concurrence C and the linear entropy

SL = 4
3
[1 − Tr(ρ2)]. The average values of the concurrency (left) and that of the linear

entropy (right) are depicted in Fig. 1 as a function of the dimensionless quantity γ0t. In all

our computations we set λ = 0.01γ0. The dispersion ∆C = (〈C2〉 − 〈C〉)
1
2 is also plotted in

Fig. 1. The dispersion ∆C is relatively small compared with 〈C〉, meaning that the behavior

of the average 〈C〉 is representative of the typical entanglement dynamics corresponding to

the family of initial maximally entangled states. The same occurs with the other families

of initial states considered in the present work. (Note that ∆C is not the error in the curve

〈C〉vs.γ0t. The error in this and the other curves depicted in this work is not appreciable at

the scale of the figures).

Even though, on average, the concurrence does vanish at certain times, it doesn’t stay

equal to zero during finite time intervals. In other words, the finite time intervals of vanishing

entanglement before the entanglement revivals, that are observed for certain initial states,

are not a feature characterizing the average entanglement dynamics. This observation is

going to be of relevance when we later compare the entanglement dynamics of two qubits

with the entanglement behaviors corresponding to three qubits or four qubits.

It is a well-known trend that the amount of entanglement exhibited by quantum states of

a bipartite system tends to decrease as we consider states with increasing degrees of mixed-

ness (see [21] and references therein). In point of fact, all two-qubits states with a linear

entropy larger than 8/9 have zero entanglement (that is, are separable). The abovemen-

tioned general trend connecting entanglement and mixedness is consistent with the average

behaviors of the concurrence and the linear entropy during the first half of the initial period

of entanglement decrease observed in Fig. 1. During this first part of the two-qubits evolu-

tion the concurrence (and, consequently, the amount of entanglement) decreases while the

degree of mixedness increases. However, after this first phase of the evolution the pattern

changes: the concurrence and the mixedness increase or decrease together. In particular,

during the entanglement revivals, the entanglement and the degree of mixedness of the
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two-qubit system tend to adopt their maximum values at the same time.
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FIG. 1: The average value of the concurrence 〈C〉 and its dispersion
(
〈C2〉 − 〈C〉2

)1/2 (left) and

the average value of the linear entropy (right), against the quantity γ0t, for maximally entangled

initial states. All depicted quantities are dimensionless.

When considering the relationship between the amount of entanglement and the degree

of mixedness of two-qubits states, the maximally entangled mixed states (MEMS) play an

important role. The MEMS [28] states are two-qubits states that have the maximum possible

value of the concurrence for a given degree of mixture and their density matrix is given by

ρMEMS =


g(γ) 0 0 γ/2

0 1 − 2g(γ) 0 0

0 0 0 0

γ/2 0 0 g(γ)

 (11)

where

g(γ) =

γ/2, γ ≥ 2/3

1/3, γ < 2/3.
(12)

Some aspects of the entanglement dynamics of our two-qubits system can be illuminated if

we consider now the trajectory followed by this system in the mixedness-concurrence plane,

and compare this trajectory with the curve corresponding to the MEMS states. Fig. 2 shows

a plot of the average value of the concurrence against the average value of the linear entropy

(continuous line) for maximally entangled initial states. The curve in the (SL − C)-plane

corresponding to the concurrence Cmems associated with maximally entangled mixed states

(MEMS) of linear entropy SL is also depicted (dotted line).

8



0 0.2 0.4 0.6 0.8
�SL�

0

0.2

0.4

0.6

0.8

1

�
C
�

FIG. 2: The average concurrence against the average linear entropy for maximally entangled initial

states (continuous line) and the concurrence of the MEMS (dotted line) against the linear entropy.

All depicted quantities are dimensionless.

