Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tricarbonyl $\left(\eta^{6}-4^{\prime}, 7\right.$-dimethoxyisoflavone)chromium (0)

Johannes H. van Tonder, ${ }^{\text {a }}$ Barend C. B. Bezuidenhoudt ${ }^{\text {a* }}$ and J. Marthinus Janse van Rensburg ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and ${ }^{\text {b }}$ Department of Pharmacology, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa
Correspondence e-mail: bezuidbc.sci@ufs.ac.za
Received 30 September 2009; accepted 5 October 2009
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.044 ; w R$ factor $=0.117$; data-to-parameter ratio $=16.3$.

The metal atom of the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit of the title compound, $\left[\mathrm{Cr}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}\right)(\mathrm{CO})_{3}\right]$, is coordinated to the methoxyphenyl ring of the isoflavone ligand; the $\mathrm{Cr}(\mathrm{CO})_{3}$ unit exhibits a threelegged piano-stool conformation. The aromatic ring of the methoxyphenyl group is twisted by 42.49 (9) ${ }^{\circ}$ with respect to the γ-pyrone ring. In the fused-ring, the dihedral angle between the phenylene and γ-pyrone rings is $3.08(13)^{\circ}$.

Related literature

For tricarbonyl(arene)chromium complexes in regioselective reactions, see: Dominique et al. (1999). For their photochromic properties, see: Hannesschlager et al. (1999). For $\mathrm{Cr}(\mathrm{CO})_{3}$ complexation to the aromatic ring of flavanone, see: Dominique et al. (1999). For $\mathrm{Cr}(\mathrm{CO})_{3}$ complexation to (1,3-dimethoxybenzene), see: Zeller et al. (2004). For comparison bond distances, see: Allen (2002). For the synthesis of $4^{\prime}, 7-$ dimethoxyisoflavone, see: Thakkar \& Cushman (1995).

Monoclinic, $P 2_{1} / c$
$a=12.3454$ (7) A
$b=17.9984$ (8) \AA
$c=7.9988$ (4) \AA
$\beta=103.733$ (2) ${ }^{\circ}$
$V=1726.50(15) \AA^{3}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.751, T_{\text {max }}=0.933$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.117$
$S=1.08$
4145 reflections
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.43 \times 0.23 \times 0.10 \mathrm{~mm}$

9320 measured reflections 4145 independent reflections 3393 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINTPlus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the University of the Free State and SASOL to JHvT is gratefully acknowledged. We would like to express our gratitude to the School of Chemistry at the University of the Witwatersrand for the use of the diffractometer. Special thanks are due to Dr M. A. Fernandes. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2656).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Dominique, S., Lepoivre, A., Lemiere, G., Rapatopoulou, C. P. \& Klouras, N. D. (1999). Monatsh. Chem. 130, 305-311.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hannesschlager, P., Brun, P. \& Pèpe, G. (1999). Acta Cryst. C55, 200-202.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thakkar, K. \& Cushman, M. (1995). J. Org. Chem. 60, 6499-6510.
Zeller, M., Hunter, A. D. \& Takas, N. J. (2004). Acta Cryst. E60, m434-m435.

Experimental

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}\right)(\mathrm{CO})_{3}\right] \quad M_{r}=418.31$

255 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.86$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.41$ e \AA^{-3}

supplementary materials

Tricarbonyl $\left(\boldsymbol{\eta}^{6}-4\right.$ ',7-dimethoxyisoflavone)chromium (0)

J. H. van Tonder, B. C. B. Bezuidenhoudt and J. M. Janse van Rensburg

Comment

Tricarbonyl(arene)chromium complexes have recieved much attention due to their use as intermediates in regioselective reactions (Dominique et al., 1999), as well as for their photochromic properties (Hannesschlager et al., 1999).

The title compound, $(\mathrm{I}),\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}\right)\right]$, where $\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}\right)=4$ ', 7-dimethoxyisoflavone, crystallized in the monoclinic space group $P 2_{1} / c$, with $Z=4$ (Fig.1). For the title compound the molecular structure displays the $\mathrm{Cr}(\mathrm{CO})_{3}$ moiety complexation to the phenyl ring, exhibiting the known three-legged piano-stool conformation. This conformation is expected for a tricarbonyl-metal with an η^{6}-coordinated arene. The Cr — C (arene) distances range from 2.188 (2) to 2.262 (2) \AA. The longest $\mathrm{Cr}-\mathrm{C}$ (arene) bond is $\mathrm{Cr}-\mathrm{C} 4$ ', that in turn is bonded to the $\mathrm{O} 4^{\prime}-\mathrm{C} 41^{\prime}$ methoxy group. This bond elongation is probably due to the methoxy group that weakens the π-interaction ability of C 4 ' towards the chromium metal centre. The Cr-arene(centroid) distance is 1.7205 (4) \AA. The $\mathrm{Cr}-C$ (carbonyl) bond distances range from 1.827 (3) to 1.855 (3) \AA and the carbonyl distances of $\mathrm{C} 11-\mathrm{O} 1, \mathrm{C} 12-\mathrm{O} 2$ and $\mathrm{C} 13-\mathrm{O} 3$ are 1.158 (3), 1.154 (3) and 1.150 (3) \AA respectively. These distances are within the normal range, see Allen (2002). The phenyl ring is essentialy planar (r.m.s of fitted atoms C1'-C6' $=0.0119 \AA$). Slight molecular disorder is displayed by a twist in the isoflavone backbone, that forms a dihedral angle of $42.49(9)^{\circ}$ between the phenyl and γ-pyrone ring and a dihedral angle of $41.1(1)^{\circ}$ between the phenyl and the benzopyrone ring system. A dihedral angle of $3.08(13)^{\circ}$ is also present between the benzene and the γ-pyrone ring, with a r.m.s of fitted atoms $\mathrm{C} 2-\mathrm{C} 10$ and O 5 of $0.0387 \AA$. The $\mathrm{O}^{\prime}-\mathrm{C} 41^{\prime}$ methoxy group on the phenyl ring bends towards the $\mathrm{Cr}(\mathrm{CO})_{3}$ moiety, forming the $\mathrm{C} 5^{\prime}-\mathrm{C} 4{ }^{\prime}-\mathrm{O} 4{ }^{\prime}-\mathrm{C} 41^{\prime}$ tortion angle of $15.9(4)^{\circ}$. The $\mathrm{O} 7-\mathrm{C} 71$ methoxy group on the benzene ring is also slightly displaced from the benzene ring plane, shown by the $\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 7-\mathrm{C} 71$ tortion angle of $175.0(3)^{\circ}$. Other molecular geometrical parameters is in good agreement with literature values, see Allen (2002). Selected geometrical parameters is presented in Table 1.

