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Abstract

A usual way of approximating Hamilton-Jacobi equations is to couple
space finite element discretization with time finite difference discretization.
This classical approach leads to a severe restriction on the time step size
for the scheme to be monotone. In this paper, we couple the finite element
method with the nonstandard finite difference method, which is based on the
Mickens’ rule of nonlocal approximation. The scheme obtained in this way is
unconditionally monotone. The convergence of the new method is discussed
and numerical results that support the theory are provided.
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1 Introduction

The general setting of this work is the Hamilton-Jacobi equation in the form

ut + H(∇u) = 0 (1)

u(0, x) = u0(x). (2)
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For simplicity we consider the problem (1)–(2) in two space dimensions although
a generalization to arbitrary space dimension is possible. The Hamilton-Jacobi
equation is one of the fundamental equations in mechanics. It is used for instance in
generating motion and it is equivalent to other formulations such as Newton’s laws
of motion, Lagrangian mechanics and Hamiltonian mechanics (see for instance [11]).
Applications of this equation also occur in Optimal Control Theory, specifically as
Hamilton-Jacobi-Bellman equation, [5].

Problem (1)–(2) does not have classical solutions. Various kind of generalized
solutions have been considered, [10]. Here, we consider its viscosity solution, which
under the conditions H ∈ C0,1(R2) and u0 ∈ C0,1(R2) that we assume henceforth, is
the uniform limit as ε → 0+ of the (classical) solution of the following regularized
problem:

ut(t, x) + H(∇u(t, x))− ε∆u(t, x) = 0 , t ∈ (0,∞), z ∈ R2. (3)

The notation C0,1(R2) stands for the space of Lipschitz continuous functions on R2.
For the precise definition of viscosity solutions and their existence and uniqueness,
we refer the reader to [9, 10, 5, 8].

It is well known, see e.g. [9], that the viscosity solution of (1)–(2) depends
monotonically on the initial value; that is, for any two solutions u and w, we have

u(0, x) ≤ w(0, x) =⇒ u(t, x) ≤ w(t, x). (4)

The property (4) is important from the physical point of view. The purpose of
this work is to design monotone numerical schemes; that is, those that replicate this
property. Our general approach is along the lines of the many works, and specifically
[14], where the finite element space discretization is coupled with the finite differ-
ence time discretization. However, we use the Mickens’ nonstandard variant of the
finite difference approach, known as the nonstandard finite difference method, [15].
The schemes employing standard finite difference techniques are monotone under
restrictive conditions on the time step size. On the contrary, the nonstandard finite
difference scheme presented in this work preserves the monotonicity property uncon-
ditionally, improving therefore the results of [14]. More generally, as demonstrated
for a wide range of problems, [16, 18], the nonstandard finite difference method has
the potential to replicate physical properties of the exact solution in the sense of the
following definition of qualitative stability [2].

Definition 1 Assume that the solution of (1)–(2) satisfies some property (P). A
numerical method approximating (1)–(2) is called qualitatively stable with respect to
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(P) if the numerical solutions satisfy property (P) for all values of the involved step
sizes.

The rest of the work is organized as follows. In the next section we consider a
space discretization of equation (3) using the finite element method, while Section
3 is devoted to a nonstandard finite difference scheme for the obtained system of
differential equations. The convergence of this new scheme is proved in Section 4.
Numerical results supporting the theory are presented in Section 5. Concluding
remark and our future research plan are given in the last section.

2 Finite element space discretization

In this section we refer essentially to [14]. Standard concepts and notation on
the finite element method can also be found in [7]. Let Th be a triangulation of
R2 consisting of a countable set of triangles which satisfy the usual compatibility
conditions. The generic triangle of Th is denoted by T , hT is the diameter of T ,
h = sup

T∈Th

hT and ρT is the diameter of the largest ball in T . The triangulation is

assumed to be regular, that is, there exists a constant c, which is independent of
h and such that we have hT

ρT
≤ c for all T in Th. Let {Xi : i = 1, 2, ...} be the set

of nodes on Th. The edge connecting Xi and Xk is denoted by Eik. For any node
Xi, we denote by Ni the index set of its neighbor vertexes (vertexes connected to
Xi by an edge), while Ii is the index set of the triangles with common vertex Xi: a
triangle corresponding to an index k ∈ Ii is denoted by Tk. With each node Xi we
associate the basis function φi defined as a continuous piecewise linear function on
R2 such that φi(Xi) = 1 and φi(Xk) = 0, k 6= i. Note that φi has “small” support
in the sense that suppφi = Vi =

