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a b s t r a c t

This paper proposes a model predictive control (MPC) approach to the periodic implementation of the
optimal solutions of a class of resource allocation problems in which the allocation requirements and
conditions repeat periodically over time. This special class of resource allocation problems includes many
practical energy optimization problems such as load scheduling and generation dispatch. The convergence
and robustness of theMPC algorithm is proved by invoking results from convex optimization. To illustrate
the practical applications of the MPC algorithm, the energy optimization of a water pumping system is
studied.
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1. Introduction

There is a particular class of problems in resource allocation
and energy appliance scheduling pertaining to special periodic
constraints in minimizing objective functions. This class of prob-
lems includes the scheduling of appliances (pumps, conveyor belts,
generators, etc.) on a daily or weekly basis. The demand, opera-
tion conditions, and constraints change only periodically during
this time. For the purpose of this paper, this class of problems
are called Optimal Dynamic Resource Allocation Problems (ODRAP).
Such problems will usually be solved over one period, e.g. 24 h,
and the optimal solution will be repeatedly implemented for other
periods without considering interactions between periods (Mid-
delberg, Zhang, & Xia, 2009). The interaction between periods of
implementation is whatmakes the ODRAP different from those re-
source allocation and scheduling problems generally studied (see
Aissi, Bazgan, andVanderpooten (2009), Belfares, Klibi, Lo, andGui-
touni (2007), Biegler and Zavala (2009), Ibaraki and Katoh (1988),
Lee, Kumara, and Gautam (2007), Lee and Lee (2006), Munawar
and Gudi (2005), Pasadyn, Lee, and Edgar (2008), Patriksson (2008)
and Zafra-Cabeza, Ridao, and Camacho (2008) and the references
therein). In these papers, the research is focused on developing
various algorithmic approaches to resource allocation problems

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Lalo Magni under
the direction of Editor Frank Allgöwer.
∗ Corresponding author. Tel.: +27 12 4202165; fax: +27 12 3625000.

E-mail addresses: zhang@up.ac.za (J. Zhang), xxia@postino.up.ac.za (X. Xia).

in which periodic constraints may not exist. Even though periodic
constraints are included in the problem, the corresponding back-
grounds are either not applicable to ODRAP or not explicitly dis-
cussed. A lack of discussion particularly pertaining to the periodic
implementations of optimal solutions for periodic resource alloca-
tion problems exists. Theremay, in fact, be unintended interactions
between two periods when an optimal solution of an ODRAP for
one period is implemented over consequent periods. A ramp rate
violation, for example, may occur when the optimal solution of the
dynamic economic dispatch (DED) problem over the first day (Xia,
Zhang, & Elaiw, 2009) is simply implemented in the second day.
This ramp rate violation actually implies that the constraints in an
ODRAP formulation forDEDare inadequate for periodic implemen-
tation. This problem is solved by introducing more constraints and
thus formulating a new ODRAP, or a Perfect Optimal Dynamic Re-
source Allocation Problem (PODRAP). Furthermore, Xia et al. (2009)
also proposes an algorithm to solve this revised dynamic economic
dispatch problem by themodel predictive control (MPC) approach.
The same approach will be extended to the general PODRAP in this
paper.

The ability of the MPC to handle constraints, being able to
use simple models, and its closed-loop stability and inherent
robustness makes it very practical for use in industrial problems
(see Allgöwer and Zheng (2000), Garcia, Prett, and Morari (1989),
and Qin and Badgwell (2003)). This MPC approach is also applied
in general resource allocation or scheduling problems as done in
Ferrari-Trecate et al. (2004), Lee et al. (2007), Lee and Lee (2006),
Munawar and Gudi (2005), van Staden, Zhang, and Xia (2009),
and Zafra-Cabeza et al. (2008). It is interesting to note that MPC
algorithms have a close relationship with optimization since an
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MPC algorithm needs to solve an optimization problem in each
iteration. Studies on the connections of MPC with optimization
were conducted since the 1960’s (see Chang and Seborg (1983)
and Zadeh and Whalen (1962)). Modern MPC approaches for
resource allocation problems do not take the relationship of the
MPC solutions and the global optimal resource allocation solutions
into consideration.