As illustrated in Fig. 2 the molecular packing is such that a benzene ring of one molecule is above the γ-pyrone ring of a neighbouring molecule, separated by a plane to plane distance of $3.369 \AA$ and a centroid to centroid distance of $4.281 \AA$.

Experimental

4',7-Dimethoxyisoflavone was prepared as previously described by Thakkar \& Cushman (1995). A solution of 4',7-Dimethoxyisoflavone ($1.28 \mathrm{~g}, 4.5 \mathrm{mmol}$) and $\mathrm{Cr}(\mathrm{CO})_{6}\left(1.00 \mathrm{~g}, 4.6 \mathrm{mmol}: 1 \mathrm{eq}\right.$.) in $\mathrm{Bu}_{2} \mathrm{O}:$ THF $\left(9: 1 ; 10 \mathrm{ml}\right.$ per $100 \mathrm{mg} \mathrm{Cr}(\mathrm{CO})_{6}$ was degassed with argon, using standard Schlenk techniques, and refluxed (48 h) under an oxygen free atmosphere. The reaction mixture was cooled to room temperature and the solvent evaporated in vacuo. Purification through flash column-chromatography yielded tricarbonyl(B- $\eta^{6}-4^{\prime}, 7$-dimethoxyisoflavone)-chromium $(0)(0.48 \mathrm{~g} ; 25.0 \%)$ as a yellow solid. Recrystallization from diethyl ether yielded yellow cuboidal crystals.
$R_{f} 0.18$ (Hexane: Acetone; $8: 2$); Mp $127.0^{\circ} \mathrm{C}$; Note: A, B and C-ring labelling refers to the benzene, phenyl and γ-pyrone rings respectively. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ p.p.m. $8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.04 \mathrm{~Hz}, \mathrm{H}-5), 8.09(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 7.01(1 \mathrm{H}$, dd, J

supplementary materials

$=1.88,9.04 \mathrm{~Hz}, \mathrm{H}-6), 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.88 \mathrm{~Hz}, \mathrm{H}-8), 5.85\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.78 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{H}-6^{\prime}\right), 5.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.78 \mathrm{~Hz}$, $\mathrm{H}-3 '$ and $\mathrm{H}-5 '), 3.92\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 3.75\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ p.p.m. $55.88\left(-\mathrm{OCH}_{3}\right), 56.06$ $\left(-\mathrm{OCH}_{3}\right), 77.37\left(\mathrm{C}-3 '\right.$ and $\left.\mathrm{C}-5^{\prime}\right), 94.71,97.63$ (C-2' and C-6'), 100.45 (C-8), 115.32 (C-6), 117.67, 121.16, 127.71 (C-5), 143.39 (C(i)- OCH_{3} B-ring), 154.78 (C-2), 158.07, 164.60, 175.26 (C-4), 232.89 ($\mathrm{Cr}-\mathrm{CO}$); MS (MS Scheme 3) m/z 362 $\left(M^{+}-2 \mathrm{CO}, 0.5 \%\right), 343$ (2.1), 282 (100.0), 267 (20.8), 252 (3.0), 239 (10.9), 224 (3.7), 211 (3.8), 196 (3.5), 183 (1.2), 168 (2.9), 150 (12.9), 141 (6.1), 131 (69.5), 122 (10.7), 107 (7.9), 103 (2.4).

Refinement

The H atoms were positioned geometrically and refined using a riding model with fixed $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA(\mathrm{CH})$ $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\right]$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\right]$ respectively. Initial positions of methyl H-atoms were obtained from fourier difference and refined as a fixed rotor.

The highest density peak is 0.86 located $0.96 \AA$ from O1 and the deepest hole is -0.41 located at $0.54 \AA$ from Cr.

Figures

Tricarbonyl($\boldsymbol{\eta}^{6}-4$ ',7-dimethoxyisoflavone)chromium(0)

Crystal data

$\left[\mathrm{Cr}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}\right)(\mathrm{CO})_{3}\right]$	$F_{000}=856$
$M_{r}=418.31$	$D_{\mathrm{x}}=1.609 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Hall symbol: -P 2 ybc	Cell parameters from 3261 reflections
$a=12.3454(7) \AA$	$\theta=2.8-28.3^{\circ}$
$b=17.9984(8) \AA$	$\mu=0.71 \mathrm{~mm}^{-1}$
$c=7.9988(4) \AA$	$T=173 \mathrm{~K}$
$\beta=103.733(2)^{\circ}$	Block, yellow
$V=1726.50(15) \AA^{3}$	$0.43 \times 0.23 \times 0.1 \mathrm{~mm}$
$Z=4$	

Data collection

Bruker APEXII CCD
diffractometer
Monochromator: graphite
$T=173 \mathrm{~K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.751, T_{\text {max }}=0.933$
9320 measured reflections
4145 independent reflections

3393 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=28^{\circ}$
$\theta_{\text {min }}=1.7^{\circ}$
$h=-16 \rightarrow 9$
$k=-23 \rightarrow 21$
$l=-10 \rightarrow 9$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0453 P)^{2}+2.2801 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.86 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3}$
Extinction correction: none

