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Abstract

We investigate the interlacing of the zeros of linear combinations
pn + aqm with the zeros of the components pn and qm, where {pn}

∞

n=0

and {qm}∞m=0 are different sequences of Jacobi polynomials. The re-

sults we prove hold when pn and qm are Jacobi polynomials P
(α,β)
n (x)

and P
(α′,β′)
m (x) for certain values of α′ and β′ with m = n or m = n−1.

Numerical counterexamples are given in situations where interlacing
fails to occur. We also show that the zeros of the linear combination
pn + aqm interlace with the zeros of some Jacobi polynomials besides
the components of the linear combination.
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1 Introduction

Let {pn}
∞

n=1 be a sequence of polynomials with pn of degree n that is orthog-
onal with respect to a positive Borel measure µ. The sequence is unique up
to normalisation and it is well known that for each n ∈ N, the zeros of pn

are real and simple and lie in the convex hull of the support of µ. Moreover,
if x1 < x2 < . . . < xn are the zeros of pn and y1 < y2 < . . . < yn−1 are the
zeros of pn−1, then

x1 < y1 < x2 < y2 < . . . < xn−1 < yn−1 < xn, (1)

a property called the interlacing of the zeros.

As a partial converse, Wendroff (cf. [12]) proved that, given any n real
distinct points x1 < x2 < . . . < xn and any n − 1 real distinct points y1 <

y2 < . . . < yn−1, such that (1) holds, the polynomials pn(x) =
n∏

i=1

(x − xi)

and pn−1 =
n−1∏

i=1

(x− yi) can be embedded in a sequence of (monic)orthogonal

polynomials. However, it is not difficult to show (cf. [5]) that if the zeros of
polynomials of successive degree in an infinite sequence satisfy the interlacing
property, this by no means ensures the orthogonality of the sequence with
respect to some positive Borel measure.

Nevertheless, the interlacing property of zeros is important in many other
contexts. Examples where the interlacing of zeros plays a role include the
convergence of numerical quadrature formulae (cf. [10]), the approximation
of zeros by fixed point iteration techniques (cf. [11]), the completeness of the
set of eigenfunctions to a self-adjoint Sturm-Liouville eigenvalue problem (cf.
[2]) and the uniform convergence of derivatives arising in extended Lagrange
interpolation (cf. [4]).

In this paper, we focus on the interlacing of the zeros of linear combi-
nations of Jacobi polynomials of the form pn + νqm, where pn = P

(α,β)
n and

qm = P
(α′,β′)
m , (α, β) 6= (α′, β′), with the zeros of the component polynomials

pn and qm when m = n and m = n−1. We will also examine when interlacing
takes place between the zeros of the linear combination and other selected
Jacobi polynomials that are different from the component polynomials pn

and qm.

Our method of proof makes extensive use of the interlacing property of

the zeros of P
(α,β)
n and P

(α′,β′)
m for m = n and m = n − 1 and (α′, β′) =

(α ± t, β ± k), 0 < t ≤ 2 and 0 < k ≤ 2, proved in [7]. These results proved
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a conjecture posed by R. Askey in 1989 (cf. [1, p.29]) and also showed that
the interlacing property of the zeros is retained not only for integer changes
of the parameter β as Askey conjectured, but also for continuous variation
of both the parameters α and β within a specified range.

2 Interlacing of the zeros of linear combina-

tions of different Jacobi polynomials poly-

nomials with the component polynomials

Interlacing properties of orthogonal polynomials can often be derived from
the following simple result that has been proved in several contexts, for exam-
ple, in dealing with polynomials associated with sequences of power moment
functions [8, p. 117] and when considering quasi-orthogonality [3, Theorem
3].

Lemma 2.1 Let {pn} and {qn} be two sequences of polynomials that are
orthogonal with respect to positive Borel measures µ1 and µ2, µ1 6= µ2.

(a) Assume that the zeros of pn interlace with the zeros of qn.

(i) The zeros of En = pn + νqn, ν 6= 0 are all real and simple and
interlace with the zeros of pn and qn.

(ii) If ν1 6= ν2 are any two real numbers, then the zeros of pn(x) +
ν1qn(x) and those of pn(x) + ν2qn(x) interlace.

