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Super-orthogonal block codes in space-time domain (i.e., Super-orthogonal space-time trellis codes (SOSTTCs)) were initially
designed for frequency nonselective (FNS) channels but in frequency selective (FS) channels these super-orthogonal block codes
suffer performance degradation due to signal interference. To combat the effects of signal interference caused by the frequency
selectivity of the fading channel, the authors employ two methods in this paper, namely, multichannel equalization (ME) and
orthogonal frequency division multiplexing (OFDM). In spite of the increase complexity of the SOSTTC-ME optimum receiver
design scheme, the SOSTTC-ME scheme maintains the same diversity advantage as compared to the SOSTTC scheme in FNS
channel. In OFDM environments, the authors consider two forms of the super-orthogonal block codes, namely, super-orthogonal
space-time trellis-coded OFDM and super-orthogonal space-frequency trellis-coded OFDM. The simulation results reveal that
super-orthogonal space-frequency trellis-coded OFDM outperforms super-orthogonal space-time trellis-coded OFDM under

various channel delay spreads.

1. Introduction

The use of channel codes in combination with multiple
transmit antennas achieves diversity, but the drawback is loss
in bandwidth efficiency. Diversity can be achieved without
any sacrifice in bandwidth efficiency, if the channel codes are
specifically designed for multiple transmit antennas. Space-
time coding is a bandwidth and power efficient method of
communication over fading channels. It combines, in its
design, channel coding, modulation, transmit diversity, and
receive diversity. Space-time codes provide better perfor-
mance compared to an uncoded system. Some basic space-
time coding techniques include layered space-time codes
[1], space-time trellis codes (STTCs) [2, 3], space-time
block codes (STBCs) [4, 5], and super-orthogonal space-time
trellis codes (SOSTTCs) [6, 7]. SOSTTCs are a new class of
space-time codes that combine set partitioning and a super
set of orthogonalblock codes in a systematic way, in order
to provide full diversity and improved coding gain when
compared with earlier space-time trellis constructions [2-5].
SOSTTCs, in a frequency nonselective (FNS) fading channel,
do not only provide a scheme that has an improvement in

coding gain when compared with earlier constructions, but
they also solve the problem of systematic design for any
rate and number of states. The super-orthogonal block code
transmission matrix used in the design of SOSTTCs is given
in [6] as

o
A1, %,6) = [f;zfejg Sﬂ. (1)

For an M-Phase Shift Keying (PSK) modulation with
constellation signal represented by s; € e/2™M i = 1,20 =
0,1,...,M — 1, one can pick 8 = 2ma'/M, wherea’ =
0,1,...,M — 1. In this case, the resulting transmitted signals
of (1) are also members of the M-PSK constellation alphabet
and thus no expansion of the constellation signals is required.
Since the transmitted signals are from a PSK constellation,
the peak-to-average power ratio of the transmitted signals
is equal to one. The choice of 6 that can be used in (1)
for both Binary Phase Shift Keying (BPSK) and Quaternary
Phase Shift Keying (QPSK) is given as 0, 7 and 0, n/2, ,
37/2, respectively.

It should be noted that when 6 = 0, (1) becomes the code
presented in [4] (i.e., Alamouti code). The construction of
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SOSTTCs is based on the expansion of a super-orthogonal
block code transmission matrix using a unique method of set
partitioning [8]. In [6], the set partitioning method applied
to SOSTTCs is explained. These set partitioning methods
maximize coding gain without sacrificing data rates.

However, the performance of super-orthogonal block
code in space-time domain is based on two fundamental
assumptions with regard to the fading channel, which are
given as follows:

(i) frequency nonselective channel, that is, the channel
does not have multipath interference;

(ii) the fading coefficients from each transmit antenna to
any receive antenna are independently identically dis-
tributed (i.i.d.) random variables—this assumption
is valid if the antennas are located far apart from each
other (at least A/2 separation between antennas).

