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This paper tests whether housing prices in the five segments of the South African housing market, namely
large–middle, medium–middle, small–middle, luxury and affordable, exhibit non-linearity based on smooth
transition autoregressive (STAR) models estimated using quarterly data from 1970:Q2 to 2009:Q3. Findings
point to an overwhelming evidence of non-linearity in these five segments based on in-sample evaluation of
the linear and non-linear models. We next provide further support for non-linearity by comparing one- to
four-quarters-ahead out-of-sample forecasts of the non-linear time series model with those of the classical
and Bayesian versions of the linear autoregressive (AR) models for each of these segments, for the out-of-
sample horizon 2001:Q1 to 2009:Q3, using the in-sample period 1970:Q2 to 2000:Q4. Our results indicate
that barring the one-, two and four-step(s)-ahead forecasts of the small segment, the non-linear model
always outperforms the linear models. In addition, given the existence of strong causal relationship amongst
the house prices of the five segments, the multivariate versions of the linear (classical and Bayesian) and STAR
(MSTAR) models were also estimated. The MSTAR always outperformed the best performing univariate and
multivariate linear models. Thus, our results highlight the importance of accounting for non-linearity, as well
as the possible interrelationship amongst the variables under consideration, especially for forecasting.
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1. Introduction

The objectives of this paper are twofold: First, we want to address
whether house prices in thefive segments of the SouthAfrican housing
market, namely, luxury, large–middle,medium–middle, small–middle
(henceforth large, medium and small) and affordable,2 exhibit non-
linearity based on smooth transition autoregressive (STAR) models
estimated using quarterly data from 1970:Q2 to 2009:Q3; and second,
whether the five housing segments exhibit non-linearity for whichwe
compare one- to four-quarters-ahead out-of-sample forecasting
performances of the non-linear time series models with those of the
classical and Bayesian versions of the linear autoregressive (AR) over
an out-of-sample horizon of 2001:Q1 to 2009:Q3, using an in-sample
of 1970:Q2 to 2000:Q4. Note that the choice of the in-sample period,
especially the starting date, depended on data availability for all the
five housing segment. The end-point of the out-of-sample horizon is
data-driven, with the starting point of the same preceding the rapid
run-up and then slowdown of house prices experienced over the last
decade in the South African economy, as indicated in Fig. 1.

Related to the two stated objectives, two questions arise immedi-
ately, and define the motivations for our paper: First, why should one
expect house prices to exhibit non-linearity? And second, why should
one be interested in forecasting house prices? To answer to the first
question, it must be realized that the behaviour of the housingmarket is
not the same across phases of expansion and contraction of the swings
that characterize the real estate sector (Kim and Bhattacharya, 2009).
Seslen (2004) argues that households exhibit forward looking behav-
iour and have higher probability of trading up, during the upswingwith
equity constraints being less binding. However, the same is not true
during the downswing of the housing market cycle, since when house
prices are on the decline, households are less likely to trade implying
downward rigidity of house prices. The aversion to loss during the
downswing is more than likely to reduce the mobility of households as
far as trading is concerned. Further, as pointed out by Muellbauer and
Murphy (1997), the presence of lumpy transaction costs in the housing
market can also causenon-linearity. Given these issues, it is important to
test whether house prices are in fact non-linear.

As far as forecasting house prices are concerned, a large number of
papers show a strong link between the housing market and economic
activity (Green, 1997; Iacoviello, 2005; Case et al., 2005; Rapach and
Strauss, 2006; Leamer, 2007; Pariès andNotarpietro, 2008;Vargas-Silva,
2008; Bao et al., 2009; Christensen et al., 2009; Ghent, 2009; Ghent and
investigation of the nonlinearity in house prices of
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Fig. 1. Home prices in the five different segments of the South African housing market.
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Owyang, 2009; Pavlidis et al., 2009; Iacoviello and Neri, 2010). This
is understandable because housing contributes towards a large
percentage of private sector wealth (Cook and Speight, 2007), and
house price impacts on economic stability is vital in explaining
household consumption and saving patterns (Englund and Ioannides,
1997). Campbell and Coco (2006) contend that housing can be
considered as a consumption good and hence, house prices and
consumption are strongly correlated (Pavlidis et al., 2009). In addition,
Forni et al. (2003), Stock andWatson (2003) and Gupta and Das (2010)
argue that house price movements lead real activity, inflation, or both,
and hence, can indicate to where the economywill head. Moreover, the
recent emergence of boom–bust cycles in house prices are a cause of
much concern and interest amongst policy makers (Borio et al., 1994;
Bernanke andGertler, 1995, 1999), since the bust of house price bubbles
always leads to significant contractions in the real economy, vouched for
by the current economic downturn. Given this, models that forecast
house price can give policy makers an idea about the direction of the
economy, and hence, can provide a better control on designing
appropriate policies. As such, it is of paramount importance to deduces
theunderlyingnature of thedata-generatingprocess forhouseprice, i.e.,
whether it is linear or non-linear.

To the best of our knowledge, this is the first attempt to
simultaneously test for non-linearity in thehousingmarket and compare
forecasts generated from STAR and classical and Bayesian AR models.
The only other study that we are aware of that tests for non-linearity in
the housing market is by Kim and Bhattacharya (2009) in which the
authors examined the STAR models based on non-linear properties of
house prices for the aggregate US economy and its four census regions
(North East, Midwest, South and West) using monthly data over the
period of 1969:01–2004:12. The authors concluded that house prices for
theentireUS andall four census regions, barring theMidwest,werenon-
linear. However, their paper does not look at the ability of the non-linear
framework in forecasting house prices relative to their linear counter-
part.3 Onemust realize that the forecasting exercise is crucial in reaching
3 In addition to this, Kim and Bhattacharya (2009) highlighted that the dynamic
properties implied by the nonlinear estimation was in line with the typical patterns
that have been observed in the aggregate US and regional housing markets, and also,
based on non-linear Granger causality tests, the authors found housing price to cause
employment and mortgage rates to cause housing price.

Please cite this article as: Balcilar, M., et al., An in-sample and out-of-sa
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afirmandoverwhelming conclusion aboutmodellinghouseprices using
non-linear models as indicated by Rapach and Wohar (2006a), while
forecasting real exchange rates using (S)TAR models, the gains from
using a non-linear framework in forecasting relative to the linear model
can be quite small, even when there is strong evidence on non-linearity
in the in-sample. Beck et al. (2000, 2004) note that forecasting provides
the root of inference and prediction in time-series analysis. Further,
Clements and Hendry (1998) argue that in time-series models,
estimation and inference essentially means minimizing of the one-step
(or multi-step) forecast errors, thereby, establishing a model's superi-
oritywouldboil down to showing that it produces smaller forecast errors
than its competitors. Thus, it is typically believed that out-of-sample
comparisons, over and above in-sample results, provides a better
measure of the appropriate data generatingprocess, as statisticalmodels
are tested using out-of-sample observations that are not used in the
estimation stage (Rapach andWohar, 2006b). If the forecasts generated
by the STAR model are superior to those generated by classical and
Bayesian AR models, it can be considered as strong evidence in favor of
the STAR model. The remainder of the paper is organized as follows:
Section 2 discusses the specification of the STAR models. Section 3
outlines the details regarding the data used, while Section 4 presents the
formal test of non-linearity in the five segments of the South African
housing market. Section 5 compares the forecasting performance of the
appropriate version of the non-linear STAR model in relation to the
classical and Bayesian ARmodels. In addition, this section tests for causal
relationships amongst the five segments of the housing market and
repeats the forecasting analysis with the multivariate versions of the
linear and non-linear models. Finally, Section 6 concludes.

