40

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

EFFICIENT MANAGEMENT OF CLOCK DRIFT IN PREAMBLE
SAMPLING MAC PROTOCOLS FOR WIRELESS SENSOR
NETWORKS

C. E. Tonsing* and G. P. Hancke**

* Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria,
0002, South Africa, E-mail: christoph.tonsingl@gmail.com

** Departiment of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria,
0002, South Africa, E-mail: g.hancke(@ieee.org

Abstract: In this paper, the design of an energy-efficient Medium Access Control (MAC) protocol
for low traffic Wireless Sensor Networks (WSNs) is presented. The protocol, Dynamic Preamble
Sampling MAC (DPS-MAC), is based on the existing preamble sampling MAC layer solutions for
WSNs. Unlike its predecessors, DPS-MAC does not cater for the worst case clock drift but rather, it
dynamically adjusts its operation to the clock drift experienced between any two communicating
nodes. In this way, the energy previously expended on overcoming the problem of clock drift is

Vol.100(2) June 2009

reduced, leading to longer node and network lifetimes.

Key words: Clock drift, MAC protocol, Preamble Sampling, Wireless Sensor Networks.

1. INTRODUCTION

Wireless Sensor Networks (WSNs) form an area of
interest that has rapidly expanded in the recent past. A
WSN is a collection of many small devices called sensor
nodes. Each node is generally capable of performing
some type of environment sensing (e.g. temperature,
humidity etc.), processing the sensed data and wirelessly
communicating with neighboring nodes, usually for
forwarding data in a hop by hop fashion from one node to
the next towards a sink node or base station node. At the
base station/sink node, all the data received from the
surrounding nodes can be further processed or stored as
necessary.

Typical applications of WSNs include battlefield
surveillance, intruder detection, wildlife observation,
monitoring of agricultural processes, wildfire detection,
home automation and many more. Essentially all of the
application areas of WSNs have the common
requirements that the sensor networks should be void of
fixed infrastructure, should be dynamically deployable,
should operate autonomously without human
assistance/intervention, and should remain active for long
periods of time. To meet these requirements, a WSN node
must be autonomous itself, carrying with it a supply of
energy (e.g. a battery) or the ability to scavenge energy
from its surrounding environment (e.g. a solar panel). It is
thus imperative that each node be able to survive for as
long as possible with a highly limited supply of energy.
The decisive design challenge underlying all types of
WSNs is therefore energy efficiency. Other challenges
such as small size, low cost etc. may or may not be
crucial depending on the specific application. However,
without energy efficiency, most of the other design
challenges can never be met. A node cannot be made
small if it needs a large battery or solar panel to operate.

Also, a WSN cannot be made low cost if the maintenance
of the network requires battery replacements.

The challenge of making WSNs energy efficient is a task
that needs to be dealt with at every level of the network
and every step of the design process. Raghunathan er al.
[1] give an excellent overview of energy efficiency in
WSNs. The authors make the important observation that
the main consumer of energy in a node with current state
of the art technology is the active wireless transceiver.
The use of the transceiver must therefore be meticulously
controlled so as to prevent energy wastage from
prematurely rendering a node useless in the field.

It is generally accepted that the method of energy
conservation is to have the transceiver of a node active
for only very short periods of time for transmission and
reception. During the remainder of the time, the
transceiver, or even the entire node, is powered down.
This method of operation is referred to as duty cycling
and the process of sleep and wakeup cycles is controlled
and coordinated among nodes by the Medium Access
Control (MAC) layer of the communications protocol
stack. The MAC protocol is thus a crucial part of an
energy-efficient WSN design.

This paper deals with the design of a new energy-efficient
MAC protocol with the goal of extending the useful
lifetime of a WSN. The rest of this paper is organized as
follows. Section 2 deals with related work in the existing
literature. A general overview of existing WSN MAC
protocols is given, followed by a closer analysis of the
specific protocols that form the design basis for the new
protocol. The design of the new MAC protocol is then
discussed in Section 3. Section 4 gives the results of the
protocol simulation and finally, Section 5 concludes the

paper.