It can be appreciated in Fig. 2 that the average trajectory in the (SL −C)-plane associ-

ated with maximally entangled initial states has two branches: an upper branch that stays

relatively close to the MEMS curve and a lower branch that departs drastically from the

MEMS. During the first phase of entanglement decrease, the average evolution associated

with maximally entangled initial states describes the complete trajectory depicted in Fig. 2,

starting with states of maximum entanglement and zero mixedness and ending with states

of zero entanglement and zero mixedness. During the periods of entanglement revival, the

average evolution follows the lower branch, first in the direction corresponding to an increase

of entanglement and mixedness, and then in the opposite direction. During the first entan-

glement revival the two-qubit states reach the point of maximum 〈SL〉 in the 〈SL〉 − 〈C〉

curve, and retrace part of the upper branch. In the second and later entanglement revivals,

the two-qubits states remain in the lower branch.

The time averaged amount of entanglement exhibited by an evolving composite system

is also an interesting quantity to investigate. This quantity has already been considered

in previous studies, in various contexts [29, 30]. Entanglement is a valuable resource, and

the time average of the entanglement of a system during a given time interval provides a

rough idea of the amount of entanglement that is available at an instant of time chosen at

random during the alluded interval. We have computed numerically the time average of the
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concurrence of the two-qubit system,

〈C〉t =
1

τ

∫ τ

0

C(t) dt, (13)

where τ is the time when the concurrence vanishes for the second time (that is, τ corresponds

to the end of the first revival event). In particular we computed 〈C〉t taking the Bell states

|β00〉 =
1√
2
(|00〉 + |11〉) (14)

|β01〉 =
1√
2
(|01〉 + |10〉) (15)

|β10〉 =
1√
2
(|00〉 − |11〉) (16)

|β11〉 =
1√
2
(|01〉 − |10〉) (17)

as initial states, obtaining the values 〈C〉t = 0.225336 for |β00〉 and |β10〉 and 〈C〉t = 0.376867

for |β01〉 and |β11〉. A numerical search for the maximum value of 〈C〉t among evolutions

starting with a maximally entangled initial state yielded a maximum value 〈C〉(max.)
t =

0.376867. This maximum value is achieved by the states |β01〉 and |β11〉.

C. Partially Entangled Pure Initial States.

The average behavior corresponding to pure, partially entangled initial states is quali-

tatively similar to the one corresponding to maximally entangled initial states, but with a

〈SL〉 − 〈C〉 trajectory obviously starting with states of concurrence less than one and zero

mixedness (that is SL = 0). The average behavior, as a function of γ0t, of the concurrence

is depicted in Fig. 3 for initial states having the same entanglement as the state

|Φ〉 = α|00〉 +
√

1 − α2|11〉, (18)

for α2 = 1/3. It can be seen in Fig. 3 that the finite time intervals of zero entanglement

disappear when we consider the average behavior of the abovementioned states. This is

in clear contrast with the behavior of some particular initial states belonging to the above

family (see the individual case also depicted in Fig. 3) whose associated trajectories show

rather long intervals with zero entanglement [10].
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FIG. 3: The concurrence for the initial state (18) (dotted line) and the average value of the concur-

rence for initial partially entangled pure states having the same entanglement as (18) (continuous

line) as a function of γ0t. In both cases α2 = 1/3. All depicted quantities are dimensionless.

We obtained an analytical expression linking SL and C during the evolution associated

with individual partially entangled initial states of the form (18). The trajectory on the

(SL − C)-plane corresponding to these initial states is given by

SL =

(
C2

4α2(1 − α2)
− C

2α
√

1 − α2

)
. (19)

The average trajectories on the (SL − C)-plane of initial pure states with the same en-

tanglement (concurrence) as the state (18) are depicted in Fig. 4 for different values of

α.
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FIG. 4: Trajectories in the (〈SL〉−〈C〉)-plane corresponding to families of initial partially entangled

pure states with a given amount of entanglement. All depicted quantities are dimensionless.

