progress to determine this point),
the best policy is to use as soon
possible contamination in the process
on that cannot be controlled by
the number requisitioned, and at
the obviously contaminated are disc-
bided better than further incubation
occurs in very few bottles, and it is
so lengthy a sojourn in incubators.

IN THE FIELD.

is not yet been carried out in the
made during the last three years.
the sense that both veterinary
satisfied that the vaccine prevent-
period.

4. The occasional development of
responsibility for which is
the vaccinating officer or by the
of such complaints does not show
with younger cultures; in fact,
ceived was after the injection of

5. Few observations have been made on the duration of im-
 immunity, but two cattle were found to be immune after one year and
seven months.

6. In the field, vaccinations carried out on a basis of the fore-
going principles have been very satisfactory. The only apparent
objection is the occasional development of large swellings, and these
seem not to be referable to the nature of the vaccine, but to the
difficulty of skin sterilization under field conditions.

PLEURO-PNEUMONIA CONTAGIOSA BOVUM.

By J. Walker, M.R.C.V.S., Chief Veterinary Research
Office, Department of Agriculture, Kenya.

(Bovine Pleuro-pneumonia: Lung-sickness of cattle, British;
Lungenseuche der Rinder, German; Peripneumonia contagiosa,
French; Polmononi-polmonite eossutiva, Italian.)

Bovine pleuro-pneumonia is a contagious disease naturally confined
to bovines; it is caused by a filtrable virus which produces an
exudative fibrinous pneumonia and pleuritis, and specific histological
lesions.

GEOGRAPHICAL DISTRIBUTION.

It is said that bovine pleuro-pneumonia occurred from time
immemorial in Central Europe. It remained localized in a portion
of Germany, Switzerland, France, and Italy, up till the end of the
17th century, and subsequently extended in various directions. About
the middle of the 19th century it had invaded the countries of
Western Europe, and as the result of the exportation of infected
cattle was introduced into other parts of the world.
From the literature at disposal, bovine pleuro-pneumonia still occurs in parts of Germany, Poland, the Balkans (Roumania), Spain, Russia-in-Asia, India, South America, Australia, Japan, China, and Korea. In Africa, it is known to occur in the Sudan, Senegal, Nigeria; the Central-East African territories, viz., Kenya, Uganda, and Tanganyika; Northern Rhodesia; Bechuanaland; Portuguese East Africa; Bechuanaland, and probably exists in other remote parts of the African continent.

HISTORICAL.

The more important steps by which our knowledge of the disease has been advanced have been briefly referred to.

Bourgeois (1775) was the first to give a good description of bovine pleuro-pneumonia; many of the older authors were of opinion that it was of spontaneous origin, others considered it to be a typhoid or gangrenous affection, while others held the view that it was a simple paralysis of the lung.

Chabert (1794) insisted on its contagiousness, but up till 1846, opinions differed thereon. Delafond (1846) established the different methods of transmission and dissemination of infection and investigations of commissions appointed in the middle of the nineteenth century substantiated their views. Willems (1852) recorded results of observations which confirmed its contagiousness, and established that the pulmonary or pleural serosity when inoculated subcutaneously to susceptible cattle produced a specific local reaction and conferred an immunity against natural infection, and thus originated a method of immunization which, with some modifications, is employed up to the present day.

Nocard and Roux (1898) with the collaboration of Barrel, Salimbenci and Dujardin-Beaumetz were the first to demonstrate causal agent of bovine pleuro-pneumonia.

During the following years, Nocard, Roux and Dujardin-Beaumetz (1899) (1901) completed the study of the microbe.

Dujardin-Beaumetz (1900) described its filterability through the Berkefeld and Chamberland F filters; its cultivation in vitro in liquid and on solid media, and recorded his success in experimentally producing by subcutaneous inoculation of pure culture a specific local reaction.

Dujardin-Beaumetz (1906) obtained in other species (sheep and goats) by subcutaneous inoculation of large doses of pure culture of the organism in Martin's peptone, sheep or beef bouillon modified with sheep or horse serum, similar lesions at the site of inoculation to those occurring in cattle inoculated with pure culture in Martin's peptone beef bouillon modified with ox serum.

The morphology of the organism was investigated and described by Bordet (1910); Borrel, Dujardin-Beaumetz, Jeanet and Jouan (1910); Martzinkowski (1911); Frisch (1922); Frisch (1923); Onak (1927).

