metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Tricarbonyl(η^6 -flavone)chromium(0)

Johannes H. van Tonder, Barend C. B. Bezuidenhoudt at and J. Marthinus Janse van Rensburg b

^aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and ^bDepartment of Pharmacology, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa Correspondence e-mail: bezuidbc.sci@ufs.ac.za

Received 30 September 2009; accepted 5 October 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.037; wR factor = 0.105; data-to-parameter ratio = 17.6.

In the title compound, $[Cr(C_{15}H_{10}O_2)(CO)_3]$, the $Cr(CO)_3$ unit exhibits a three-legged piano-stool conformation. The chromium metal centre is coordinated by the phenyl ring of the flavone ligand [Cr-(phenyl centroid)] distance = 1.709 (1) Å]. The ligand is approximately planar, the dihedral angles between the γ -pyrone ring and the phenyl ring and between the γ -pyrone and the phenylene ring being 2.91 (5) and 3.90 (5)°, respectively. The molecular packing shows π - π stacking between the flavone ligands of neighbouring molecules.

Related literature

For the crystal structure of $Cr(CO)_3(C_{15}H_{12}O_2)$, see: Dominique *et al.* (1999). For comparison bond distances, see: Allen (2002). For related structures, see: Zeller *et al.* (2004); Zhang *et al.* (2005); Czerwinski *et al.* (2003); Guzei & Czerwinski (2004). For the biological activity of flavonoids, see: Rice-Evans & Packer (2003).

Experimental

Crystal data
[Cr(C₁₅H₁₀O₂)(CO)₃]

 $M_r=358.26$

Triclinic, $P\overline{1}$ V = 747.81 (4) Å³ Z = 2 b = 9.6427 (3) Å D = 78.545 (1) Å D = 78.545 (1) D = 78.545 (1) D = 78.545 (1) D = 79.554 (1) D

Data collection

Bruker APEXII CCD 8083 measured reflections diffractometer 3600 independent reflections Absorption correction: multi-scan (SADABS; Bruker, 2004) $R_{\rm int} = 0.022$ $R_{\rm int} = 0.022$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 205 parameters $wR(F^2) = 0.105$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.52 {\rm e \ \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.55 {\rm e \ \AA}^{-3}$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the University of the Free State and SASOL to JHvT is gratefully acknowledged. We would like to express our gratitude to the School of Chemistry at the University of the Witwatersrand for the use of the diffractometer. Special thanks are due to Dr M.A. Fernandes. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2657).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Czerwinski, C. J., Guzei, I. A., Cordes, T. J., Czerwinski, K. M. & Mlodik, N. A. (2003). *Acta Cryst.* C**59**, m499–m500.

Dominique, S., Lepoivre, A., Lemiere, G., Rapatopoulou, C. P. & Klouras, N. D. (1999). *Monatsh. Chem.* **130**, 305–311.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Guzei, I. A. & Czerwinski, C. J. (2004). Acta Cryst. C60, m615-m617.

Rice-Evans, C. A. & Packer, L. (2003). Flavonoids in Health and Disease, 2nd ed. New York: Marcel Dekker Inc.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zeller, M., Hunter, A. D. & Takas, N. J. (2004). Acta Cryst. E60, m434-m435.
Zhang, Z. T., Wang, X. B., Wang, Q. Y. & Wu, L. N. (2005). J. Chem. Crystallogr. 35, 923-929.

supplementary m	aterials	

Acta Cryst. (2009). E65, m1346 [doi:10.1107/S1600536809040525]

Tricarbonyl(¶6-flavone)chromium(0)

J. H. van Tonder, B. C. B. Bezuidenhoudt and J. M. Janse van Rensburg

Comment

Flavanoids are an extensive group of polyphenolic compounds that occur commonly in plants. Many flavonoids are known to show biological activities such as anti-inflammatory, antibacterial and antifungal properties (Rice-Evans & Packer., 2003) The steric influence from a Cr(CO)₃ moiety combined with the electronic alteration of an arene ring, *via* metal coordination, made the tricarbonyl(arene)chromium complexes very popular intermediates in regioselective organic synthesis (Dominique *et al.*, 1999).

In the course of our work on flavanoids we isolated and characterized the title compound, (I), $[Cr(CO)_3(C_{15}H_{10}O_2)]$, where $(C_{15}H_{10}O_2) = flavone$. The title compound crystallized in the triclinic space group P-1, with Z = 2 (Fig.1). The chromium metal centre coordinated to the phenyl ring of the flavone moiety and together with the tricarbonyl group a three-legged piano-stool conformation is exhibited. The Cr—C(arene) distances range from 2.209 (2) to 2.225 (2) Å and the chromium metal centre is displaced by 1.709 (1) Å from the B- η^6 -coordinated arene ring centre. The carbonyl groups are fairly linear with Cr—C(carbonyl)—O angles ranging from 179.0 (2) to 179.4 (2)°. The Cr—C(carbonyl) bonds of Cr—C11, Cr—C12 and Cr—C13 are 1.847 (2), 1.844 (2) and 1.842 (2) Å respectively. While the carbonyl distances of C11—O1, C12—O2 and C13—O3 are 1.153 (3), 1.155 (3) and 1.153 (3) respectively. These carbonyl distances are well within the normal range, see Allen (2002).

The phenyl ring of the flavone backbone is essentially planar (r.m.s of fitted atoms C1'-C6' = 0.0083 Å). The γ -pyrone and the benzene ring of the flavone skeleton is in the same plane as the phenyl ring. A small molecular disorder is displayed by the dihedral angle of 2.91° between the γ -pyrone and the phenyl ring and the torsion angle of -178.78 (15)° formed by atoms C2'-C1'-C2—O5. The benzene ring is lifted out of the molecular plane, with a 3.90 (5)° dihedral angle between the γ -pyrone and the benzene ring. Other molecular geometrical parameters is in good agreement with literature values, see Allen (2002). Selected geometrical parameters is presented in Table 1.

The molecular packing displays two types of ligand to ligand π - π stacking. This is on opposite sides of the 2-phenyl-chromane backbone (Fig.2). One type of packing is where the tricarbonyl-metal moieties of neighbouring molecules are directed away from one another resulting in a ligand to ligand π - π stacking between the γ -pyrone and phenyl rings, with a plane to plane distance of 3.354 Å. The other type of π - π stacking is between the γ -pyrone and benzene rings of neighbouring molecules, with a plane to plane distance of 3.418 Å, this π - π stacking is secondarily stabilized by soft contacts between O1···H5 [2.761 (3) Å] and a O1···H5—C5 angle of 129.8 (1)°.