The aim of this paper is to develop an MPC algorithm for
the periodic implementation of the optimal solutions of the
PODRAP. Further it will prove the algorithm’s convergence and
the corresponding robustness against disturbances in controller
implementation or state measurement. The convergence result
reveals that the optimal solutions in the MPC algorithm converge
to the optimal solution of the PODRAP. The formulation of PODRAP
and the perfection of ODRAP can be found in Section 2, while the
convergence and robust results are in Section 3. An example on the
voluntary load shedding problem for a water pumping system is
also studied in Section 4 to illustrate the formulation of a PODRAP
and the convergence and robustness of the MPC approach. Some
concluding remarks are drawn in the last section.

The following nomenclatures are fixed.∑k
i=j ai equals 0 for j > k and aj + · · · + ak if j ≤ k;

col(α1, α2, . . . , αs) equals (αT
1 , α

T
2 , . . . , α

T
s )

T for any column
vectors α1, α2, . . . , αs;
s.t.: subject to;
m, p, n: fixed positive integers
k, j: the k-th or j-th sampling time interval;
(k, k + p]: the time interval from k to k + p excluding k;
X j
i : a 1-dimensional real variable for all i, j;

X[j]: them-dimensional real vector variable for all j;
X[k|j]: the prediction of X[k] at time j for any k ≥ j;
Z[k]: equals col(X[k], X[k + 1], . . . , X[k + p − 1]);
Z[k|j]: the prediction of Z[k] at time j for any k ≥ j;
uj
k: equals X[k + 1|j] − X[k|j];

u[k|j] := col(uj
k, u

j
k+1, . . . , u

j
k+p−1) = z[k + 1|j] − z[k|j];

i1, i2, . . . , is: integers with 1 ≤ i1 < i2 < · · · < is = n;
x := (x1, x2, . . . , xn) ∈ Rn;
yℓ

:= (xiℓ−1+1, xiℓ−1 , . . . , xiℓ), ℓ = 1, 2, . . . , s, are called
partitions of x such that x = col(y1, y2, . . . , ys).

2. Problem formulation

PODRAP (k, k + p] For any give system dynamics X[k + 1] =

G(X[k]), a PODRAP over the time interval (k, k + p] is defined as
the minimization problem:

min Jk+1(z[k + 1|k + 1])

s.t. Hk+1(z[k + 1|k + 1]) ≥ 0, (1)

where the optimization variable is z[k + 1|k + 1] = col(X[k +

1|k + 1], X[k + 2|k + 1], . . . , X[k + p|k + 1]), and Jk+1 and
Hk+1 are smooth, convex functions satisfying the following periodic
invariant properties for all k ≥ 0:

• Periodic invariant objective:

Jk+1(X[k + 1], X[k + 2], . . . , X[k + p])

= Jk+2(X[k + 2], . . . , X[k + p], X[k + 1]), (2)

• Periodic invariant constraints:

{(X[k + 1], X[k + 2], . . . , X[k + p]) :

Hk+1(X[k + 1], X[k + 2], . . . , X[k + p]) ≥ 0}
= {(X[k + 1], X[k + 2], . . . , X[k + p]) :

Hk+2(X[k + 2], X[k + 3], . . . , X[k + p], X[k + 1]) ≥ 0}.
(3)

Definition 1. Fix the notations in PODRAP(k, k + p], then the
minimization problem (1) is called an optimal dynamic resource
allocation problem (ODRAP) if the functions Jℓ and Hℓ are smooth,
convex, and Jℓ satisfies the periodic invariant property (2) for all
ℓ ≥ 1.

Note that the only way in which the ODRAP and PODRAP differ
is that an ODRAP may not satisfy the constraints in (3). A practical
resource allocation problem may be an ODRAP but not a PODRAP,
and the constraints can often be reasonably extended so that the
periodic invariant property is satisfied (Xia et al., 2009).

The following two propositions are easy to verify and the proofs
are omitted.

Proposition 1. Assume that there exists smooth and convex func-
tions αi, βi, i ≥ 1, such that αi+p ≡ αi, βi+p ≡ βi, and Jk+1 and
Hk+1 have the following special form:

Jk+1(X[k + 1|k + 1], . . . , X[k + p|k + 1])

=

k+p−
i=k+1

αi(X[i|k + 1]),

Hk+1(X[k + 1|k + 1], . . . , X[k + p|k + 1])

=

k+p−
i=k+1

βi(X[i|k + 1]).