4145 reflections
255 parameters

Special details

Experimental. The intensity data was collected on a Bruker Apex II CCD diffractometer using an exposure time of $10 \mathrm{~s} /$ frame. The 509 frames were collected with a frame width of 0.5° covering up to $\theta=28^{\circ}$ with 99.4% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Cr	$0.67866(3)$	$0.08506(2)$	$0.83271(5)$	$0.01520(12)$
C71	$-0.0137(3)$	$0.34474(18)$	$0.1743(5)$	$0.0415(8)$
H71A	-0.0177	0.3606	0.29	0.062^{*}
H71B	-0.0845	0.3559	0.0926	0.062^{*}
H71C	0.0469	0.3713	0.1402	0.062^{*}
C1'	$0.5514(2)$	$0.16695(13)$	$0.8698(3)$	$0.0170(5)$
C2	$0.4317(2)$	$0.26583(14)$	$0.7185(3)$	$0.0210(5)$
H2	0.4859	0.2986	0.7838	0.025^{*}
C2' $^{\prime}$	$0.6553(2)$	$0.20306(14)$	$0.8800(3)$	$0.0198(5)$
H2 $^{\prime}$	0.6591	0.2432	0.8046	0.024^{*}

supplementary materials

C3'	0.7524 (2)	0.18039 (14)	0.9997 (3)	0.0212 (5)
H3'	0.8208	0.2058	1.0066	0.025*
C3	0.4495 (2)	0.19286 (14)	0.7448 (3)	0.0185 (5)
C4	0.3661 (2)	0.13983 (14)	0.6510 (3)	0.0192 (5)
C4'	0.7479 (2)	0.11970 (14)	1.1093 (3)	0.0201 (5)
C5	0.1963 (2)	0.13098 (15)	0.4082 (4)	0.0248 (6)
H5	0.2022	0.0784	0.4126	0.03*
C5'	0.6471 (2)	0.08121 (14)	1.0971 (3)	0.0182 (5)
H5'	0.6442	0.0395	1.1688	0.022*
C6	0.1094 (2)	0.16347 (16)	0.2927 (4)	0.0272 (6)
H6	0.0567	0.1336	0.2156	0.033*
C6'	0.5506 (2)	0.10521 (14)	0.9775 (3)	0.0185 (5)
H6'	0.4828	0.0789	0.9692	0.022*
C7	0.0986 (2)	0.24107 (16)	0.2887 (4)	0.0246 (6)
C8	0.1774 (2)	0.28543 (15)	0.3938 (4)	0.0241 (6)
H8	0.1713	0.338	0.3893	0.029*
C9	0.2667 (2)	0.25058 (14)	0.5070 (3)	0.0196 (5)
C10	0.2769 (2)	0.17415 (14)	0.5204 (3)	0.0196 (5)
C11	0.6772 (2)	0.11149 (14)	0.6116 (4)	0.0224 (5)
C12	0.8108 (2)	0.03640 (15)	0.8470 (4)	0.0252 (6)
C13	0.6030 (2)	-0.00087 (14)	0.7453 (3)	0.0213 (5)
C41'	0.8552 (3)	0.03005 (17)	1.2974 (4)	0.0326 (7)
H41A	0.8072	0.0277	1.3788	0.049*
H41B	0.9328	0.0212	1.3587	0.049*
H41C	0.8319	-0.0079	1.2082	0.049*
O1	0.6770 (2)	0.12958 (12)	0.4726 (3)	0.0362 (5)
O2	0.89489 (18)	0.00706 (14)	0.8540 (3)	0.0461 (6)
O3	0.55781 (18)	-0.05454 (11)	0.6900 (3)	0.0318 (5)
O4'	0.84603 (16)	0.10203 (11)	1.2190 (2)	0.0260 (4)
O4	0.36907 (17)	0.07292 (10)	0.6784 (3)	0.0271 (4)
O5	0.34364 (15)	0.29706 (10)	0.6077 (2)	0.0227 (4)
O7	0.00685 (17)	0.26705 (12)	0.1746 (3)	0.0347 (5)

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr	$0.0162(2)$	$0.01354(19)$	$0.0156(2)$	$-0.00044(15)$	$0.00332(14)$	$0.00014(15)$
C71	$0.0309(16)$	$0.0381(18)$	$0.050(2)$	$0.0135(14)$	$-0.0004(15)$	$0.0107(15)$
C1 $^{\prime}$	$0.0199(12)$	$0.0159(11)$	$0.0154(11)$	$0.0018(9)$	$0.0048(9)$	$-0.0032(9)$
C2	$0.0205(12)$	$0.0201(12)$	$0.0211(12)$	$0.0020(10)$	$0.0024(10)$	$0.0009(10)$
C2 $^{\prime}$	$0.0242(13)$	$0.0139(11)$	$0.0208(12)$	$-0.0011(9)$	$0.0047(10)$	$-0.0009(9)$
C3'	$0.0204(12)$	$0.0188(12)$	$0.0228(13)$	$-0.0029(10)$	$0.0020(10)$	$-0.0026(10)$
C3	$0.0185(12)$	$0.0199(12)$	$0.0177(12)$	$0.0012(9)$	$0.0058(10)$	$0.0018(10)$
C4	$0.0187(12)$	$0.0188(12)$	$0.0203(12)$	$0.0014(9)$	$0.0054(10)$	$0.0015(10)$
C4'	$0.0218(12)$	$0.0192(12)$	$0.0173(12)$	$0.0002(10)$	$0.0007(10)$	$-0.0037(10)$
C5	$0.0249(13)$	$0.0200(13)$	$0.0277(14)$	$-0.0016(10)$	$0.0028(11)$	$0.0021(11)$
C5	$0.0272(13)$	$0.0156(11)$	$0.0124(11)$	$0.0003(10)$	$0.0060(9)$	$0.0014(9)$
C6	$0.0227(13)$	$0.0291(14)$	$0.0268(14)$	$-0.0044(11)$	$0.0002(11)$	$0.0029(12)$