Experimental

A solution of flavone (1.01 g; 4.5 mmol) and $Cr(CO)_6$ (1.0 g; 4.6 mmol; 1 eq.) in Bu_2O :THF (9:1; 10 ml per 100 mg $Cr(CO)_6$) was degassed with argon, using standard Schlenk techniques, and refluxed (48 h) under an oxygen free atmosphere. The reaction mixture was cooled to room temperature and the solvent evaporated *in vacuo*. Purification through flash column-

chromatography yielded tricarbonyl($B-\eta^6$ -flavone)chromium(0) (0.70 g; 42.9%) as an orange solid. Recrystallization from diethyl ether yielded orange crystals suitable for single-crystal diffraction data collection.

 R_f 0.11 (H:A:DCM; 7:1:2); Mp 160.6 °C; Note: A, B and C-ring labelling refers to the benzene, phenyl and γ-pyrone rings respectively. ¹H NMR (600 MHz, CDCl₃) δ p.p.m. 8.21 (1H, d, J = 7.91 Hz, H-5), 7.72 (1H, dd, J = 7.53, 7.91 Hz, H-6), 7.54 (1H, d, J = 8.28 Hz, H-8), 7.44 (1H, dd, J = 7.53, 8.28 Hz, H-8), 6.61 (1H, s, H-3), 6.00 (2H, d, J = 6.38 Hz, H-2' and H-6'), 5.57 (1H, t, J = 6.14 Hz, H-4'), 5.41 (2H, dd, J = 6.14, 6.38 Hz, H-3' and H-5'); ¹³C NMR (151 MHz, CDCl₃) δ p.p.m. 89.91 (C-3' and C-5'), 91.04 (C-2' and C-6'), 93.77 (C-4'), 94.98, 107.38 (C-3), 118.08 (C-8), 124.0, 125.79 (C-5 or C-7), 125.92 (C-5 or C-7), 134.33 (C-6), 156.13, 161.02, 177.56, 231.08(-Cr(CO)3); MS (MS Scheme 4) m/z 358 (M+, 4.4), 330 (0.9), 302 (2.1), 274 (11.3), 239 (2.2), 223 (100.0), 210 (0.6), 183 (2.6), 155 (3.5), 121 (29.0), 103 (4.7).

Refinement

The H atoms were positioned geometrically and refined using a riding model with fixed C—H distances of 0.93 Å (CH) $[U_{iso}(H) = 1.2U_{eq}]$ and 0.96 Å.

The highest density peak is 0.36 located 0.76 Å from C3 and the deepest hole is -0.35 located at 0.61 Å from Cr.

Figures

Fig. 1. A view of (I) showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level.

Fig. 2. Indication of molecular packing in the unit-cell, displaying π -stacking. H-atoms are omitted for clarity. Symmetry operators 1) x; y; z. 2) 1 - x; 1 - y; 1 - z. 3) 1 + x; 1 + y; z.

Tricarbonyl(η^6 -flavone)chromium(0)

Crystal data

$[Cr(C_{15}H_{10}O_2)(CO)_3]$	Z = 2
$M_r = 358.26$	$F_{000} = 364$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.591 \; {\rm Mg \; m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
a = 7.2853 (2) Å	Cell parameters from 3694 reflections
b = 9.6427(3) Å	$\theta = 2.3 - 28.2^{\circ}$
c = 11.6466 (4) Å	$\mu = 0.79 \text{ mm}^{-1}$
$\alpha = 78.5450 \ (10)^{\circ}$	T = 173 K
$\beta = 79.5540 \ (10)^{\circ}$	Irregular, orange

$$\gamma = 70.0050 (10)^{\circ}$$
 $V = 747.81 (4) \text{ Å}^3$

 $0.45\times0.32\times0.19~mm$

Data collection

Bruker APEXII CCD diffractometer 3062 reflections with $I > 2\sigma(I)$ Monochromator: graphite $R_{\text{int}} = 0.022$ T = 173 K $\theta_{\text{max}} = 28^{\circ}$ $\theta_{\text{min}} = 1.8^{\circ}$ Absorption correction: multi-scan

Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\text{min}} = 0.717, T_{\text{max}} = 0.864 \qquad k = -12 \rightarrow 12$ 8083 measured reflections $l = -15 \rightarrow 14$

Refinement

3600 independent reflections

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0513P)^2 + 0.3895P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.037$	$(\Delta/\sigma)_{\text{max}} = 0.001$
$wR(F^2) = 0.105$	$\Delta \rho_{max} = 0.52 \text{ e Å}^{-3}$
S = 1.06	$\Delta \rho_{\text{min}} = -0.55 \text{ e Å}^{-3}$
3600 reflections	Extinction correction: none

Special details

205 parameters

Experimental. The intensity data was collected on a Bruker Apex II CCD diffractometer using an exposure time of 10 s/frame. The 509 frames were collected with a frame width of 0.5° covering up to $\theta = 28^{\circ}$ with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	z	$U_{\rm iso}*/U_{\rm eq}$
Cr	0.44722 (4)	0.35008(3)	0.85182(3)	0.02434 (11)
O5	0.6342 (2)	0.24078 (16)	0.52790 (12)	0.0282(3)
O4	1.1793 (2)	0.29078 (17)	0.44675 (15)	0.0349 (4)
O3	0.2698 (2)	0.3373 (2)	1.10514 (14)	0.0421 (4)
C2	0.6832(3)	0.3367 (2)	0.57827 (16)	0.0241 (4)
C3	0.8617(3)	0.3562(2)	0.55295 (18)	0.0267 (4)
Н3	0.8879	0.4247	0.591	0.032*
C10	0.9548 (3)	0.1789(2)	0.41199 (17)	0.0249 (4)