The first assumption may not be guaranteed in outdoor
settings where delay spreads are significantly large (i.e.,
occurrence of multipath) due to the frequency selectivity
of the fading channel. Multipath interference can severely
degrade the performance of space-time codes. Space-time
codes typically suffer from an irreducible error-floor, both
in terms of the frame error-rate and in terms of the bit-
error rate [9]. The two main approaches that can be used to
enhance the performance of space-time codes in frequency
selective fading channels are the following:

(i) orthogonal frequency division multiplexing, that
is, multipath-induced intersymbol interference is
reduced by converting the FS fading channel into
parallel flat fading subchannels,

(ii) employing maximum likelihood sequence estimation
with multichannel equalization.

In [10], a multichannel equalizer with maximum like-
lihood sequence estimation was proposed to mitigate the
effect of intersymbol interference for STTC in a multipath
environment. Optimum receiver design was proposed for the
STTC in the multipath environment. The number of states
of the optimum receiver for the STTC in a multipath fading
channel with L rays was given in [10] as 4571 x S, where
S is the original state number of the STTC. Alternatively,
OFDM can also be used to mitigate the effects of intersym-
bol interference for space-time codes in multipath fading
channels [11, 12]. In [12], the performance of space time
trellis-coded OFDM was discussed and compared with Reed
Solomon coded OFDM. The scheme in [12] is capable of
providing reliable transmission at relatively low SNRs for a
variety of power delay profiles, making it a robust solution.
In [11], space-time trellis-coded OFDM systems, with no
interleavers, over quasistatic FS fading channels were also
considered. The performance of the code was analyzed under
various channel conditions in terms of the coding gain. The
work in [11] points out that the minimum determinant
of the space-time-coded OFDM system increases with the
maximum tap delay of the channel, thereby increasing
coding gain.

The main contributions of this paper are as follows.

(i) Multichannel equaliser was applied to the super-
orthogonal block code in space-time domain and an
optimum receiver design was proposed for the code.

(ii) Coding in OFDM environment of the super-
orthogonal block code in space-frequency domain
was proposed.

(iii) The performance comparison of using both ME and
OFDM to mitigate the effects of signal interference
for super-orthogonal block code in a multipath
environment was presented.

The paper is organised as follows. Section 2 presents the
system model for super-orthogonal block code in space-time
domain designed for frequency nonselective fading channels.
Section 3 presents the two main approaches (i.e., ME and
OFDM) to mitigate the effects of intersymbol interference
for super-orthogonal block codes in FS fading channels.
Simulation results are presented in Section 4 and finally
conclusions are drawn in Section 5.

2. System Model

A communication system equipped with N; antennas at the
transmitter and N, antennas at the receiver is considered. The
transmitter employs a concatenated coding scheme where a
Multiple-Trellis-Coded Modulation (M-TCM) encoder with
multiplicity of N, is used as an outer code and an N; X N;
super-orthogonal block code is used as the inner code. The
transmitter encodes k. information bits into N.N; symbols
(i.e., Nc X Ny in matrix dimension) corresponding to the edge
in the trellis of the space-time code with 2" states, where v is
the memory of the space-time encoder. The encoded symbols
are divided into N; streams, where each stream is linearly
modulated and simultaneously transmitted via each antenna
using the super-orthogonal block transmission matrix in (1).
The rate of this space-time code is defined as R, = k./N,
bits /symbol. For example, let us consider a transmitter that
encodes 4 information bits into 4 symbols, that is, N; = 2
and N, = 2. This makes R; = 2 bits/symbol which is the rate
for a QPSK constellation. This shows that the transmission
scheme employed is a full rate system. The transmission
trellises for the two-state and four-state super-orthogonal
block code in space-time domain (i.e., SOSTTC) scheme are
given in Figure 1, which consist of eight parallel transitions
per branch (A; and B; are transmission matrices of the form
given in (1) ) where

Ao = {(£1,£1,0), (£j,%5,0)},
Ay = {(£1,/,0),(xj,+1,0)}, 2
By = {(£1,+1,n), (=), +j,m)},
By = {(=1,%j,7n), (xj,+1,7)}.