2. Specification and estimation of STAR models

We use the STAR framework developed by Luukkonen et al.
(1988), to model house price growth rates4 as a non-linear and state-
4 Note non-linear estimation, just like linear estimation, requires one to ensure that
the variables used are stationary to avoid spurious estimates. Hence, house prices of all
the five segments were converted to their yearly growth rates, the stationarity of
which, in turn, were confirmed by the Augmented-Dickey–Fuller (ADF) test, the
Dickey–Fuller test with GLS Detrending (DF-GLS), the Kwiatkowski, Phillips, Schmidt,
and Shin (KPSS) test and the Phillips–Perron (PP) test. The results are available upon
request from the authors.

mple empirical investigation of the nonlinearity in house prices of
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dependent variable. The STAR framework allows for smooth transi-
tion across regimes to describe the dynamics of long-horizon house
price growth rates, and, hence, is preferred over the threshold
autoregressive (TAR) (Tsay, 1989) and the Markov switching
(Hamilton, 1989) models, since the latter two frameworks specify
discrete jumps across regimes implying sudden jumps. In addition,
our decision to employ the STAR model is governed by our belief that
house price growth rates are better described by the STAR model
rather than the TAR or Markov switching models. The low speeds of
transition obtained in the estimation of the non-linear model,
vindicate our decision as well.

The STAR model of order p, for variable rt, is specified as follows5:

rt = ϕ0 + ∑
p

i=1
ϕirt−i

� �
+ ρ0 + ∑

p

i=1
ρirt−i

� �
⋅F rt−dð Þ + ut

= ϕ0 + ϕ Lð Þrt½ � + ρ0 + ρ Lð Þrt½ �⋅F rt−dð Þ + ut

ð1Þ

where rt is the house price growth rate, and; F(rt−d) is the transition
function controlling the regime shift mechanism and is a smooth and
continuous function of past realized house price growth rates. Thus,
house price growth rates evolve with a smooth transition between
regimes that depends on the sign and magnitude of past realization of
the house price growth rates. The non-linearities are obtained by
conditioning the autoregressive coefficients, ρ(L), to change smoothly
with past house price growth rates in such a way that the past realized
home price growth rate rt−d is the transition variable with d being the
delay parameter, which, in turn, indicates the number of periods rt−d

leads the switch in dynamics.
Teräsvirta and Anderson (1992) define the transition function F(.)

by using two alternative forms, namely the logistic smooth transition
autoregressive (LSTAR) model and the exponential smooth transition
autoregressive (ESTAR)model. In the LSTARmodel, F(.) is defined by a
logistic function, so that:

F rt−dð Þ = 1 + expf−γ rt−d−cgð �−1
;γ≻0

h
ð2Þ

while, F(.) in the ESTAR framework is captured as follows by an
exponential function:

F rt−dð Þ = 1−expf−γ rt−d−cð Þ2g; γ≻0 : ð3Þ

In the above equations γ is the speed of transition between
regimes and c measures the halfway point or threshold between the
two regimes. Eq. (1) combined with Eq. (2) produces the LSTAR(p)
model and Eq. (1) combined with Eq. (3) yields the ESTAR(p) model.
In STAR models, expansion and contraction are a representation of
two different economic phases, but transition between the two
regimes is smooth, controlled by rt−d (Sarantis, 2001). The LSTAR and
ESTAR models describe different dynamic behaviour. The LSTAR
model allows the expansion and contraction regimes to have different
dynamics whereas the ESTAR model suggests that the two regimes
have similar dynamics (Sarantis, 2001). We also take note that when
γ→∞, then the model degenerates into the conventional TAR(p),
while, when γ→0, then the model degenerates to the linear AR(p)
model (Teräsvirta and Anderson, 1992).

The procedure for constructing an appropriate STAR model for a
specific variable, comprises three stages:

a) Firstly a linear AR model needs to be specified, with the value of p
being chosen based on the unanimity of at least two of the popular
lag-length tests, namely, LR test statistic, Akaike information
criterion (AIC), Schwarz information criterion (SIC), the final
5 This part of the paper relies heavily on the discussion available in Kim and
Bhattacharya (2009), and, hence we retain their symbolic representation of the
equations.

Please cite this article as: Balcilar, M., et al., An in-sample and out-of-sa
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prediction error (FPE) criterion and the Hannan–Quinn (HQ)
information criterion;

b) Then we test for linearity against a nonlinear STARmodel, for differ-
ent values of the delay parameter d using the linear model in (a) as
the null, based on a Lagrangemultiplier smooth transition (LM-STR)
test for linearity. This boils down to estimating the following
auxiliary regression, asproposedbyTeräsvirta andAnderson (1992):

rt = ϕ0 + ∑
p

i=1
φ1;i:rt−i + ∑

p

i=1
φ2;i:rt−irt−d

+ ∑
p

i=1
φ3;i:rt−ir

2
t−d + ∑

p

i=1
φ4;i:rt−ir

3
t−d + ut

ð4Þ

with the null hypothesis of linearity beingH01:ϕ2i=ϕ3i=ϕ4i=0 for
all i. To get the appropriate values of the delay parameter d, the
estimation of Eq. (4) is carried out for a range of values, 1≤d≤D. In
the scenario, where linearity is rejected formore than one value of d,
then d is chosen such that d=arg min p(d) for 1≤d≤D.6

c) The choice between the LSTAR and ESTAR model, when linearity is
rejected, is then conducted by applying the sequence of nested tests,

1. H04:ϕ4i=0, i=1, … , p
2. H03:ϕ3i=0|ϕ4i=0, i=1, … , p
3. H02:ϕ2i=0|ϕ3i=ϕ4i=0, i=1, … , p.

A standard procedure, as discussed in Teräsvirta and Anderson
(1992), is then followed in the selection of the appropriate STAR
model. There are three possible sequential outcomes, given d:

i. The rejection of H04 :ϕ4i=0, implies the selection of the LSTAR
model.

ii. If H04 is not rejected, then we move to the second part of the
test, which tests if H03:ϕ3i=0|ϕ4i=0,. Rejection of H03 implies
the selection of the ESTAR model.

iii. If H03 is not rejected, then we move to the last component of
the test which tests H02:ϕ2i=0|ϕ3i=ϕ4i=0,. Rejection of H02

implies selection of the LSTAR model.