Vol.100(2) June 2009

2. RELATED WORK
2.1 WSN MAC Protocols Overview

From the current literature pertaining to the topic of WSN
MAC protocols, it is clear that there are two main types
of WSN MAC protocols, namely schedule-based
protocols (e.g. Time Division Multiple Access (TDMA)-
type protocols) and contention-based protocols (e.g.
Carrier Sense Multiple Access (CSMA)-type protocols).
Since it has become clear that WSNs of varying kinds
exist and will be devised in the future, it must be kept in
mind that different applications will likely require very
different hardware and protocols. This is expressly
pointed out in a number of articles, such as the extensive
WSN overview by Sadler [2].

As a very general classification, it can be stated that the
properties of schedule-based MAC protocols lend them
suitable for applications where the traffic patterns are
deterministic and the topology static. Furthermore they
mostly require tight time synchronization among nodes
and are thus more suitable for medium to high traffic
applications where a relatively constant stream of data is
available to keep node clocks synchronized. Lastly they
are suitable to be used in networks where the nodes
gather into a clustered topology, with the cluster-head
being in control of the scheduling functions. A few
examples of schedule-based MAC protocols are LEACH
[3], TRAMA [4], DE-MAC [5], and EMACS [6].

As far as contention-based MAC protocols are concerned,
their properties make them generally suitable for use in
bursty traffic scenarios due to the fact that they do not
follow a schedule. They are also suitable for use in low
traffic scenarios due to their ability to operate at low duty
cycles. Traditional contention-based protocols such as the
IEEE 802.11 MAC protocol are useful for low latency
scenarios. However, such protocols have high energy
consumption. To counter this problem, the duty-cycled
MAC protocol was introduced. The classical and
extensively quoted WSN MAC protocol in this category
is S-MAC [7] which has resulted in a number of
derivatives and adaptations (e.g. T-MAC [8] or DSMAC
[9]). Among contention-based protocols, another group of
duty-cycled protocols are those employing preamble
sampling to establish communication between two nodes.
Some prominent examples of this protocol group are
WiseMac [10], CSMA-MPS [11] and B-MAC [12].

2.2 Design Basis

It is apparent from the literature that the specific area of
low traffic WSNs (i.e. WSNs where nodes transmit data
relatively infrequently) has not been dealt with
exhaustively. The preamble sampling family of MAC
protocols shows suitability for such WSNs as these
protocols can easily operate at low duty cycles.

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 41

Low duty cycled contention-based MAC protocols
generally operate as follows. Each node in the network
has a short listen slot during which time its transceiver is
in listening mode to determine whether there is any
incoming data from a neighboring node. If not, the
transceiver is switched off again until the next listen slot.
If there is incoming data, the node continues to receive
until the data packet is fully delivered and then switches
off the transceiver again. The time between successive
listen slots, T, is the same for all nodes in a network;
however, the listen slot start times are not synchronized
among nodes. They are in fact randomly distributed.
Therefore, if node A wants to send a data packet to a
neighboring node B, it needs to know when this
destination node will have its next listen slot. To do this,
node A maintains a table with information of its one-hop
neighbors. This table contains each neighboring node’s
address, as well as the time stamp since last
communication with that node. From this time stamp and
T, node A can calculate the time at which node B will
have its next listen slot. In an ideal scenario, the sender
will thus know the exact point in time at which the
intended destination node will wake up and send the data
at that instant. The destination node will wake up to listen
and immediately start receiving the data. The reason why
the ideal scenario cannot be achieved is summed up in the
term clock drifi. There is not a single clock which can
maintain perfect time. This applies especially to cheap
sensor nodes with cheap quartz crystals as frequency
source. A crystal oscillator frequency tolerance of +O can
cause timing errors on the order of +OL, where L is the
time since last clock resynchronization. Values of © for
crystal oscillators can be in the region of 10-100 ppm
(parts per million).

Preamble sampling protocols overcome the problem of
clock drift by sending a preamble before the actual data
packet to make sure that the destination’s listen slot is
“hit”. In other words, if node A wants to send a packet to
a neighboring node B, it must send a preamble until it is
sure that node B has switched on its transceiver and is
listening for incoming data. Node B thus notices the
incoming preamble during its listen slot and continues to
listen until the actual data packet is delivered
immediately after the preamble. In this way, the preamble
may be viewed as waking up the destination node,
enabling the actual data to be delivered reliably.