3. Super-Orthogonal Block-Coded Schemes in
FS Fading Channels

3.1. Multichannel Equalization with SOSTTC. To combat the
distortive channel effects caused by frequency selectivity of
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F1GURE 1: Two-State and Four-State 2-bits per symbol SOSTTC.

fading channel in a multiple-input multiple-output (MIMO)
scheme, a multichannel equalization is needed. The purpose
of the equalisation is to reduce the distortive channel effects
as much as possible by maximising the probability of correct
decision being made at the receiver. Figure 2 shows the block
diagram of a super-orthogonal block coding scheme with
multichannel equalisation.

Various equalisation techniques for MIMO schemes that
is STBC have been proposed [13, 14]. The solution for
multipath interference of STBC as stated in [13] assumes
that the space-time coding is done over two large blocks of
data symbols instead of just two symbols as in the original
proposed scheme (i.e., [4]). At the receiver of the scheme
proposed in [13] there is an increase in complexity due to
the doubled front-end convolution of the overall system. In
[14], a generalisation was proposed for the space time block
code structure in [13]. The paper derived a receiver that
consists of a frequency domain space time detector followed
by a predictive decision feedback equaliser. In this paper,
by assuming that the multipath interference of the super-
orthogonal block code scheme in FS fading channels is over
every two-symbol block as proposed in Asokan and Arslan
[15] for [4], the authors design a new equalised trellis for
the super-orthogonal block code in space-time domain at the
receiver.

Based on the above assumptions and that the N, = 1, the
received samples over the tth coded super-orthogonal block
transmission can be arranged in matrix form as

() | Sl(t)eje $2(£) | | h11(0, 1)
()| = [ =st e st ) || i (0,0)
—sf(t—1De? sit—-1D | [hi(1,0)
*[ el s ]'[h;u,t)} ®)
m@-1,07 [nu@)
roen 0[]

where L is the number of channel taps and the channel
response h;; (I, t) stands for the [th channel tap at time ¢ from

ith transmit to the jth receive antenna. From (3), one can

write v as
Sl((Zt—ZLH))eje Sz((Zt—2L+l)>
() o (o))
if L is odd
p =1

() o (2 ))

51<(2t2_L))ej9 sz<(2t2_L))

if L is even.

(4)

The noise terms #;;(t) in (3) are independent identically
distributed complex zero mean Gaussian samples, each with
variance of 02/2 per dimension. It is assumed that the
channel coefficients are Rayleigh distributed.

At the receiver, a resultant trellis (i.e., equalised trellis)
that will take the multipath interference into account is
needed for maximum likelihood decoding. As an example
of the resultant trellis for the super-orthogonal block codes,
the authors consider a scheme with only two rays in each
subchannel and the multipath interference that spans two
consecutive symbols. The numbers of states in the receiver
structures for the two-state and four-state QPSK super-
orthogonal block coding system increase to four and eight,
respectively. The number of transition paths increases to
64 parallel paths. The resultant code trellis for the receiver
structure is given in Figure 3.

The trellises in Figure 3 represent the multichannel
equalised decoding trellis for the two-state and the four-
state super-orthogonal block coding system in an FS fading
channel with multipath interference that spans a two-symbol
block. The transition per state contains 64 parallel paths of
signal sets. In the trellises A;(or B;) — A;(or B;) represent the
delayed version of two-symbol blocks, A;(orB;) affected by
the second tap and A (or B;) represent the two-symbol block
affected by the first tap (our analysis assumes L = 2). By
deduction the number of states in the received trellis, when
the multipath interference spans two-symbol blocks with L
rays, is given by 2 % (L —1) * S, where S is the original number
of states of the super-orthogonal block code in space-time
domain.

3.2. Super-Orthogonal Block Codes for OFDM. The OFDM
technique transforms an FS fading channel into parallel flat
fading sub-channels and eliminates the signal interference
caused by multipaths. OFDM can be implemented using
inverse fast Fourier transform/fast Fourier transform-based
multicarrier modulation and demodulation. The block dia-
gram of a super-orthogonal block transmission in an OFDM
environment is shown in Figure 4.

