a disease of cattle with the symptoms known, and was described by
cattle has been known for many years
on (1906) refers to a disease called
ay possibly, however, have been some
case as 'bush sickness', 'midland
type by its similarity to the South African
lesterol had been attracted to the latter
eiler (1920) on " The Cause and Pre-
which the obtaining of the causal
ncurred, Seddon was able to isolate
of a powerful exotoxin. On account
y to the A and B types of the Clostri-
very fine piece of work, and in con-
and Graham and Boughton
ous organism Bacillus parabotulinus.
olus organism to be recognized,
e isolation of his B. parabotulinus in
cattle, sheep, and from forage in
 article he refers to the occurrence of
age which had produced botulism in
the distribution of botulism in cattle
may now consider the disease as it
it is known to stock owners in most
dition in the country is very wide,
ual cases occur everywhere. It is,
here, owing to phosphorous deficiency
up a depraved appetite and chew bones
ease. At present, however, owing to
e-meal to cattle, the incidence of the
ed, and it is only seen now to any
y is not carried out.
and his co-workers (1927), give in
ried carried out by them on "lamsiekte"
ts in the study of mineral deficiency
ntal work carried out on "lamsiekte"
theories elaborated in connection
esting chapter in the study of diseases
ctiological work of Bowhill, Spurrell,
Province, who isolated bacteria, later
ated with the condition, to the
the 912 to 1919, one theory after another
satisfactory. It was not until 1919
ease being a form of toxemia related
to botulism was furnished. From toxic carcases material an organism
of the botulinaus type was eventually isolated in pure culture, and
shown to be closely related to the parabotulinus organism of Seddon.
It was definitely a C type, not an A or B.

It is unnecessary to go into the symptoms of lamsiekte, which are
essentially those of a bulbar paralysis as seen in any type of botulism
and they have been described in great detail in the article of Theiler
and co-workers (1927). Material from carcases from cases of lam-
siekte which have occurred in various parts of South Africa, has been
tested, and it is certain that all these cases were true botulism. It is
not as yet certain that all the toxins from different areas or even
from the same areas are identical. Up to date the existence of the
A and B types as the cause of botulism in any species of animal in
South Africa has not been proved, nor has human botulism been
described as yet. That the A and B types exist, is, from the evidence
in other countries, almost certain. A point of considerable interest
is whether more than one type of Clostridium botulinus C exists in
South Africa as the cause of lamsiekte. The writer, from a study of
many strains of the organism from various sources, has come to the
conclusion that there may be varieties of it, and is at present attempt-
ing a classification of the known types serologically and by cross-toxin-
antitoxin tests.

The distribution of the "lamsiekte" organisms on a well-known
and heavily infected farm has been studied by Scheuber (1929). He
was not able in his experiments to find the spores of the organisms,
except under or close to "lamsiekte" carcases. Possibly with
improved technique and dealing with larger quantities of soil, it will
be found that the organisms are present in the soil away from carcases.
Blow-fly infection of carcases is very likely a cause of spread of the
organisms from one carcase to another, but it would seem that soil
infection must play a part. In the intestinal contents of lamsiekte
carcasses, Scheuber was in most cases able to find the organisms, and
in addition a fair percentage of cattle, especially those not receiving
bone-meal, showed the organisms in the faeces.

A number of points still remain to be elucidated in connection
with "lamsiekte" such as the distribution of the bacteria in the soil
and falling off and increase in virulence under certain conditions.
As a result of the recent work on formalized toxins carried out by
various investigators in different parts of the world, it has been found
possible to immunize animals against botulinaus toxins by means of
anatoxins. If it were necessary we could at any time immunize
cattle fairly satisfactorily against "lamsiekte," but as this would
tempt farmers to neglect bone-meal feeding, it would be inadvisable
to recommend such immunization.

(3) Botulism in Sheep and Goats.

Lamsiekte in goats has frequently been reported in South Africa
usually in association with the disease in cattle. Experimentally
they are very susceptible.