Some preamble sampling protocols like B-MAC do not
keep track of neighboring nodes’ listen schedules. In this
case, node A starts sending a preamble as soon as data
becomes available for transmission to node B. The
preamble is sent for T, seconds, followed by the actual
data. In this way, node A is sure that node B had a listen
slot during the preamble transmission and continued
listening until the data was delivered.

In order to shorten the preamble sending time and thus

42 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

save energy, the WiseMac protocol keeps track of
neighboring nodes’ listen schedules. Node A can thus
calculate an estimation of B’s next listen slot start, te,
using the time stamp of last communication and T,, as
mentioned above. If the maximum frequency tolerance of
the nodes’ crystal oscillators is given by +O, the authors
of the WiseMac protocol show in [10] that the estimated
listen slot start, t., will be in error by a maximum of
+20L seconds. Therefore, node B may in fact start its
listen slot 2OL seconds before or after t.,. To ensure that
node B’s listen slot is “hit”, node A should start sending
the preamble 20L seconds before t. and continue to send
it for 206L seconds after t,, a total of 4OL seconds. Of
course, if the time since last communication, L, becomes
large enough so that 40L > T,,, then the preamble need
only be sent for T,, seconds. In summary, the maximum
preamble length in seconds is given by Tocamble =
min(40L, T,). For appropriate values of L, nodes using
the WiseMac protocol can thus save significant energy
compared to using a MAC protocol that does not keep
track of neighboring nodes’ listen schedules.

The CSMA-MPS protocol is based on WiseMac and took
some ideas from STEM [13], [14] as well. The authors of
CSMA-MPS point out in [11] that the WiseMac protocol
sends out a continuous preamble and the preamble length,
Tpreambles 1 fixed prior to sending the preamble. Thus,
even if the destination node, node B, starts its listen slot
right at the beginning of the preamble, it still has to listen
to the entire length of the preamble to receive the actual
data straight afterwards. The STEM protocol takes a
different approach, as its preamble consists of short
alternating transmit and receive slots. During the transmit
slot, a packet containing the destination node’s address is
sent out. During the receive slot, the source node listens
for a preamble acknowledgement (ACK) packet. If no
preamble ACK packet is received, the next preamble
packet is sent out, and so forth. When node B wakes up
for its listen slot and detects an incoming preamble packet
from node A, node B responds with a preamble ACK
packet to acknowledge its readiness to receive data from
node A. Node A can thus stop sending the preamble and
instead send the actual data. The CSMA-MPS protocol
uses this same preamble format and on average halves the
preamble sending time compared to WiseMac. In this
way, CSMA-MPS improves on the energy efficiency and
network lifetime of WiseMac.

It was noted that even though protocols like WiseMac
and CSMA-MPS directly address the problem of clock
drift, this problem has always been represented as a
single value, O, the maximum frequency tolerance of the
oscillator hardware. These protocols thus always assume
worst case clock drift, whereas the properties and
characteristics of the © value have not been investigated
further. The DPS-MAC protocol discussed in this paper
builds specifically on the CSMA-MPS protocol as the
most energy efficient existing preamble sampling MAC
protocol. Some basic properties of the frequency
tolerance value are exploited so as to shorten preamble

Vol.100(2) June 2009

sending times and allow DPS-MAC to achieve improved
energy efficiency compared to its predecessor.

2.3 Clock Drift

Overview: So far, the quality of a clock source has been
described by a single value, O, the frequency tolerance of
the clock source. However, the quality of a clock in fact
consists of two distinct concepts, namely accuracy and
stability [15]. The degree to which a crystal oscillator is
accurate is the degree to which the average frequency at
which it oscillates is close to its specified resonant
frequency. On the other hand, the degree to which an
oscillator is stable is the degree to which the frequency
output of the oscillator varies from its average value over
time. Thus, if a microcontroller uses a quartz crystal
oscillator, the timing errors, or clock drift, that can be
expected by the microcontroller consists of two parts.
Firstly, a fixed frequency offset will cause its time to drift
from actual time at a fixed rate, say O,,.. This is the clock
inaccuracy and is caused mainly by variations in the
exact shape and cut of the quartz crystals at
manufacturing time. Secondly, the crystal’s frequency
output may vary over time due to various sources of
instability, causing uncertainty in the microcontroller’s
time reference at any point in time.