It transpires from Fig. 4 that the smaller the initial entanglement, the larger the maxi-

mum degree of mixedness achieved by the two-qubit system during its evolution. Another

trend that can be observed in Fig. 4 is that the smaller the initial entanglement, the closer

the second branch of the average trajectory is to the 〈C〉 = 0 line. This, of course, is related

to the increasing length of the time intervals of zero entanglement corresponding to initial

pure states of decreasing entanglement.

D. Initial Mixed States of Two Qubits.

Now we are going to consider the entanglement dynamics associated with mixed initial

states of the Werner form

ρ = γ|Ψ〉〈Ψ| + 1 − γ

4
I (20)

where 0 ≤ γ ≤ 1, I is the 4× 4 identity matrix and |Ψ〉 is a maximally entangled pure state

of the form (6). The state ρ represents a mixture of a maximally entangled pure state and

the completely mixed state I
4
. The state ρ is entangled for γ > 1/3.

In order to study the typical, average behavior of initial mixed states of the form (20)

we randomly generated the maximally entangled states |Ψ〉 (according to the procedure

explained in Section III.A) and then computed the average properties associated with the

evolutions corresponding to the family of states (20).
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FIG. 5: Average value of the concurrence as a function of γ0t for the initial mixed states γ|Ψ〉〈Ψ|+
1−γ

4 I with γ = 2
3 . All depicted quantities are dimensionless.

The results obtained, for γ = 2
3
, are summarized in Figures 5 and 6. We can see in

these Figures that the behavior of the initial mixed states (20) shares some general features

with the behavior of the maximally entangled initial states considered previously. There is,

however, one important difference (aside from the fact that the trajectory on the 〈SL〉−〈C〉

plane starts from an initial state of partial entanglement and finite linear entropy). The

lower branch of the trajectory on the 〈SL〉 − 〈C〉 plane depicted in Fig. 6 has a long,

almost horizontal part associated with states of very little, almost zero entanglement. This

section of the lower branch corresponds to the time intervals between entanglement death

and entanglement revivals in Fig. 5. This means that the existence of finite intervals

of basically zero entanglement before entanglement revivals constitutes a typical, average

property exhibited by the family of states (20).
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FIG. 6: Average value of the concurrence 〈C〉 against the average linear entropy 〈SL〉 for the same

family of initial mixed states considered in Fig. 5 (continuous line) and the concurrence of the

maximally entangled mixed states Cmems against SL (dotted line). All depicted quantities are

dimensionless.

IV. BEHAVIOR OF SOME ENTANGLEMENT INDICATORS FOR TWO-

QUBITS STATES

Quantum entanglement gives rise to diverse peculiar properties of entangled states, such

as the violation of Bell inequalities [2]. However, not all entangled states are endowed with

all these special features. Consequently, it is of considerable relevance not only to determine

the amount of entanglement associated with given quantum states, but also to explore

which entangled states do exhibit (and which do not) the different entanglement-related

manifestations. The recent study by Bellomo et al. [12] of the violation of Bell inequalities

by two-qubits interacting with an environment constituted a notable contribution, within

the context of the entanglement dynamics of open systems, to the abovementioned line of

inquiry. On a similar vein, non-classical entropic inequalities satisfied by the time dependent

state of two qubits evolving according to (5) was examined in [15].

Besides its theoretical interest, the exploration of which states do exhibit the different

entanglement-related features is of considerable practical interest because some of the al-

luded entanglement manifestations can be used to construct entanglement-indicators based

on measurable quantities. In this Section we are going to consider two such entanglement
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indicators: the Minternt-Buchleitner lower bound for the squared concurrence, and an en-

tanglement indicator based on local uncertainty relations [27].

A. Minternt-Buchleitner Lower bound for the squared concurrence.

A remarkable indicator of entanglement for quantum states ρAB of bi-partite systems has

been recently advanced by Minternt and Buchleitner (MB) [22, 23],

EMB[ρAB] = 2Tr[ρ2
AB] − Tr[ρ2

A] − Tr[ρ2
B]. (21)

The MB entanglement indicator EMB is particularly interesting because, as was shown by

MB, it is an experimentally measurable quantity that provides a lower bound for the squared

concurrence of ρAB,

C2[ρAB] ≥ EMB[ρAB]. (22)

Last, but certainly not least, the indicator EMB is a practical, mathematically simple to

compute quantity.