Then the following optimization problem is a PODRAP over the time
period (k, k + p]

min Jk+1(z[k + 1|k + 1])
s.t. Hk+1(z[k + 1|k + 1]) ≥ 0.

Proposition 2. Assume that J and H are symmetric functions in the
sense that J(X[k + 1|k + 1], . . . , X[k + p|k + 1]) = J(X[σ(k +

1)|k+1], . . . , X[σ(k+p)|k+1]) and H(X[k+1|k+1], . . . , X[k+

p|k + 1]) = H(X[σ(k + 1)|k + 1], . . . , X[σ(k + p)|k + 1]) hold for
any permutation σ of (k + 1, k + 2, . . . , k + p), then the following
optimization problem is a PODRAP over the time period (k, k + p]:

min J(z[k + 1|k + 1])
s.t. H(z[k + 1|k + 1]) ≥ 0.

Definition 2. Consider the following optimization problem over
the time period (k, k + p]

min Jk+1(z[k + 1|k + 1])
s.t. Hk+1(z[k + 1|k + 1]) ≥ 0, (4)

where Jk+1 and Hk+1 are convex and smooth, and Jk+1 satisfies
(2) so that (4) is an ODRAP. Denote as Ωk+1 the feasible domain
{z[k + 1|k + 1] : Hk+1(z[k + 1|k + 1]) ≥ 0}, and as Ω ′

k+1 the
maximum subset of Ωk+1 such that

Ω ′

k+1 := {z[k + 1|k + 1] : Hk+1(z[k + 1|k + 1]) ≥ 0,

H ′

k+1(z[k + 1|k + 1]) ≥ 0}, (5)

with H ′

k+1 a convex and smooth function, and the function
col(Hk+1,H ′

k+1) satisfying the periodic invariant property (3). Then
the following minimization problem over (k, k + p] is called a
perfection of the ODRAP (4):

min Jk+1(z[k + 1|k + 1])
s.t. Hk+1(z[k + 1|k + 1]) ≥ 0, H ′

k+1(z[k + 1|k + 1]) ≥ 0.

Obviously the perfection of an ODRAP is a PODRAP. The
following result constructs a perfection for an ODRAP. The proof
is straightforward and thus omitted.
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Proposition 3. Fix the notations in Definition 2 and consider the
ODRAP in (4). Let

Ω ′

k+1 =


z[k + 1|k + 1] : Hk+ip+1(X[k + 1], X[k + 2], . . . ,

X[k + p]) ≥ 0,Hk+ip+2(X[k + 2], X[k + 3], . . . ,
X[k + p], X[k + 1]) ≥ 0,Hk+ip+3(X[k + 3], X[k + 4],
. . . , X[k + 1], X[k + 2]) ≥ 0, . . . ,Hk+ip+p(X[k + p],
X[k + 1], . . . , X[k + p − 2], X[k + p − 1]) ≥ 0,

for all i ≥ 0

, (6)

and suppose that Ω ′

k+1 is nonempty and can be defined by only a finite
number of inequalities from (6). Then the following is a perfection
of (4):

min Jk+1(z[k + 1|k + 1])
s.t. z[k + 1|k + 1] ∈ Ω ′

k+1.

In case Ω ′

k+1 is empty for some k, then the corresponding
optimization problem has no solution, and the ODRAP does
not have a perfection. The reason for such an ill-conditioned
ODRAP can be very complex. Wrong ODRAP formulations, or poor
matching between the system dynamics and the constraints can
lead to the nonexistence of PODRAP since the latter two are
involved in the perfection process in Proposition 3. There do exist
many energy problems which have a good matching between
system dynamics and constraints and thus are PODRAP. The
corresponding examples can be the dynamic economic dispatch
problem (Xia et al., 2009), the water pumping system studied in
Section 4, or any ODRAP satisfying Proposition 2 or Proposition 3.

3. MPC approach to PODRAP

Substituting the relations X[k + 1|j] = X[k|j] + uj
k into the

PODRAP(k, k + p], one has:

min Jk+1(X[k + 1|k + 1], uk+1
k+1, . . . , u

k+1
k+p−1)

s.t. Hk+1(X[k + 1|k + 1], uk+1
k+1, . . . , u

k+1
k+p−1) ≥ 0.