A fixed frequency offset and the resulting timing errors
that increment at a fixed rate can easily be compensated
for if the average drift rate, O,,., is known. Therefore, the
uncertainty caused by frequency instability presents a
greater problem to clock synchronization and the
magnitude of this problem is now investigated more
closely.

Clock instability: Intuitively, the procedure to evaluate a
clock’s quality would be to repetitively measure the
frequency of the clock and then analyze the data. The
average value of all the measurements would indicate the
inaccuracy of the clock (fixed offset) and the standard
deviation would indicate the instability of the clock
(random fluctuations). There is a problem with this
approach though, since clock frequency cannot be
measured instantaneously, but needs an averaging
interval T in which to count the number of clock cycles so
as to calculate the frequency for that interval t. It turns
out that the standard deviation is ill-defined for such a set
of measurements as it shows dependency on the length of
interval T and in certain situations, the standard deviation
value does not converge to a sensible value [16]. To solve
this problem, different measures have been proposed to
characterize clock stability. The specification which has
been recommended by the IEEE to characterize clock
stability in the time domain is referred to as the Allan
deviation which is the square root of the Allan variance
[17]. It is denoted by oy,(t). A detailed explanation of
what it represents can be found in [16].

The reason why the Allan deviation is such a useful
measure is because it is straightforward to convert the

Vol.100(2) June 2009

Allan deviation to the timing errors that can be expected
from an oscillator. This is achieved as follows. If a clock
is perfectly synchronized and set at a point in time, then t
seconds later, the expected time error of the clock is
simply calculated as t6,(1) [17]. The two coordinates of a
point on the o,(1) plot are thus multiplied together and
this gives the remaining time error that can be expected
once the average time error, caused by a fixed frequency
offset, has been removed. In other words, this value
represents the expected time error standard deviation.
Using the above procedure, a graph of the expected time
error standard deviation for quartz crystal oscillators is
generated as shown in Figure 1, by using the data from
the 6,(1) plot in Figure A1 of [18].

1 3

Expected Time Error Std. Deviation (s)

001 01 1 10 100 1000 10
T (s

Fig 1: Expected time error standard deviation vs.
synchronization interval t for quartz crystals.

To demonstrate these observations, take as example a
microcontroller which implements a clock function.
Suppose that the microcontroller’s crystal oscillator has
an average frequency inaccuracy given by O, = 20 ppm
= 20x10°. At time zero the microcontroller’s time is
synchronized perfectly to a hypothetical perfect time
reference. After Tt = 100 seconds, the time error caused by
the fixed frequency offset in the crystal is given by ©,,,
7= 2x10" seconds. On the other hand, using the graph in
Figure 1 for T = 100 seconds shows that the time error
caused by clock instability is only approximately 9x10”
seconds. In this case, the random time error caused by
clock instability is more than five orders of magnitude
smaller than the time error caused by the fixed frequency
offset. In fact, as seen in Figure 1, up to a
resynchronization interval of T = 1000 seconds, the time
error due to instability is on the order of less than 1 ps. As
T increases, processes such as random frequency walk,
component aging as well as temperature changes may
increase the effects of frequency instability [17].

The observations that have been made regarding clock
drift are exploited in the design of the DPS-MAC
protocol as discussed next.

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 43

3. PROTOCOL DESIGN
As has been mentioned, the Dynamic Preamble Sampling
MAC (DPS-MAC) protocol is based on the CSMA-MPS
MAC protocol. The three operational states of the DPS-
MAC protocol are as follows, keeping in mind that the
first two of these states are the same as in the CSMA-
MPS protocol.