It is interesting to examine the behavior of EMB in a time dependent setting. The

behavior of EMB is compared with that of the squared concurrence C2 in Fig. 7 where both

quantities are plotted against γ0t for the initial state 1√
2
(|00〉 + |11〉). The average values

of the concurrence squared C2 and of the MB lower bound were also computed for the

evolutions corresponding to initial maximally entangled, randomly generated states. The

results obtained are depicted in Fig. 8.

The quantum states considered in Figures 7 and 8 have Tr[ρ2
A] = Tr[ρ2

B] and, conse-

quently, for these states we can write EMB[ρAB] = 2 (Tr[ρ2
AB] − Tr[ρ2

A]). One can verify

in Figures 7 and 8 that, indeed, the quantity EMB constitutes a lower bound for C2. The

results depicted in Fig. 7 indicate that, for the initial state 1√
2
(|00〉+ |11〉), the lower bound

EMB provides a reasonably good estimate of the amount of entanglement exhibited by the

two qubits during the first period of entanglement decrease. The quantity EMB is also able

to detect the first entanglement revival, at least during the time interval around the peak

value exhibited by C2 in this revival (this interval corresponds, approximately, to one third

of the duration of the first revival). On the contrary, EMB doesn’t detect the second or later

entanglement revivals.
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As for the typical behavior of the lower bound EMB corresponding to initial maximally

entangled states, on average, 〈EMB〉 provides a reasonable estimate for the squared con-

currence during the first half of the first time interval of entanglement decrease. However,

〈EMB〉 doesn’t detect the subsequent entanglement revivals (see Fig. (8)).
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FIG. 7: The concurrence squared and the MB lower bound EMB, as a function of γ0t, for the

initial state 1√
2
(|00〉 + |11〉). All depicted quantities are dimensionless.
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FIG. 8: The averages of the concurrence squared and of the MB lower bound corresponding to

initial maximally entangled states, as a function of γ0t. All depicted quantities are dimensionless.
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B. Entanglement Indicator Based Upon a Local Uncertainty Relationship.

An interesting connection between quantum separability in bi-partite systems and local

uncertainty relations has been pointed out by Hofmann and Takeuchi in [27]. These authors

showed that separable states of bi-partite quantum systems comply with certain local un-

certainty relations. In particular, all separable states (pure or mixed) of two-qubit systems

satisfy

U = δ[σ1(A) + σ1(B)]2 + δ[σ2(A) + σ2(B)]2 + δ[σ3(A) + σ3(B)]2 ≥ 4, (23)

where σi(A), σi(B) i = 1, 2, 3, are the Pauli matrices corresponding to subsystems A and B,

respectively, and δO2 = 〈O2〉 − 〈O〉2 is the uncertainty of the observable O. On the basis of

(23) we can regard the quantity

4 − U

4
(24)

as an entanglement indicator. Any state with (4 − U)/4 > 0 is necessarily entangled. On

the other hand, if the above quantity is negative, the state may be entangled or separable.

The entanglement indicator (24) is of interest because it is based on quantities that are in

principle measurable.

There are some particular initial, maximally entangled states for whom the entanglement

of the time-dependent state ρ is detected (at least part of the time) by the violation of

the uncertainty relation (23). Therefore, for these states the quantity (4 − U)/4 exhibits

positive values when the state ρ has a large enough amount of entanglement. This behavior

can be seen in Fig. 9 for the initial state 1√
2
(|01〉 − |10〉). The situation is different when

one considers the average behavior of the uncertainty sum U over the family of maximally

entangled initial states. One can see in Fig. 10 that, on average, the time dependent states

arising from maximally entangled initial states do not violate the uncertainty relation (23).