C13	0.3382 (3)	0.3412 (2)	1.00763 (19)	0.0292(3)
O1	0.4968 (3)	0.02553 (19)	0.86574 (17)	0.0499 (5)
C9	0.7671 (3)	0.1667 (2)	0.44291 (18)	0.0273 (4)
C12	0.6912(3)	0.2990(2)	0.90154 (18)	0.0292(3)
O2	0.8445 (2)	0.26801 (19)	0.93196 (16)	0.0425 (3)
C5	1.0793 (3)	0.1028 (2)	0.32237 (19)	0.0311 (4)
H5	1.2083	0.1097	0.2999	0.037*
C2'	0.5336(3)	0.5228 (2)	0.72042 (18)	0.0278 (4)
H2'	0.653	0.5461	0.7082	0.033*
C1'	0.5171 (3)	0.4148 (2)	0.65939 (17)	0.0257 (4)
C4	1.0145 (3)	0.2762 (2)	0.46978 (17)	0.0255 (4)
C6'	0.3370(3)	0.3817 (2)	0.68058 (18)	0.0306 (4)
H6'	0.3226	0.3099	0.6406	0.037*
C11	0.4775 (3)	0.1501(2)	0.86148 (18)	0.02916 (17)
C3'	0.3758 (3)	0.5956 (2)	0.79855 (19)	0.0317 (5)
H3'	0.3872	0.67	0.8369	0.038*
C8	0.7000 (4)	0.0807(2)	0.3874 (2)	0.0348 (5)
H8	0.5712	0.0733	0.4094	0.042*
C4'	0.2009(3)	0.5587 (3)	0.8202(2)	0.0354 (5)
H4'	0.0964	0.6049	0.876	0.042*
C5'	0.1799 (3)	0.4541 (3)	0.7601 (2)	0.0361 (5)
H5'	0.0597	0.4319	0.7728	0.043*
C7	0.8262 (4)	0.0070(3)	0.3002(2)	0.0398 (5)
H7	0.7839	-0.0528	0.2617	0.048*
C6	1.0148 (4)	0.0180(2)	0.2667 (2)	0.0381 (5)
Н6	1.099	-0.0332	0.2055	0.046*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr	0.01993 (17)	0.02901 (19)	0.02080 (17)	-0.00703 (13)	-0.00249 (12)	0.00247 (12)
O5	0.0261 (7)	0.0341 (7)	0.0279 (7)	-0.0153 (6)	-0.0025 (6)	-0.0027 (6)
O4	0.0274 (8)	0.0387 (8)	0.0435 (9)	-0.0175 (7)	0.0046 (7)	-0.0124 (7)
O3	0.0351 (9)	0.0547 (10)	0.0292 (8)	-0.0129 (8)	0.0047 (7)	-0.0001 (7)
C2	0.0270 (10)	0.0263 (9)	0.0193 (9)	-0.0107 (8)	-0.0069 (8)	0.0040(7)
C3	0.0283 (10)	0.0280 (10)	0.0264 (10)	-0.0130 (8)	-0.0034 (8)	-0.0029(8)
C10	0.0284 (10)	0.0215 (9)	0.0242 (9)	-0.0093 (8)	-0.0069 (8)	0.0033 (7)
C13	0.0240 (7)	0.0315 (7)	0.0279 (7)	-0.0069 (6)	-0.0014 (6)	0.0000(6)
O1	0.0698 (13)	0.0385 (9)	0.0470 (10)	-0.0233 (9)	-0.0162 (10)	0.0000(8)
C9	0.0333 (11)	0.0253 (9)	0.0247 (9)	-0.0127 (8)	-0.0075 (8)	0.0030(8)
C12	0.0240 (7)	0.0315 (7)	0.0279 (7)	-0.0069 (6)	-0.0014 (6)	0.0000(6)
O2	0.0299 (6)	0.0450 (6)	0.0502(6)	-0.0059 (7)	-0.0131 (7)	-0.0045 (8)
C5	0.0355 (11)	0.0258 (10)	0.0305 (10)	-0.0085 (9)	-0.0039 (9)	-0.0034 (8)
C2'	0.0260 (10)	0.0272 (10)	0.0264 (10)	-0.0083 (8)	-0.0029(8)	0.0044 (8)
C1'	0.0222 (9)	0.0312 (10)	0.0199 (9)	-0.0083 (8)	-0.0037 (7)	0.0052 (7)
C4	0.0284 (10)	0.0241 (9)	0.0244 (9)	-0.0116 (8)	-0.0020 (8)	0.0001 (7)
C6'	0.0258 (10)	0.0405 (12)	0.0239 (10)	-0.0111 (9)	-0.0070 (8)	0.0036 (8)
C11	0.0240(2)	0.03146 (19)	0.02793 (16)	-0.0069 (6)	-0.0014 (6)	0.0000(6)

C3'	0.0316 (11)	0.0271 (10)	0.0284 (10)	-0.0026 (8)	-0.0039 (9)	0.0022 (8)
C8	0.0310 (11)	0.0337 (11)	0.0379 (12)	-0.0180 (10)	-0.0123 (10)	-0.0014 (9)
C4'	0.0372 (12)	0.0385 (12)	0.0302 (11)	0.0005 (9)	-0.0026 (9)	0.0014())
C5'	0.0190 (10)	0.0506 (13)	0.0312 (11)	-0.0079 (9)	-0.0061 (8)	0.0037 (7)
C7	0.0534 (15)	0.0326 (11)	0.0410 (13)	-0.0176 (11)	-0.0167 (11)	-0.0055 (10)
C6	0.0457 (14)	0.0320 (11)	0.0368 (12)	-0.0072 (10)	-0.0060 (10)	-0.0095 (9)
Co	0.0437 (14)	0.0303 (11)	0.0308 (12)	0.0072 (10)	0.0000 (10)	0.0093 (9)
Geometric para	meters (Å, °)					
Cr—C13		1.842 (2)	C9—C	28	1.39	6 (3)
Cr—C12		1.844 (2)	C12—		1.15	
Cr—C11		1.847 (2)	C5—C		1.370	
Cr—C2'		2.206 (2)	C5—H		0.95	
Cr—C4'		2.209 (2)	C2'—C		1.402	2 (3)
Cr—C6'		2.211 (2)	C2'—(1.420	
Cr—C1'		2.2180 (19)	C2'—H		0.95	
Cr—C5'		2.221 (2)	C1'—(1.422	2 (3)
Cr—C3'		2.225 (2)	C6'—(1.40	
O5—C2		1.358 (2)	C6'—I		0.95	, (=)
O5—C9		1.374 (3)	C3'—C		1.404	4 (3)
O4—C4		1.232 (2)	C3'—H		0.95	. (-)
O3—C13		1.153 (3)	C8—C		1.37	3 (3)
C2—C3		1.349 (3)	C8—H		0.95	
C2—C1'		1.473 (3)	C4'—C		1.399	9 (3)
C3—C4		1.446 (3)	C4'—I		0.95	
С3—Н3		0.95	C5'—H		0.95	
C10—C9		1.388 (3)	C7—C		1.39	3 (4)
C10—C5		1.399 (3)	C7—H		0.95	
C10—C4		1.469 (3)	С6—Н		0.95	
O1—C11		1.153 (3)				
C13—Cr—C12		88.71 (9)	C6—C	25—H5	120	
C13—Cr—C11		88.80 (9)		C5—H5	120	
C12—Cr—C11		89.60 (9)		C2'—C1'		78 (19)
C13—Cr—C2'		134.26 (9)		C2'—Cr		0 (12)
C12—Cr—C2'		86.71 (8)		C2'—Cr		3 (11)
C11—Cr—C2'		136.58 (9)		C2'—H2'	119.0	
C13—Cr—C4'		85.97 (9)		C2'—H2'	119.0	
C12—Cr—C4'		135.57 (9)		2'—H2'	128.	
C11—Cr—C4'		134.24 (9)		C1'—C6'		15 (19)
C2'—Cr—C4'		66.83 (8)		C1'—C2		01 (18)
C13—Cr—C6'		135.41 (9)		C1'—C2		83 (18)
C12—Cr—C6'		135.54 (9)		C1'—Cr		4 (11)
C11—Cr—C6'		86.67 (9)		C1'—Cr		9 (11)
C2'—Cr—C6'		67.00 (8)		:1'—Cr		43 (13)
C4'—Cr—C6'		66.69 (9)		C4—C3		10 (18)
C13—Cr—C1'		165.52 (8)		C4—C10		58 (19)
C12—Cr—C1'		101.05 (8)		24—C10		29 (17)
C11—Cr—C1'		101.82 (8)		C6'—C1'	120.	
C2'—Cr—C1'		37.43 (8)		C6'—Cr		0 (12)
0. 0.		(0)		· · - ·	, 1.7	. ()