⋃
k∈Ii

Tk. We denote by Vh the finite element space

which is spanned by the basis functions (φi)i.
An approximation vh(t, x) to the solution of (3) is sought such that vh(t, ·) ∈ Vh,

i.e. vh(t, x) =
∞∑
i=1

vh,i(t)φi(x), where vh satisfies the variational equation

d

dt

∫∫

R2

vhwdx1dx2 +

∫∫

R2

H(∇vh)wdx1dx2 = −ε

∫∫

R2

∇vh∇wdx1dx2 (5)

for all functions w ∈ Vh. In the sequel, vh,i is abbreviated to vi wherever this does
not lead to confusion. Replacing the test functions w by the basis functions φi,
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i = 1, 2, ..., and approximating the integral in the first term by the ”mass lumping”
quadrature we obtain

d

dt
vi(t)

∫∫

Vi

φidx1dx2 +

∫∫

Vi

H(∇vh)φidx1dx2 = −ε

∫∫

Vi

∇vh∇φidx1dx2 .

After some standard technical manipulations, see e.g. [14], the above equation can
be written in the following equivalent form

d

dt
vi = −

∑
j∈Ii

H
(∇vh|Tj

)
ηij +

3ε

µ(Vi)

∑

k∈Ni

aik(vk − vi), (6)

where µ denotes the area and

ηij =
µ(Tj)

µ(Vi)
, j ∈ Ii

aik =
1

2
(cot θ

(1)
ik + cot θ

(2)
ik ) , k ∈ Ni,

θ
(1)
ik and θ

(2)
ik being the angles opposite the edge Eik in the two adjacent triangles

which contain Eik. For the monotonicity of the scheme discussed in the next section
the coefficients aik need to be bounded away from zero, that is, there exists a positive
constant c0 such that we have

aik ≥ c0 , i = 1, 2, ... and k ∈ Ni. (7)

It was shown in [14] that if the triangulation is such that there exists a constant c1,
(0 < c1 < π

2
), independent of h such that

θ
(1)
ik + θ

(2)
ik ≤ π − c1 (8)

for every edge Eik on Th, then property (7) holds.

3 A nonstandard finite difference scheme

We consider a mesh {t0, t1, ...} in the time dimension with a step size ∆t, that is, we
have tn = n∆t. As usual vn = (vn

i ) denotes the approximation of the solution of (6)
at t = tn. Our aim in this section is to design a scheme for (6) that is qualitatively
stable with respect to the monotonicity on initial values. That is

v0
i ≤ w0

i =⇒ vn
i ≤ wn

i , (9)
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whenever vn and wn are discrete solutions initiated at v0 and w0, respectively.
For simplicity, we ignore for the moment the space index i and assume that

we are dealing with a scalar problem the discrete solution of which is given by an
explicit scheme of the form

vn+1 = g(∆t; vn). (10)

The following result is proved in [3]:

Theorem 2 The difference scheme (10) is qualitatively stable with respect to the
monotonicity on initial values if and only if

∂vn+1

∂vn
≡ ∂g

∂v
(∆t; v) ≥ 0 for ∆t > 0 and v ∈ R. (11)

Since we are reduced to checking the positivity condition (11), we will in what
follows adapt and exploit the favorable situation described in the following theorem:

Theorem 3 Let w be the solution of the problem

Lw = f(w)

where L is either the differential operator Lz = z′ or the identity operator Lz =
z. Assume that the solution w is nonnegative and that the function f admits the
decomposition

f(z) = p(z)− q(z)z (12)

where p(z) ≥ 0 and q(z) ≥ 0. Then the difference scheme

wn+1 − wn

∆t
= p(wn)− q(wn)wn+1 (13)

for Lz = z′ or
wn+1 = p(wn)− q(wn)wn+1 (14)

for Lz = z is qualitatively stable with respect to the positivity property of the solution
w.

Proof. Obvious by re-writing (13) and (14) as

wn+1 =
wn + ∆tp(wn)

1 + ∆tq(wn)
,

and

wn+1 =
p(wn)

1 + q(wn)
,

respectively.
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Remark 4 The situation described in Theorem 3 was introduced in a more specific
form by the authors in [1] in order to design schemes that preserve the positivity
property of the solutions of reaction diffusion equations. The idea is also exploited
for the approximation of differential models in population biology and mathematical
epidemiology where the positivity of the the involved species is essential (see, for
instance, [12, 17, 18] ). The underlying point of these schemes is, as it can be seen
from (13) and (14), that one of Mickens’ rules of constructing nonstandard finite
difference schemes is reinforced: the nonlinear term q(w)w is approximated in a
nonlocal way i.e. by q(wn)wn+1 and not by q(wn)wn or q(wn+1)wn+1.