Various authors (Granger and Teräsvirta, 1993; Teräsvirta, 1994;
Eitrheim and Teräsvirta, 1996; Sarantis, 2001) argue that if this
sequence of tests is strictly applied then it may lead to wrong
conclusions since the higher order terms of the Taylor expansion
used in the derivation of these tests are ignored. Thus it is
recommended that one computes p-values for all the F-tests of Eqs.
(1)–(3) above. Then one can make the choice of the appropriate STAR
model based on the lowest p-value or highest F-statistic.

3. Data

Weuse quarterly house price data obtained from theABSA7Housing
Price Survey, for the period 1970:Q2 to 2009:Q3. The survey
distinguishes between three price categories as: affordable (R430,000
and area below 40 m2–79 m2), middle (R430,000 to R3.1 million) and
luxury (R3.1 million to R11.5 million). Thedata is further subdivided for
the middle segment of the housing market, based on sizes (square
meters), into small (80 m2–140 m2), medium (141 m2–220 m2) and
large (221 m2–400 m2). Given that Genesove and Mayer (2001) and
Engelhardt (2001) point out that sellers are averse to realizing losses in
nominal and not real terms, we follow Kim and Bhattacharya (2009)
and use nominal house prices, since it is nominal changes in house
prices that cause asymmetric effects on mobility and the housing
market in general.Weuse annual growth rate of houseprices,which are
measured with respect to the same quarter in the previous year.
6 p(d) is the p-value of the test.
7 ABSA is one of the leading private banks in South Africa.

mple empirical investigation of the nonlinearity in house prices of
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Table 2
Test of the appropriate STAR model.

Optimal
delay d

H04:
φ4i=0,
i=1,…,p

H03:
φ3i=0,
given
φ4i=0

H02: φ3i=0,
given
φ3i=φ4i=0

Selection
of model

Optimal
lag p

Large 3 0.0090* 0.0862 0.7736 LSTAR 8
Medium 3 0.0039* 0.3477 0.6431 LSTAR 7
Small 3 0.0014* 0.0310 0.0103 LSTAR 8
Luxury 4 0.0037* 0.6221 0.4193 LSTAR 7
Affordable 4 0.0038* 0.0000 0.0000 LSTAR 6

Notes: The values in the table are the p-values for the nested tests H04, H03, and H02. A ‘*’
indicates the lowest p-value for the three tests.

Table 1
LM-STR test for linearity.

Large
p*=8

Medium
p*=7

Small
p*=8

Luxury
p*=8

Affordable
p*=6

Optimal delay d 3 (0.0213) 3 (0.0303) 3 (0.0000) 4 (0.0347) 4 (0.0000)

Notes: The numbers in parenthesis are the lowest p-values associated with the H01:
ϕ2i=ϕ3i=ϕ4i=0 in Eq. (4) with the corresponding d.
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4. Empirical results8

In this section, we first start of with the LM-STR test for linearity
of house price growth rates, and then we conduct hypothesis tests to
select between the LSTAR and ESTAR models. Once we select the
appropriate STAR model, we then estimate the specific STAR model
and the linear AR model and compare the in-sample performance
over the period of 1970:Q2 till 2009:Q3. When conducting the (LM-
STR) test for linearity, as discussed above, the optimal lag, p, was
selected based on the unanimity of at least two of the popularly-used
lag-length tests. We allowed the delay lag, d, to vary over the range
1≤d≤8. The optimal delay lag d is estimated on the basis of lowest
p-value or highest F-statistic associated with the null hypothesis:
H01: ϕ2i=ϕ3i=ϕ4i=0 for all i.

From Table 1, we can conclude that the null hypothesis of linearity
can be rejected for all the five segments, with the null being rejected
at the 1% level for the small and affordable sections and at the 5%
level for the large, medium and luxury segments of the South African
housing market. Since all five categories of house price growth rates
are nonlinear, we now need to specify the appropriate STAR model to
capture accurately the non-linear dynamics (Table 2). As proposed by
Teräsvirta and Anderson (1992) and outlined in Section 2, we need to
test for the sequence of nested hypothesis tests H04, H03, and H02 for
the choice between LSTAR and ESTAR alternatives.

As observed from Table 3, we can deduce that the LSTAR model is
best-suited in describing the non-linear dynamics of all the five
segments of the South African housing market. The choice of the
LSTAR model suggests that the dynamics of the house price growth
rates is characterized by asymmetric dynamics during the phases of
contraction and expansion. Next, we provide further evidence of
nonlinearity by providing in-sample comparison based on the
estimation of the linear AR model, given in Eq. (5), and the nonlinear
LSTAR model described in Eq. (6):

rt = ϕ0 + ∑
p

i=1
ϕirt−i

� �
+ ut ð5Þ

and

rt = ϕ0 + ∑
p

i=1
ϕirt−i

� �
+ ρ0 + ∑

p

i=1
ρirt−i

� �
⋅ 1 + exp − γ

σ rtð Þ rt−d−cð Þ
� �� �−1

:

ð6Þ

Teräsvirta (1994) contends that for LSTAR models it is not easy to
carry out the joint estimation of (γ, c, ϕ0, ρ0, ϕi, ρi) since one faces
difficulties with the estimation of c and γ. When γ is large then c is
steep and a large number of observations in the neighbourhood of c
would be required to estimate γ, i.e., relatively large changes in γ
would have only a minor effect on shape of F(.). Thus the sequence of
estimates for γ may converge slowly. Note if γ is statistically
insignificant then Eq. (6) becomes the linear AR model. In accordance
with Teräsvirta (1994) we standardize the exponent of the function
F(.) of the LSTAR model by multiplying it by the term 1/σ(rt), where
σ(rt) is the standard deviation of the corresponding yearly house
price growth rate rt.

The results of the estimation of the LSTAR model and the AR
model have been tabulated in Tables 3 and 4, where we use the
nonlinear least-squares (NLS) to estimate the LSTAR model.9 Note, it
8 All computations in this paper have been carried out with the RSTAR package
(Version 0.1–1) in R developed by the first author of the paper.