In sheep under natural conditions, the disease seems to be rare,
probably because they do not, except under conditions develop
osteopagia. Pogge (1925) reported that it occurred in Australia
and was inclined to connect the eating of rabbit carcases with it.
Recently it has come to our notice through Mr. J. G. Bekker, Veterinary Research Officer in this Department, that sheep in the Bredasdorp District of the Cape Province, suffer severely from osteophagia, that their bones are light and brittle, and that lambsiekte is fairly common amongst them. From sheep carcass material from this area we have been able without difficulty to obtain toxic cultures of the botulism type.

(4) Botulism in Other Animal Species.

Apart from the small laboratory animals which it is not intended to deal with, the other species of domesticated animals are resistant to the disease. The writer, in confirming the work of Theiler and co-workers on the toxin in lambsiekte, has shown that pigs and dogs are practically immune to it. Pigs are comparatively resistant as well.

It is difficult to explain this insusceptibility of pigs and dogs, but it has been suggested that it is related to the omnivorous and scavenging habits of these animals.

Botulism in Birds.

Though it is chiefly botulism in poultry that will be dealt with here, outbreaks of the disease in other species of birds may occur occasionally. Water birds may be affected, usually as a result of eating decomposing fish or snails when dams or streams run dry.

The symptoms in birds are fairly typical. There is first of all loss of appetite, uneasiness, ruffled feathers, and weakness of the legs, which rapidly goes over into complete paralysis. The bird when down lies with its head and neck stretched along the ground. Death almost invariably follows in a few hours.

In the United States botulism has long been known as a disease of poultry, usually under the name of "limber-neck." Since poultry diseases have become the subject of much intensive research, it has been recognized that the term "limber-neck" has been rather loosely used and may refer to true botulism, polyneuritis, neurolymphomatosis (leg weakness), or several other conditions. Dickson (1917) described outbreaks of botulism in poultry as a result of giving them some food such as spoiled maize or beans, which had produced the disease in human beings. Dickson and Burke (1918) refer to a number of outbreaks of botulism in fowls and turkeys after eating spoiled canned foods, chiefly of a vegetable type such as beans, peas, or asparagus. Hart (1920) described an outbreak where 643 fowls were lost from eating badly preserved string beans. Wilkins and Dutcher (1920) in an article on "limber-neck" in poultry showed that the fowl was rather resistant to botulinus toxins experimentally. They produced "limber neck" symptoms in fowls by feeding them with larvae of *Lucilia caesar* from "limber-neck" carcasses.

An article of great interest by Bengtson (1922) describes the isolation of an organism from *Lucilia caesar* larvae which had fed on "limber-neck" carcasses. This organism was shown to be a species of the *Clostridium botulinum*, but did not correspond to either the A or B types. The name *Clostridium botulinum* C was therefore given to it. Fowls proved rather refractory to its toxin when dosed with it, but in some cases they did show symptoms.

Graham and Boughton (1924) apparently identical with the *Clostridium botulinum* C, classified in Bergey's Determinative. They were able to confirm Bengtson of fowls to the C type toxin.

Experience in South Africa has shown that not common, is not really rare of the Cape of Good Hope, 1893, rei siekte" (botulism) in ducks due to meat or eating the meat itself. Botulism. Most farmers have had it but do not know of it in fowls. It parts of the Western Province of the country very low and there are a lot of ducks die from "lambsiekte," the work on "lambsiekte" in cattle, very susceptible to the toxin which but that pigeons, ducks, and turkeys of interest is the susceptibility of "lambsiekte" in the ostrich has long been studied and these are kept for feather production until light was thrown on the subject in cattle. The birds showed typical symptoms and it is now known that the cause was the toxin. Experimentally by dosing with the toxin the typical disease could be produced.

In recent years a few outbreaks of the disease have been reported to our notice, and there is little distribution, but it is not often reported of the birds on the whole.