C6"-Cr">CCI" 37.46 (7) CS"-C6">C5"-C6">H6' 119.2 C13">CT">CC">CS" 101.29 (9) C1"-C6">H6' 119. C12">CT">CT">CS" 165.57 (9) CT"-C6">H6' 129. C1">CT">CT">CS" 165.57 (9) CT"-C6">H6' 129. C2">CT">CT">CS" 78.86 (8) C2"-C3">C4" 120. C4">CT">CT">CS" 36.82 (9) C2"-C3">C1">C7" 70.8 C6">CT">C5" 37.02 (8) C4">C2">C2">C3">C1" 70.9 C1">CT">CT">C5" 67.29 (8) C2">C2">C3">H3" 119. C13">C13">CT">C3" 100.70 (9) C4">C4">C4">C3">H3" 119. C12">C1">CT">C3" 165.16 (9) C7">C7">C8">C8">C9" 117. C2">C1">C1">C1">C1">C1" 36.87 (8) C7">C7">C7">C8">C8">C8">C8" 121. C4">C4">C1">C1">C1" 36.87 (8) C7">C7">C8">C8">C8">H8 121. C4">C4">C1">C1">C1" 36.82 (8) C9">C9">C8">H18 121. C6">C1">C1">C1">C1" 36.82 (8) C9">C9">C8">C8">H8 121. C1">C1">C1">C1" <c13"< td=""> 36.92 (8) C9">C9">C8">C8">H8</c13"<>	
C13—Cr—C5' 101.29 (9) C1'—C6—H6' 119.0 C12—Cr—C5' 165.57 (9) Cr—C6—H6' 129.0 C11—Cr—C5' 100.88 (9) O1—C11—Cr 179.0 C11—Cr—C5' 78.86 (8) C2"—C3"—C4' 120.0 C4"—Cr—C5' 36.82 (9) C2"—C3"—Cr 70.8 C6"—Cr—C5' 37.02 (8) C4"—C3"—H3' 119.0 C1"—Cr—C5' 67.29 (8) C2"—C3"—H3' 119.0 C13—Cr—C3' 100.70 (9) C4"—C3"—H3' 119.0 C13—Cr—C3' 101.88 (9) C7—C8—C9 117.0 C12—Cr—C3' 165.16 (9) C7—C8—C9 117.0 C2"—Cr—C3' 36.87 (8) C7—C8—H8 121.0 C4"—Cr—C3' 36.89 (8) C9—C8—H8 121.0 C4"—Cr—C3' 78.55 (8) C5"—C4"—C4" 72.0 C1"—Cr—C3' 67.01 (8) C5"—C4"—H4" 119.0 C1"—Cr—C3' 66.27 (9) C3"—C4"—H4" 119.0 C3—C2—C1' 126.27 (18) C7—C4"—H4" 119.0 C3—C2—O5	
C12—Cr—CS'	
C11—Cr—CS'	.6
C2'—Cr—CS' 78.86 (8) C2'—C3'—C4' 120. C4'—Cr—CS' 36.82 (9) C2'—C3'—Cr 70.8 C6'—Cr—CS' 37.02 (8) C4'—C3'—Cr 70.9 C1'—Cr—CS' 67.29 (8) C2'—C3'—H3' 119. C13—Cr—C3' 100.70 (9) C4'—C3'—H3' 119. C12—Cr—C3' 101.88 (9) Cr—C3'—H3' 131 C11—Cr—C3' 165.16 (9) C7—C8—C9 117. C2'—Cr—C3' 36.87 (8) C7—C8—H8 121. C4'—Cr—C3' 36.92 (8) C9—C8—H8 121. C4'—Cr—C3' 78.55 (8) C5'—C4'—C3' 120. C1'—Cr—C3' 67.01 (8) C5'—C4'—C7 72.0 C5'—Cr—C3' 66.27 (9) C3'—C4'—C7 72.1 C3—C2—O5 118.91 (15) C5'—C4'—H4' 119. C3—C2—O1 126.57 (18) C7—C4'—H4' 128 O5—C2—C1' 111.4 (16) C4'—C5'—C6' 119. C2—C3—C4 122.13 (18) C4'—C5'—H5' 120. C9—C10—C5 118.77 (19	.4
C4'-Cr-C5' 36.82 (9) C2'-C3'-Cr 70.8 C6'-Cr-C5' 37.02 (8) C4'-C3'-Cr 70.9 C1'-Cr-C5' 67.29 (8) C2'-C3'-H3' 119. C13-Cr-C3' 100.70 (9) C4'-C3'-H3' 119. C12-Cr-C3' 101.88 (9) Cr-C3'-H3' 131 C11-Cr-C3' 165.16 (9) C7-C8-C9 117. C2'-Cr-C3' 36.87 (8) C7-C8-H8 121. C4'-Cr-C3' 36.92 (8) C9-C8-H8 121. C6'-Cr-C3' 78.55 (8) C5'-C4'-C3' 120. C1'-Cr-C3' 67.01 (8) C5'-C4'-C7 72.0 C5'-Cr-C3' 66.27 (9) C3'-C4'-C7 72.0 C5'-C7-C3' 66.27 (9) C3'-C4'-C7 72.0 C2-O5-C9 118.91 (15) C5'-C4'-H4' 119. C3-C2-C1' 126.27 (18) C7-C4'-H4' 119. C3-C2-C1' 126.27 (18) C7-C5'-C6' 119. C2-C3-C4 122.13 (18) C4'-C5'-C5' 71.0 C4-C3-H3 118.9	.00 (19)
C6'-Cr-Cs' 37.02 (8) C4'-C3'-Cr 70.9 C1'-Cr-Cs' 67.29 (8) C2'-C3'-H3' 119. C13-Cr-C3' 100.70 (9) C4'-C3'-H3' 119. C12-Cr-C3' 101.88 (9) Cr-C3'-H3' 131 C11-Cr-C3' 165.16 (9) C7-C8-C9 117. C2'-Cr-C3' 36.87 (8) C7-C8-H8 121. C4'-Cr-C3' 36.92 (8) C9-C8-H8 121. C6'-Cr-C3' 78.55 (8) C5'-C4'-C3' 120. C1'-Cr-C3' 66.27 (9) C3'-C4'-Cr 72.0 C5'-Cr-C3' 66.27 (9) C3'-C4'-H4' 119. C3-C5-C9 118.91 (15) C5'-C4'-H4' 119. C3-C2-O5 122.59 (18) C3'-C4'-H4' 119. C3-C2-C1' 126.27 (18) Cr-C4'-H4' 128 O5-C2-C1' 111.14 (16) C4'-C5'-C6' 119. C2-C3-C4 122.13 (18) C4'-C5'-H5' 120 C2-C3-H3 118.9 C6'-C5'-Cr 71.0 C4-C3-H3 118.9	.1 (2)
C1'—Cr—Cs' 67.29 (8) C2'—C3'—H3' 119.2 C13—Cr—C3' 100.70 (9) C4'—C3'—H3' 119.2 C12—Cr—C3' 101.88 (9) Cr—C3'—H3' 131 C11—Cr—C3' 165.16 (9) C7—C8—C9 117. C2'—Cr—C3' 36.87 (8) C7—C8—H8 121. C4'—Cr—C3' 36.92 (8) C9—C8—H8 121. C6'—Cr—C3' 78.55 (8) C5'—C4'—C3' 120. C1'—Cr—C3' 67.01 (8) C5'—C4'—Cr 72.0 C5'—Cr—C3' 66.27 (9) C3'—C4'—Cr 72.1 C2—05—C9 118.91 (15) C5'—C4'—H4' 119.2 C3—C2—C1' 126.27 (18) C3'—C4'—H4' 119. C3—C2—C1' 111.14 (16) C4'—C5'—C6' 119.2 C2—C3—H3 118.9 C6'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C6'—C5'—H5' 120. C9—C10—C5 118.77 (19) C6'—C5'—H5' 120. C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 12.13 (18) C8—C7—H7 119. C5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C8 121.9 (2) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120. C9—O5—C2—C1' 179.4 (2) C7—C6—H6 120. C9—O5—C2—C3 —3.8 (3) C11—Cr—C6'—C5' —13. C9—O5—C2—C3 —3.8 (3) C11—Cr—C6'—C5' —13. C9—O5—C2—C3 —3.8 (3) C11—Cr—C6'—C5' —13. C9—O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' —28. C1'—C2—C3—C4 —178.63 (17) C1'—Cr—C6'—C5' —28. C1'—C2—C3—C4 —178.63 (17) C1'—Cr—C6'—C5' —28. C1'—C2—C3—C4 —178.63 (17) C1'—Cr—C6'—C5' —13. C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' —65.	83 (12)