(7)

If X[k + 1|k + 1] in (7) is substituted by a constant vector,
then the optimization problem (7) has been reduced into a new
optimization problem which has only (uk+1

k+1, . . . , u
k+1
k+p−1) as its

optimization variable. Denote this new optimization problem by
PODRAPu(k, k+ p]. Similarly, the substitution of X[k+ 1|k+ 1] by
a constant vector in (1) leads to a new optimization problem with
optimization variables (X[k+2|k+1], . . . , X[k+p|k+1]), denoted
by PODRAPX (k, k+p]. Now the followingMPC algorithm in control
variable form is obtained.

Algorithm 1. Initialization Input X[1|1], and let k = 0.
(1) Measure X[k+1|k+1] and solve PODRAPu(k, k+p] to find its

optimal solution uk
opt = col(uk+1

k+1|opt, . . . , u
k+1
k+p−1|opt);

(2) Implement X[k + 2|k + 2] = X[k + 1|k + 1] + uk+1
k+1|opt in the

system, let k = k + 1 and go to Step (1).
This algorithm is equivalent to the next algorithm in state

variable form:

Algorithm 1′. Initialization Input X[1|1], and let k = 0.
(1) Measure X[k + 1|k + 1] and solve PODRAPX (k, k + p] to find

its optimal solution zkopt = col(X[k + 2|k + 1]|opt, . . . , X[k +

p|k + 1]|opt);
(2) Implement X[k + 2|k + 2] = X[k + 2|k + 1]|opt, let k = k + 1

and go to Step (1).
The convergence of the MPC algorithm can be obtained by

studying the following convex optimization problem:
min f (x)
s.t. x ∈ Ω := {x : g(x) ≥ 0, h(x) = 0}, (8)

where f is a smooth function from Rn to R1, g and h are vector-
valued smooth functions, f is convex over the feasible domain Ω

which is nonempty, bounded and convex.
The above convex optimization problem can be solved by

the gradient method. The optimal solution x∗

grad and the global
minimum value f (x∗

grad) are obtained. If the function is strictly
convex, then this optimal solution x∗

grad is also unique. In the
following we will show that the same problem can also be solved
by Algorithm 2.

Algorithm 2. Take a partition (y1, y2, . . . , ys) for x with yj ∈

Rij−ij−1 and i0 = 0. Choose any initial value x0 = col(y10, y
2
0, . . . , y

s
0)

∈ Ω ⊆ Rn and an error bound ϵ > 0, let Initiala = y10, Initial
b

=

col(y20, . . . , y
s
0), k = 1, f ∗

old = f (y10, y
2
0, . . . , y

s
0).

(i) Let ỹ = col(y1, . . . , yk−1, yk+1, . . . , ys), Fk(ỹ) := f (y1, y2, . . . ,
ys)|yk=Initiala , and solve the following problem

min Fk(ỹ)
s.t. g(y1, y2, . . . , ys)|yk=Initiala ≥ 0,

h(y1, y2, . . . , ys)|yk=Initiala = 0,
(9)

by the initial value ỹ = Initialb. Denote the optimal solution by
ỹ∗
new = col(y1

∗
, . . . , yk−1

∗
, yk+1

∗
, . . . , ys

∗
).

(ii) If Fk(ỹ∗
new) < f ∗

old − ϵ, then let f ∗

old = Fk(ỹ∗
new), k = (k +

1) mod s, Initiala = yk
∗
, Initialb = col(y1

∗
, . . . , yk−1

∗
, yk+1

∗
, . . . ,

ys
∗
) for the case 2 ≤ k ≤ s and Initialb = col(y2

∗
, y3

∗
, . . . , ys

∗
)

for k = 1, xk = col(y1
∗
, . . . , yk−1

∗
, Initiala, yk+1

∗
, . . . , ys

∗
),

and go to Step (i); otherwise stop the algorithm and return
k, Initiala, Initialb, f ∗

old and xk.

Remark 1. Note that the above algorithm solves iteratively sub-
problems (9) to approach the solution of (8), each subproblem
(9) has a lower dimension than the original problem (8). This
algorithm does not specify any solution algorithm to solve the
optimization problem in each iteration. Generally gradient based
algorithms are good enough to compute these convex optimiza-
tion problems. However, when uncertainties are considered, the
optimization problems may not be convex and alternative al-
gorithms such as genetic algorithms, particle swarm optimiza-
tion, ant colony optimization, etc., from intelligent computing
(Schrijver, 1998) can be very helpful.