3.1 State 1 - Unsynchronized

When a node is first powered up, it has no knowledge of
the listen schedules of its surrounding nodes. Each node
simply begins its own listen schedule upon startup i.e. it
enters a short listen period every T,, seconds. For each
node, the scheduling of this listen slot is independent of
any of its surrounding nodes and there is no
synchronization of listen schedules amongst nodes. When
such a node, say node A, needs to transmit data to one of
its neighboring nodes, it starts the transmission process
immediately. The transceiver is first switched on,
entering a wake-up (WU) mode until it is fully functional.
Then, a carrier sense (CS) operation is done to determine
whether the medium is busy or not. If the medium is
detected as busy, the transmission attempt is rescheduled
after a short random time in the interval [T,/2, T,]. If the
medium is found idle, node A starts sending the
preamble. After a maximum of T, seconds, the
destination node, node B, will have had its listen slot and
in response sent a preamble ACK packet, telling node A
to send the actual data. After receiving the data, node B
responds with a final ACK packet. Node B measures the
time difference, At,, between when its listen slot started,
tisenss @and when it actually received the first valid
preamble packet, trpreambies. This value is returned to node
A in the preamble ACK packet. In this way, node A
knows exactly the time at which node B started its listen
slot, and stores this value with node B’s entry in the
neighbor table as the last time of communication, tjg.
The next time a communication must occur with node B,
node A can operate in the second state.

3.2 State 2 — Slot Estimate Available

Having had a previous successful communication with
node B, node A can roughly estimate the time at which
node B will have its next listen slot, t.p, by simply
adding T, repetitively to tj,p until a value greater that the
current time is obtained. Each node in the network also
knows the maximum frequency tolerance of the crystal
oscillators used on the nodes, O,. As explained
previously for the WiseMac protocol, node A will thus
start sending the preamble 20,,,,Lp seconds before t.ys,
where Lg = teyn - tiep. In fact, CSMA-MPS adds a short
random time, t,, to prevent similarly synchronized
neighbors from sending data to node B at the same time,
causing a collision. This random time is given as t,g =
kT..x» Where k is a uniform random integer in the
interval [0, N], N being the number of entries in the
neighbor table, and T, is the receive-transmit switching
time of the transceiver hardware, a constant. Thus, the

44

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

Vol.100(2) June 2009

t rand t;:'m&!dB t estB
Event arrival Ay !
Oacta B
: '— EEEE B M Receiving/
A wait WU- l Data - . Listening
2 4
At I-r Sending
Y
["] Intermediate
[state
B WU Ack
t AtI-pred

listenB

Fig 2: The operation of the DPS-MAC protocol in the third state where a clock drift estimate to the destination node
is available.

time at which node A actually starts sending a preamble
to B is given by tya = tesn - 20maxlp - tang. If before
starting the transmission, node A detects the medium
busy during the CS operation, the transmission is
rescheduled for node B’s next listen slot. If the medium is
idle, node A starts sending the preamble. Upon reception
of the first valid preamble packet, node B again measures
the time difference At., and includes this value in the
preamble ACK packet. From this value, node A again
calculates the time at which node B started its listen slot,
tisenss and stores this again as the last time of
communication with node B, tj,qs. Furthermore, node A
also knows the time at which it originally estimated node
B would start its listen slot, t.ys. From this point on, DPS-
MAC extends the functionality of CSMA-MPS. Node A
calculates Aticq = tiisiens - tesz @S the difference in time
between when node B actually started listening and when
node A estimated node B would start listening. From this,
node A can calculate the actual clock drift that occurred
between the two nodes in the time since the last
communication as Ouuap = Ate/Lg. This value is stored
in node A’s neighbor table entry for node B and the next
time a communication must occur with node B, node A
can operate in the third state.

3.3 State 3 — Clock Drift Estimate Available

From the previous protocol state, node A was able to
calculate the actual clock drift that it observed with node
B, O,uas. As was shown in the section on clock
instability, the biggest portion of O,p is in fact a stable
value, namely two fixed frequency offsets, one each in
node A and node B’s crystal oscillators. The ©,uap value
will thus remain stable enough so as to accurately predict
node B’s next listen slot. To do this, node A again
calculates Ly testB tlapn, the time since last
communication with node B. Node A then predicts node
B’s next listen slot start as tyep = tegqs + Ouaaslp as
shown in Figure 2. Note that ©,.,,5 has a negative value