Recently a number of water-birds have died suddenly in the Pretoria Zoo like those of botulism. No bacteria or organs, but from the intestinal anaerobic media produced toxins of not yet been typed, but the symptoms in the affected birds were quite typical. The source of the toxin, but it occurred just after a heavy rain and the attempt was made to supply fish from the pool to the decomposed material for botulism to be collected from the ground where it proved to contain botulinus spores. A has been given in an article by the author.

Very recently another outbreak has been described. It occurred in a flock in one of the dead birds and described affected birds. There is little doubt being dealt with as the symptoms and intestinal contents of the dead bird very toxic produced typical symptoms of the disease. It is possible in cases of botulism.
Our notice through Mr. J. G. Bekker, this Department, that sheep in the Cape Province, suffer severely from parasites light and brittle, and that lambs, from them. From sheep carcass material, it is possible without difficulty to obtain toxic substances.

Other Animal Species.

Domesticated animals which it is not intended to eat, are of resistant animals are not resistant to botulism, confirming the work of Thiel and Then, has shown that pigs and dogs are resistant (4). Rats are comparatively resistant to this insusceptibility of pigs and dogs, it is related to the omnivorous and carnivorous.

From in Birds.

From poultry that will be dealt with in other species of birds may occur to be affected, usually as a result of salting when dams or streams run dry. It is fairly typical. There is first of all the opening of the feathers, and weakness of the legs, and complete paralysis. The bird when dead stretched along the ground. Death in a few hours.

Botulism has long been known as a disease known as “limber-neck.” Since poultry research of much intensive research, it has been known that “limber-neck” has been rather loosely botulism, polyneuritis, neurolymphomatous and other conditions. Dickson (1917) in poultry as a result of giving them rice or beans, which had produced the disease. Jackson and Burke refer to a case in fowls and turkeys after eating a vegetable type such as beans, peas, described an outbreak where 649 fowls were fed with beans. Williams and in “limber-neck” in poultry showed that it was not due to botulinus toxins experimentally. The symptoms in fowls by feeding them from “limber-neck” carcasses.

A test by Bengston (1922) describes the Clostridium botulinum, larvae which had fed on the pith. This organism was shown to be a species pathogenic to the A or B type. Clostridium C was therefore given to it. As its toxin when dosed with it, but in larger amounts.

Graham and Boughton (1924) were able to isolate an organism apparently identical with the Clostridium botulinum C of Bengston, later classified in Bergey’s Determination Bacteriology as Clostridium botulinum. They were able to confirm Bengston’s observations as to the resistance of fowls to the C type toxin.

Experience in South Africa has shown that botulism in poultry, though not common, is not really rare. In the Agricultural Journal of the Cape of Good Hope, 1933, references are to be found to “lamsiekte” (botulism) in ducks due to eating maggots from decomposing meat or eating the meat itself. The symptoms were typical of botulism. Most farmers must have had experience of the disease in ducks, but do not know of it in fowls. It is a common experience in some parts of the Western Province of the Cape that when dams dry up or get very low and there are a lot of dead fish, snails, etc., lying about, that ducks die from “lamsiekte”. From experiments done during the work on “lamsiekte” in cattle, it was shown that fowls were not very susceptible to the toxin which produced the disease in cattle, but that pigeons, ducks, and turkeys were fairly susceptible. A point of interest is the susceptibility of the ostrich to botulism. “Lamsiekte” in the ostrich has long been known in the districts where the birds were kept for feather production, and the cause was quite obscure until light was thrown on the subject by the work on “lamsiekte” in cattle. The birds showed typical symptoms as seen in fowls, and it is now known that the cause was the eating of bones containing the toxin. Experimentally by dosing ostriches per os with “lamsiekte” toxin the typical disease could be produced without much difficulty.

In recent years a few outbreaks of botulism in poultry have come to our notice, and there is little doubt that the disease has a wide distribution, but is not often reported on account of the low value of the birds on the whole.