Theorem 1. Fix the notations in problem (8) and a partition x =

col(y1, y2, . . . , ys), then Algorithm 2 solves problem (8) in the sense
that its output xk satisfies limk→∞ xk = x∗

0 for some x∗

0 and f (x∗

0) =

f (x∗

grad). If f is also strictly convex, then x∗

0 = x∗

grad.

Proof. Note thatΩ is bounded and the value of f strictly decreases
in Algorithm 2, this algorithm must converge to some point x∗

0 ,
and it suffices to show that f (x∗

0) equals f (x∗

grad). Let x∗

0 =

col(y1
∗
, y2

∗
, . . . , ys

∗
) and x∗

grad = col(y1grad, y
2
grad, . . . , y

s
grad). Since

Algorithm 2 stops at x∗

0 , the point col(y1
∗
, . . . , yk−1

∗
, yk+1

∗
, . . . , ys

∗
)

is a global optimal solution of the subproblem (9) for any k =

1, 2, . . . , s. By Theorem3.4.3 of Bazaraa, Sherali, and Shetty (1993),
we have ∇Fk(ỹ)|x∗0 ỹ ≥ 0 for all ỹ. In other words, we have
∂ f
∂y1


x∗0
y1 + · · · +

∂ f
∂yk−1


x∗0
yk−1

+
∂ f

∂yk+1


x∗0
yk+1

+ · · · +
∂ f
∂ys


x∗0
ys ≥ 0.

Note that the above inequality holds for all k = 1, . . . , s, and all
y1, y2, . . . , ys, therefore, ∇f |x∗0x =

∂ f
∂y1


x∗0
y1 +

∂ f
∂y2


x∗0
y2 + · · · +

∂ f
∂ys


x∗0
ys ≥ 0, where x = col(y1, y2, . . . , ys) is arbitrary. Again by

Theorem 3.4.3 of Bazaraa et al. (1993), one has that x∗

0 is a global
optimal solution of (8), and f (x∗

0) = f (x∗

grad). When f is strictly
convex, the solution is unique and thus x∗

0 = x∗

grad. �



4 J. Zhang, X. Xia / Automatica ( ) –

The proof of the convergence of Algorithm 1′ follows from the
observation that there is a one-to-one correspondence between
the loops in Algorithm 1′ and the loops in Algorithm 2. For
instance, consider the first loop of Algorithm 1′ for k = 0. Given
X[1|1] = X0, the algorithm aims to find the minimum value
of J1(X0, X[2|1], X[3|1], . . . , X[p + 1|1]) under the constraints
H1(X0, X[2|1], X[3|1], . . . , X[p + 1|1]) ≥ 0. Now consider the
first loop of applying Algorithm 2 to the PODRAP. Fix the partition
z[1|1] = col(y1, y2, . . . , yp) with yi := X[i|1], i = 1, . . . , p. Take
Initiala = X0, the optimization problem in Step (i) of Algorithm 2 is
the same as that in Algorithm 1′, which establishes the one-to-one
correspondence.

Theorem 2. Let z∗ be the globally optimal solution of the PODRAP
(0, p], zkopt = col(X[k + 2|k + 1]|opt, . . . , X[k + p|k + 1]|opt), the
optimal solution of the k-th loop in Algorithm 1′ which is obtained
under the initial value X[k + 1|k + 1] = Xk

initial, and Xk
initial =

X[k + 1|k]|opt for k ≥ 1. Suppose k = pk1 + r1 with 0 ≤ r1 < p.
Denote z̄k = col(X[pk1 + p + 1|k + 1]|opt, . . . , X[pk1 + p + r1|k +

1]|opt, Xk
initial, X[pk1 + r1 +2|k+1]|opt, . . . , X[pk1 +p|k+1]|opt) for

the case r1 ≥ 1, and z̄k = col(Xk
initial, X[k + 2|k + 1]|opt, . . . , X[k +

p|k+1]|opt) for r1 = 0; then limk→∞ Jk(z̄k) = J1(z∗). If, furthermore,
the functions J1 and H1 are strictly convex, then the optimal solution
of each loop inAlgorithm 1′ is unique, and therefore limk→∞ z̄k = z∗.