(b) Assume that the zeros of pn and qn−1 interlace.

(i) The zeros of Fn = pn + κqn−1, κ 6= 0 are all real, simple and
interlace with the zeros of pn and qn−1.

(ii) Let κ1 and κ2 be two real numbers such that κ1 6= κ2. Then the
zeros of pn(x)+κ1qn−1(x) and those of pn(x)+κ2qn−1(x) interlace.

Note that Lemma 2.1 also holds if the constants ν and κ in the linear
combinations depend on n.

Corollary 2.2 Let α > 1, β > −1 and ν 6= 0. Let

E(α,β,k,t)
n (x) = P (α,β)

n (x) + νP (α−k,β+t)
n (x) for t, k ∈ (0, 2].

The zeros of E
(α,β,k,t)
n (x) are real, simple and interlace with the zeros of

P
(α,β)
n (x) as well as those of P

(α−k,β+t)
n (x).
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Proof. It was shown in [7, Theorem 2.6], that the zeros of P
(α,β)
n interlace

with the zeros of P
(α−k,β+t)
n for t, k ∈ (0, 2]. The result then follows from

Lemma 2.1(a).

Remark The condition α > 1 is necessary to ensure the orthogonality of
P

(α−2,β)
n when β > −1. We note that analogous interlacing results will follow

for the zeros of the linear combination

P (α,β)
n (x) + νP (α+k,β−t)

n (x), ν 6= 0

and those of P
(α,β)
n (x) and P

(α+k,β−t)
n (x) respectively, where t, k ∈ (0, 2], by

replacing α with α + k and β with β − t in Corollary 2.2.

It is interesting to note that in the case of linear combinations of Jacobi
polynomials of degree n, the zeros of E

(α,β,k,t)
n (x) do not necessarily interlace

with the zeros of either P
(α,β)
n−1 (x) or P

(α−k,β+t)
n−1 (x). Indeed, even in the sim-

plest case when t = k = 1 and n = 6, α = 2.3, β = 3.2, ν = 3, the zeros of
E

(2.3,3.2,1,1)
6 (x) are given by

x1 = −0.666, x2 = −0.347, x3 = 0.0014, x4 = 0.341, x5 = 0.6359, x6 = 0.8571

while those of P
(2.3,3.2)
5 are

x = −0.684915, x = −0.328066, x = 0.0711339, x = 0.457021 and x = 0.775148

and those of P
(2.3−1,3.2+1)
5 are

x = −0.571753, x = −0.177335, x = 0.22934, x = 0.592974, x = 0.862258.

Figures 1 and 2 show the zeros of these polynomials.
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Figure 1: The zeros of E
(2.3,3.2,1,1)
6 are given by the larger green dots, while

those of P
(2.3,3.2)
5 are smaller and black
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Figure 2: The larger green dots represent the zeros of E
(2.3,3.2,1,1)
6 while the

black dots are the zeros of P
(2.3−1,3.2+1)
5
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Lemma 2.1(a) requires that the zeros of pn and qn are interlacing. We
showed in [7] that the zeros of Jacobi polynomials of the same degree do not
interlace when both the parameters α and β are increased simultaneously.
Using this, it is not difficult to construct examples with pn = P

(α,β)
n and

qn = P
(α+k,β+t)
n where the zeros of pn + νqn and pn or qn do not interlace.

For example, Figure 3 shows the zeros of the linear combination P
(α,β)
n +

νP
(α+k,β+t)
n and the component polynomial P

(α,β)
n for n = 4, α = 1.266,

β = 1.85, ν = 4.76, k = t = 0.5.
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Figure 3: The zeros of P
(1.266,1.85)
4 + 4.76P

(1.266+0.5,1.85+0.5)
4 are represented by

the larger dots in green and those of P
(1.266,1.85)
4 are the smaller black dots.

The assumption made in Lemma 2.1(b) that the zeros of pn and qn−1

interlace, is satisfied when pn = P
(α,β)
n and qn−1 = P

(α+t,β+k)
n−1 with 0 ≤ t ≤ 2

and 0 ≤ k ≤ 2 (cf. [7, Theorem 2.3]).