9 Following the suggestions of van Dijk et al. (2002), a battery of misspecifications
tests, namely, no residual autocorrelation parameter constancy, no remaining non-
linearity, no autoregressive conditional heteroskedasticity (ARCH), besides the test of
normality, were carried out for the LSTAR model. The estimated LSTAR models for all
the five segments were found to be free from any type of misspecification. These
results are available upon request from the authors.
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is the logistic function which conditions the autoregressive para-
meters to change smoothly with lagged realized changes in the
growth rates of home prices in the LSTAR model that generates the
endogenous nonlinearity. When we compare the estimation results
over the period 1970:Q2 to 2009:Q3 for the AR and the LSTAR
models, the following features pointing to the superiority of the
non-linear estimation emerge: (a) The measures of the standard
error and the log likelihood value of the nonlinear regression show a
significant improvement over the corresponding values obtained
from the linear regression; (b) The adjusted R2 value in the
nonlinear regression is always higher than the corresponding value
under the linear regression, implying that a large portion of variance
in the house price growth rates in the long-run is associated with
nonlinear dynamics; (c) As reported, most of the estimates of the
coefficients of the nonlinear portion of Eq. (6), i.e., ρis, are
statistically significant, and; (d) The value of γ, which governs the
speed of transition between regimes, is always positive as expected
and is statistically significant at the 10% level or better. The
statistical significance of γ confirms the presence of nonlinearity
outlined by the LSTAR model. These results together provide strong
evidence that the LSTAR model appropriately captures the inherent
non-linearity in the long horizon house price growth rates in the five
segments of the South African housing market. Thus a linear model
would clearly be misspecified since it does not allow the dynamics of
home price growth rates to evolve smoothly between regimes
depending on the sign and magnitude of past realization of home
price growth rates.10

It is important to note that γ is relatively small for all the
categories of house price growth rates except for the small segment.
Relatively small estimates of γ suggests a slower transition from one
regime to another, which is, in turn, in contrast with the TAR or
10 The Ramsey model specification test provides further evidence of nonlinearity in
the housing price growth rates of the five segments. The null hypothesis that the
correct specification is a linear AR model, against a nonlinear LSTAR model, is rejected
at the 1% level of significance for all the five cases. Note the appropriate F-statistic for

the test is:
R2
nonlinear−R2

linear

� �
=m

1−R2
nonlinear

� �
= n−kð Þ, where Rnonlinear

2 (Rlinear2 ) is the R2 of the LSTAR (AR)

model, m denotes the number of restrictions in the linear AR model and k measures
the number of parameters in the LSTAR model. The values of the F-statistic for the
large, medium, small, luxury and affordable sections were respectively: 21.3594,
11.7915, 34.8803, 11.6411 and 124.4432.

mple empirical investigation of the nonlinearity in house prices of
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Table 3
Estimation of the LSTAR model.

Large: adjusted R2=0.942435, SER=2.1282, LLV=−326.1296
rt = 0:9527 0:0172ð Þ + 1:9295rt−1 0:0000ð Þ−1:7276rt−2 0:0000ð Þ + 1:3858rt−3 0:0000ð Þ

−1:4175rt−4 0:0000ð Þ + 1:2626rt−5 0:0000ð Þ−0:6366rt−6 0:0000ð Þ + 0:1037rt−8 0:0021ð Þ
+ ð5:9853 0:0013ð Þ−0:5839rt−1 0:0001ð Þ + 1:3606rt−2 0:0000ð Þ−1:5065rt−3 0:0000ð Þ
+ 1:1312rt−4 0:0046ð Þ−1:0456rt−5 0:0009ð Þ + 0:7290rt−6 0:0019ð Þ
−0:3042rt−8 0:0111ð ÞÞ × 1 + expf−8:8080 rt−3 0:0032ð Þ−19:8674 0:9981ð Þð Þg½ �−1

Medium: adjusted R2=0.965983, SER=1.7804, LLV=−301.3587
rt = 0:39504 0:1399ð Þ + 2:0503rt−1 0:0000ð Þ−1:71736rt−2 0:0000ð Þ + 1:2947rt−3 0:0000ð Þ

−1:5777rt−4 0:0000ð Þ + 1:5711rt−5 0:0000ð Þ−0:8225rt−6 0:0000ð Þ
+ 0:1725rt−7 0:0462ð Þ + ð9:7308 0:0090ð Þ−0:9474rt−1 0:0000ð Þ + 1:2618rt−2 0:0000ð Þ
−1:2712rt−3 0:0002ð Þ + 1:4053rt−4 0:0047ð Þ−0:9035rt−5 0:0077ð ÞÞ
× 1 + expf−5:5690 rt−3 0:0156ð Þ−30:7287 0:0000ð Þð Þg½ �−1

Small: adjusted R2=0.956223, SER=2.0193, LLV=−318.2516

rt = 1:3205 0:0010ð Þ + 1:4527rt−1 0:0000ð Þ−0:7125rt−2 0:0000ð Þ + 0:8697rt−3 0:0000ð Þ
−1:4370rt−4 0:0000ð Þ + 0:9296rt−5 0:0000ð Þ−0:3852rt−6 0:0504ð Þ + 0:5676rt−7 0:0000ð Þ
−0:3978rt−8 0:0000ð Þ + ð−2:1363 0:2096ð Þ + 0:3755rt−1 0:0096ð Þ−0:4890rt−2 0:0093ð Þ
+ 0:8497rt−5 0:0005ð Þ−0:4908rt−6 0:0712ð Þ
−0:3101rt−8 0:0017ð ÞÞ × 1 + expf−126:8074 rt−3 0:0188ð Þ−21:5245 0:0000ð Þð Þg½ �−1

Luxury: adjusted R2=0.721693, SER=5.2717, LLV=s−465.2763

rt = 3:4527 0:0006ð Þ + 1:1511rt−1 0:0000ð Þ−0:5182rt−2 0:0000ð Þ + 0:3160rt−3 0:0008ð Þ
−0:7613rt−4 0:0000ð Þ + 0:3923rt−5 0:0000ð Þ + ð3:9178 0:0347ð Þ
−0:2680rt−7 0:0007ð ÞÞ × 1 + expf−29:4707 rt−4 0:0000ð Þ−11:7210 0:9995ð Þð Þg½ �−1

Affordable: adjusted R2=0.9008, SER=6.5703, LLV=−501.8283
rt = −13:4349 0:0002ð Þ + 1:2648rt−1 0:0000ð Þ−1:1212rt−2 0:0000ð Þ−2:0792rt−4 0:0000ð Þ

+ 1:1639rt−5 0:0000ð Þ−0:7423rt−6 0:0000ð Þ−0:3852rt−6 0:0000ð Þ
+ ð16:6382 0:0000ð Þ + 0:2220rt−1 0:0706ð Þ + 0:7424rt−3 0:0000ð Þ + 1:4184rt−4 0:0000ð Þ
−0:6588rt−5 0:0066ð Þ + 0:5022rt−6 0:0000ð ÞÞ
× 1 + expf−7:7768 rt−4 0:0537ð Þ−11:5396 0:0000ð Þð Þg½ �−1

Notes: The values in the parenthesis correspond to the p value; SER, standard error of
regression; LLV, log likelihood value. We include only significant lags following
Teräsvirta (1994) and Sarantis (2001).
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Markov switching models where one witnesses sudden switch
between regimes, given that the estimate of γ tends to infinity. The
fact that the parameter γ takes a value of 126.8074 for the small
Table 4
Estimation of the AR model.