sup-4

supplementary materials

C6'	$0.0191(12)$	$0.0193(12)$	$0.0179(12)$	$-0.0008(9)$	$0.0059(10)$	$-0.0012(9)$
C7	$0.0173(12)$	$0.0293(14)$	$0.0269(14)$	$0.0042(10)$	$0.0049(10)$	$0.0086(11)$
C8	$0.0241(13)$	$0.0209(13)$	$0.0268(14)$	$0.0044(10)$	$0.0049(11)$	$0.0062(11)$
C9	$0.0187(12)$	$0.0215(12)$	$0.0190(12)$	$0.0012(10)$	$0.0051(10)$	$0.0006(10)$
C10	$0.0187(12)$	$0.0198(12)$	$0.0209(12)$	$0.0004(9)$	$0.0056(10)$	$0.0027(10)$
C11	$0.0237(13)$	$0.0178(12)$	$0.0247(14)$	$-0.0014(10)$	$0.0038(10)$	$-0.0025(10)$
C12	$0.0245(13)$	$0.0227(13)$	$0.0260(14)$	$0.0002(11)$	$0.0013(11)$	$-0.0061(11)$
C13	$0.0242(13)$	$0.0210(13)$	$0.0199(12)$	$-0.0013(10)$	$0.0073(10)$	$0.0001(10)$
C41'	$0.0289(15)$	$0.0312(15)$	$0.0324(16)$	$0.0028(12)$	$-0.0033(12)$	$0.0096(13)$
O1	$0.0576(15)$	$0.0321(11)$	$0.0212(10)$	$-0.0032(10)$	$0.0140(10)$	$0.0037(9)$
O2	$0.0268(12)$	$0.0449(14)$	$0.0615(16)$	$0.0122(10)$	$0.0002(11)$	$-0.0138(12)$
O3	$0.0364(12)$	$0.0229(10)$	$0.0373(12)$	$-0.0090(9)$	$0.0110(9)$	$-0.0063(9)$
O4	$0.0216(9)$	$0.0258(10)$	$0.0255(10)$	$-0.0009(7)$	$-0.0041(8)$	$0.0029(8)$
O4	$0.0275(10)$	$0.0177(9)$	$0.0312(11)$	$-0.0030(7)$	$-0.0030(8)$	$0.0048(8)$
O5	$0.0232(9)$	$0.0172(9)$	$0.0253(10)$	$0.0024(7)$	$0.0009(8)$	$0.0008(7)$
O7	$0.0233(10)$	$0.0340(12)$	$0.0410(13)$	$0.0039(8)$	$-0.0038(9)$	$0.0103(10)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cr}-\mathrm{C} 11$	$1.827(3)$
$\mathrm{Cr}-\mathrm{C} 12$	$1.831(3)$
$\mathrm{Cr}-\mathrm{C} 13$	$1.855(3)$
$\mathrm{Cr}-\mathrm{C}^{\prime}$	$2.188(2)$
$\mathrm{Cr}-\mathrm{C}^{\prime}$	$2.200(2)$
$\mathrm{Cr}-\mathrm{C} 1^{\prime}$	$2.225(2)$
$\mathrm{Cr}-\mathrm{C}^{\prime}$	$2.231(3)$
$\mathrm{Cr}-\mathrm{C} 5^{\prime}$	$2.241(2)$
$\mathrm{Cr}-\mathrm{C} 4^{\prime}$	$2.262(2)$
$\mathrm{C} 71-\mathrm{O} 7$	$1.421(4)$
$\mathrm{C} 71-\mathrm{H} 71 \mathrm{~A}$	0.98
$\mathrm{C} 71-\mathrm{H} 71 \mathrm{~B}$	0.98
$\mathrm{C} 71-\mathrm{H} 71 \mathrm{C}$	0.98
$\mathrm{C} 1^{\prime}-\mathrm{C} 6^{\prime}$	$1.407(3)$
$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$	$1.423(3)$
$\mathrm{C} 1^{\prime}-\mathrm{C} 3$	$1.484(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.340(4)$
$\mathrm{C} 2-\mathrm{O} 5$	$1.351(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.95
$\mathrm{C} 2{ }^{\prime}-\mathrm{C} 3^{\prime}$	$1.406(4)$
$\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime}$	0.95
$\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	$1.410(4)$
$\mathrm{C} 3^{\prime}-\mathrm{H} 3^{\prime}$	0.95
$\mathrm{C} 3-\mathrm{C} 4$	$1.472(3)$
$\mathrm{C} 4-\mathrm{O} 4$	$1.223(3)$
$\mathrm{C} 11-\mathrm{Cr}-\mathrm{C} 12$	$89.38(12)$
$\mathrm{C} 11-\mathrm{Cr}-\mathrm{C} 13$	$87.92(12)$
$\mathrm{C} 12-\mathrm{Cr}-\mathrm{C} 13$	$89.19(12)$
$\mathrm{C} 11-\mathrm{Cr}-\mathrm{C} 22^{\prime}$	$86.74(11)$
$\mathrm{C} 12-\mathrm{Cr}-\mathrm{C} 22^{\prime}$	$127.26(11)$

C4- ${ }^{\text {c }} 10$	1.463 (3)
C4'-O4'	1.354 (3)
C4'- \mathbf{C}^{\prime}	1.407 (4)
C5-C6	1.369 (4)
C5-C10	1.405 (4)
C5-H5	0.95
C5'- $\mathbf{C 6}^{\prime}$	1.407 (3)
C5'-H5'	0.95
C6-C7	1.403 (4)
C6-H6	0.95
C6'-H6'	0.95
C7-07	1.358 (3)
C7-C8	1.379 (4)
C8-C9	1.398 (4)
C8-H8	0.95
C9-O5	1.374 (3)
C9-C10	1.383 (4)
C11-O1	1.158 (3)
C12-O2	1.154 (3)
C13-O3	1.150 (3)
C41'-O4'	1.432 (3)
C41'-H41A	0.98
C41'-H41B	0.98
C41'-H41C	0.98
$\mathrm{C}^{\prime}-{ }^{-} 3^{\prime}-\mathrm{Cr}$	72.89 (14)
C2'-C3'-H3'	120.2
C4'- $\mathbf{C 3}^{\prime}$ - H^{\prime}	120.2
$\mathrm{Cr}-\mathrm{C}^{\prime}-\mathrm{H} 3^{\prime}$	129.5
C2-C3-C4	119.1 (2)