in the example in Figure 2, therefore t,.qp occurs before
tess- The unstable portion of the ©,.,p value is the sum of
the instabilities in node A and node B’s crystal oscillator
output. As was shown, the uncertainty in each node’s
oscillator output due to instabilities is on the order of
16,(1) seconds. In the worst case, the sum of the
uncertainties of both nodes” oscillators will thus be on the
order of 2toy(t) seconds. As seen in Figure 1, up to a
synchronization interval of © = 1000 seconds, 2tc,(t) is
less than 2x10°® seconds. Therefore, even if nodes A and
B last communicated 1000 seconds (approximately 16
minutes) ago, node A can predict the start of node B’s
next listen slot, t,..qs, as described above, and only be in
error by approximately 2 ps. In terms of a transceiver
operating at a bit rate of 1 Mbps, 2 us is the equivalent of
2 bits being transmitted. It is not expected that WSNs will
use transceivers operating at bit rates much higher than 1
Mbps. In fact, most practical implementations so far have
operated at much lower bit rates. In this context, a time
slot start prediction error of 2 pus can be viewed as
insignificant. As t increases above 1000 seconds, the
uncertainty in the listen slot prediction grows larger, due
to component aging, random frequency walk etc. and
thus, DPS-MAC requires a node to send a very short
keep-alive packet to a neighboring node if no
communication has occurred with that node for more than
15 minutes.

As is seen in Figure 2, node A again adds a short random
time, tnng, to its prediction of node B’s listen slot start.
The magnitude of t.,4 is the same as in the second state.
Furthermore, when node B has received the first valid
preamble packet, it again calculates the time difference
Aty and includes this value in the preamble ACK packet
sent back to A. Node A calculates the time at which node
B started listening, tjens, and node A also knows tpreas,
the time at which it predicted node B would listen. From
these values, A calculates At preq = tiigens — tprean. Since
node A already has a drift estimate for node B, the value

Vol.100(2) June 2009

of Atyprq includes the short term instability of the two
nodes’ oscillators on the one hand, but also any long term
changes in node A and B’s oscillator outputs due to
component aging, environmental changes etc, and thus, it
cannot be ignored. Node A uses the At value to
update its clock drift estimate for node B by calculating
Oucas = Ouaian + Alppred/Li/2. This calculation essentially
sets the next value of O, 4p to the average of its current
value and the newly measured value. In this way, DPS-
MAC easily deals with long term changes in the crystal
oscillators’ frequency outputs.

3.4 Summary of Protocol Features

From the above basic operational description, it can be
seen that DPS-MAC builds on the existing CSMA-MPS
protocol and extends this protocol’s energy savings by
dynamically adjusting to the clock drift experienced
between any two neighboring nodes. No additional
protocol overhead is required to sustain this functionality.
In fact, DPS-MAC is designed to reduce the length of
preambles compared to its predecessors. Furthermore,
DPS-MAC is fully distributed and operates autonomously
at each node. No clustering is required and nodes are not
grouped hierarchically. Also, the protocol does not rely
on complex calculations and can be implemented on
resource constrained hardware of different kinds.

4. SIMULATION AND RESULTS

The DPS-MAC protocol was compared to its
predecessor, CSMA-MPS, wusing simulation. The
comparison was done on the one hand to verify the DPS-
MAC protocol design, and on the other hand to
demonstrate the energy savings of DPS-MAC over
CSMA-MPS, if any. The details of the simulation as well
as its results are discussed next.

4.1 Simulation Details

Simulations were performed using the OMNeT++
platform, version 3.2. On top of this, the Mobility
Framework simulator, version 1.0-a-6 was used. The state
machines of the DPS-MAC and CSMA-MPS protocols
were fully implemented in this framework. Every single
state in which the transceiver of a node may operate was
modeled in the simulation, including startup and
intermediate states, transmitting, active receiving, passive
listening and off states. In this way, the total time spent
by a node in any of the possible communication states at
any point in time was accurately measured for each node
in the simulation. From these timing values, the energy
consumption of each node in the simulation network was
calculated.

The simulated network consisted of 50 nodes, randomly
distributed in a 400 m x 400 m square area. A sink node
was located at the centre of the area, collecting the data
from all the nodes in the network. Upon startup, the sink
node sent a broadcast packet to all its neighbors, with a

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 45

hop count (HC) set to zero. Each of the recipients
incremented the received HC by one and then forwarded
the packet to its own neighbors, away from the sink node.
At the end of this startup procedure, each node knew its
distance in hops from the sink node. During normal
operation, whenever a node had a packet to transmit
(either generated by itself or received from an upstream
neighbor) it forwarded the packet to the downstream
neighbor (a neighbor with smaller HC) whose next listen
slot occurred soonest. In this way, data always travelled
towards the sink node and routing loops were prevented.