The following are some of the many workers who have contributed to our knowledge of the pathological-anatomical appearances and histological lesions which occur in bovine pleuro-pneumonia: Furstenburg (1867); Süssdorf (1879); Fournier (1881); and MacFadyen (1892); Csokor (1898); Meyer (1909); Ziegler (1921); Seifried (1928).

Researches into the serum were carried out by different workers: Schowesky (1912); P. Giese (1919); Titze, Giese and Dahmen (1922); Sceie; (1923); Nakamuta, Futamura.

The hyper-sensitiveness or injection of the organism or investigated by Siedlungratsky Beirzen (1919); Titze, Giese a

MORPHOLOGY

(1) MORPHOLOGY. Also described by various workers, opinions differ as to the group classed, it is generally accep pleuro-pneumonia presents variae polymorphism. The rapidity in liquid culture, the medium culture, and the methods employed explain the dissimilarity.

The morphological appear Beaumetz, Jeanet and Jouan's scientific name tertreococcus m for the organism of bovine pleu as representing its principle ch was influenced by the age of t succeeded each other more or l the spirillum or vibrio forms d of the aspects which the or enshrouded within a mucous n occurs in diplocecci, chlamy individuals are of different si divide originating bifurcations frequent and more so the b arrangement of individual org the ring can lengthen in the 1 3-4 days old preparations the also occur masses of granula which can bud and give rise commencement of the anterior constant in 5-6 days old culti extraordinary forms of involuti secreted by the older individu

Bordet (1910) observed in a medium consisting of an extract of potato and glycercin curved flexuous undulations, vibrio or spirilloaete, and rom.

In a 24-28 hours old c bouillon peptone and fresh se a little shorter, and rare f granulations with a clear cell more numerous...

...
bovine pleuro-pneumonia still
found, the Balkans (Roumania),
America, Australia, Japan,
known to occur in the Sudan;
African territories, viz., Kenya,
Rhodesia; Bechuanaland;
and probably exists in other
countries.

Although our knowledge of the disease
was, to give a good description of
the older authors were of opinion
that it was a typhoid fever which
held the view that it was a
contagious disease; hup till 1846,
(1846) established the differ-
entiation of infection and investiga-
tions, and in the middle of the nineteenth
Villem (1852) recorded the results
contagious disease, and established
when inoculated subcutaneously
the specific local reaction and con-
sequences, and thus originated
with some modifications, is
the collaboration of Borrel
was the first to demonstrate
Beauchard, Roux and Dujardin-
study of the microbe.
ised its filterability through the
its cultivation in vitro in
inoculated in sheep and
large doses of pure culture of
or beef bouillon additional
the seat of inoculation
with pure culture in Martin's
bov. ox serum.
was investigated and described
Beaumetz, Jeantet and Jouan
Frosch (1923); Orlov
many workers who have con-
opathological-anatomical appear-
ance occur in bovine pleuro-
Dorf (1879); Pommelot (1881);
Meyer (1909); Ziegler

Researches into the serum diagnosis of bovine pleuro-pneumonia
were carried out by different workers, e.g., Dujardin-Beaumetz (1900):
Schowkowsky (1913); Popp (1913); Meyer (1914); Titze and
Giese (1919); Titze, Giese and Wedemann (1923); Heslop (1920):
Dahmen (1921); Dahmen (1922); Seelmann (1923); Walker (1923);
Nakamura, Futamura and Watanuki (1926).

The hyper-sensitivity or otherwise of infected animals to the
injection of the organism or its products (allergic reaction) was
investigated by Siedanowski and Noack (1892); Walter (1892):
Beitzel (1919); Titze, Giese and Wedemann (1923).

MORPHOLOGY AND STAINING.

(1) MORPHOLOGY. Although the morphological appearance
described by various workers corresponds in some respects, and
opinions differ as to the group in which the organism should
be placed, it is generally accepted that the causal agent of bovine
pleuro-pneumonia presents variations in size and shape giving rise
to polymorphism. The rapidity with which the various forms develop
in liquid culture, the medium in which it is grown, the age of the
culture, and the methods employed for examination would appear to
explain the dissimilarity.