C13-Cr-C2'	143.03 (11)
C11-Cr-C6'	128.55 (11)
C12-Cr-C6'	141.88 (11)
C13-Cr-C6'	88.62 (10)
C2'-Cr- ${ }^{\text {c }}{ }^{\prime}$	66.94 (10)
C11-Cr-C1	96.39 (11)
$\mathrm{C} 12-\mathrm{Cr}-\mathrm{C}^{\prime}$	162.83 (11)
$\mathrm{C} 13-\mathrm{Cr}-\mathrm{Cl}^{\prime}$	107.12 (10)
C2'-Cr- ${ }^{\prime} 1^{\prime}$	37.61 (9)
C6'- ${ }^{\prime}$ - ${ }^{\text {C1 }}$	37.09 (9)
C11-Cr-C3'	106.73 (11)
$\mathrm{C} 12-\mathrm{Cr}-\mathrm{C} 3^{\prime}$	95.71 (11)
C13-Cr-C3'	164.55 (11)
C2'-Cr-C3'	37.07 (9)
C6'- ${ }^{\prime}$ - ${ }^{\text {C }}{ }^{\prime}$	78.48 (10)
C1 ${ }^{\prime}-\mathrm{Cr}-\mathrm{C} 3^{\prime}$	67.15 (9)
C11-Cr-C5'	163.24 (11)
C12-Cr-C5'	106.15 (11)
C13-Cr-C5'	98.36 (10)
C2'-Cr-C5'	78.88 (9)
C6'- ${ }^{\prime}$ - ${ }^{\text {C5 }}{ }^{\prime}$	36.93 (9)
C1 ${ }^{\prime}-\mathrm{Cr}-\mathrm{C} 5^{\prime}$	66.93 (9)
C3'- ${ }^{\text {Cr}}-\mathrm{C} 5{ }^{\prime}$	66.21 (9)
C11-Cr-C4'	142.14 (11)
C12-Cr-C4'	86.93 (11)
C13-Cr-C4'	129.64 (11)
C2'- $\mathrm{Cr}-\mathrm{C} 4{ }^{\prime}$	66.30 (9)
C6'- ${ }^{\prime}$ - ${ }^{\text {C }}{ }^{\prime}$	65.90 (9)
C1 ${ }^{\prime}-\mathrm{Cr}-\mathrm{C} 4^{\prime}$	78.58 (9)
C3'- ${ }^{\text {Cr }}-\mathrm{C} 4{ }^{\prime}$	36.57 (9)
C5'-Cr-C4'	36.43 (9)
O7-C71-H71A	109.5
O7-C71-H71B	109.5
H71A-C71-H71B	109.5
O7-C71-H71C	109.5
H71A-C71-H71C	109.5
H71B-C71-H71C	109.5
C6'- ${ }^{\prime} 1^{\prime}-{ }^{-} 2^{\prime}$	117.5 (2)
C6'- ${ }^{\prime} 1^{\prime}-\mathrm{C} 3$	122.2 (2)
C2'- $\mathrm{Cl}^{\prime}-\mathrm{C} 3$	120.2 (2)
C6'- ${ }^{\text {C1'- }}{ }^{\text {Cr }}$	70.49 (14)
C2'- ${ }^{\prime} 1^{\prime}-\mathrm{Cr}$	69.80 (14)
C3-C1--Cr	129.11 (17)
C3-C2-O5	126.0 (2)
C3-C2-H2	117
O5- $\mathrm{C} 2-\mathrm{H} 2$	117
C3'-C2'- ${ }^{\prime} 1^{\prime}$	121.2 (2)
C3'-C2'-Cr	73.13 (15)
C1'- ${ }^{\prime} 2^{\prime}-\mathrm{Cr}$	72.59 (14)

C2-C3-C1'	119.7 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 1^{\prime}$	121.2 (2)
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 10$	121.9 (2)
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	124.0 (2)
C10-C4-C3	114.0 (2)
O4'- 4^{\prime} - ${ }^{\text {C5 }}{ }^{\prime}$	124.7 (2)
O4'-C4'- ${ }^{\prime} 3^{\prime}$	115.1 (2)
C5'-C4'- \mathbf{C}^{\prime}	120.2 (2)
O4'- ${ }^{\text {C }}{ }^{\prime}-\mathrm{Cr}$	129.89 (18)
C5'-C4'- ${ }^{\prime}$ -	70.96 (14)
C3'- ${ }^{\prime} 4^{\prime}-\mathrm{Cr}$	70.53 (15)
C6-C5-C10	121.1 (3)
C6-C5-H5	119.4
C10-C5-H5	119.4
C6'-C5'- ${ }^{\prime} 4$	119.2 (2)
C6'- ${ }^{\text {C }}{ }^{\prime}-\mathrm{Cr}$	69.97 (14)
C4'- ${ }^{\prime} 5^{\prime}-\mathrm{Cr}$	72.62 (14)
C6'-C5'-H5'	120.4
C4'-C5'-H5'	120.4
$\mathrm{Cr}-\mathrm{C} 5$-- 5^{\prime}	129.3
C5-C6-C7	119.7 (3)
C5-C6-H6	120.2
C7-C6-H6	120.2
C5'- 6^{\prime} - Cl^{\prime}	122.1 (2)
C5'-C6'- ${ }^{\prime}$ -	73.10 (14)
C1'-C6'- ${ }^{\prime}$ -	72.42 (14)
C5'-C6'- ${ }^{\prime} 6^{\prime}$	119
C1'-C6'-H6'	119
$\mathrm{Cr}-\mathrm{C} 6^{\prime}-\mathrm{H} 6^{\prime}$	127.7
O7-C7-C8	124.4 (3)
O7-C7-C6	114.7 (3)
C8-C7-C6	120.9 (2)
C7-C8-C9	117.9 (2)
C7-C8-H8	121
C9-C8-H8	121
O5-C9-C10	121.5 (2)
O5-C9-C8	115.8 (2)
C10-C9-C8	122.7 (2)
C9-C10-C5	117.6 (2)
C9-C10-C4	121.0 (2)
C5-C10-C4	121.4 (2)
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{Cr}$	178.7 (2)
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{Cr}$	178.4 (3)
$\mathrm{O} 3-\mathrm{C} 13-\mathrm{Cr}$	178.8 (2)
O4'-C41'-H41A	109.5
O4'-C41'-H41B	109.5
H41A-C41'-H41B	109.5
O4'-C41'-H41C	109.5
H41A-C41'-H41C	109.5