In this paper the authors consider two transmit diversity
techniques that are possible for coded-OFDM schemes.
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FIGURE 3: Decoding trellis for the Two-state and Four-state super-orthogonal block coding scheme in a frequency selective fading channel.

These are the following

(i) Space-Time-Coded OFDM Schemes. These schemes
are capable of realizing both spatial and Temporal
diversity gains in MIMO fading channels [12].

(ii) Space-Frequency-Coded OFDM schemes. These
schemes are capable of realizing both spatial and
Frequency diversity gain in multipath MIMO fading
channels.

The time domain channel impulse representation
between the ith transmit antenna and the jth receive antenna
can be modeled as an L-tapped delay line. The channel
response at time t with delay 7, can be expressed as

L-1
hij(tot) = > hy(l, t)a(rs - ) (5)
] g} ) NAf

where §(-) is the KronecAker delta function, L denotes the
number of nonzero taps, h;;(l, t) is the complex amplitude of
the [-th non-zero tap with delay of n//NAf, n; is an integer,
and Af is the tone spacing of the OFDM system. In (5)

hi (1, 1)) is modeled by the wide-sense stationary narrowband

~ 2
complex Gaussian processes with power E[|h;;(I,1))] ] = 012,
which is normalized as 31~ of = 1.

For an OFDM system with proper cyclic prefix, the
channel frequency response is expressed as

L-1
Hij(n) = > hij(l, 1) exp(—j2nn(l)/N)
1=0 (6)

= hijw(n);

where h,‘j = [h,‘j(o, t), hij(l, t),hij(z, t),... ,h,‘j(L —1,t)] con-
sist of the channel vectors and w(n) = [1,...,exp (—j2an(L
—2)/N),exp (—j2nn (L - 1)/N)]T is the FFT coefficients.
The time index t will be ignored in the rest of our analysis
since the analysis is done for one OFDM frame.

Using the super-orthogonal block code transmission
matrix given in (1) and assuming that the channel frequency
response is constant for N; consecutive symbol intervals,
the scheme becomes an SOSTTC-OFDM scheme [16] (the
received expression is given in (7)). Also we propose a case
where the super-orthogonal block code takes advantage of
the spatial and frequency diversity possible in the coded
OFDM scheme by assuming that the channel frequency
response is identical across the N; adjacent subcarrier; the
scheme becomes super-orthogonal space-frequency trellis-
coded-OFDM (SOSFTC-OFDM) scheme (i.e., (8)). The
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F1GuRE 5: Sixteen-state QPSK SOSTTC-OFDM.

received signal at the jth received antenna for an SOSTTC-
OFDM scheme (N; = 2) and on the nth subcarrier is given
as follows:

rj(2n — 1) = s1(n)e®Hyj(n) + s2(n)Hyj(n) + 1;(2n — 1),
1;(2n) = —sf(n)englj(n) +55 (n)Hyj(n) +n;(2n).
(7)

while the received signal at the jth received antenna for the
SOSFTC-OFDM scheme (N; = 2) and on the nth subcarrier
is given as

Rj = HljSI + H2j32 +Nj, (8)

where Hi]‘ = [H,](l),HIJ(Z),HZJ(3),,H,](N)] consist
of channel frequency response vectors Hjj(n) from the



6 EURASIP Journal on Wireless Communications and Networking

10°

1071 Froorooorroorrooorooorioo NG iG]

Frame error rate

10*2....E...E...E...;...E...E...;...E...E...E...

1073 : :
10 15 20
Ey/N, (dB)

w

—%— 2-state SOSTTC with ME in FS channel
—*— 2-state SOSTTC-OFDM in FS channel
—o— 2-state SOSFTC-OFDM in FS channel
—— 2-state SOSTTC in FNS channel

FIGURE 6: FER of Two-state SOSTTC schemes in fading channels.

10° 4

107!