Corollary 2.3 Let α > −1, β > −1, t, k ∈ [0, 2] and F
(α,β,t,k)
n (x) = P

(α,β)
n (x)+

µP
(α+t,β+k)
n−1 (x). Then the zeros of P

(α,β)
n (x) and the zeros of P

(α+t,β+k)
n−1 (x) in-

terlace with the zeros of F
(α,β,t,k)
n (x).

Proof. It was shown in [7, Theorem 2.3], that the zeros of P
(α,β)
n interlace

with the zeros of P
(α+t,β+k)
n−1 and the result follows as an immediate conse-

quence of Lemma 2.1(b).
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In general, the zeros of F
(α,β,t,k)
n (x) do not interlace with the zeros of

P
(α,β)
n−1 (x). Indeed, if n = 7, α = 2.3, β = 3.2 and ν = 1.2, t = 1.7, k = 1 then

the zeros of F
(α,β,t,k)
n (x) are

x1 = −1.56243, x2 = −0.690889, x3 = −0.403688, x4 = −0.0921743,

x5 = 0.21912, x6 = 0.507874, x7 = 0.756135

while those of P
(α,β)
n−1 (x) are

y1 = −0.748195, y2 = −0.454948, y3 = −0.112964,

y4 = 0.239816, y5 = 0.563443, y6 = 0.821418.

Remark We note that similar results have been obtained for the zeros of
linear combinations of Laguerre polynomials and their components (cf. [6])
and that the one parameter family of classical orthogonal polynomials, the
Gegenbauer polynomials, are a special case of the Jacobi polynomials where
α = β.

3 Interlacing of the zeros of linear combina-

tions of different Jacobi polynomials poly-

nomials with other Jacobi polynomials

The results that we prove in this section on the interlacing of the zeros of
linear combinations pn + νqn, where pn = P (α,β)

n and qn = P (α′,β′)
n , with Ja-

cobi polynomials other than the components of the linear combination, are of
independent interest and will also have specific application in a subsequent
paper where we consider interlacing properties of the zeros of the linear com-
bination pn + νqn with those of pn+1 + νqn+1.

Our method of proof makes extensive use of the relationship between 2F1

and Jacobi polynomials (cf. [9, p.254]), as well as the contiguous function
relations of the hypergeometric polynomials.

Theorem 3.1 Let β > 0, 0 < r <
α + n

1 + β + n
and let

E
(α,β,1,1)
n = P

(α,β)
n + rP

(α−1,β+1)
n .

a) If α > −1 then E
(α,β,1,1)
n and P

(α,β−1)
n+1 have interlacing zeros.

b) If α > 0 then E
(α,β,1,1)
n and P

(α,β)
n+1 have interlacing zeros.
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Proof. a) The connection between Jacobi and hypergeometric polynomials,
together with the contiguous relation (cf. [9, p.71, eqn.1]), yields

(1 + α + β + 2n)P (α,β)
n (x) = (1 + α + β + n)P (α,β+1)

n (x) + (α + n)P
(α,β+1)
n−1 (x),

while the contiguous relation (cf. [9, p.71,eqn 13]) may be written as

(1 + α + β + 2n)P (α−1,β+1)
n (x)

= (1 + α + β + n)P (α,β+1)
n (x) − (β + n + 1)P

(α,β+1)
n−1 (x).

Since E
(α,β,1,1)
n = P

(α,β)
n + rP

(α−1,β+1)
n ,

(1 + α + β + 2n)E(α,β,1,1)
n (x) (2)

= (1 + α + β + n)(1 + r)P (α,β+1)
n (x) + [α + n − r(β + n + 1)]P

(α,β+1)
n−1 (x).