C3'-C2'-H2'	119.4
$\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime}$	119.4
$\mathrm{Cr}-\mathrm{C} 2{ }^{\prime}-\mathrm{H} 2^{\prime}$	126.9
C2'-C3'-C4'	119.7 (2)
C2'-C3'-Cr	69.80 (14)
C11-Cr-C1-- 6^{\prime}	153.08 (16)
C12-Cr-C1'- ${ }^{\prime} 6$	-97.9 (4)
$\mathrm{C} 13-\mathrm{Cr}-\mathrm{C} 1{ }^{\prime}-\mathrm{C} 6{ }^{\prime}$	63.30 (16)
C2'- ${ }^{\prime}$ - $-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	-130.8 (2)
C3'- ${ }^{\prime}-\mathrm{Cr} 1^{\prime}-\mathrm{C}^{\prime}$	-101.42 (16)
$\mathrm{C} 5^{\prime}-\mathrm{Cr}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	-28.66 (14)
C4'- ${ }^{\prime}$ - $-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	-64.94 (15)
$\mathrm{C} 11-\mathrm{Cr}-\mathrm{C} 1^{\prime}-\mathrm{C} 2^{\prime}$	-76.17 (16)
$\mathrm{C} 12-\mathrm{Cr}-\mathrm{Cl}^{\prime}-\mathrm{C} 2{ }^{\prime}$	32.8 (4)
$\mathrm{C} 13-\mathrm{Cr}-\mathrm{C1}^{\prime}-\mathrm{C} 2^{\prime}$	-165.95 (15)
C6 ${ }^{\prime}$ - $\mathrm{Cr}-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	130.8 (2)
C3'- ${ }^{\prime}$ - $-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	29.33 (15)
C5'- ${ }^{\prime}$ - $-\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}$	102.09 (16)
C4'- ${ }^{\prime}$ - $-\mathrm{Cl}^{\prime}-\mathrm{C}^{\prime}$	65.82 (15)
$\mathrm{C} 11-\mathrm{Cr}-\mathrm{C} 1{ }^{\prime}-\mathrm{C} 3$	36.9 (2)
C12-Cr-C1-C3	145.9 (4)
$\mathrm{C} 13-\mathrm{Cr}-\mathrm{C} 1{ }^{\prime}-\mathrm{C} 3$	-52.9 (2)
C 2 - $\mathrm{Cr}-\mathrm{C} 1{ }^{-}-\mathrm{C} 3$	113.1 (3)
C6'- ${ }^{\prime}$ - $-\mathrm{C} 1{ }^{\prime}-\mathrm{C} 3$	-116.1 (3)
C3'- ${ }^{\text {Cr }}-\mathrm{C} 1{ }^{\prime}-\mathrm{C} 3$	142.4 (2)
C5'- ${ }^{-} \mathrm{Cr}-\mathrm{Cl}^{\prime}-\mathrm{C} 3$	-144.8 (2)
$\mathrm{C} 4{ }^{\prime}-\mathrm{Cr}-\mathrm{C} 1^{\prime}-\mathrm{C} 3$	178.9 (2)
C6'- $\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	-3.3 (4)
C3-C1'- 2^{\prime} - ${ }^{\text {C }} 3^{\prime}$	178.8 (2)
$\mathrm{Cr}-\mathrm{Cl}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	-56.9 (2)
C6'- ${ }^{\prime} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{Cr}$	53.6 (2)
$\mathrm{C} 3-\mathrm{C1}{ }^{\prime}-\mathrm{C} 2{ }^{\prime}-\mathrm{Cr}$	-124.3 (2)
C11-Cr-C2 $-\mathrm{C}^{\prime}$	-123.62 (17)
$\mathrm{C} 12-\mathrm{Cr}-\mathrm{C} 2{ }^{\prime}-\mathrm{C} 3^{\prime}$	-36.9 (2)
C13-Cr-C2'-C3'	154.20 (18)
C6 - ${ }^{\prime}$ - $-\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{C} 3^{\prime}$	101.74 (17)
$\mathrm{C} 1{ }^{\prime}-\mathrm{Cr}-\mathrm{C} 2{ }^{\prime}-\mathrm{C} 3^{\prime}$	131.5 (2)
C5'- ${ }^{\prime}$ - $-\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{C} 3^{\prime}$	65.04 (16)
$\mathrm{C} 4{ }^{\prime}-\mathrm{Cr}-\mathrm{C} 2{ }^{\prime}-\mathrm{C} 3^{\prime}$	29.07 (15)
$\mathrm{C} 11-\mathrm{Cr}-\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}$	104.87 (16)
$\mathrm{C} 12-\mathrm{Cr}-\mathrm{C} 2{ }^{\prime}-\mathrm{C} 1^{\prime}$	-168.40 (16)
C13-Cr-C2'-C1'	22.7 (2)
C6 ${ }^{\prime} \mathrm{Cr}-\mathrm{C}^{\prime}-\mathrm{Cl}^{\prime}$	-29.77 (14)
C3'- ${ }^{\prime}-\mathrm{Cr} 2^{\prime}-\mathrm{C} 1^{\prime}$	-131.5 (2)
C5'- ${ }^{\prime}$ - $\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}$	-66.47 (15)
C4'- $\mathrm{Cr}-\mathrm{C} 2^{\prime}-\mathrm{C} 1^{\prime}$	-102.44 (16)
C1'-C2'-C3'- ${ }^{\prime} 4^{\prime}$	1.5 (4)
$\mathrm{Cr}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	-55.2 (2)
C1'-C2'-C3'-Cr	56.7 (2)