C13—Cr—C3' 100.70 (9) C4'—C3'—H3' 119. C12—Cr—C3' 101.88 (9) Cr—C3'—H3' 131 C11—Cr—C3' 165.16 (9) C7—C8—C9 117. C2'—Cr—C3' 36.87 (8) C7—C8—H8 121. C4'—Cr—C3' 36.92 (8) C9—C8—H8 121. C6'—Cr—C3' 78.55 (8) C5'—C4'—C1 72.0 C6'—Cr—C3' 66.27 (9) C3'—C4'—Cr 72.0 C5'—Cr—C3' 66.27 (9) C3'—C4'—Cr 72.1 C2—O5—C9 118.91 (15) C5'—C4'—H4' 119. C3—C2—O5 122.59 (18) C3'—C4'—H4' 119. C3—C2—C1' 126.27 (18) Cr—C4'—H4' 128 O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119. C2—C3—C4 122.13 (18) C4'—C5'—C6' 119. C2—C3—H3 118.9 C4'—C5'—Cr 71.0 C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—H7 119. C5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C8 115.70 (19) C5—C6—C7 120. C1—C9—C8 121.9 (2) C5—C6—H6 120. C9—O5—C9—C8 121.9 (2) C5—C6—H6 120. C9—O5—C2—C1' 179.4 (2) C7—C6—C5' 120. C9—O5—C2—C1' 179.14 (15) C2'—Cr—C6'—C5' 113. C9—O5—C2—C1' 179.14 (15) C2'—Cr—C6'—C5' 120. C6—C5—C10 119.9 (2) C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -10.0 C5—C5—C5'—C1' 175.14 (15) C2'—Cr—C6'—C5' -10.0 C9—O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -10.0 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -10.0 C9—O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -10.0 C9—O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -10.0 C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -13.0 C1—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -13.0 C1—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -13.0 C1—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -13.0 C1—C5—C5—C10 -13.63 (17) C1'—Cr—C6'—C5' -13.0 C1—C5—C5—C10 -13.63 (17) C1'—Cr—C6'—C5' -13.0 C1—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -13.0 C1—C5—C5—C10 -13.65 (17) C1'—Cr—C6'—C5' -13.0 C1—C5—C5—C10 -13.65 (17) C1'—Cr—C6'—C5' -13.0 C1—C5—C5—C10 -13.65 (17) C1'—Cr—C6'—C5' -13.0 C2—O5—C9—C10 43.3) C3'—Cr—C6'—C5' -13.0 C1—C7—C6'—C5' -13.0 C2—O5—C9—C10 43.3) C3'—Cr—C6'—C5' -13.0 C1—C7—C6'—C5' -13.0 C2—O5—C9—C10 43.3) C3'—Cr—C6'—C5' -13.0	90 (12)
C12—Cr—C3' 101.88 (9) Cr—C3'—H3' 131 C11—Cr—C3' 165.16 (9) C7—C8—C9 117. C2'—Cr—C3' 36.87 (8) C7—C8—H8 121. C4'—Cr—C3' 36.92 (8) C9—C8—H8 121. C6'—Cr—C3' 78.55 (8) C5'—C4'—C3' 120. C1'—Cr—C3' 67.01 (8) C5'—C4'—Cr 72.0 C5'—Cr—C3' 66.27 (9) C3'—C4'—Cr 72.0 C5'—Cr—C3' 66.27 (9) C3'—C4'—H4' 119. C3—C2—O5 122.59 (18) C3'—C4'—H4' 119. C3—C2—O5 122.59 (18) C3'—C4'—H4' 128 O5—C2—C1' 126.27 (18) Cr—C4'—H4' 128 O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119. C2—C3—H3 118.9 C6'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C6'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) C6'—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119. O5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C8 115.70 (19) C5—C6—C7 120. C1—C9—C8 121.9 (2) C5—C6—H6 120 O2—C12—Cr 179.4 (2) C7—C6—H6 120 C9—O5—C2—C3 —3.8 (3) C11—Cr—C6'—C5' 133. C9—O5—C2—C3 —4 0.1 (3) C4'—Cr—C6'—C5' -132 C1'—C2—C3—C4 1.1 (15) C2'—Cr—C6'—C5' -132 C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -132 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -132	.9
C11—Cr—C3' 165.16 (9) C7—C8—C9 117. C2'—Cr—C3' 36.87 (8) C7—C8—H8 121. C4'—Cr—C3' 36.92 (8) C9—C8—H8 121. C6'—Cr—C3' 78.55 (8) C5'—C4'—C3' 120. C1'—Cr—C3' 67.01 (8) C5'—C4'—Cr 72.0 C5'—Cr—C3' 66.27 (9) C3'—C4'—Cr 72.1 C2—O5—C9 118.91 (15) C5'—C4'—H4' 119. C3—C2—O5 122.59 (18) C3'—C4'—H4' 119. C3—C2—C1' 126.27 (18) Cr—C4'—H4' 128. O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119. C2—C3—C4 122.13 (18) C4'—C5'—C6' 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—H5' 120. C9—C10—C5 118.77 (19) C6'—C5'—H5' 120. C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119. O5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C8 121.9 (2) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—C7 120. C6—C5—C10 119.9 (2) C9—O5—C2—C3—C4 0.1 (3) C4'—C7—C6'—C5' -100. C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -100. C9—O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -100. C9—O5—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -130. C9—O5—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -130. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -130.	.9
C2'-Cr-C3' 36.87 (8) C7-C8-H8 121. C4'-Cr-C3' 36.92 (8) C9-C8-H8 121. C6'-Cr-C3' 78.55 (8) C5'-C4'-C3' 120. C1'-Cr-C3' 67.01 (8) C5'-C4'-Cr 72.0 C5'-C1-C3' 66.27 (9) C3'-C4'-Cr 72.1 C2-O5-C9 118.91 (15) C5'-C4'-H4' 119.2 C3-C2-O5 122.59 (18) C3'-C4'-H4' 119.2 C3-C2-C1' 126.27 (18) Cr-C4'-H4' 128.0 C5-C2-C1' 111.14 (16) C4'-C5'-C6' 119.5 C2-C3-H3 118.9 C6'-C5'-Cr 71.1 C2-C3-H3 118.9 C6'-C5'-H5' 120 C9-C10-C5 118.77 (19) C6'-C5'-H5' 120 C9-C10-C4 119.53 (19) Cr-C5'-H5' 130. C5-C10-C4 121.63 (18) C8-C7-C6 121. O3-C13-Cr 179.21 (19) C8-C7-H7 119. O5-C9-C10 122.38 (17) C6-C7-H7 119. O5-C9-C8 115.70 (19)	
C4'—Cr—C3' 36.92 (8) C9—C8—H8 121. C6'—Cr—C3' 78.55 (8) C5'—C4'—C3' 120. C1'—Cr—C3' 67.01 (8) C5'—C4'—Cr 72.0 C5'—Cr—C3' 66.27 (9) C3'—C4'—Cr 72.1 C2—O5—C9 118.91 (15) C5'—C4'—H4' 119. C3—C2—O5 122.59 (18) C3'—C4'—H4' 119. C3—C2—C1' 126.27 (18) Cr—C4'—H4' 128 O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119. C2—C3—C4 122.13 (18) C4'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 130. C5—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119. O5—C9—C8 115.70 (19) C5—C6—H6 120. C10—C9—C8 121.9 (2) C5—C6—H6 120. C6—C5—C10 119.9 (2) C5—C6—	.8 (2)