Large: adjusted R2=0.937389, SER=2.365968, LLV=−337.3782
rt=0.849136 (0.0275)+1.780462rt−1(0.0000)

−1.359759rt−2(0.0000)+0.987180rt−3(0.0000)
−0.994519rt−4(0.0000)+0.846320rt−5(0.0000)+0.172149rt−8(0.0234)

Medium: adjusted R2=0.965060, SER=1.908279, LLV=−307.7264
rt=0.627505(0.0306)+2.041448rt−1 (0.0000)

−1.749766rt−2(0.0000)+1.319690rt−3(0.0000)
−1.570302rt−4(0.0000)+1.575341rt−5(0.0000)
−0.882169rt−6(0.0000)+0.208929rt−7(0.0104)

Small: adjusted R2=0.947878, SER=2.339952, LLV=−335.7197
rt=1.460725(0.0001)+1.580604rt−1(0.0000)−0.907154rt−2(0.0000)

+0.864273rt−3(0.0000)−1.420194rt−4(0.0000)
+1.072038rt−5(0.0000)−0.413761rt−6(0.0096)
+0.499351rt−7(0.0007)−0.398282rt−8(0.0000)

Luxury: adjusted R2=0.698159, SER=5.663563, LLV=−468.3081
rt=4.980659(0.0000)+1.121342rt−1(0.0000)

−0.511161rt−2 (0.0001)+0.378676rt−3(0.0052)
−0.726343rt−4(0.0000)+0.498261rt−5 (0.0002)

Affordable: adjusted R2=0.819200, SER=9.309189, LLV=−551.2078
rt= 5.418556(0.0000)+1.538784rt−1(0.0000)−1.325532rt−2(0.0000)

+0.945101rt−3 (0.0000)−1.000029rt−4 (0.0000)
+0.782214rt−5(0.0000)−0.351645rt−6(0.0000)

Notes: The values in the parenthesis correspond to the p value; SER, standard error of
regression; LLV, log likelihood value. We include only significant lags following
Teräsvirta (1994) and Sarantis (2001).
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segment is an indication of the households in this category to trade
up very quickly especially during the upswing phase of the housing
market. The parameter c representing the half-way point between
regimes is positive for all the five segments of the housing market,
and, hence, indicates that similar value of house price growth rate
shock triggers a shift in regimes. However note, the value of c is not
significant for the large and the luxury housing categories.

5. Forecast accuracy

Having established that house price growth rates in the South
African housing market should be modelled via a LSTAR framework, in
this section we compare the forecast performances of the non-linear
model with those of the classical and Bayesian versions of the linear AR
models. The decision to use a Bayesian variant of the classical linear AR
framework emanates from the general finding in the forecasting
literature that Bayesian models which impose prior restrictions on the
mean and variance of the classical AR models tend to perform better.11

For this forecasting exercise, we choose an out-of-sample horizon of
2001:Q1 to 2009:Q3 and thus, use an in-sample of 1970:Q2 to 2000:Q4.
This provides 35 observations for evaluating the out-of-sample forecast
performance. As mentioned before, the end-point of the out-of-sample
horizon is data-driven, the starting point precedes the rapid run-up and
then collapse of house prices experienced over the last decade in the
South African economy, as indicated in Fig. 1.

Before we present the forecast performances of the alternative
models, it is important to outline the restrictions on the priors in the
Bayesian AR (BAR). The Bayesian method imposes restrictions on the
coefficients acrossdifferent lag lengths, assuming that the coefficients of
longer lags may approach zero more closely than the coefficients on
shorter lags. If however, stronger effects come from longer lags, thedata
can override this initial restriction. Researchers impose the constraints
by specifying normal prior distribution with zero mean and small
standard deviation for most coefficients, where the standard deviation
decreases as the lag length increases, implying that the zero-meanprior
holdswithmore certainty. Thefirst own-lag coefficient in eachequation
is the exception with a unitary mean. Finally, a diffuse prior is imposed
on the constant. We employ this “Minnesota prior” in our analysis,
where we implement the Bayesian variants of the classical AR models.

Formally, themeans of theMinnesota prior take the following form:

ϕi e N 1;σ2
ϕi

� 	
andϕj e N 0;σ2

ϕj

� 	
ð7Þ

where ϕi equals the coefficients associated with the lagged dependent
variable in each equation of the AR model (i.e., the first own-lag
coefficient), while ϕj equals any other coefficient. In sum, the prior
specification reduces to a random-walk with drift model for each
variable, if we set all variances to zero. The prior variances,σϕi

2 andσϕj

2,
specify uncertainty about the prior means, ϕi=1, and ϕj=0. However,
given that in our case, all the five yearly house price growth rates are
stationary, we adopt the specification in Banbura et al. (2010) and
Bloor and Matheson (2008), and set a white-noise prior (i.e., ϕ

−
i=0).

Doan et al. (1984) propose a formula to generate standarddeviations
that depend on a small numbers of hyper-parameters: w, d, and a
weightingmatrix f(i, j). The specification of the standarddeviationof the
distribution of the prior imposed on variable j in equation i at lagm, for
all i, j and m, equals S(i, j, m), defined as follows:

S i; j;mð Þ = w × g mð Þ × f i; jð Þ½ �σ̂ i

σ̂ j
; ð8Þ
11 Refer to Das et al. (2008, forthcoming-a) and Gupta and Das (2008) for further
details.
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where f(i, j)=1, if i= j and kij otherwise, with (0≤kij≤1), and g(m)=
m−d, with dN0. The estimated standard error of the univariate
autoregression for variable i equals σ̂ i. The ratio σ̂ i =σ̂ j scales the
variables to account for differences in the units of measurement and,
hence, causes the specification of the prior without consideration of the
magnitudes of the variables. The termw indicates the overall tightness,
with the prior getting tighter as the value falls. The parameter g(m)
measures the tightness on lag m with respect to lag 1, and equals a
harmonic shape with decay factor d, which tightens the prior at longer
lags. The parameter f(i, j) equals the tightness of variable j in equation i
relative to variable i, and by increasing the interaction (i.e., the value of
kij), we loosen the prior. We estimate the alternative BARs using Theil's
(1971) mixed estimation technique. Essentially, the method involves
supplementing the data with prior information on the distribution of
the coefficients. The number of observations and degrees of freedom
increase artificially by one for each restriction imposed on the
parameter estimates. For the BAR models, we start with a value of
w=0.1 and d=1.0, and then increase the value to w=0.2 to account
for more influences from variables other than the first own lags of the
dependant variables of the model. In addition, as in Dua and Ray
(1995), Gupta and Sichei (2006), Gupta (2006), Gupta and Miller
(2009) and Gupta et al., forthcoming, we also estimate the BAR with
w=0.3 and d=0.5. We also introduce d=2 to increase the tightness
on lag m. Finally, kij is set equal to 0.001 (Gupta and Sichei, 2006).