The morphological appearances described by Borrel, Dujardin-
Beaumetz, Jeantet and Jouan (1910), are generally accepted and the
scientific name Asterococcus mycoides proposed by these investigators
for the organism of bovine pleuro-pneumonia is generally looked upon
as representing its principle characters. They found the morphology
was influenced by the age of the culture and that the various forms
succeeded each other more or less rapidly in chronological order, that
the spirillum or vibrio forms described by Bordet (1910) are only one
of the aspects which the organism takes; that the organism is
seasoned with a mucin matrix, visible by subcolouration, and
occurs in diploecocci, chain and mass formation in which the
individuals are of different size; in the two latter each unit can
divide originating bifurcations and astroid forms; tripolar forms
are frequent and more so the bipolar or pseudo-vibrio forms.
The arrangement of individual organisms in ring formation is frequent,
the ring can lengthen in the form of a filament or chain. In some
3-4 days old preparations the pseudo-vibrio form is dominant. There
also occur masses of granulations in tetrads and mulberry shape
which can bud and give rise to filaments, this stage being the
commencement of the asterial forms. The filamentous forms are
constant in 3-4 days' old cultures. In very old cultures the more
extraordinary forms of involution and coalescence of mucin substance
secreted by the older individuals are to be seen.

Bordet (1910) observed in giemsa stained smears of pure culture
in a medium consisting of rabbit blood agar containing a little
extract of potato and glycine, filaments of different shapes, viz.,
curved flexuous undulations, S or spiral, resembling somewhat a
vibrio or spirochaete, and roundish granulations.

In a 24-28 hours' old culture in liquid media consisting of
bovillon pepton and fresh serum or blood of the rabbit, filaments,
a little shorter, and rare forms in Yecc, globular forms and
granulations with a clear centre were not frequent but they become
more numerous as the culture ages; the author concluded that the
globular forms originate from the filaments and transformation takes place in from two to ten days recalling that which occurs in old cultures of the cholera vibrio, but does not consider they are "involution" or "attenuated" forms and questions whether they are "resistant" forms.

Martinsonski (1911) microscopically examined Giemsa stained smears of the organism in pure culture collected after centrifuging, and unfixed Giemsa stained smears of hepatized lung.

He considers that the organism of bovine pleuro-pneumonia should be included in the cocce-bacillary group.

Titze and Seelmann (1921) examined cultures in the dark field and found the organism presented the following aspect, viz., numerous roundish refractive bodies of different size showing molecular movement sometimes two or three lying together as if found together by an invisible bridge, with the movement in the same direction; ring forms with clear periphery and dark centre being often visible, filamentous or branching forms were not seen; small bodies were also observed in the culture and in sterile Martin's broth and serum which they conclude are non-specific. They demonstrated in support of their views that the refractible bodies were not according to Freiberger (1912) reaction products, their agglutinability by the serum of a hyper-vaccinated beast and the specific local reaction produced when inoculated to susceptible cattle.

Frosch (1922) working with ultra-violet light found that the organism, viz., oval or polygonal in shape, measured from 0.2 to 0.8 microns in diameter, but left its nature undetermined and in 1923 described the appearances presented by the organism in a number of different culture media.

Orthov (1927) describes the primary form of the virus as a small oval or short rod-shaped element which gives rise to a ramified mycelium. The virus had a tendency to autolysese and form elements which vary in shape and which have lost their power of germination.

(2) STAINING. Asterococcus mycoides is gram negative. In bouillon cultures it stains with an aqueous or, preferably, carbolized solution of the aniline dyes.

Giemsa stain is preferred by some.

Bordet (1910) uses Giemsa stain in the proportion of 5 drops to 2 ccs. of distilled water, heated on the slide for 1-2 minutes. Burriel, Dujardin-Beaumetz, Jeanne and Jovan (1910) found with Giemsa many of the forms escape detection and are indefinable. They prefer Leclaire's Mordant method for studying the morphology and make smear preparations of the organisms which accumulate at the bottom of the tube on centrifuging a liquid culture.

They found smear preparations of cultures on solid media unsuitable owing to the difficulty of removing the organism free of serum in a recent culture, and of eliminating the substance which obscures the organism in older cultures.

Bordet (1910) found gentian violet leaves too much deposit and that with blue de toluidine the filaments are not stained but appear as bluish points.

CULTIVA

Nocard and Roux (1898) Salimbeni, and Dujardin-Beaumetz organism by inserting in the sacs containing bouillon inocul exudate collected from the pl beast. Although with a high and high illumination a number the contents of the sacs the determined, but their specificity susceptible cattle.

CULTIVA:

(1) IN LIQUID MEDIA.