Coming back to the problem (6), we will use the nonstandard finite difference
method, which can be defined as follows [2]:

Definition 5 A finite difference scheme for (6) is nonstandard if it involves at least
one of the following conditions:

• In the discrete derivative, the traditional denominator ∆t is replaced by a
nonnegative function ψ such that

ψ(∆t) = ∆t + O(∆t2); (15)

• Nonlinear terms are approximated in a nonlocal way.

In view of the form of the right-hand side of (6) and of Theorem 2, which requires

to show the positivity condition
∂vn+1

i

∂vn
i

≥ 0, we propose, in the spirit of the nonlocal

approximation in Theorem 3, the following nonstandard finite difference scheme for
the system of equations (6):

vn+1
i = vn

i −∆t
∑
j∈Ii

H
(∇vn

h |Tj

)
ηij +

3ε∆t

µ(Vi)

∑

k∈Ni

aik(v
n
k − vn+1

i ). (16)

Observe that the second sum in (6) is approximated in a nonlocal way.

Theorem 6 Let the triangulation Th be regular and satisfy the condition (7). Let
H ∈ C0,1(R2). Then there exists a constant c3 independent of ∆t and h such that if
ε ≥ c3h the scheme (16) is monotone.
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Proof. Let m ∈ Ni and let Xm′ and Xm′′ be the nodes opposite to Eim in the
two adjacent triangles T ′ and T ′′ containing Eim. We have

∂vn+1
i

∂vn
m

= −∆t

[
∇H · ∇φm|T ′ µ(T ′)

µ(Vi)
+∇H · ∇φm|T ′′ µ(T ′′)

µ(Vi)

]

+
3ε∆t

µ(Vi)
aim − 3ε∆t

µ(Vi)

∑

k∈Ni

aik
∂vn+1

i

∂vn
m

Hence
(
1+

3ε∆t

µ(Vi)

∑

k∈Ni

aik

)
∂vn+1

i

∂vn
m

≥ ∆t

µ(Vi)

[
3εaim− 1

2
|H|1,∞(|Eim′|+|Eim′′|)

]

≥ ∆t

µ(Vi)
[3εc0−h|H|1,∞] ,

where |H|1,∞ = sup ||∇H||2. Setting c3 = |H|1,∞
3c0

we obtain
∂vn+1

i

∂vn
m

≥ 0 whenever
ε ≥ c3h.

In a similar way

∂vn+1
i

∂vn
i

= 1−∆t
∑
j∈Ii

∇H · ∇φi|Tj

µ(Tj)

µ(Vi)
− 3ε∆t

µ(Vi)

∑

k∈Ni

aik
∂vn+1

i

∂vn
i

.

Hence (
1+

3ε∆t

µ(Vi)

∑

k∈Ni

aik

)
∂vn+1

i

∂vn
i

= 1− ∆t

µ(Vi)
∇H ·

∑
j∈Ii

∇φi|Tj
µ(Tj). (17)

It is easy to see that in any triangulation Th we have

∑
j∈Ii

∇φi|Tj
µ(Tj) = 0. (18)

Indeed, for any constant vector in z = (z1, z2) ∈ R2 we have

z
∑
j∈Ii

∇φi|Tj
µ(Tj) =

∫∫

Vi

z∇φi = −
∫∫

Vi

∇zφidx1dx2 = 0,

which implies (18). Substituting (18) in (17) we obtain
∂vn+1

i

∂vn
i

> 0. This completes

the proof.
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Remark 7 With the notation of the proof of Theorem 6 in mind, we assume that
the second term in the right hand side of (16) is increasing with respect to vn

m. In this
case, Theorem 6 is a straightforward consequence of Theorem 3 and the monotonicity
of the scheme (16) occurs then without the relation ε ≥ c3h. This relation is essential
in the general setting of Theorem 6 where the monotonicity of the mentioned term
cannot be monitored.