It is interesting that, even though these states do exhibit on average (at certain times) a

considerable amount of entanglement, they behave strictly as separable states as far as the

local uncertainty relation (23) is concerned.
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FIG. 9: The uncertainty-based entanglement indicator and the concurrence C against γ0t, for the

initial state 1√
2
(|01〉 − |10〉). The indicator is set equal to zero if the quantity (24) has a negative

value. All depicted quantities are dimensionless.
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FIG. 10: The average of the uncertainty sum U for initial maximally entangled states as a function

of γ0t. All depicted quantities are dimensionless.

The general trend observed in connection with the entanglement estimators considered here

is that they tend to be less successful in detecting entanglement during the entanglement

revivals than during the initial time interval of entanglement decrease. This seems to be

closely related to the fact that during the entanglement revivals the system under consid-
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eration tends to be more mixed than during the initial entanglement decay. The various

manifestations of entanglement tend to be weaker for states of increasing degree of mixed-

ness. This is clearly observed, for instance, in the case of the Minternt-Buchleitner lower

bound EMB for the squared concurrence. Indeed, the ability of this quantity to detect

entanglement deteriorates when one considers states of increasing mixedness [23].

V. SOME FEATURES OF THE ENTANGLEMENT DYNAMICS OF SYSTEMS

OF THREE AND FOUR QUBITS INTERACTING WITH AN ENVIRONMENT

In this section we are going to consider the entanglement dynamics of three-qubits systems

interacting with an environment in the non-Markovian regime. As in the two-qubits case,

we assume that each qubit interacts with its own, independent environment.

In the case of three qubits or more, the GHZ (Greenberger-Horne-Zeilinger) state and the

W state constitute two important paradigmatic examples of entangled states. The general

expression of the GHZ state is

|GHZ〉 =
|0〉⊗n + |1〉⊗n

√
2

(25)

where n is the number of qubits. The n-qubits W state is

|W 〉 =
1√
n

(|100...0〉 + |010...0〉 + ... + |000...1〉). (26)

Multipartite entanglement measures and their applications have been the focus of con-

siderable research activity in recent years (see [24–26] and references therein). A useful

and practical measure for the global amount of entanglement associated with an n-qubit

state is given by the average of the (bi-partite) entanglement measures corresponding to the

2n−1 − 1 possible bi-partitions of the n-qubits system [24]. When dealing with mixed states

the “negativity” provides an appropriate measure of the amount of entanglement exhibited

by a given bi-partition. The negativity is defined as

Neg. =
1

2

∑
i

(
|αi| − αi

)
, (27)

where αi are the eigenvalues of the partial transpose matrix associated with a given bi-

partition. The global, multipartite entanglement measure given by the average (over all
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FIG. 11: The average value of the negativity based entanglement measure N (left) and the average

value of the linear entropy (right), against the quantity γ0t, for three-qubit initial states locally

equivalent to the GHZ state. All depicted quantities are dimensionless.
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FIG. 12: The average value of the negativity based entanglement measure N (left) and the average

value of the linear entropy (right), against the quantity γ0t, for three-qubit initial states locally

equivalent to the W state. All depicted quantities are dimensionless.

bi-partitions) of the negativity will be denoted N .

In this section we consider the average behavior of three and four qubit evolutions with

initial states equivalent under local unitary transformations to the |GHZ〉 or the |W 〉 states.

To determine the average behavior associated with initial states locally equivalent to the

n-qubits |GHZ〉 state we generate random initial states of the form
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(U1 ⊗ · · · ⊗ Un) |GHZ〉, (28)

resulting from the action of independent single-qubit unitary operators acting upon each of

the n qubits of a multi-qubit system in the |GHZ〉 state. The single-qubit unitary operators

Ui (acting on the ith single qubit) are generated randomly, independently and uniformly

distributed according to the Haar measure, as described in Section III.A. Then, the average,

time dependent properties corresponding to the abovementioned random initial states are

computed. A similar procedure was followed to study the average properties of evolutions

corresponding to initial states locally equivalent to the n-qubits |W 〉 state.