C6'—Cr—C3' 78.55 (8) C5'—C4'—C3' 120. C1'—Cr—C3' 67.01 (8) C5'—C4'—Cr 72.0 C5'—Cr—C3' 66.27 (9) C3'—C4'—Cr 72.1 C2—O5—C9 118.91 (15) C5'—C4'—H4' 119. C3—C2—O5 122.59 (18) C3'—C4'—H4' 119. C3—C2—C1' 126.27 (18) Cr—C4'—H4' 128. O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119. C2—C3—C4 122.13 (18) C4'—C5'—C6' 119. C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C4'—C5'—H5' 120. C9—C10—C5 118.77 (19) C6'—C5'—H5' 120. C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119. O5—O9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—C6 120. C2—C12—Cr 179.4 (2) C7—C6—H6 120. C6—C5—C10 119.9 (2) C5—C	.1
C1'—Cr—C3' 67.01 (8) C5'—C4'—Cr 72.0 C5'—Cr—C3' 66.27 (9) C3'—C4'—Cr 72.1 C2—O5—C9 118.91 (15) C5'—C4'—H4' 119.0 C3—C2—O5 122.59 (18) C3'—C4'—H4' 119.0 C3—C2—C1' 126.27 (18) Cr—C4'—H4' 128 O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119.0 C2—C3—C4 122.13 (18) C4'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119.0 O5—C9—C10 122.38 (17) C6—C7—H7 119.0 O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120. C6—C5—C10 119.9 (2)	.1
C5'—Cr—C3' 66.27 (9) C3'—C4'—Cr 72.1 C2—O5—C9 118.91 (15) C5'—C4'—H4' 119.2 C3—C2—O5 122.59 (18) C3'—C4'—H4' 119.2 C3—C2—C1' 126.27 (18) Cr—C4'—H4' 128 O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119.2 C2—C3—C4 122.13 (18) C4'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130 C5—C10—C4 121.63 (18) C8—C7—C6 121 O3—C13—Cr 179.21 (19) C8—C7—H7 119. O5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -10.2 C6—C5—C10 119.9 (2)	0.2 (2)
C2—O5—C9 118.91 (15) C5'—C4'—H4' 119.91 C3—C2—O5 122.59 (18) C3'—C4'—H4' 119.91 C3—C2—C1' 126.27 (18) Cr—C4'—H4' 128 O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119.91 C2—C3—C4 122.13 (18) C4'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119.0 O5—C9—C10 122.38 (17) C6—C7—H7 119.0 O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120 C2—C12—Cr 179.4 (2) C7—C6—H6 120 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -10.0 O5—C2—C3—C4 0.1 (3)	06 (13)
C3—C2—O5 122.59 (18) C3—C4'—H4' 119.0 C3—C2—C1' 126.27 (18) Cr—C4'—H4' 128 O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119.0 C2—C3—C4 122.13 (18) C4'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—H5' 120 C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119.0 O5—C9—C10 122.38 (17) C6—C7—H7 119.0 O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120. C2—C12—Cr 179.4 (2) C7—C6—H6 120. C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -10.0 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) <td>17 (12)</td>	17 (12)
C3—C2—C1' 126.27 (18) Cr—C4'—H4' 128 O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119.2 C2—C3—C4 122.13 (18) C4'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130 C5—C10—C4 121.63 (18) C8—C7—C6 121 O3—C13—Cr 179.21 (19) C8—C7—H7 119.2 O5—C9—C10 122.38 (17) C6—C7—H7 119.2 C10—C9—C8 115.70 (19) C5—C6—C7 120 C10—C9—C8 121.9 (2) C5—C6—H6 120 C2—C12—Cr 179.4 (2) C7—C6—H6 120 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' 113.0 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -10.2 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28 C1'—C2—C3—C4 -178.63 (17)	.9
O5—C2—C1' 111.14 (16) C4'—C5'—C6' 119.9 C2—C3—C4 122.13 (18) C4'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130 C5—C10—C4 121.63 (18) C8—C7—C6 121 O3—C13—Cr 179.21 (19) C8—C7—H7 119.0 O5—C9—C10 122.38 (17) C6—C7—H7 119.0 O5—C9—C8 115.70 (19) C5—C6—C7 120 C10—C9—C8 121.9 (2) C5—C6—H6 120 O2—C12—Cr 179.4 (2) C7—C6—H6 120 C6—C5—C10 119.9 (2) C5—C6—C5' 113. C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -10.2 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28 C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -65 C2—O5—C9—C10 4.3 (3)	.9
C2—C3—C4 122.13 (18) C4'—C5'—Cr 71.1 C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119.0 O5—C9—C10 122.38 (17) C6—C7—H7 119.0 O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120 O2—C12—Cr 179.4 (2) C7—C6—H6 120 C6—C5—C10 119.9 (2) C7—C6—H6 120 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -10.2 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -65. C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.	}
C2—C3—H3 118.9 C6'—C5'—Cr 71.0 C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119. O5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120. C2—C12—Cr 179.4 (2) C7—C6—H6 120. C6—C5—C10 119.9 (2) C7—C6—C6'—C5' 113.0 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -102. O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132. C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.	.9 (2)