Mickens’ rule of nonlocal approximation is normally applied to nonlinear terms,
see [15], [3]. Here we apply it to a linear term. Usually, the two conditions in
Definition 5 are considered independently. It is interesting that in our case the
scheme formulated in (16) through nonlocal approximations admits an equivalent
formulation using a renormalization of the denominator of the discrete derivative.
More precisely, (16) is equivalent to

vn+1
i − vn

i

ψi(∆t)
= −

∑
j∈Ii

H
(∇vn

h |Tj

)
ηij +

3ε

µ(Vi)

∑

k∈Ni

aik(v
n
k − vn

i ), (19)

where

ψi(∆t) =
∆t

1 + 3ε∆t
µ(Vi)

∑
k∈Ni

aik

has the asymptotic behavior stated in (15).

Remark 8 The more complex denominator function ψi(∆t) captures the intrinsic
property of the solution of the problem (6) of being monotone dependent on initial
values under the condition ε ≥ c3h stated in Theorem 6. It would be interesting
to investigate, along the lines of the methodology of the nonstandard approach (see
[18]), whether there are other physical properties of (6) that are captured by ψi(∆t).

Remark 9 At every t = tn the solution of the problem (1)-(2) is approximated by

the function vn
h =

∞∑
i=1

vn
i φi(x) ∈ Vh. Hence the scheme (16) can equivalently be

considered as a mapping G(∆t, ·) from Vh into Vh such that vn+1
h = G(vn

h). Due to
the explicit formulation (19) of (16), the mapping G can also be given in an explicit

form. More precisely, for any wh =
∞∑
i=1

wiφi ∈ Vh, we have

G(∆t, wh) =
∞∑
i=1

αiφi(x), (20)

αi = wi − ψi(∆t)
∑
j∈Ii

H
(∇wh|Tj

)
ηij +

3ε

µ(Vi)

∑

k∈Ni

aik(wk − wi), i = 1, 2, .... (21)
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It is clear that under the conditions in Theorem 6 the mapping G(∆t, ·) is monotone
with respect to the usual pointwise partial order on Vh.

Remark 10 Numerical schemes using the standard finite difference method are typ-
ically monotone only under a restriction on the time step size. This might be a
disadvantage in applications. For example in [14] the restriction is

∆t ≤ C
min

j
µ(Tj)

ε
.

Since the bound of ∆t involves the size of the smallest triangle in the triangulation
the above inequality implies that even when the triangulation is refined only locally
∆t need to be adjusted as well. Through the nonstandard approach the scheme (16)
is monotone for any time step size.

4 Convergence

The convergence of the scheme is obtained through an abstract convergence result
of Barles and Souganidis, [6], which is detailed in its consequences in [13] for the
equation (1) as stated below. The function spaces and notations are defined in these
references.

For ρ > 0 let a mapping S(ρ) : L∞(R2) → L∞(R2) be given. The following
conditions are considered in connection with the mapping S(ρ):

• monotonicity, i.e., u ≤ w implies S(ρ)u ≤ S(ρ)w, (22)

• invariance under translation, i.e., S(ρ)(u + z) = S(ρ)u + z, z ∈ R2, (23)

• consistency, i.e.,
ϕ− S(ρ)ϕ

ρ
→ H(∇ϕ) as ρ → 0 for all ϕ ∈ C∞

0 (R2) (24)

• rate of approximation:∣∣∣∣
ϕ− S(ρ)ϕ

ρ
−H(∇ϕ)

∣∣∣∣ = O(ρ(|ϕ|1,∞ + |ϕ|2,∞)) for all ϕ ∈ C∞
0 (R2) (25)

An approximation u∆t to the solution of (1)-(2) is constructed by using a grid
tn = n∆t in time as follows:

u∆t(t, x) =

{
u0(x) if t = 0
S(t− tn)u∆t(tn, ·)(x) if t ∈ (tn, tn+1], n = 0, 1, ...

(26)
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Theorem 11 If a mapping S(ρ) satisfies (22), (23) and (24) and H ∈ C0,1(R2),
u0 ∈ C0,1(R2) then for any t > 0 we have u∆t → u uniformly on [0, t] × R2 as
∆t → 0. Furthermore, if S(ρ) satisfies also (25) then there exists a positive constant
C independent of ∆t such that

||u∆t − u||∞ ≤ C∆t
1
2 .