As in the two qubits case, the typical behavior of appropriate families of initial states was

studied for three-qubits and and four-qubits systems. The most noticeable difference between

the results obtained for two qubits and those obtained for three or four qubits involves

the finite time intervals of zero entanglement between entanglement revivals. For initial

maximally entangled two-qubits states the finite time intervals of zero entanglement between

entanglement revivals disappear when one computes the concomitant average behavior, as

shown in Fig. 1. On the contrary, in the case of initial three-qubits states locally equivalent

to the |GHZ〉 or the |W 〉 states the aforementioned intervals of zero entanglement survive

after the averaging procedure, as can be appreciated in Figures 11 and 12. This means that

the abovementioned finite time intervals of entanglement disappearance are robust features

of the entanglement dynamics of three-qubits systems. This is consistent with the fact that

the entanglement associated with n-qubits systems tends to become more fragile as the

number of qubits increases.

Four-qubit systems were also considered. On average, initial states of four-qubits equiv-

alent under local unitary transformations to the |GHZ〉 and the |W 〉 states behave in a

similar way as the corresponding states in the three-qubits case. This can be seen in Figures

13 and 14, where the evolution of the negativity based entanglement measure N is depicted

for the four qubit initial states |GHZ〉 and |W 〉, respectively, together with its average

value 〈N〉 for the families of initial states equivalent under local unitary transformations to

those two states. It transpires from Figures 13 and 14 that the time intervals of “dead”

entanglement before the entanglement revivals exhibited by the |GHZ〉 and |W 〉 states are

a robust feature of the entire families of initial states locally equivalent to those two states,

that is clearly present in their average behaviour. This, again, illustrates the increasing
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entanglement fragility that accompanies an increasing number of qubits.
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FIG. 13: The negativity based entanglement measure N for the four-qubit initial state |GHZ〉

(dotted line) and the average 〈N〉 for the family of initial states equivalent to |GHZ〉 under lo-

cal unitary transformations (continuous line) as a function of γ0t. All depicted quantities are

dimensionless.
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FIG. 14: The negativity based entanglement measure N for the four-qubit initial state |W 〉 (dotted

line) and the average 〈N〉 for the family of initial states equivalent to |W 〉 under local unitary

transformations (continuous line) as a function of γ0t. All depicted quantities are dimensionless.
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FIG. 15: Evolution of the negativity based entanglement measure N for the three-qubit initial

state α|000〉+
√

1 − α2|111〉 with α2 = 1
3 (dotted line) and the average 〈N〉 for the family of initial

states equivalent to the alluded state under local unitary transformations (continuous line), for

λ = 0.1γ0. All depicted quantities are dimensionless.

The main purpose of the present effort was to explore some aspects of the entanglement

sudden death and subsequent entanglement revival exhibited by multi-qubit systems inter-

acting with an environment in a non-Markovian regime. Consequently, we have focused

on the case of λ = 0.01γ0, where the aforementioned phenomena are clearly visible. As

a general trend, when one considers larger values of the ratio λ/γ0 (corresponding to less

non-Markovian regimes) the alluded phenomena are less pronounced, with shorter periods

of “dead” entanglement. However, we have also considered the case λ = 0.1γ0 and our

numerical results indicate that the robustness of the periods of dead entanglement before

entanglement revivals for systems of more than two qubits also holds for smaller values of

the ratio λ/γ0, even if the lengths of these periods are much shorter than in the λ = 0.01γ0

case.

For example, the behaviour of the negativity based entanglement measure N for the three

qubit initial state (with α2 = 1
3
)

α|000〉 +
√

1 − α2|111〉 (29)

together with its average value 〈N〉 for the family of initial states equivalent under local

unitary transformations to (29), are plotted in Figure 15. It is clear from this Figure that the
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period of zero entanglement between the entanglement sudden death and its sudden revival

exhibited by the initial state (29) is also present on the average behavior corresponding to

the initial states locally equivalent to (29).