C4—C3—H3 118.9 C4'—C5'—H5' 120 C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119. O5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120 O2—C12—Cr 179.4 (2) C7—C6—H6 120 C6—C5—C10 119.9 (2) C7—C6—H6 120 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -102 O5—C2—C3 0.1 (3) C4'—Cr—C6'—C5' -28 C1'—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28 C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65	11 (12)
C9—C10—C5 118.77 (19) C6'—C5'—H5' 120 C9—C10—C4 119.53 (19) Cr—C5'—H5' 130 C5—C10—C4 121.63 (18) C8—C7—C6 121 O3—C13—Cr 179.21 (19) C8—C7—H7 119 O5—C9—C10 122.38 (17) C6—C7—H7 119 O5—C9—C8 115.70 (19) C5—C6—C7 120 C10—C9—C8 121.9 (2) C5—C6—H6 120 O2—C12—Cr 179.4 (2) C7—C6—H6 120 C6—C5—C10 119.9 (2) C7—C6—H6 120 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' 113.9 C9—O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -102 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28 C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65	08 (11)
C9—C10—C4 119.53 (19) Cr—C5'—H5' 130. C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119. O5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120. O2—C12—Cr 179.4 (2) C7—C6—H6 120. C6—C5—C10 119.9 (2) C7—C6—H6 120. C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' 113.0 C9—O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -102. O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132. C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.)
C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119. O5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120. O2—C12—Cr 179.4 (2) C7—C6—H6 120. C6—C5—C10 119.9 (2) C7—C6—H6 120. C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -10. O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -13. C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.)
C5—C10—C4 121.63 (18) C8—C7—C6 121. O3—C13—Cr 179.21 (19) C8—C7—H7 119. O5—C9—C10 122.38 (17) C6—C7—H7 119. O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120. O2—C12—Cr 179.4 (2) C7—C6—H6 120. C6—C5—C10 119.9 (2) C11—Cr—C6'—C5' 113. C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -102. O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132. C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.	0.3
O3—C13—Cr 179.21 (19) C8—C7—H7 119.2 O5—C9—C10 122.38 (17) C6—C7—H7 119.2 O5—C9—C8 115.70 (19) C5—C6—C7 120.2 C10—C9—C8 121.9 (2) C5—C6—H6 120.2 O2—C12—Cr 179.4 (2) C7—C6—H6 120.2 C6—C5—C10 119.9 (2) C11—Cr—C6'—C5' 113.2 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -10.2 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28.2 C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -13.2 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.2	.5 (2)
O5—C9—C10 122.38 (17) C6—C7—H7 119.0 O5—C9—C8 115.70 (19) C5—C6—C7 120.0 C10—C9—C8 121.9 (2) C5—C6—H6 120.0 O2—C12—Cr 179.4 (2) C7—C6—H6 120.0 C6—C5—C10 119.9 (2) C11—Cr—C6'—C5' 113.0 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -102.0 O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -102.0 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28.0 C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132.0 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.0	
O5—C9—C8 115.70 (19) C5—C6—C7 120. C10—C9—C8 121.9 (2) C5—C6—H6 120. O2—C12—Cr 179.4 (2) C7—C6—H6 120. C6—C5—C10 119.9 (2) 119.9 (2) 113.4 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' -102. O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -102. O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132. C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.	.2
C10—C9—C8 121.9 (2) C5—C6—H6 120 O2—C12—Cr 179.4 (2) C7—C6—H6 120 C6—C5—C10 119.9 (2) 113.4 C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' 113.4 C9—O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -102 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.	0.0 (2)
O2—C12—Cr 179.4 (2) C7—C6—H6 120 C6—C5—C10 119.9 (2) C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' 113.0 C9—O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -102 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.)
C6—C5—C10 119.9 (2) C9—O5—C2—C3 -3.8 (3) C11—Cr—C6'—C5' 113.4 C9—O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -102 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.	
C9—O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -102 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.	
C9—O5—C2—C1' 175.14 (15) C2'—Cr—C6'—C5' -102 O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.	.02 (14)
O5—C2—C3—C4 0.1 (3) C4'—Cr—C6'—C5' -28. C1'—C2—C3—C4 -178.63 (17) C1'—Cr—C6'—C5' -132 C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.	2.38 (15)
C1'—C2—C3—C4 — 178.63 (17) — C1'—Cr—C6'—C5' — 132 C2—O5—C9—C10 — 4.3 (3) — C3'—Cr—C6'—C5' — 65.	3.79 (13)
C2—O5—C9—C10 4.3 (3) C3'—Cr—C6'—C5' -65.	32.57 (19)
	5.58 (14)
	0.68 (13)
	3.37 (18)
	4.41 (13)
	19 (12)
	5.78 (14)
	2.57 (19) 99 (13)
C4—C10—C5—C6 —177.10 (19)	
	(3) 2.98 (17)
	no (10)
C11—Cr—C2'—C3' 159.22 (14) C1'—C2'—C3'—Cr 55.0	3.72 (13)