Development takes place optimum temperature lies b 30° C. no growth takes plac

(1) IN LIQUID MEDIA.—The

of Martin's peptone beef bouillon brought to Ph. 7.5.

Growth occurs in beef bouillon, additional with chile horse, swine, sheep, goat, rabbit fluid. Nakamura, Futamura from beef, pork, horse, and r failed to reveal any marked so

The addition of 0.5 per of

Serum requirements.

The addition of serum to

than 5 per cent. growth is in quantities 20 per cent, and opalescence which is likely to c

The writer adds 10 per es serum, previously sterilized by

Titze, Giese and Wedel, additioned with 7-10 per cent quicker and better than in a goat serum. They conclude serum with an acid reaction a Martin's peptone bouillon set distinctly alkaline the growth medium.

For antigen they prefer serum brought to Ph. = 7.8-8.0

Oxygen requirements.

In cultures, Asterococcus conditions.

The writer finds that a f that no appreciable influence o

ing Martin's peptone beef be sealed with paraffin wax in medium with pure culture and

CULTIVATION IN VIVO.

Notcard and Roux (1898) with the collaboration of Barre, Salimbini, and Dujardin-Beaumetz successfully cultivated the organism by inserting in the peritoneal cavity of rabbits, colloidion sacs containing bouillon inoculated with a few drops of sero-fibrinous exudate collected from the pleural cavity of a naturally infected beast. Although with a high magnification (1,500-2,000 diameters), and high illumination a number of small bodies were observed in the contents of the sacs, their structure could not be determined, but their specificity was demonstrated by inoculation of susceptible cattle.

CULTIVATION IN VITRO.

(1) IN LIQUID AND (2) ON SOLID MEDIA.

Development takes place between 30° and 42° Cent.; the optimum temperature lies between 30° and 36° Cent.; below 30° Cent. no growth takes place.

(1) IN LIQUID MEDIA.—The medium commonly employed consists of Martin's peptone beef bouillon, additional with bovine serum brought to pH 7.5.

Growth occurs in beef bouillon, or Martin's peptone beef bouillon, additional with either of the following sera, viz., human, horse, swine, sheep, goat, rabbit, and fowl as well as with ascitic fluid. Nakamura, Futamura and Watanuki (1926) prepared broth from beef, pork, horse, and rabbit flesh, but cultural experiments failed to reveal any marked superiority of these.

The addition of 0.5 per cent. glucose increases growth.

Serum requirements.

The addition of serum to the medium is essential. With less than 5 per cent. growth is usually scanty. The addition of large quantities 20 per cent. and over to liquid media produces an opalescence which is likely to overmask the growth.

The writer adds 10 per cent. of fresh bovine serum, or horse serum, previously sterilized by filtration through the Berkefeld.

Titze, Giese and Wedemann (1923) found in a liquid media additional with 7-10 per cent. horse serum the organism develops quicker and better than in such additional with bovine, sheep or goat serum. They conclude that in a Martin's peptone bouillon serum with an acid reaction a growth scarcely occurs, in a neutral Martin's peptone bouillon serum only a sparing growth, and in a distinctly alkaline the growths is better than in a weak alkaline medium.

For antigen they prefer beef bouillon additional with horse serum brought to pH 7.5-8.0.

Oxygen requirements.

In cultures, Asterococcus mycoides develop best under aerobic conditions.

The writer finds that a free access of air is not indispensable, that no appreciable influence on growth occurs when bottles containing Martin's peptone beef bouillon bovine serum are corked and sealed with paraffin wax immediately after inoculation of the medium with pure culture and then incubated.
Titze, Giese and Wedemann (1923) record that sealing of the tubes by heat, or liquid paraffin, or vaseline prior to incubation was without essential influence on development and keeping the tubes in an exsiccatior and removing the air by suction until the manometer registers 60 cm. did not affect growth. They found that whereas a pressure of 2.6-3.3 atmospheres did not affect development, no growth had occurred at seven days in tubes of culture under oxygen at a pressure of 2.6-3.3 atmospheres, but when the latter were brought under normal atmospheric pressure, a characteristic growth occurred in two days. They consider the above results show that a surplus of oxygen under pressure of 2.6-3.3 atmospheres hinders growth, and that the virus requires also a certain proportion of oxygen, an excess or lack of which prejudices or hinders growth. No development occurred when the inoculated tubes were placed under strong anaerobic conditions (Buchner's method) and the air removed by suction; the cultures were found avirulent after the 6th day.