In Table 5, we compare the forecast performances of the LSTAR,
classical AR and the BAR models, with the latter being estimated under
different parameterization of w and d to account for various degrees of
Table 5
One- to four-quarters-ahead RMSEs of house price growth rates from univariate models
(2001:Q1–2009:Q3).

Segments Models QA

1 2 3 4

Large AR 2.3064 4.6731 6.6471 8.4807
BAR1 2.3279 4.7211 6.7797 8.6807
BAR2 2.6149 4.9080 6.8485 8.5741
BAR3 2.9304 5.1872 7.0297 8.5801
BAR4 2.6828 4.8503 6.6489 8.1957
BAR5 2.9498 5.1455 6.8889 8.3117
LSTAR 2.2385 4.6511 6.2433 7.4299

Medium AR 1.7399 4.1979 6.6155 8.7820
BAR1 1.7956 4.2276 6.6694 8.9093
BAR2 2.0599 4.5086 6.8608 8.9309
BAR3 2.4757 4.9960 7.2755 9.2147
BAR4 2.2659 4.7665 7.0346 8.9682
BAR5 2.7259 5.3257 7.5269 9.3277
LSTAR 1.3021 3.3834 5.5225 7.6528

Small AR 1.9980 4.4696 6.8375 9.0661
BAR1 2.0772 4.5347 6.9668 9.3587
BAR2 2.3815 4.9128 7.2607 9.2880
BAR3 2.8626 5.5046 7.7538 9.5257
BAR4 2.6718 5.3166 7.5621 9.3572
BAR5 3.0905 5.7886 7.9398 9.5765
LSTAR 2.0152 4.5746 6.7427 9.2772

Luxury AR 3.4589 5.6949 6.6357 7.0589
BAR1 3.4620 5.6302 6.5750 6.9553
BAR2 3.7279 5.7850 6.6256 6.8933
BAR3 4.1238 5.9977 6.6285 6.7480
BAR4 3.7173 5.5956 6.2984 6.5621
BAR5 4.0765 5.8547 6.4217 6.5728
LSTAR 3.2237 5.2773 5.8535 6.5774

Affordable AR 2.9728 6.4199 8.6318 9.2449
BAR1 3.2095 6.6379 8.7709 9.3920
BAR2 3.3060 6.2919 8.1404 8.6139
BAR3 3.5814 6.0777 7.4544 7.8011
BAR4 2.9433 5.2845 6.6985 7.2397
BAR5 3.1979 5.2267 6.3584 6.8426
LSTAR 2.2766 5.0528 7.0189 8.0698

Notes: QA: Quarter(s) Ahead; BAR1: w=0.3, d=0.5; BAR2: w=0.2, d=1.0; BAR3:
w=0.1, d=1.0; BAR4: w=0.2, d=2.0; BAR5: w=0.1, d=2.0.
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tightness (from most loose to most tight) of the prior-structure. We
estimate the univariate models over the period 1970:Q2 to 2000:Q4,
and then forecast from 2001:Q1 through 2009:Q3. Since we use eight,
seven, eight, eight and six lags for the large, medium, small, luxury and
affordable segments respectively, the initial eight, seven, eight, eight
and six quarters from 1970:Q2 for the respective categories feed the
lags. We re-estimate the models each quarter over the out-of-sample
forecast horizon in order to update the estimate of the coefficients,
before producing the four-quarters-ahead forecasts. We implement
this iterative estimation and the four-quarters-ahead forecast proce-
dure for 35 quarters, with the first forecast beginning in 2001:Q1. This
produces a total of 35 one-quarter-ahead forecasts, 35 two-quarter-
ahead forecasts, …, up to 35 four-quarters-ahead forecasts.12 We
calculate the root mean squared errors (RMSE)13 for the 35 one-, two-,
three-, and four-quarters-ahead forecasts for the real house price index
of the models. We then examine the average of the RMSE statistic for
one-, two-, three-, and four-quarters ahead forecasts over the 2001:Q1
to 2009:Q3 period.

As can be seen fromTable 5, barring the one-, two and four-quarters-
ahead forecast obtained from the classical AR model for the small–
middle segment, the LSTAR model always outperforms the AR models
whether estimated under classical or Bayesian models. Interestingly,
unlike in the literature, the classical AR model outperforms all the BAR
models. The result is in linewith the fact thatmanyof the coefficients on
the longer lags in the linear AR model is significant and different from
zero, as seen from Table 4, and, hence, tends to invalidate the Bayesian
prior assumption on the mean of the coefficients. The evidence on the
best performing BAR models is mixed. Following the literature (see for
example, Das et al., 2008, 2010, forthcoming, and references cited there
in for further details) on forecasting with Bayesian (V)AR models, we
use the average RMSEs over one- to four-quarters-ahead to find that
BAR1 (w=0.3 and d=0.5) performs the best for themedium and small
segments, the BAR4 (w=0.2 and d=2.0) outperforms other BAR
models for the large and luxury segments, while, for the affordable
section of the housing market, the best suited BAR model is the BAR 5
model, with (w=0.1 and d=2.0).

Though the main objective of this paper is to analyze non-linearity
individually in the house prices of the five segments, the possibility of
causal influence amongst these house prices cannot be ignored. In fact,
as shown inTable 6, causality tests revealed strongevidence of the same.
In light of this,we also estimate and forecast themultivariate versions of
the linear and non-linearmodels. For the Bayesian VAR, we retained the
parameterization ofw and dused in the BayesianARmodels, but change
kij=0.5, as popularly used in the literature. The basics of a multivariate
LSTAR (MLSTAR) model can be summarized as follows:

The specification of MSTAR models follows the procedure used for
the univariate STARmodels. Define yt=(y1t, y2t,⇌,ykt)′ as (k×1) vector
time series. In our case, y=(Large,Medium,Small,Luxury,Affordable)′,
where all variables are in logarithms. We specify the k-dimensional
MSTAR model as follows:

Δ4yt = Θ1;0 + ∑
p

j=1
Θ1;jΔyt−j

 !
+ Θ2;0 + ∑

p

j=1
Θ2;jΔ4yt−j

 !
G st;γ; cð Þ + εt ;

ð9Þ

whereΔ4 denotes thequarterly differenceoperator such thatΔ4xt=xt−
xt−4, Θi, 0, i=1,2, are (k×1) vectors, Θi, j, i=1,2, j=1,2,⇌,p, are (k×k)
12 For this, we used the Kalman filter algorithm in RATS (Version 7.0) for the AR and
BAR models. While, the recursive forecasts from the LSTAR model is based on 2000
bootstrap replications, since analytical point forecasts are not available for non-linear
AR models when the disturbance term is Gaussian even when h≥2,asE[f(x)]≠ f[E(x)],
where h is the number of steps-ahead for the forecasts. Details of the bootstrapping
procedure are available upon request from the authors.
13 Note that if At+h denotes the actual value of a specific variable in period t+h and

tFt+h equals the forecast made in period t for t+h, the RMSE statistic equals the

following:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

1 tFt+h−At+h
� �2

=N
q

where N equals the number of forecasts.
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Table 6
VAR Granger causality/block exogeneity Wald tests.