Frame error rate

1072

1073 L L

Es/N, (dB)

—+— 4-state SOSTTC with ME in FS channel
—— 4-state SOSTTC-OFDM in FS channel
—o— 4-state SOSFTC-OFDM in FS channel
-+~ 4-state SOSTTC in FNS channel

FiGure 7: FER of Four-state SOSTTC schemes in fading channels.

ith transmit antenna to the jth receive antenna for the
nth subcarrier and N; = [qj(l),qj(Z),nj(S),...,qj(N)]T
consists of the noise component #;(#n) at the receive antenna
j and subcarrier n. The noise components are independently
identical complex Gaussian random variables with zero-
mean and variance N,/2 per dimension. The super-orthog-
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Figure 8: FER Performance of Space time-coded schemes with
OFDM and 5 microseconds delay spread between the two paths.

onal block codes for the two transmit antennas in (8) are
written:

81 = [51(1),51(2),51(3),...,s51(N)]"
= [S(l)eje,—S*(Z)ef9,5(3)ef9,—S*(4)ej9
ess(N = el —s* ()] (9)
$: = [2(1),5(2),503),...,M)]"

= [5(2),s%(1),5(4),5%*(3),...,s(N),s*(N — 1)].

The super-orthogonal block codes in space-time domain
under FNS fading channel are designed by maximising
the pairwise error probability (PEP), which is done by
maximising the minimum rank of the codeword sequence
matrix (equivalent to the diversity order) and the mini-
mum determinant codeword sequence matrix (equivalent
to the coding gain). Also to enumerate the design cri-
teria of the SOSFTC-OFDM scheme, the authors con-
sider the PEP of the scheme. To evaluate the PEP of an
SOSFTC-OFDM scheme, that is, the probability of choosing
the codeword is S = [5(1),5(2),5(3),5(4),3(5),...,5(N)],
where 5(n) = [51(n),5:(n)], when in fact the codeword
S = [s(1),s(2),s(3),s(4),s(5),...,8(N)], where s(n) =
[s1(n),s2(n)] was transmitted, the maximum likelihood
metric corresponding to the correct and the incorrect path
will be used. The metric corresponding to the correct path
and the incorrect path is given in (10):

2
m(R,S) = |[R; — (Hy;8, + Hy;92) |,
) (10)

m(R,8) = HRJ» ~ (1,8 +H2j§2)H
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The realisation of the PEP over the entire frame length
and for a given channel frequency response is given in (11):

P(S —S|H) = Pr{m(R,S) > m(R,§)}
(11)
= Pr{(m(R, S) — m(R, §>> > 0}.

Simplifying (10) and substituting it in (11) gives (12):
pls 8 1) -l (5~ + 1 52~ 5

- pr{HHjAHZ > o},
(12)

where H; = [H;;Hy;], A is the block codeword matrix that
characterise the SOSFTC-OFDM system, and .|| stands for
the norm of the matrix element. The expression of A is given
in (13):

S - S,
A- [Sz_gj (13)

The conditional PEP given in (12) can be expressed in terms
of the Gaussian Q function [17] as

N,

E: >SH;AAPHM | (14)

P(s —S§|H) =Q N,

The function AA™ is a diagonal matrix of the form shown
in (15), (-)" represents the conjugate transpose of the matrix
element, and E;/N, stands for the symbol SNR:

A (A1) 0 0
AR 0 AQ)ACQHT ... 0
6 6 A(N)(A(N))H

(15)

The diagonal element of (15) and further expansion of
H; are given in (16) and (17):

N 19

Hj = [Hlj H2j]1><N,

[714j(0)... (L — 1) Fyj(0) ... Fipy (L = 1) |

1XLN;
wn) 0 ... 0
0 w(n ... 0
6 0 :w('n)

LN/ %N,
= [hlj hzj]W(ﬂ)

— h;W(n).
(17)
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The conditional PEP in (14) can now be written as (18)
using the expanded form of the H; matrix (i.e., (17)) and the
expression of A(n) given in (16):

P(s —S|H)

Ny

- Q(J o Zlhjw<n>A<n>(A(n>>H<W(n>>thH).
=

(18)

The Q function is defined by

1 © e
Q = E Jy 64 /Zdt, (19)

and by using the inequality Q(y) < 1/2exp (—»%/2), y = 0,
the PEP given in (18) can be upper bounded as