In a nitrogen, hydrogen or carbonic acid saturated atmosphere, no development had occurred at the 5th day, but when brought under normal atmospheric conditions a characteristic growth occurred within 2-3 days.

Nakamura, Futamura and Watanuki (1926) found that upon solid media the virus grows more readily under aerobic than anaerobic conditions. They further found that it was distinctly advantageous to close their culture tubes with rubber stoppers instead of with cotton wool plugs.

Character of the culture in Martin's peptone beef bouillon addition with horse or horse serum.

The Martin's peptone beef bouillon is brought to Ph. = 7.5, distributed in flasks or tubes, autoclaved at a temperature of 108° C., for 20 minutes at a steam pressure of 5 lbs. to the square inch and then filtered hot through filter paper (Chardin) and distributed in flasks, tubes, or bottles, leaving space for the addition, after further sterilization, of 10 per cent. serum. The flasks and their contents are now autoclaved for one hour on three consecutive days in boiling steam, and when cold the necessary quantity of serum added by means of a graduated cylinder connected to the flask containing the filtered serum.

Sterility is determined by incubating the flasks, tubes or bottles containing the above medium, at 37° C. for a week and if found sterile they are inoculated with a drop or two of pure culture and incubated at 37° C., any which show a growth within 24 hours are discarded.

Sterilization of the medium is affected in some laboratories by filtration through the Berkefeld.

After two or three days incubation at 37° C., a slight opalescence appears in the inoculated culture medium; during the course of the next day or two, the opacity becomes more marked and on shaking the tube of culture a characteristic phenomenon is visible, namely, the opalescent fluid takes the form of silkylike moving waves.

Marino's method (1925) is of assistance for determining whether the tubes contain a culture of the organism.

Walker (1921) prepares pure culture vaccine in bulk by the above described method.

(2) On Solid Medium.—The mixture of Martin's peptone beef 1 serum agar. The medium is first laid in a horizontal position until condensation removed with to the surface of the slope, and such a position that the serum

Character of the culture on solid media.

After four to five days' colonies visible with the hand-lens, fine transparent separate been described as resembling a the slope, they measure approximately a granular and brownish a. The growth extends outwards which reach a diameter of 1 cm. appearance, the central portion medium. With the naked eye it is experienced in removing the their being held together by aing into the medium.

Dohmen (1922) in earlier occurred on the upper third of serum had dried on the surface, the serum with the agar, while

BIOCHEMISTRY

1. Action of the Starch.

In cultures added with maltose, dextrin and levulose sucrose, mannite, dulcrose, ar xyllose, adonite, galactose, etc.

2. Acid and Gas Formation.

An acid reaction using A dextrin on the 7th day, with and with levulose on the 10th duction occurred with any of ti

Titze, Giese and Wedemann hydrogen-ion concentration in addition with grape can the Ph. of the culture had de peptone beef bouillon addition acidity was produced in an e that in the medium with a high there is sufficient alkalinity growth.

In bouillon addition wi hours' old horse serum respect after 30 days' growth which it had only decreased to 7.2 and Cultures were still active on t
(2) On Solid Medium.—The medium commonly employed consists of Martin's peptone beef bouillon serum agar, or beef bouillon serum agar. The medium is first added to the tubes, the tubes then laid in a horizontal position until the contents solidify, and the water of condensation removed with a pipette. The serum is then added to the surface of the slope, and the tubes incubated for two days in such a position that the serum spreads over the surface and dries.

Character of the culture on solid medium.

After four to five days' incubation at 37°C, small, single colonies visible with the hand-lens are to be seen. With a low power lens, fine transparent separate colonies which individually have been described as resembling a drop of dew appear on the surface of the slope, they measure approximately 2/10 m.m. in diameter, and have a granular and brownish appearance and a dark central position. The growth extends outwards from the periphery of the colonies which reach a diameter of 1 m.m. The colonies have an umbilicate appearance, the central portions grow down into the substance of the medium. With the naked eye the colonies appear whitish. Difficulty is experienced in removing the colonies from the medium owing to their being held together by a viscid material, and to growth extending into the medium.

Dahmen (1922) in earlier experiments found that growth only occurred on the upper third of the surface of the medium where the serum had dried on the surface, but later obtained cultures by mixing the serum with the agar, while melted, and allowing the tubes to set.

BIOCHEMICAL REACTIONS.