Excluded Chi-sq df Prob.

Dependent variable: LARGE
MEDIUM 34.32604 8 0.0000
SMALL 13.35981 8 0.1001
LUXURY 13.05156 8 0.1101
AFFORDABLE 13.93679 8 0.0834
All 95.57204 32 0.0000

Dependent variable: MEDIUM
LARGE 37.48630 8 0.0000
SMALL 23.51406 8 0.0028
LUXURY 4.812892 8 0.7774
AFFORDABLE 2.578906 8 0.9579
All 86.61967 32 0.0000

Dependent variable: SMALL
LARGE 6.000619 8 0.6472
MEDIUM 24.87303 8 0.0016
LUXURY 5.419474 8 0.7119
AFFORDABLE 13.45155 8 0.0972
All 110.6922 32 0.0000

Dependent variable: LUXURY
LARGE 14.38929 8 0.0722
MEDIUM 20.46393 8 0.0087
SMALL 6.858180 8 0.5520
AFFORDABLE 20.86293 8 0.0075
All 56.00612 32 0.0054

Dependent variable: AFFORDABLE
LARGE 10.73026 8 0.2175
MEDIUM 7.917962 8 0.4415
SMALL 11.51856 8 0.1740
LUXURY 10.16040 8 0.2539
All 42.92864 32 0.0939

Table 7
One- to four-quarters-ahead RMSEs of house price growth rates from multivariate
models (2001:Q1–2009:Q3).

Segments Models QA

1 2 3 4

Large VAR 1.8342 4.2076 6.5169 8.8474
BVAR1 2.1983 4.4559 6.4477 8.3087
BVAR2 2.3720 4.3253 6.0770 7.7498
BVAR3 2.6385 4.5647 6.2745 7.8759
BVAR4 2.4448 4.2959 5.9492 7.5220
BVAR5 2.7107 4.6432 6.2984 7.7886
MSTAR 1.2315 2.8660 4.2998 5.6596

Medium VAR 1.5230 4.0192 6.7186 9.5419
BVAR1 1.7737 4.1264 6.5441 8.8587
BVAR2 1.9245 4.2364 6.4681 8.4925
BVAR3 2.2916 4.7131 6.9345 8.8551
BVAR4 2.1467 4.5782 6.7544 8.5875
BVAR5 2.5987 5.1517 7.3019 9.0353
MSTAR 0.7950 2.1364 3.6089 5.1556

Small VAR 2.2468 5.0138 7.2608 9.9139
BVAR1 2.2535 4.5907 6.8039 9.0062
BVAR2 2.3335 4.5987 6.6337 8.4876
BVAR3 2.7302 5.1179 7.1483 8.8699
BVAR4 2.6013 5.0531 7.0903 8.7820
BVAR5 3.0500 5.6553 7.7317 9.3765
MSTAR 1.1606 2.7100 4.2094 5.8529

Luxury VAR 3.6252 5.8442 6.9924 7.3924
BVAR1 3.9107 6.2952 7.3144 7.6294
BVAR2 3.8819 6.0285 6.9600 7.2427
BVAR3 4.0858 6.0023 6.7304 6.8889
BVAR4 3.8076 5.6874 6.3714 6.5275
BVAR5 4.1344 5.9491 6.5300 6.6257
MSTAR 1.8810 3.3623 4.5137 5.6317

Affordable VAR 4.9578 11.5256 15.1037 16.4163
BVAR1 5.5046 11.1813 14.4068 15.2496
BVAR2 5.2487 9.9510 12.4820 12.6338
BVAR3 5.5468 9.3403 11.0710 10.9772
BVAR4 4.8294 8.7656 10.9426 11.4140
BVAR5 5.0296 8.3231 10.0755 10.6504
MSTAR 1.3754 3.5085 5.2056 6.1756

Notes: QA: Quarter(s) Ahead; BVAR1: w=0.3, d=0.5; BVAR2: w=0.2, d=1.0;
BVAR3: w=0.1, d=1.0; BVAR4: w=0.2, d=2.0; BVAR5: w=0.1, d=2.0.

14 We would like to thank an anonymous referee for bringing this to our notice.
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matrices, and εt=(ε1t,ε2t,⇌,εkt) is a k-dimensional vector ofwhite noise
processes with zero mean and nonsingular covariance matrix Σ, G(⋅)is
the transition function that controls smooth moves between the two
regimes, and st is the transition variable. In both univariate and
multivariate cases, we allow the transition variable st to equal any
lagged component of yt. The MSTAR model in Eq. (9) defines two
regimes, one associated with G(st ;γ,c)=0 and another associated with
G(st ;γ,c)=1. The transition fromone regime to the other is smooth and
determinedby the shapeof theG(⋅) function. In this paper,we consider a
logistic transition function, Eq. (2):

G st;γ; cð Þ = 1
1 + expf−γ st−cð Þ=σ̂sg

; γ N 0;

where σ̂s is the estimate of the standard deviation of transition variable
st. The parameter c is the threshold determining the midpoint between
two regimes at G(c;γ,c)=0.5. The speed of transition between the
regimes is determined by the parameter γ, with higher values
corresponding to faster transition. To specify the MSTAR models, we
follow the procedure presented in Terasvirta (1998) (see also van Dijk,
et al., 2002; Lundbergh and Terasvirta, 2002). The first step specifies the
lag order of p=8. The next step tests linearity against the MSTAR
alternative. Since the MSTAR model contains parameters not identified
under the alternative,we follow theapproach of Luukkonen et al. (1988)
and replace the transition function G(⋅)with a suitable Taylor approx-
imation to overcome the nuisance parameter problem. The testing
procedure selects a logistic MSTAR model with a single threshold. The
third step in our MSTAR model identification selects the transition
variable st. Although a wider selection is available in the multivariate
case, we use the transition variables determined in the univariate case.