H41B-C41'-H41C	109.5
$\mathrm{C} 4{ }^{\prime}-\mathrm{O} 4{ }^{\prime}-\mathrm{C} 41^{\prime}$	117.5 (2)
C2-O5-C9	117.9 (2)
C7-O7-C71	117.4 (2)
C5'-Cr-C4'-O4'	119.8 (3)
C11-Cr-C4'- ${ }^{\prime}{ }^{\prime}$	152.16 (18)
C12-Cr-C4- ${ }^{\prime}{ }^{\prime}$	-122.82 (17)
C13-Cr-C4'- ${ }^{\prime} 5^{\prime}$	-36.4 (2)
C2'- ${ }^{\prime}$ - $-\mathrm{C} 4{ }^{\prime}-\mathrm{C} 5{ }^{\prime}$	103.89 (16)
C6 - ${ }^{\prime}$ - $-\mathrm{C} 4{ }^{\prime}-\mathrm{C} 5^{\prime}$	29.69 (14)
C1'- ${ }^{-}$- $-\mathrm{C} 4{ }^{\prime}-\mathrm{C} 5^{\prime}$	66.45 (15)
C3'- ${ }^{\text {Cr }}-\mathrm{C} 4{ }^{\prime}-\mathrm{C} 5{ }^{\prime}$	133.3 (2)
C11-Cr-C4'-C3'	18.8 (2)
C12-Cr-C4'- \mathbf{C}^{\prime}	103.85 (17)
C13-Cr-C4'-C3'	-169.74 (16)
$\mathrm{C} 2^{\prime}-\mathrm{Cr}-\mathrm{C} 4{ }^{\prime}-\mathrm{C} 3^{\prime}$	-29.44 (15)
$\mathrm{C} 6{ }^{\prime}-\mathrm{Cr}-\mathrm{C} 4{ }^{-} \mathrm{C} 3^{\prime}$	-103.64 (17)
C1'-Cr-C4'- ${ }^{\prime} 3^{\prime}$	-66.88 (16)
C5'- ${ }^{\prime}$ - $-\mathrm{C} 4{ }^{\prime}-\mathrm{C} 3^{\prime}$	-133.3 (2)
O4'- $4^{\prime}{ }^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C} 6^{\prime}$	-180.0 (2)
C3'-C4'- \mathbf{C}^{\prime} '- C^{\prime}	-1.6 (4)
$\mathrm{Cr}-\mathrm{C} 4^{\prime}-\mathrm{C} 5$ - C^{\prime}	-54.1 (2)
O4'- ${ }^{\prime} 4^{\prime}-\mathrm{C} 5$ '- Cr	-125.9 (3)
C3'-C4'- ${ }^{\text {c }}{ }^{\prime}-\mathrm{Cr}$	52.5 (2)
C11-Cr-C5'- $\mathbf{C 6}^{\prime}$	34.8 (4)
C12-Cr-C5'- $\mathbf{C 6}^{\prime}$	-167.93 (16)
C13-Cr-C5'- \mathbf{C}^{\prime}	-76.34 (16)
C2'- ${ }^{\text {Cr }}-\mathrm{C} 5{ }^{\prime}-\mathrm{C} 6{ }^{\prime}$	66.23 (15)
C1'- ${ }^{\prime}$ - $-\mathrm{C} 5{ }^{\prime}-\mathrm{C} 6{ }^{\prime}$	28.78 (14)
C3'- ${ }^{\prime}$ - ${ }^{\text {C5 }}{ }^{\prime}-\mathrm{C}^{\prime}$	102.91 (16)
C4'- ${ }^{\prime}$ - $\mathrm{C} 5^{\prime}-\mathrm{C} 6^{\prime}$	131.2 (2)
C11-Cr-C5'-C4	-96.4 (4)
C12-Cr-C5'- ${ }^{\prime} 4$	60.89 (17)
C13-Cr-C5'- ${ }^{\prime} 4$	152.48 (16)
C2'- ${ }^{\prime}$ - -C 5 - C^{\prime}	-64.95 (15)
C6'-Cr-C5'- ${ }^{\prime} 4^{\prime}$	-131.2 (2)
C1'- ${ }^{-} \mathrm{Cr}-\mathrm{C} 5{ }^{\prime}-\mathrm{C} 4{ }^{\prime}$	-102.40 (16)
C3'- ${ }^{\text {Cr }}-\mathrm{C} 5{ }^{\prime}-\mathrm{C} 4{ }^{\prime}$	-28.27 (14)
C10-C5-C6-C7	-1.7 (4)
C4'- $\mathbf{C 5}^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{C} 1^{\prime}$	-0.4 (4)
$\mathrm{Cr}-\mathrm{C} 5$ - $\mathrm{C} 6^{\prime}-\mathrm{C} 1^{\prime}$	-55.7 (2)
C4'- ${ }^{\prime} 5^{\prime}-\mathrm{C}^{\prime}-\mathrm{Cr}$	55.4 (2)
C2'- $\mathbf{C 1}^{\prime}-\mathrm{C} 6^{\prime}-\mathrm{C} 5{ }^{\prime}$	2.8 (4)
C3-C1'-C6 - ${ }^{\prime} 5^{\prime}$	-179.4 (2)
$\mathrm{Cr}-\mathrm{C} 1^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 5$	56.1 (2)
C2'- ${ }^{\text {C }}{ }^{\prime}-\mathrm{C}^{\prime}{ }^{-} \mathrm{Cr}$	-53.3 (2)
C3- ${ }^{\text {c }}{ }^{\prime}-\mathrm{C} 6$ - Cr	124.6 (2)
C11-Cr-C6'- ${ }^{\prime}{ }^{\prime}$	-167.85 (15)