Now consider the robustness of Algorithm 1′. For convenience,
we consider only the case that uncertainty happens in the
execution of the controller or the measurement of states, that is,
consider X[k + 2|k + 2] = X[k + 1|k + 1] + uk+1

k+1|opt + wk+1
or equivalently X[k + 2|k + 2] = X[k + 2|k + 1]|opt + wk+1,
where wk+1 is a disturbance vector satisfying ‖wk+1‖ < e and e
is a constant. By a similar reason as the proof of convergence of
the MPC algorithm, the robustness can be shown by proving the
robustness of Algorithm 2. To this end, let Initiala = yk

∗
+ wk

∗
in

Step (ii) of Algorithm 2, wherewk
∗
is a disturbance vector satisfying

‖wk
∗
‖ < e.

Theorem 3. Fix the notations in problem (8) and a partition x =

col(y1, y2, . . . , ys), and assume that ‖∇f (x)‖ ≤ L for a constant L for
all x ∈ Ω . Let x∗

grad be the optimal solution of problem (8) obtained by
gradientmethod; ϵ the error bound defined in Algorithm 2; c a positive
constant which is less than ϵ, the constant disturbance wk

∗
satisfying

‖wk
∗
‖ < e; Initiala = yk

∗
+ wk

∗
executed in Step(ii) of Algorithm 2;

and e small enough so that e < min{c/L, (ϵ−c)/L}; then there exists
an integer N0 such that for any k > N0, the output xk of the k-th loop
in Algorithm 2 belongs to the domain Ω ′

:= {x : ‖x − x∗

grad‖ < c}.

Proof. Consider the k-th loop in Algorithm 2. Step (i) gives an
optimal solution ỹ∗

new = col(y1
∗
, . . . , yk−1

∗
, yk+1

∗
, . . . , ys

∗
) for Initiala

equals somevector ξ k. Denote zk = col(y1
∗
, . . . , yk−1

∗
, ξ k, yk+1

∗
, . . . ,

ys
∗
), and suppose Fk(ỹ∗

new) < f ∗

old − ϵ. Define z̄k = col(y1
∗
, . . . ,

yk−1
∗

, ξ k, yk+1
∗

+ wk
∗
, yk+2

∗
, . . . , ys

∗
). In the (k + 1)-th loop, denote

the optimal solution of step (i) by col(ỹ1
∗
, . . . , ỹk

∗
, ỹk+2

∗
, . . . , ỹs

∗
), and

define similarly zk+1 = col(ỹ1
∗
, . . . , ỹk

∗
, yk+1

∗
+ wk

∗
, ỹk+2

∗
, . . . , ỹs

∗
)

and the corresponding z̄k+1 under the disturbance wk+1
∗

.
Without loss of generality suppose the three points z̄k, zk, and

zk+1 are different from each other. Obviously f (z̄k) < f (zk+1), and
δk := f (z̄k) − f (zk+1) > 0, |f (zk) − f (z̄k)| = |∇f |ξ (zk − z̄k)| ≤

‖wk
∗
‖ ‖∇f |ξ‖ ≤ eL. Note that if δk < c , then |f (zk) − f (zk+1)| ≤

|f (zk) − f (z̄k)| + |f (z̄k) − f (zk+1)| < c + eL < ϵ, and Algorithm 2
stops. This implies that zk is treated as x∗

grad, thus |f (z̄k)−f (x∗

grad)| =

|f (z̄k)−f (zk)| ≤ eL < c , and z̄k enters the domainΩ ′. If δk ≥ c , then
f (zk)−f (zk+1) = f (zk)−f (z̄k)+f (z̄k)−f (zk) > δk−eL ≥ c−eL > 0.

Repeat the above steps for all the k, then either f (z̄k) enters the
domain Ω ′, or f (zk) continues decreasing. Note that the problem

is over a bounded convex domain, therefore in the latter case f (zk)
converges to f (x∗

grad). Then by a similar analysis as done for the case
δk < c, f (z̄k) will eventually enter the domain Ω ′. �

A similar procedure as the proof of the convergence of the MPC
algorithm shows the following robustness result.