P(S—-§|H)

N
< exp( 4?\; > hjW(n)A(n)(A(n)) H(W(n))thH).
0j=1

(20)

The PEP given in (20) can be averaged over all possible
channel realisation as

P(s — )
N,

< E{exp(j; Zth(n)A(n)(A(n))H(W(n))thH) }
oj:1

21)

The above expression (21) can be simplified further using the
results in [18]. For a complex circularly distributed Gaussian
random row vector z with mean p and covariance matrix
02 = E[zz*] — yu*, and a Hermitian matrix M, we have

exp| ~uM(1+02M) 1((w")") |
det(I+ 02M) ’
(22)

Ez[exp(—zM(z*)T)] =

where I is an identity matrix. Applying (22) in solving
(21), (23) is obtained. Knowing that z = [hyjhy;], M =
—EJ/AN,W(n)A(n)(A(n))? (W(n))" (It should be noted that
since W(n)A(n)(A(n))? (W(n))" is a diagonal matrix, M is
a Hermitian matrix, i.e, M = MT),u = 0 ([hyjhy;] has
Rayleigh distribution), and ¢} = ‘7[2111,112,-] = I, :

P(s —3)

N,
<[] !

j-1det| (/4N 3, by W(m)Am) (A(m)" (W(n) b,
(23)

At high SNR (i.e., E//N, > 1), the identity matrix at the
denominator of (23) may be ignored and PEP upper bound

averaged over all possible channel realisations is derived as
follows:

P(s —§)
N,

1
<

B Qdet |(E/4N) S5, By W) Am) A () (W (n)h,"]

E —QN, Q N
= [41\51 ] ]
0 k=1

(24)

where Q is the rank of matrix W(n)A(n)(A(n))? (W(n))?
and A, k € (1,2,...,Q) are the set of nonzero eigenval-
ues of matrix W(n)A(n)(A(n))?(W(n))¥. From (24), the
design criteria for an SOSFTC-OFDM scheme under the
assumption of asymptotically high SNRs should be based
on the rank and eigenvalue criterion. The rank criterion
optimises the diversity of the SOSFTC-OFDM scheme while
the eigenvalue criterion optimises the coding gain of the
SOSFTC-OFDM scheme. The rank criterion is to maximise
the minimum rank of W(n)A(n)(A(n))?(W(n))? for any
codeword S and §, and the eigenvalue criterion is to
maximise the minimum product of the nonzero eigenvalues
of W(n)A(n)(AM)FW(n). As a comparison of both
SOSTTC-OFDM and SOSFTC-OFDM systems we use a
16-state trellis (given in Figure 5) designed in [16] that
maximises the space-frequency diversity and coding gain and
minimises the number of parallel path for the SOSTTC-
OFDM scheme. The QPSK symbols (x; and x;) 0, 1, 2, and
3 correspond to the QPSK signal constellations and the value
of the rotation angle is denoted by 0 and 7.