On the other hand, from ([9, p.71, eqn.6])

2(1 + α + β + 2n)(n + 1)P
(α,β−1)
n+1 (x)

= (1 + α + β + n)[1 + α − β + 2n + (1 + α + β + 2n)x]P (α,β+1)
n (x)

−2β(α + n)P
(α,β+1)
n−1 (x). (3)

Thus

E(α,β,1,1)
n (x)

= −
2(1 + α + β + 2n)(n + 1)[α + n − r(β + n + 1)]

2β(α + n)(1 + α + β + 2n)
P

(α,β−1)
n+1 (x)

+
(1 + α + β + n)

2β(α + n)(1 + α + β + 2n)
A(α,β,r)

n P (α,β+1)
n (x) (4)

where

A(α,β,r)
n = 2β(α+n)(1+r)+[α+n−r(β+n+1)][1+α+β+2n+(1+α+β+2n)x]

changes sign only if x = −1 −
2βr

α + n − r(β + n + 1)
. It is clear that if α >

−1, β > 0 and 0 < r <
α + n

1 + β + n
, the coefficient of P

(α,β+1)
n in (4) does

not change sign on (−1, 1). Evaluating (4) at consecutive zeros xi and xi+1,

i = 1, . . . , n, of P
(α,β−1)
n+1 (x), one obtains E(α,β,1,1)

n (xi)E
(α,β,1,1)
n (xi+1) < 0 since

P
(α,β−1)
n+1 and P

(α,β+1)
n have interlacing zeros (cf. [7, Theorem 2.3]).
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b) From equation (cf. [9, p.72, ex.23]) one obtains

2(1 + α + β + n)(n + 1)P
(α,β)
n+1 (x)

= [2 + α + β + 2n + (2 + α + β + 2n)x](α + n)P (α−1,β+1)
n (x)

+(β + n + 1)[−α − β + (2 + α + β + 2n)x]P (α,β)
n (x).

Replacing P (α−1,β+1)
n by

1

r
[E(α,β,1,1)

n − P (α,β)
n ], we have

2r(1 + α + β + n)(n + 1)P
(α,β)
n+1 (x)

= (2 + α + β + 2n)(1 + x)(α + n)E(α,β,1,1)
n (x)

+{r(β + n + 1)[−α − β + (2 + α + β + 2n)x]

−(2 + α + β + 2n)(1 + x)(α + n)}P (α,β)
n (x). (5)

For α > 0, β > 0 and 0 < r <
α + n

1 + β + n
, the coefficient of P

(α,β)
n in this

equation does not change sign on (−1, 1) and since P
(α,β)
n+1 and P

(α,β)
n have

interlacing zeros, we deduce the result by evaluating (5) at consecutive zeros

of P
(α,β)
n+1 (x).

Theorem 3.2 Let Eα,β,0,1
n = P

(α,β)
n + rP

(α,β+1)
n . If α > 0, β > −1 and

r >
n + 1

β + n + 1
, the zeros of E

(α,β,0,1)
n and those of P

(α−1,β+1)
n+1 interlace.

Proof. Shifting c to c − 1 in [9, p.72] and using[9, eq.13, p.71] we obtain

2(n + 1)P
(α−1,β+1)
n+1 (x)

= (α + β + (2 + α + β + 2n)x)P (α,β+1)
n (x) − 2(β + n + 1)P (α,β)

n (x).

Since P (α,β)
n (x) = E(α,β,0,1)

n (x) − rP (α,β+1)
n (x),

2(n + 1)P
(α−1,β+1)
n+1 (x)

= [α + β + 2r(β + n + 1) + (2 + α + β + 2n)x]P (α,β+1)
n (x)

−2(β + n + 1)E(α,β,0,1)
n (x). (6)

The coefficient of P
(α,β+1)
n is zero only if x = −1 −

2r(β + n + 1) − 2(n + 1)

α + β + 2 + 2n
and therefore the coefficient does not change sign on (−1, 1) when

r >
n + 1

β + n + 1
.
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Evaluating (6) at consecutive zeros xi and xi+1, i = 1, 2, . . . , n, of P
(α−1,β+1)
n+1

we obtain E
(α,β,0,1)
n (xi)E

(α,β,0,1)
n (xi+1) < 0 since the zeros of P

(α−1,β+1)
n+1 and

P
(α,β+1)
n interlace (cf. [7, Theorem 2.2]). We deduce that there is at least

one zero of E
(α,β,0,1)
n between any two consecutive zeros of P

(α−1,β+1)
n+1 and the

result follows.
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