Corollary 1. Suppose ΩPODRAP := {col(X[1], . . . , X[p + 1]) : H1
(X[1], . . . , X[p + 1]) ≥ 0} is the feasible domain of the problem
PODRAP(0, p], z∗ is the globally optimal solution of PODRAP(0, p],
the norm of the gradient of the cost function J1 of PODRAP(0, p]
has the upper bound L on ΩPODRAP, zkopt = col(X[k + 2|k +

1]|opt, . . . , X[k + p|k + 1]|opt) is the optimal solution of the k-th
loop in Algorithm 1′ which is obtained under the initial value X[k +

1|k + 1] = Xk
initial, and Xk

initial = X[k + 1|k]|opt + wk for k ≥ 1.
Assume also that ϵ is a small enough positive constant, c is a positive
constant which is less than ϵ, the disturbancewk satisfies ‖wk‖ < e, e
is small enough so that e < min{c/L, (ϵ − c)/L}, k = pk1 + r1 with
0 ≤ r1 < p, and define z̄k as Theorem 2, then ‖z̄k − z∗

‖ < c.

Remark 2. In a practical energy system, the end-user demandwill
often be approximately periodic which corresponds to the case
that disturbances happen in some coefficients in the function H1.
Since the optimal solution of the convex optimization problem
depends smoothly on the corresponding coefficients inH1, theMPC
algorithm is also robust against the disturbances in the demand.

4. A case study on a water pumping system

Voluntary load shedding (VLS), or the so-called strategic offer, is
a scheme proposed by a South African electricity supplier to solve
the serious electricity shortage problem (Zhang, Xia, & Alexander,
2008). In Zhang et al. (2008), the optimal scheduling of a pumping
system with 21 pumps in terms of VLS is solved with an open
loop control approach. In this case study, this pumping system is
reconsidered to illustrate the MPC approach. In order to simplify
themodel, it is assumed that all thewater from the 21 pumps flows
to a big reservoir instead of the 4 reservoirs in Zhang et al. (2008).
The VLS model over a 24 h period with 24 × 21 = 504 number of
variables and 101 constraints can be summarized as follows.

min
21−
i=1


24−
j=1

cjPiuij − q
−
peak

Pi(1 − uiℓ)



s.t.
21−
i=1

Viuij ≥ Dj, Rmin
≤ Rk ≤ Rmax,

0 ≤ uij ≤ 1,
21−
i=1

Piuij ≤ Pmax,

21−
i=1

Viuij ≤ Vsupply,

−
ℓ∈peak

21−
i=1

Piuiℓ ≤ rPmax,

1 ≤ j ≤ 24, 2 ≤ k ≤ 24,

(10)

where uij ∈ [0, 1] is the switching status of the i-th pump at the
j-th time interval. Peakmeans the index ℓ in the summation varies
in the peak tariff time intervals. The electricity price at time j is
cj, q is the incentive constant and Vi denotes the volume of water
that the i-th pump can pump within one hour when the pump
is working at its maximum power Pi. Rmin and Rmax are constants
representing the capacity of the reservoir, Rk is the water level of
the reservoir at time k, R1 = Rmin, Pmax is the specified maximum
electricity demand. Vsupply is a constant denoting the incoming
water supply rate (Mega-liter per hour, or Ml/h), and r is the
percentage so that a percentage (1 − r) of the maximal possible
total load during peak hours is shed.
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Fig. 1. Convergence and robustness.

This is an ODRAP. By Proposition 3, a PODRAP is obtained by
adding the missing constraints

∑21
i=1 Vi(ui 24 + · · · + ui2 + ui1) ≤

Rmax
−R1

+(D1+D2+· · ·+D24). For this PODRAP,MPCAlgorithm1
converges to the globalminimum1.3048×105 of VLS(0, 24] at the
second loop (see the solid line in Fig. 1). As for the robustness of the
MPC algorithm, assume that uopt[k|k] in Step (2) of Algorithm 1 is
replaced by uopt[k|k]+w[k], wherew[k] is a noise vector and each
of its components is generated randomly by the Matlab uniform
distribution function rand(1)/50. Theminimumobjective function
value varies within a small neighborhood of the global minimum
value 1.3048 × 105 as is clear from the dotted line in Fig. 1. If the
first iteration step is excluded, then Fig. 1 shows that themaximum
error happens at the 8-th step. The relative error of 0.29% is quite
satisfactory.

5. Conclusions

This paper introduces the perfect optimal dynamic resource
allocation problem and provides a corresponding MPC algorithm
to solve the periodic implementation problem for the optimal
solution. The convergence and robustness of theMPC algorithmare
proved. This establishes a close connection of an MPC solution and
a solution of a global optimization problem. An application of the
MPC approach to the voluntary load shedding problem for a water
pumping system illustrates the convergence and robustness of this
MPC algorithm.
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