4. Performance Results

Simulation results are shown to demonstrate the frame error
rate (FER) performance of super-orthogonal block-coded
schemes in both OFDM and multichannel equalisation envi-
ronments. The wireless channels with two transmit antennas
and one receive antenna are assumed to be quasistatic
frequency selective Rayleigh fading channels with an average
power of unity. The total power of the transmitted coded
symbol was normalized to unity and the authors assumed
an equal-power, two-path channel impulse response (CIR).
The maximum Doppler frequency was 200 Hz. The entire
multipath channel undergoes independent Rayleigh fading
and the receiver is assumed to have perfect knowledge of
the channel state information. The super-orthogonal block
coding schemes with OFDM (i.e., SOSTTC-OFDM and
SOSFTC-OFDM) are assumed to have a bandwidth of 1 MHz
and 128 OFDM subcarriers (i.e., for SOSTTC-OFDM, the
frame length equals 512bits while for SOSFTC-OFDM,
the frame length equals 256 bits), and with multichannel
equalisation, the system is assumed to have 512 bits per frame
(QPSK modulation assumed for all simulations). Cyclix
prefixes that are equal to or greater than the delay spread
of the channel are used for the OFDM-based schemes, to
eliminate intersymbol interference.
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Figures 6 and 7 show FER of two-state and four-state
super-orthogonal block coding schemes in both FS and FNS
fading channels when both OFDM and ME are employed for
the FS fading channel scenario. From Figures 6 and 7 we
can see that the two-state and four-state super-orthogonal
block coding schemes with ME in FS channels achieve the
same diversity order (i.e., slope of the error rate curve)
compared with the scheme in the FNS fading scenario,
although the scheme suffers some coding gain loss. The
simulation results in Figures 6 and 7 also show that, in an FS
channel, both the two-state and four-state SOSFTC-OFDM
schemes outperform the two-state and four-state SOSTTC-
OFDM schemes. However, the SOSTTC system in an FNS
channel outperforms them all. The performance degradation
in Figures 6 and 7 for the SOSTTC with ME in an FS fading
channel can be attributed to the increase in parallel path
transitions per state of the scheme. If one assumes that all
the 64 transitions per branch in the decoding trellis (i.e.,
Figure 3) are equally likely to be decoded, the probability
of correctly decoding a transmitter codeword per state is
equal to 1/64 x 1/64 = 1/4096 while the probability of
decoding a transmitted codeword in the scheme under the
ENS fading assumption is 1/8 x 1/8 = 1/64. Hence the
probability of decoding the transmitted codewords correctly
is greater in the FNS fading case compared to the FS fading
case. Although there is an increase in the number of decoder
trellis states for super-orthogonal block coding scheme with
ME in FS channels, compared with SOSTTC in an FNS
channel, the overall probability of decoding correctly is still
lower. This accounts for the performance loss obtained in
terms of the coding advantage (i.e., shift in the error curve
upward). The same argument goes for the four-state scenario
in Figure 7. It should be noted that neither the two-state nor
the four-state SOSTTC-OFDM schemes in FS channels are
optimum, as the presence of parallel transitions degrades the
code performance in the FS fading environment. This is due
to the fact that they do not exploit the diversity order possible
in such scenarios which is why the two-state SOSTTC in a
FNS channel outperforms both of them. In Figures 8 and 9,
the FER performance of, respectively, the sixteen-state super-
orthogonal block coding OFDM schemes (i.e., SOSTTC-
OFDM and SOSFTC-OFDM systems) sixteen-state STTC-
OFDM and STBC OFDM schemes (i.e. SFBC and STBC
OFDM systems) for 5 ys and 40 us delay spreads between the
two paths is shown. In both graphs the super-orthogonal
space-frequency trellis-coded OFDM outperforms super-
orthogonal space-time trellis coded OFDM under the two-
channel delay spread scenario. It should be noted from
Figure 10 that, for coded SOSFTC-OFDM schemes, a higher
delay spread results in better performance.

5. Conclusion

The paper shows the performance of super-orthogonal block
coding schemes in fading channels, that is, FS and FNS
fading channels. The receiver structure of an SOSTTC in
an FS channel is given so that multichannel equalisation
is used to mitigate the effects of multipath interference.

New decoding trellises for two-state and four-state coding
schemes are designed. The formula for the number of states
of the SOSTTC in FS channels with ME equalisation was
deduced as a function of the number of divergent paths per
state, the multipath rays, and the original number of states of
the super-orthogonal block coding scheme. The simulation
results proved that although the code was designed for
flat fading channels, it provides at least the same diversity
advantage when applied to FS Rayleigh fading channels.

To demonstrate the performance of the super-orthogonal
block coding schemes in OFDM environment (i.e, SOSTTC-
OFDM, SOSFTC-OFDM) and the STTC-OFDM, trellises
are used that have no parallel paths between transitions.
FER performance shows that the SOSFTC-OFDM scheme
outperforms the SOSTTC-OFDM scheme, the STBC-OFDM
scheme, and the STTC-OFDM scheme for both 5us and
40 us delay spread scenarios. The results also show that an
increase in coding gain is obtained when there is an increase
in the delay spread of the channel.
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