Let Ih denote the piece-wise interpolation operator at the nodes of the triangu-
lation Th, that is, for any real function ϕ on R2 the function Ihϕ is linear on any
triangle T ∈ Th and (Ihϕ)(Xi) = ϕ(Xi) at every node Xi of Th. Note that we have
Ihϕ ∈ Vh. We consider the mapping S(ρ) : L∞(R2) → L∞(R2) defined as a compo-
sition of the operator Ih and the scheme (16). More precisely using the mapping G
given in (20)-(21) we have

S(ρ)ϕ = G(ρ, Ihϕ). (27)

Then the numerical scheme (16) is equivalent to the scheme (26) where the numerical
solution is evaluated only at the points of the mesh. Therefore the convergence of
the scheme (16) can be obtained through Theorem 11, where the mapping S(ρ) is
given by (27). To this end we only need to verify the conditions (22)-(25) for S(ρ)
given by (27). The essential property of the monotonicity of S(ρ) follows from the
monotonicity of G and Ih. The condition (23) follows trivially from the form (20)-
(21) of the mapping G. Now we consider condition (24) and its stronger form (25).
Using standard techniques as in [13] and [14] one can show that if ε = O(h) then

∣∣∣∣
ϕ− S(ρ)ϕ

ρ
−H(∇ϕ)

∣∣∣∣ = O(h|ϕ|2,∞ + ρ). (28)

For convergence we assume that both ∆t and h approach zero. Hence the consistency
condition (24) follows from (28). Moreover, if we assume that ∆t = O(h) and
h = O(∆t) the estimate (28) implies (25). Hence we have the following convergence
result.

Theorem 12 Let the family of triangulations (Th) be regular and satisfy the con-
dition (7). Let H ∈ C0,1(R2) and u0 ∈ C0,1(R2). Then the numerical solution vn

h

obtained by (16) with ε ≥ c3h and ε = O(h) converges to the exact solution u of the
problem (1)-(2), i.e., for any t > 0 we have

sup
i,n≤t/∆t

|u(tn, Xi)− vn
i | → 0 as ∆t → 0, h → 0.
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Moreover, if 0 < inf ∆t
h
≤ sup ∆t

h
< ∞ there exists a constant C such that

sup
i,n≤t/∆t

|u(tn, Xi)− vn
i | ≤ Ch

1
2 .

Remark 13 As a follow up to Remark 10 and in view of the other parameters ε
and h that are involved in the previous results, it might be useful to comment further
on how our nonstandard finite difference scheme (16) replicates the monotonicity
property without any restriction on the time step size ∆t. Notice that min

j
µ(Tj) =

O(h) for small h. Thus, if in the classical approach εis assumed to be equivalent to
h as in Theorem 12, then the restrictive nature of the condition on ∆t in Remark 10
appears further even for small values of ε. Equally, while the nonstandard scheme
(16) is ∆t-unconditionally convergent, the additional equivalence between h and ∆t

is only required to guarantee its rate of convergence O(h
1
2 ).

5 Numerical results

As an example we consider the following problem which is often used in testing
numerical methods, [19], [14]:

ut −
√

u2
x + u2

y + 1 = 0 , (x, y) ∈ (0, 1)× (0, 1) , t > 0 (29)

u(0, x, y) = cos(2πy)− cos(2πx) (30)

with periodic boundary conditions. We use a triangulation with 6240 elements which
satisfies condition (8). The numerical solution obtained with ε = 0.01 and ∆t = 0.01
is presented on Figure 1. For comparison we consider the standard Euler scheme for
the equation (6) which is monotone only for sufficiently small values of ∆t, see [14]
for details. The numerical solution obtained for the same value of the parameters,
that is, ε = 0.01 and ∆t = 0.01, is presented on Figure 2. The advantage of the
considered nonstandard method with regard to preserving the qualitative behavior
of the solution is apparent.

6 Conclusion

This work is motivated by the paper [14] where a severe restriction on the time step
size is imposed for the numerical scheme for Hamilton-Jacobi equations obtained
through the coupling of the finite element method (in space) and the finite difference
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Figure 1: Numerical solution of (29)–(30) using the nonstandard method (16).

method (in time) to be monotone. We have relaxed this restriction by using Mickens’
nonstandard finite difference method, [15]. More precisely, Mickens’ rule of nonlocal
approximation is exploited and this leads to a nonstandard scheme that replicates
the monotonicity property of the Hamilton-Jacobi equations for all positive step
sizes. Furthermore, the superiority of the nonstandard method to the standard one
is confirmed by numerical results.

In previous works, [3, 4], it was proved that the monotonicity of nonstandard
schemes is essential for their elementary stability. Our plan for future research is to
investigate whether a similar result holds for the Hamilton-Jacobi equations.
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