The simulation provided no external synchronization
amongst the nodes. Each node chose a random point in
time to start its listen slot schedule upon startup. From
then on, the communication process occurred as
explained in the above description of the two protocols’
states of operation. The listen slot period, Ty, was set at
10 seconds, whereas each node was simulated as
generating a packet regularly every 15 minutes. The
simulation duration was set to 1 day.

The transceiver model used in the simulations is based on
the CC2400 radio from Chipcon [19]. The transceiver
was simulated to operate at a bit rate of 1 Mbps.

4.2 Results
Numerous simulation tests were performed to
demonstrate the performance of DPS-MAC in

comparison to CSMA-MPS under various operating
conditions. The test which demonstrates most clearly the
difference between the two protocols is a simulation
using various maximum frequency tolerance values, O,
for the crystal oscillators of the nodes in the network.
Values of O, between 10 ppm and 80 ppm were
simulated.

The graph showing the average transmitting time per
node for the two simulated protocols for various values of
the maximum frequency tolerance is shown in Figure 3
below.

. 7 BCSMA-MPS

e 69 mDPS-MAC

E 5

2w 4

is

g

@ 2

g

8 L

>

<« g |
10 20 40 60 80

Maximum rated frequency tolerance (ppm)

Fig 3: Comparison of the average transmit time per
node for CSMA-MPS and DPS-MAC for various
maximum frequency tolerance values. The simulation
time is 1 day.

46 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

CSMA-MPS always starts sending a preamble 20,,,,L
seconds before the neighbor’s listen slot is estimated to
start, where L is the time since last communication.
Therefore, intuitively, the larger the value of Oy, the
longer the preamble transmission will be. DPS-MAC on
the other hand dynamically adjusts its predictions of the
neighbor’s listen slot to the actual observed clock drift
and not the worst case clock drift. The transmission time
is therefore largely independent of O, These
expectations are confirmed by the results in Figure 3.

Taking into account the duration of the transceiver in
each of the states, the average power consumption per

node can be obtained as shown in Figure 4 below.

1.2E-05

5= D CSMA-MPS
$2 10g05 mDPS-MAC
o w
oo
5 2 B.0E-06
2z

]
S 2 6.0E-06
55
£Z 4.0E-06
o E
gg 2.0E-06
> o
< S 0.0E+00

10 20 40 60 80

Maximum rated frequency tolerance (ppm)

Fig 4: The average transceiver power consumption of
DPS-MAC and CSMA-MPS for various maximum
frequency tolerance values.

Finally, the transceiver energy savings of DPS-MAC over
CSMA-MPS is given in Figure 5 below. It is clear that as
the quality of the clock increases (i.e. the frequency
tolerance rating decreases), the energy savings of DPS-
MAC over CSMA-MPS decrease. However, even when
using high quality crystal oscillators with frequency
tolerance ratings of around 20 ppm, DPS-MAC still
demonstrates an increase in transceiver energy savings of
approximately 18 % over CSMA-MPS.

50

40
35
30
20
15
10

an

0 L

10 20 40 60 80

Maximum rated frequency tolerance (ppm)

Transceiver energy savings
of DPS-MAC over CSMA-MPS
(%)
~N
(5]

Fig 5: The transceiver energy savings of DPS-MAC
over CSMA-MPS for various maximum frequency
tolerance values.

Vol.100(2) June 2009

5. CONCLUSION

A preamble sampling MAC protocol for WSNs, called
DPS-MAC, has been presented in this paper. By
exploiting some characteristics of the frequency tolerance
ratings of crystal oscillators, DPS-MAC is able to cause a
significant reduction in the duration of preamble
transmission compared to its predecessors. DPS-MAC is
aimed specifically at application in low traffic WSNs and
can be used to achieve longer network lifetimes in such
WSNs, in this way contributing to making such networks
more feasible.

6. REFERENCES

[1] V. Raghunathan, C. Schurgers, S. Park and M. B.
Srivastava: “Energy-aware wireless microsensor
networks,” IEEE Signal Processing Mag., vol. 19,
no. 2, pp. 40-50, Mar. 2002.