VI. CONCLUSIONS

We have explored some entanglement-related features of the dynamics of two-qubits,

three-qubits, and four-qubits systems interacting with a non-Markovian environment. Our

main goal was to explore some entanglement properties of the alluded systems related to the

phenomena of entanglement sudden death followed by entanglement sudden revival, which

constitute remarkable effects appearing in the alluded systems for small enough values of

the ratio λ/γ0. For these reasons, we have focused on a non-Markovian case characterized

by λ = 0.01γ0, and our conclusions correspond mainly to this kind of scenarios which are

well into the non-Markovian regime.

We have focused upon the average, typical behavior associated with some relevant families

of initial states, such as the set of maximally entangled two-qubit states, or the states locally

equivalent to the |GHZ〉 state in the three-qubits and four-qubits cases.

In the case of two qubits the average, typical behavior corresponding to maximally entan-

gled initial states, or the one corresponding to pure, partially entangled states with a given

amount of entanglement, doesn’t have finite time intervals of zero entanglement between en-

tanglement revivals as is the case for some particular initial states belonging to the alluded

families. On the contrary, when investigating the dynamics of entanglement associated with

the families of initial states of three or four qubits locally equivalent to the |GHZ〉 and

to the |W 〉 states, we found that the finite intervals of zero entanglement are still present

in the average behavior. Consequently, the phenomena of entanglement sudden death and

subsequent entanglement revival are robust properties of the evolutions associated with the

abovementioned families of initial states of three or four qubits. These features of the en-

tanglement dynamics of three qubits and four qubits systems are consistent with the fact

that, in general, entanglement becomes more fragile as the number of qubits of a system

increases.

We investigated the connection between the time evolution of the amount of entanglement

exhibited by the multi-qubit system on the one hand, and its global degree of mixedness
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(as measured by the total linear entropy SL) on the other one. As a general trend, the

entanglement exhibited by multi-partite quantum systems tends to decrease as the degree

of mixedness increases. However, except for the initial period of entanglement decrease,

the systems considered here tend to exhibit the largest amount of entanglement simulta-

neously with the largest degrees of mixedness. Indeed, during the entanglement revivals

entanglement and mixedness tend to increase and decrease together. We have determined

the trajectory followed by the multi-qubits systems (for various families of initial states) in

the (〈SL〉 − 〈C〉)-plane. In all the cases studied, for two qubits, three qubits and four qubits,

these trajectories exhibit the shape of an inverted “C” with two branches, one correspond-

ing to the initial phase of entanglement decrease, and the second branch corresponding to

the entanglement revivals. In the case of maximally entangled initial states of two-qubits,

the first branch is relatively close to the MEMS curve, while the second branch departs

drastically from it.

In the case of two qubits the behavior of two entanglement indicators based upon mea-

surable quantities was also examined. We considered the Minternt-Buchleitner lower bound

EMB for the squared concurrence and an entanglement indicator based on the violation of a

local uncertainty relation. For the initial state 1√
2
(|00〉 + |11〉), the quantity EMB exhibited

“sudden death” and one “revival”. On the other hand, the average behavior of EMB cor-

responding to maximally entangled initial states has sudden death, but no revival. During

the the period of entanglement decrease EMB provides a reasonable estimate for the squared

concurrence. The estimator based on the violation of local uncertainty relations does de-

tect the entanglement of the evolving two-qubit state for some initial conditions. However,

its average behavior for initial maximally entangled states corresponds to separable states.

These findings are consistent with the results reported by Bellomo et al. in [12], where it

was shown that even at times when the two-qubits system still has a considerable amount

of entanglement it behaves “classically”, as far as the Bell inequalities are concerned. Our

present results show that the time dependent state of the two-qubits system, particularly

during the entanglement revivals, also fails to exhibit other manifestations of entanglement,

such as positive values of the Minternt and Buchleitner indicator EMB, or the violation of

local uncertainty relations.
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