1. Action of the Sugars.

In cultures added with one per cent. of the sugars, glucose, maltose, dextrin and levulose are attacked, but not lactose, saccharose, mannite, dulcite, arabinose, raffinose, rhamnose, salicin, xylose, adonite, galactose, insulin, mannite or sorbute.

2. Acid and Gas Formation.

An acid reaction using Andrade's indicator was apparent with dextrin on the 7th day, with glucose and maltose on the 8th day and with levulose on the 10th day of incubation, but no gas production occurred with any of the sugars.

Tite, Giese and Wedeman (1923) recorded observations on the hydrogen-ion concentration in culture in Martin's peptone bouillon added with grape or cane sugar; they found that in 27 days the Ph. of the culture had decreased from 7.8 to 5.8; in Martin's peptone beef bouillon added with bovine or horse sera little acidity was produced in an eight days' old culture. They remark that in the medium with a high Ph. at the commencement of growth there is sufficient alkalinity to neutralize the acidity formed by growth.

In bouillon added with 28 days' old horse serum and 24 hours' old horse serum respectively and brought to Ph. = 7.5 the Ph. after 30 days' growth which was 7.3 in the first two to three days, had only decreased to 7.2 and then remained constant for 41 days. Cultures were still active on the 30th day.
They found the acid formation is not greater in the higher sugar-containing horse serum than in the sugar-poor bovine serum.

(3) **INDOL PRODUCTION.**

No formation of indol occurs in culture.

BIOLOGY.

VITALITY—VIRULENCE AND RESISTANCE.

On referring to the literature it is observed that usually no distinction is clearly made between the vitality and virulence of the virus.

Streptococcus mycoides does not retain its vitality in liquid culture in tubes plugged with cotton wool and kept at room temperature excluded from strong light, for more than a few weeks. In liquid media containing levulose or maltose, and particularly in glucose, more marked acidity occurs and the cultures become inactive sooner than in liquid media not added with sugar.

Dujardin-Beaumetz (1913) records that it is difficult to obtain a growth from a culture in liquid medium after four weeks and when the medium is added with glucose, after three weeks. Titz and Giese (1923) found that a 27 days’ old culture in Martin’s peptone broth added with glucose with a pH. 5.8 produced a characteristic growth whereas a 41 day old culture pH 5.8 had lost its virulence.

Dahmen (1922) found that cultures on solid medium were visible up to two months.

Titz, Giese and Wedemann (1923) obtained a growth from cultures, in Martin’s peptone broth added with bovine serum, kept at room temperature in the dark in tubes plugged with cotton wool, for 59 days but not in cultures kept for 50 days; in cultures plugged with cotton wool sealed with paraffin wax and in tubes hermetically sealed in the flame cultures were still active at six weeks.

A 62 days’ old culture, in Martin’s peptone broth serum on which liquid paraffin was placed on the surface of the culture, produced a characteristic growth in 48 hours.

Nakamura, Putamun and Watamiki (1926) record that cultures kept at 37-38° Cent. had lost their virulence in from 1-2 months; at 5-32° Cent. the virulence was maintained for 2-4 months, and at 3-15° Cent. for a little longer; variations occurred in different cultures and it was necessary to transplant cultures once a month. They found that pleural exudate kept in the ice-chest at 3-15° Cent. retained its virulence for six months.

The writer found subcultures in Martin’s peptone beef broth serum, which had been incubated for nine days and then stored for 21 days at room temperature in the dark, still virulent.

The determination of the period during which a culture retains its virulence is of practical importance when pure cultures are used for immunization purposes.

Nocard and Leclainche (1903) state that in sealed ampules at temperature below 12° Cent. the microbes in culture retains its virulence for more than six months.

Walker (1922) found that peptone beef broth bovine serum by the writer showed that a five transport by sea and train in susceptible cattle 21 days the laboratory.

LYMPH VITUS.

Laquerriere (1899) found the at least, a year in hematized lun.

Nocard (1892) conserves ly in the dark, by adding 1 volume ofiacetic acid and half a volume use dissolves the powder in give.

Walker (1922) found lymph added in the proportion of 1 of up till, at least, 21 days when temperature.

Titze, Giese and Wedemann from material which was

APPELATION.

Nocard and Leclainche (19 lymph virus had not given any when collected pure and sealed for about one month and the with the air and light the virus 20-25 days.