C6'—Cr—C2'—C3'	101.93 (14)	C12—Cr—C3'—C2'	67.79 (14)
C1'—Cr—C2'—C3'	132.14 (18)	C11—Cr—C3'—C2'	-72.2 (4)
C5'—Cr—C2'—C3'	65.10 (13)	C4'—Cr—C3'—C2'	-133.0(2)
C13—Cr—C2'—C1'	-162.01 (13)	C6'—Cr—C3'—C2'	-66.76 (13)
C12—Cr—C2'—C1'	113.01 (13)	C1'—Cr—C3'—C2'	-29.31 (12)
C11—Cr—C2'—C1'	27.07 (17)	C5'—Cr—C3'—C2'	-103.55 (14)
C4'—Cr—C2'—C1'	-103.61 (13)	C13—Cr—C3'—C4'	-68.25 (15)
C6'—Cr—C2'—C1'	-30.22 (12)	C12—Cr—C3'—C4'	-159.19 (14)
C5'—Cr—C2'—C1'	-67.04 (12)	C11—Cr—C3'—C4'	60.8 (4)
C3'—Cr—C2'—C1'	-132.14 (18)	C2'—Cr—C3'—C4'	133.0 (2)
C3'—C2'—C1'—C6'	-0.5 (3)	C6'—Cr—C3'—C4'	66.26 (13)
Cr—C2'—C1'—C6'	54.75 (15)	C1'—Cr—C3'—C4'	103.72 (14)
C3'—C2'—C1'—C2	-179.27 (17)	C5'—Cr—C3'—C4'	29.48 (13)
Cr—C2'—C1'—C2	-123.97 (17)	O5—C9—C8—C7	178.69 (19)
C3'—C2'—C1'—Cr	-55.30 (17)	C10—C9—C8—C7	0.0(3)
C3—C2—C1'—C2'	0.1 (3)	C2'—C3'—C4'—C5'	-2.9(3)
O5—C2—C1'—C2'	-178.79 (16)	Cr—C3'—C4'—C5'	-55.84 (18)
C3—C2—C1'—C6'	-178.62 (18)	C2'—C3'—C4'—Cr	52.95 (17)
O5—C2—C1'—C6'	2.5 (2)	C13—Cr—C4'—C5'	-114.93 (14)
C3—C2—C1'—Cr	-89.2 (2)	C12—Cr—C4'—C5'	161.05 (14)
O5—C2—C1'—Cr	91.89 (19)	C11—Cr—C4'—C5'	-30.55 (19)
C13—Cr—C1'—C2'	62.2 (4)	C2'—Cr—C4'—C5'	102.77 (14)
C12—Cr—C1'—C2'	-69.43 (13)	C6'—Cr—C4'—C5'	28.94 (13)
C11—Cr—C1'—C2'	-161.36 (12)	C1'—Cr—C4'—C5'	65.85 (13)
C4'—Cr—C1'—C2'	65.30 (12)	C3'—Cr—C4'—C5'	131.3 (2)
C6'—Cr—C1'—C2'	130.39 (18)	C13—Cr—C4'—C3'	113.80 (14)
C5'—Cr—C1'—C2'	101.66 (14)	C12—Cr—C4'—C3'	29.78 (19)
C3'—Cr—C1'—C2'	28.90 (12)	C11—Cr—C4'—C3'	-161.82 (14)
C13—Cr—C1'—C6'	-68.2 (4)	C2'—Cr—C4'—C3'	-28.50 (13)
C12—Cr—C1'—C6'	160.18 (13)	C6'—Cr—C4'—C3'	-102.33 (14)
C11—Cr—C1'—C6'	68.24 (14)	C1'—Cr—C4'—C3'	-65.42 (13)
C2'—Cr—C1'—C6'	-130.39 (18)	C5'—Cr—C4'—C3'	-131.3 (2)
C4'—Cr—C1'—C6'	-65.09 (13)	C3'—C4'—C5'—C6'	2.2 (3)
C5'—Cr—C1'—C6'	-28.73 (13)	Cr—C4'—C5'—C6'	-53.67 (18)
C3'—Cr—C1'—C6'	-101.49 (14)	C3'—C4'—C5'—Cr	55.89 (17)
C13—Cr—C1'—C2	177.0 (3)	C1'—C6'—C5'—C4'	-0.7(3)
C12—Cr—C1'—C2	45.44 (19)	Cr—C6'—C5'—C4'	53.69 (18)
C11—Cr—C1'—C2	-46.49 (19)	C1'—C6'—C5'—Cr	-54.40 (17)
C2'—Cr—C1'—C2	114.9 (2)	C13—Cr—C5'—C4'	67.28 (14)
C4'—Cr—C1'—C2	-179.83 (19)	C12—Cr—C5'—C4'	-65.8 (4)
C6'—Cr—C1'—C2	-114.7 (2)	C11—Cr—C5'—C4'	158.24 (14)
C5'—Cr—C1'—C2	-143.5 (2)	C2'—Cr—C5'—C4'	-66.03 (13)
C3'—Cr—C1'—C2	143.77 (19)	C6'—Cr—C5'—C4'	-132.4 (2)
C2—C3—C4—O4	-178.92 (19)	C1'—Cr—C5'—C4'	-103.38 (14)
C2—C3—C4—C10	2.9 (3)	C3'—Cr—C5'—C4'	-29.55 (13)
C9—C10—C4—O4	179.48 (18)	C13—Cr—C5'—C6'	-160.28 (13)
C5—C10—C4—O4	-3.4 (3)	C12—Cr—C5'—C6'	66.6 (4)
C9—C10—C4—C3	-2.3 (3)	C11—Cr—C5'—C6'	-69.33 (14)
C5—C10—C4—C3	174.81 (18)	C2'—Cr—C5'—C6'	66.40 (13)

C2'—C1'—C6'—C5'	-0.1 (3)	C4'—Cr—C5'—C6'	132.4 (2)
C2—C1'—C6'—C5'	178.61 (18)	C1'—Cr—C5'—C6'	29.05 (12)
Cr—C1'—C6'—C5'	54.56 (17)	C3'—Cr—C5'—C6'	102.88 (14)
C2'—C1'—C6'—Cr	-54.68 (16)	C9—C8—C7—C6	-0.5(3)
C2—C1'—C6'—Cr	124.05 (17)	C10—C5—C6—C7	-0.4(3)
C13—Cr—C6'—C5'	28.11 (19)	C8—C7—C6—C5	0.7 (4)
C12—Cr—C6'—C5'	-160.94 (14)		

Fig. 1

Fig. 2