[2] B. M. Sadler: “Fundamentals of Energy-Constrained
Sensor Network Systems,” JEEE A&E Systems Mag.,
vol. 20, no. 8, pp. 17-35, Aug. 2005.

[3] W. R. Heinzelman, A. Chandrakasan and H.
Balakrishnan™ “Energy-Efficient Communication
Protocol for Wireless Microsensor Networks,” in
2000 Proc. Ann. Hawaii International Conference on
System Sciences, pp. 1-10.

[4] V. Rajendran, K. Obraczka and J. J. Garcia-Luna-
Aceves: “Energy-efficient, collision-free medium
access control for wireless sensor networks,” in 2003
Proc. SenSys Conf., pp. 181-192.

[5] R. Kalidindi, L. Ray, R. Kannan and S. Iyengar:
“Distributed Energy Aware MAC Layer Protocol for
Wireless Sensor Networks,” in 2003 Proc.
International Conf. on Wireless Networks, pp. 282-
286.

[6] L.F.W. van Hoesel, T. Nieberg, H. J. Kip and P. J.
M. Havinga: “Advantages of a TDMA based,
energy-efficient, self-organizing MAC protocol for
WSNs,” in 2004 Proc. IEEE Vehicular Technology
Conf., vol. 3, pp.1598-1602.

[7] W. Ye, J. Heidemann and D. Estrin: “An Energy-
Efficient MAC Protocol for Wireless Sensor
Networks,” in 2002 Proc. INFOCOM Conf., pp.
1567-1576.

[8] T. van Dam and K. Langendoen: “An Adaptive
Energy-Efficient MAC Protocol for Wireless Sensor
Networks,” in 2003 Proc. SenSys Conf., pp. 171-180.

[9] P. Lin, C. Qiao and X. Wang: “Medium access
control with a dynamic duty cycle for sensor

Vol.100(2) June 2009

networks,” in 2004 Proc. IEEE WCNC Conf., vol. 3,
pp. 1534-1539,

[10]A. El-Hoiydi and J.-D. Decotignie: “WiseMAC: an
ultra low power MAC protocol for the downlink of
infrastructure wireless sensor networks,” in 2004
Proc. ISCC Symp., pp. 244 - 251.

[11]S. Mahlknecht and M. Bock: “CSMA-MPS: a
minimum preamble sampling MAC protocol for low
power wireless sensor networks,” in 2004 Proc.

IEEE Workshop on Factory Comm. Systems, pp. 73-
80.

[12]J. Polastre, J. Hill and D. Culler: “Versatile low
power media access for wireless sensor networks,” in
2004 Proc. SenSys Conf., pp. 95-107.

[13]C. Schurgers, V. Tsiatsis, S. Ganeriwal and M.
Srivastava: “Optimizing Sensor Networks in the
Energy-Latency-Density Design Space,” [EEE
Trans. on Mobile Computing, vol. 1, pp. 70-80,
March 2002.

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 47

[14]C. Schurgers, V. Tsiatsis and M. B. Srivastava:
“STEM: Topology management for energy efficient
sensor networks,” in 2002 Proc. Aerospace Conf., pp
3-1099 - 3-1108.

[15]J. R. Vig and A. Ballato: Ultrasonic Instruments and
Devices. Academic Press Inc., USA, 1999, ch. 7.

[16]D. W. Allan: “Time and Frequency (Time-Domain)
Characterization, Estimation, and Prediction of
Precision Clocks and Oscillators,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. UFFC-34, no. 6, pp. 647-
654, Nov. 1987.

[17]1J. R. Vig: (2006, April). Quartz Crystal Resonators
and Oscillators for Frequency Control and Timing
Applications - A Tutorial (Rev. 8.5.2.3) [Online].
Available: http://www.ieee-uffc.org/freqcontrol/
tutorials/vig2/tutorial2.ppt

[18]D. W. Allan, N. Ashby, and C. C. Hodge: “The
Science of Timekeeping,” Hewlett Packard
Company, Application Note 1289, Jun. 1997.

[19] Chipcon AS. (2006, March). CC2400 datasheet (Rev.
1.5) [Online]. Available: http://www.chipcon.com