C11-Cr-C3'-C2'	60.24 (18)
$\mathrm{C} 12-\mathrm{Cr}-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	151.31 (17)
$\mathrm{C} 13-\mathrm{Cr}-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	-100.7 (4)
C6'-Cr-C3'- $\mathbf{C}^{\prime}{ }^{\prime}$	-66.83 (16)
C1'-Cr-C3'- ${ }^{\prime} 2^{\prime}$	-29.73 (15)
C5'- ${ }^{\prime}$ - $-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	-103.53 (17)
$\mathrm{C} 4^{\prime}-\mathrm{Cr}-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	-131.7 (2)
$\mathrm{C} 11-\mathrm{Cr}-\mathrm{C} 3^{\prime}-\mathrm{C} 4{ }^{\prime}$	-168.06 (16)
$\mathrm{C} 12-\mathrm{Cr}-\mathrm{C} 3^{\prime}-\mathrm{C} 4{ }^{\prime}$	-76.99 (17)
$\mathrm{C} 13-\mathrm{Cr}-\mathrm{C} 3^{\prime}-\mathrm{C} 4{ }^{\prime}$	31.0 (5)
	131.7 (2)
C6'-Cr- ${ }^{\prime} 3^{\prime}-\mathrm{C} 4^{\prime}$	64.87 (16)
$\mathrm{C} 1^{\prime}-\mathrm{Cr}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	101.97 (17)
C5'-Cr-C3'- ${ }^{\prime} 4^{\prime}$	28.17 (15)
O5-C2-C3-C4	-2.0 (4)
O5-C2-C3-C1	179.2 (2)
C6'- C^{\prime} - $\mathrm{C} 3-\mathrm{C} 2$	142.3 (3)
C2'-C1'-C3-C2	-39.9 (4)
$\mathrm{Cr}-\mathrm{C} 1{ }^{\prime}-\mathrm{C} 3-\mathrm{C} 2$	-127.5 (2)
C6 - $\mathrm{Cl}^{\prime}-\mathrm{C} 3-\mathrm{C} 4$	-36.6 (3)
C2'-C1'-C3-C4	141.3 (2)
$\mathrm{Cr}-\mathrm{C} 1$ - $\mathrm{C} 3-\mathrm{C} 4$	53.6 (3)
C2-C3-C4-O4	-172.4 (3)
C1'-C3-C4-O4	6.4 (4)
C2-C3-C4-C10	7.1 (4)
C1--C3-C4-C10	-174.1 (2)
C2'-C3'-C4'-O4'	179.6 (2)
$\mathrm{Cr}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{O}^{\prime}$	125.8 (2)
C2'-C3'-C4'- ${ }^{\prime} 5{ }^{\prime}$	1.1 (4)
Cr-C3'- $\mathbf{C 4}^{\prime}-\mathrm{C} 5^{\prime}$	-52.7 (2)
C2'-C3'- ${ }^{\prime} 4^{\prime}-\mathrm{Cr}$	53.8 (2)
$\mathrm{C} 11-\mathrm{Cr}-\mathrm{C} 4^{\prime}-\mathrm{O} 4{ }^{\prime}$	-88.0 (3)
$\mathrm{C} 12-\mathrm{Cr}-\mathrm{C}^{\prime}-\mathrm{O} 4{ }^{\prime}$	-3.0 (2)
C13-Cr-C4'-O4'	83.4 (3)
C2'-Cr-C4'-O4'	-136.3 (3)
$\mathrm{C}^{\prime}-\mathrm{Cr}-\mathrm{C} 4{ }^{\prime}-\mathrm{O} 4{ }^{\prime}$	149.5 (3)
$\mathrm{C} 1^{\prime}-\mathrm{Cr}-\mathrm{C} 4{ }^{\prime}-\mathrm{O}^{\prime}$	-173.8 (2)
C3'-Cr-C4'-O4'	-106.9 (3)

C12- $\mathrm{Cr}-\mathrm{C} 6^{\prime}-\mathrm{C} 5{ }^{\prime}$	19.0 (2)
C13-Cr-C6 - ${ }^{\prime} 5^{\prime}$	105.92 (16)
C2'- ${ }^{\prime}$ - $-\mathrm{C} 6^{\prime}-\mathrm{C} 5{ }^{\prime}$	-102.57 (16)
C1 ${ }^{-} \mathrm{Cr}-\mathrm{C} 6^{\prime}-\mathrm{C} 5{ }^{\prime}$	-132.7 (2)
C3'-Cr-C6'- ${ }^{\prime} 5^{\prime}$	-65.54 (15)
C4'- ${ }^{\prime}$ - $-6^{\prime}-{ }^{\prime} 5^{\prime}$	-29.31 (14)
$\mathrm{C} 11-\mathrm{Cr}-\mathrm{C} 6^{\prime}-\mathrm{C} 1^{\prime}$	-35.1 (2)
C12-Cr-C6 - ${ }^{\prime} 1^{\prime}$	151.72 (18)
$\mathrm{C} 13-\mathrm{Cr}-\mathrm{C} 6^{\prime}-\mathrm{C} 1^{\prime}$	-121.35 (16)
C2'-Cr-C6 - ${ }^{\prime} 1^{\prime}$	30.16 (14)
C3'- ${ }^{\prime}$ - $-\mathrm{C} 6^{\prime}-\mathrm{Cl}^{\prime}$	67.20 (15)
C5'-Cr-C6 - ${ }^{\prime} 1^{\prime}$	132.7 (2)
C4'-Cr-C6'- ${ }^{\prime} 1^{\prime}$	103.42 (16)
C5-C6-C7-O7	-177.2 (3)
C5-C6-C7-C8	3.3 (4)
O7-C7-C8-C9	179.0 (3)
C6-C7-C8-C9	-1.6 (4)
C7-C8-C9-O5	179.3 (2)
C7-C8-C9-C10	-1.8 (4)
O5-C9-C10-C5	-177.9 (2)
C8-C9-C10-C5	3.3 (4)
O5-C9-C10-C4	4.3 (4)
C8-C9-C10-C4	-174.6 (2)
C6-C5-C10-C9	-1.5 (4)
C6-C5-C10-C4	176.3 (3)
O4-C4-C10-C9	171.3 (3)
C3-C4-C10-C9	-8.3 (4)
O4-C4-C10-C5	-6.5 (4)
C3-C4-C10-C5	174.0 (2)
C5'-C4'-O4'- ${ }^{\prime} 41^{\prime}$	15.9 (4)
$\mathrm{C} 3{ }^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{O} 4{ }^{-}-\mathrm{C} 41^{\prime}$	-162.6 (2)
$\mathrm{Cr}-\mathrm{C} 4^{\prime}-\mathrm{O} 4{ }^{\prime}-\mathrm{C} 41^{\prime}$	-77.7 (3)
C3-C2-O5-C9	-2.6 (4)
C10-C9-O5-C2	1.4 (4)
C8-C9-O5-C2	-179.7 (2)
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 7-\mathrm{C} 71$	-5.5 (4)
C6-C7-O7-C71	175.0 (3)

Fig. 1

supplementary materials

Fig. 2