The results form the forecasting exercise obtained from the multi-
variate models are presented in Tables 7 and 8. Table 7 compares across
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the multivariate models, while Table 8 compares the best performing
univariatemodel relative to all themultivariatemodels. Table 7 indicates
that the MSTAR always outperforms the linear classical and Bayesian
VAR models. Within, the linear VAR models, there always exists a BVAR
model that beats its classical counterpart on average. Specifically, the
optimal Bayesian models are as follows: BVAR4 (w=0.2, d=2.0) for
large and luxury segments, BVAR2 (w=0.2, d=1.0) for middle and
small segments andBVAR5 (w=0.1,d=2.0) for theaffordable segment.
Further, as can be seen from Table 8, though there is no sufficiently
strong evidence of the multivariate linear models outperforming the
best-performing linear and non-linear univariate models, the MLSTAR
model is clearly the overwhelming favorite. Thus from a forecasting
perspective, our results highlight the importance of accounting for non-
linearity, as well as the possible interrelationship amongst the variables
under consideration.14

6. Conclusion

A large number of recent papers have shown that there exists a
strong link between the housing market and economic activity. In
addition, these papers have also highlighted the fact that house price
movements lead real activity or inflation, or both. In this backdrop,
models that forecast house pricemovements can provide policymakers
with an idea about the direction of the economy, and hence, a better
mple empirical investigation of the nonlinearity in house prices of
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Table 8
One- to four-quarters-ahead ratio of RMSEs of multivariate models with best-
performing univariate models of house price growth rates (2001:Q1–2009:Q3).

Segments Models QA

1 2 3 4

Large VAR 0.8194 0.9046 1.0438 1.1908
BVAR1 0.9821 0.9580 1.0327 1.1183
BVAR2 1.0597 0.9299 0.9734 1.0431
BVAR3 1.1787 0.9814 1.0050 1.0600
BVAR4 1.0922 0.9236 0.9529 1.0124
BVAR5 1.2110 0.9983 1.0088 1.0483
MLSTAR 0.5502 0.6162 0.6887 0.7617

Medium VAR 1.1697 1.1879 1.2166 1.2469
BVAR1 1.3622 1.2196 1.1850 1.1576
BVAR2 1.4781 1.2521 1.1712 1.1097
BVAR3 1.7600 1.3930 1.2557 1.1571
BVAR4 1.6487 1.3531 1.2231 1.1221
BVAR5 1.9958 1.5227 1.3222 1.1807
MLSTAR 0.6106 0.6314 0.6535 0.6737

Small VAR 1.1245 1.1217 1.0768 1.0935
BVAR1 1.1278 1.0271 1.0091 0.9934
BVAR2 1.1679 1.0289 0.9838 0.9362
BVAR3 1.3665 1.1450 1.0602 0.9784
BVAR4 1.3019 1.1305 1.0516 0.9687
BVAR5 1.5265 1.2653 1.1467 1.0342
MLSTAR 0.5809 0.6063 0.6243 0.6456

Luxury VAR 1.1246 1.1074 1.1946 1.1239
BVAR1 1.2131 1.1929 1.2496 1.1599
BVAR2 1.2042 1.1423 1.1890 1.1011
BVAR3 1.2674 1.1374 1.1498 1.0473
BVAR4 1.1811 1.0777 1.0885 0.9924
BVAR5 1.2825 1.1273 1.1156 1.0073
MLSTAR 0.5835 0.6371 0.7711 0.8562

Affordable VAR 2.1778 2.2811 2.1519 2.0343
BVAR1 2.4180 2.2129 2.0526 1.8897
BVAR2 2.3056 1.9694 1.7783 1.5656
BVAR3 2.4365 1.8486 1.5773 1.3603
BVAR4 2.1213 1.7348 1.5590 1.4144
BVAR5 2.2093 1.6472 1.4355 1.3198
MLSTAR 0.6042 0.6944 0.7417 0.7653

Notes: The best-performing univariate models is the LSTAR model for all housing
segments and quarters, barring 1, 2 and 4 quarter(s) ahead forecasts for the small
middle-segment; QA: Quarter(s) Ahead; BVAR1: w=0.3, d=0.5; BVAR2: w=0.2,
d=1.0; BVAR3: w=0.1, d=1.0; BVAR4: w=0.2, d=2.0; BVAR5: w=0.1, d=2.0.
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control for designing appropriate policies. Thus, it is of paramount
importance that one can deduce the underlying nature of the data-
generatingprocess for house price, i.e.,whether it is linear or non-linear,
as the presumption of house prices being linear could lead to incorrect
forecasts for not only house prices, but the economy in general.

Against this backdrop, this paper first tests whether house prices in
the five segments of the South African housing market, namely, large,
medium, small, luxury and affordable, exhibit non-linearity based on
the smooth transition autoregressive (STAR) models estimated using
quarterly data from 1970:Q2 to 2009:Q3. Second, we compare the one-
to four-quarters-ahead out-of-sample forecasting performances of the
non-linear time series models with those of the classical and Bayesian
versions of the linear autoregressive (AR) models for each of these
segments, over an out-of-sample horizon of 2001:Q1 to 2009:Q3, using
an in-sample of 1970:Q2 to 2000:Q4. We find overwhelming evidence
of non-linearity in these five segments based on in-sample statistical
tests. Specifically, we obtain that the LSTAR framework is statistically
preferable over the ESTAR framework in describing house price growth
rate movements in all the five segments of the South African housing
market, implying that the expansion and contraction regimes have
different dynamics. More importantly, our results imply that a linear
model would clearly be misspecified since it does not allow the
dynamics of home price growth rates to evolve smoothly between
regimes depending on the sign and magnitude of past realization of
home price growth rates. We then provide further support for non-
linearity by comparing one- to four-quarters-ahead out-of-sample
Please cite this article as: Balcilar, M., et al., An in-sample and out-of-sa
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forecasts of the LSTAR model with those of the classical and Bayesian
versions of the linear autoregressive (AR)models over anout-of-sample
horizon of 2001:Q1 to 2009:Q3, using an in-sample of 1970:Q2 to 2000:
Q4. Our results indicate that barring the one-, two and four-step(s)-
ahead forecasts of the small–middle-segment the LSTAR model always
outperforms the linearmodels. In addition, given the existence of strong
causal relationship amongst the house prices of the five segments,
multivariate versions of both linear (classical and Bayesian) and non-
STAR models were estimated. Though there is not enough evidence of
themultivariate linearmodels to outperform thebest-performing linear
and non-linear univariate models, the MLSTAR model is by far the
overwhelming favorite. Our paper thus highlights the importance of not
presuming the movements of house prices as linear.

Rapach and Strauss (2007, 2009) and Das et al. (2008, 2010,
forthcoming) report evidence that numerous economic variables, such
as income, interest rates, construction costs, labor market variables,
stock prices, industrial production, and consumer confidence index
potentially predict movements in house prices and the housing sector,
and hence, show that large-scale models like the dynamic factor model
(DFM), factor-augmented VAR (FAVAR) or large-scale Bayesian VAR
forecast much better than small-scale pure time series models of house
prices (i.e., models that contain only the house price in levels or growth
rates). Given this, further research could focus on comparing the
forecast performance of these large-scalemodels, involving hundreds of
variables, with an appropriate pure non-linear time series model,
especially if there is evidence to suggest that the underlying data
generating process for house price is non-linear. In addition, one can go
beyond point forecasts and look at interval and density forecast
comparisons across linear and non-linear models as in Rapach and
Wohar (2006a).
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