Mollereau and Nocard (19 water (1-10) which did not affe Arloing and Rossignol (inoculated with serosity heat immunity and that lymph virus Cent. provokes only some very

Walker (1922) found that generations of subculture are they originated; at about the 25th to 42nd generation of sub stant. The virus though reta so attenuated in virulence that it is necessary to discontinue culture vaccine and substitute strain, or increase the virus through susceptible cattle before

DESICATION.

Titze, Giese and Wedemann heads, respectively, in a 48 hours over calcium chloride at former produced a visible grow in Martin’s peptone beef bone dry state in sealed tubes for active in the silk threads, but o of cambric cloth soaked in cu
Walker (1922) found that a 41 days' old culture in Martin's peptone beef bouillon bovine serum was still virulent, and observation by the writer showed that a five days' old 3rd generation sub-culture transported by sea and train produced reactions and some mortality in susceptible cattle 21 days after the date of despatch from the laboratory.

LYMPH VIRUS.

Laquerriere (1890) found that the virulence was maintained for, at least, a year in hepatised lung kept in a frozen condition.

Nocard (1892) conserves lymph virus in bottles corked and kept in the dark, by adding 1 volume of virus, half a volume of 5 in 1,000 carbolic acid and half a volume of glycerine, and when required for use dissolves the powder in glycerine.

Walker (1922) found lymph virus to which glycerine had been added in the proportion of 1 of glycerine to 4 of virus was effective up till, at least, 21 days when stored in the dark at ordinary room temperature.

Titze, Göse and Wedemann (1923) recovered the virus by filtration from material which was in a putrid condition for nine days.

ATTENUATION.

Nocard and Lacaille (1893) state that attempts to attenuate lymph virus had not given any result. They found that the serosity when collected purely and sealed in glass tubes conserves its virulence for about one month and the virulence then decreases; in contact with the air and light the virus was already very attenuated after 20-25 days.

Mollereau and Nocard (1903) diluted lymph virus in distilled water (1-50) which did not affect its activity.

Arloing and Roquin (1909) state the majority of cattle inoculated with serosity heated at 40° Cent. received a certain immunity and that lymph virus when heated at 65° Cent. and 55° Cent. provokes only some very attenuated reactions.

Walker (1922) found that the original culture and 1st and 2nd generations of sub-culture are as virulent as the virus from which they originated; at about the 25th generation of sub-culture the virus is attenuated and produces less marked reactions; from about the 25th to 42nd generation of sub-cultures, the virulence remains constant. The virus though retaining its vitality eventually becomes so attenuated in virulence that it produces few, if any, reactions and it is necessary to discontinue the use of the too attenuated pure culture vaccine and substitute a more virulent sub-culture of another strain, or increase the virulence of the same strain by passage through susceptible cattle before it becomes too attenuated.

DESICCATION.

Titze, Göse and Wedemann (1923) soaked silk threads and glass beads, respectively, in a 48 hours' old culture and dried them for 60 hours over calcium chloride at room temperature in the dark; the former produced a visible growth in 48 hours, the latter in 96 hours in Martin's peptone beef bouillon serum. After being kept in a dried state in sealed tubes for five months the virus was found still active in the silk threads, but only in some of the glass beads. Pieces of cambic cloth soaked in culture and then dried at 37° Cent. for
12 hours as well as pieces dried at 37° Cent. for 15 days, produced a growth in Martin's bouillon serum, whilst after 36 days the virus was inactive.

In a bouillon culture dried in vacuum, over calcium chloride, the virus was still active on the 105th day.

INFLUENCE OF DRY HEAT.

Astroconoccus mycoides produces no spores, it is little resistant to heat in tissue as well as in culture. The cultures are readily destroyed in less than an hour by heating at a temperature of 58° Cent.

Nakamura, Futamura, and Watami (1926) soaked pieces of porous earthenware in culture then dried and exposed them for different periods to varying temperatures (dry heat). 70° Cent. proved fatal in five minutes; 65° Cent. in half an hour; 55° Cent. in one hour; 50° Cent. in two hours, and 45° Cent. in three hours.

INFLUENCE OF MOIST HEAT.

They found that cultures when heated in the water-bath were killed in two minutes at 60° Cent.; in five minutes at 55° Cent.; in one hour at 50° Cent.; and four hours at 45° Cent.

(a) NATURAL AND (b) EXPERIMENTAL INFECTION.

INFECTION IN CATTLE.