Recently a number of water-birds, mainly exotic species of ducks, died suddenly in Pretoria Zoo. The symptoms shown were very like those of botulism. No bacteria could be isolated from the blood or organs, but from the intestinal contents of several, cultures in anaerobic media produced toxins of the botulinus type. These have not yet been typed, but the symptoms produced by them in guinea-pigs were quite typical. The source of the outbreak was not traced, but it occurred just after a heavy rain. All the birds were from one pool and attempts were made to trace the source of the bacteria by allowing fish from the pool to decompose and then testing the decomposed material for botulinus toxins, but without success. Faeces were collected from the ground where the birds were, but did not prove to contain botulinus spores. A full description of the outbreak has been given in an article by the writer (1929).

Very recently another outbreak was investigated, but has not yet been described. It occurred in a flock of turkeys. The owner brought in one of the dead birds and described the symptoms shown by the affected birds. There is little doubt that here again botulism was being dealt with as the symptoms were typical. From the intestinal contents of the dead bird very toxic cultures were obtained, which produced typical symptoms of botulism in guinea-pigs. In the intestinal contents actual toxin could not be traced, but this is rarely possible in cases of botulism.
We have no evidence as to the occurrence of the disease in carrion birds such as vultures, but in common with animals that are scavengers, it is more than likely that they have a strong natural resistance to botulinus toxins.

NOTES ON THE RELATIONSHIPS OF THE BOTULINUS TYPES.

As promised in an earlier part of this article, a few notes will be given on the types of the _Clostr. botulinum_ met with and their relationships as far as we understand them.

The A and B types may be put in a class by themselves, and in general one may say that the B type is the more widely distributed of the two, and the cause of botulism of the forage poisoning type as seen in the United States of America. Distinct from the A and B types, and so far found only in decomposing animal matter, is the C type.

The C types of Bengtson and Graham and Boughton, the parabotulinus organism of Seddon, the lamieskote and equine paralysis organisms of the writer are apparently all very closely related.

Graham in a personal communication has stated that his C antitoxin neutralizes the toxin of _Clostr. parabotulinum equi_. The toxin of the latter organism, however, is very much more virulent for the horse than the C type of Graham, which appears to have little toxicity for this animal. Pfenninger (1924) found that C type antitoxin would neutralize C toxin as well as Seddon's parabotulinus toxin, but that antitoxin against the parabotulinus toxin would only neutralize it and not C toxin. From this one might draw the conclusion that these two organisms are closely related, but not identical.

The writer, in comparing the toxins of Seddon's organism, the C type of Graham and the _Clostr. parabot. equi_ with that of the "lamieskote organism" (_Clostr. parabotulinum bovis_), found that the antitoxin against the toxin of the latter organism would not neutralize the toxins of any of the other types.

Recently in studying the toxins of a variety of botulinus toxins obtained from different sources in South Africa, the writer has come to the conclusion that they are all of the C type, but that individual variations occur amongst them as judged by toxin-antitoxin.

Very recently Meyer and Gunnison (1929) have expressed the opinion as a result of their own work, that the "lamieskote" organism should be called _Cl. botulinum D_.

CONCLUSIONS.

In this paper an attempt has been made to review the literature in relation to botulism in the domesticated animals, more especially as it affects the study of the disease in South Africa. One must conclude that the distribution of the disease is very wide and that under certain conditions, as in the case of "lamieskote" in cattle, it may cause heavy mortality.

As far as we know at present, the C types of the _Cl. botulinum_ alone are responsible for the outbreaks of botulism seen in domesticated animals in South Africa, but the absence of the A and B types has not been proved.

REFERENCES

GRAHAM, BROCKNER, and PONTUS_ Med. Med. 207 and 208, Kent.
JONES, FILLER, and MATTHEW_ Med. Assn. 6, No. 4.
MEYER and GUNNISON (1929). _Proc. 6, No. 4.
RUSK and GRINDLEY (1918). "Field_ Med. Assn. 6, No. 4.
WYSSMAN (1914). "Thor die endemisle_ Arch. Med. 56, No. 4."
the occurrence of the disease in carrion in common with animals that are only that they have a strong natural

REFERENCES.