The history of the spread of bovine pleuro-pneumonia supports the generally accepted view that it is contracted by immediate contact with infected animals; the virus is present, at least in some cases, in the bronchial secretions and nasal discharge, and in the moist exhaled air, and in as much as is most filterable viruses on account of their minuteness obey the physical chemical laws which govern the diffusion of gases and of substances in solution they are extremely contagious and possibly air-borne: the virus of bovine pleuro-pneumonia in all probability gains entrance with the inhaled air.

Titze, Giese and Wedemann (1923) conclude that the virus being organotrope, the oxygen in the lung plays a special role in natural infection.

Transmission by an intermediate host has not been established. Outbreaks can usually be traced to the introduction of an infected animal, which presented no clinical symptoms, into the herd.

Walley (1913) found that the virus exists in the encapsulated cavities for 15 months. Minette (1913) traced outbreaks in herds to cattle introduced therein two and three years previously.

Walker (1923) found the virus active, in some instances, 12 months after the animals were isolated as infected.

Observations in the practice show that a variable number of susceptible cattle exposed in immediate contact with naturally infected beasts escape infection; the causes of these variations have not so far been explained. Nocard and Leclanche (1903) suggested that they might be due to differences in the activity of the virus and to the resistance of the animal. Walker (1922) found approximately 39 per cent of non-infected susceptible cattle exposed to natural infection in a highly infected herd, for periods varying from approximately three to seven months, did not contract infection. Walker (1922) found that a percentage of cattle subcutaneously inoculated with the same virus in at least, react to a subsequent to exclude differences in the act view that the animal itself is a growth in medium with other the possibility of the resistance o and to inoculation as being due t of inoculation.

Further research is considere

(b) EXPERIMENTAL INFECTION.

(1) In Cattle.
(2) In species naturally.

(1) CATTLE.

Infection by the respiratory tract.

Although infection by inhalation the ingenious experiments of Noc (1903), it has not been possible to see injection of virulent matern naturally conditions. Nocard and transmitting by inoculation of Dujardin-Beaumetz (1913) recommend by direct inoculation of itself.

Subcutaneous inoculation.

In about 6-14 days after t the shoulder of a virulent cult varying percentage of susceptible oedematous swelling which, in resulting in the death of the at time. In other cases, the swell disappears.

In sucking calves subcutaneous lesions in the joints and tendons.

Infection by the alimentary canal.

Nocard and Roux (1903) abilities of serosity gave negative enter a defect in the tissues. At with lung serosity was employ discontinued owing to the acid described the pathological-anato in a calf by drenching.

 Intravenous inoculation.

Nocard and Roux (1903) immediately after removed a p inoculation so as to exclude the tissue and obtained no reaction.

Peritonitis.—Inoculation in marked reaction and a sero-fibrin.

Brain.—The inoculation: incubative period of 6-14 day interrupted by symptoms of coo
at 37° Cent. for 15 days, produced a
virus, whilst after 36 days the virus
in vacuum, over calcium chloride,
in the 105th day.

Lack of spores, it is little resistant
virus. The cultures are readily de-
strating at a temperature of 58° Cent.
Watamiki (1926) soaked pieces of
then dried and exposed them for
temperatures (dry heat), 70° Cent.
Cent. in half an hour; 55° Cent.
ours, and 45° Cent. in three hours.

Beef heated in the water-bath were
in five minutes at 55° Cent.; in
hours at 45° Cent.

EXPERIMENTAL INFECTION.

The bovine pleuro-pneumonia supports
it is contracted by immediate con-
virus is present, at least in some
as nasal discharge, and in the
much as most filterable viruses
by the physical chemical laws which
of substances in solution they are
air-borne; the virus of bovine
entrance with the inhalation
(1926) conclude that the virus being
plays a special role in nature.

The bovine septic meningitis host has not been established.
the introduction of an infected
usual symptoms, into the herd.
the virus exists in the encapsulated
(1913) traced outbreaks in herds to
three years previously.
the virus acting, in some instances, 12
related as infected,
show that a variable number of
infectious contact with naturally
the causes of these variations have
and Leclainche (1903) suggested
suggested in the activity of the virus and
Walker (1922) found approximately
virus in cattle exposed to natural
for periods varying from
months, did not contract infection.
percentage of cattle subcutaneously

inoculated with the same virus fail to react to an original, but some,
at least, react to a subsequent inoculation which would seem
to exclude differences in the activity of the virus and support the
view that the animal itself is a factor. The difficulty of obtaining
a growth in medium with other than an alkaline reaction points to
the possibility of the resistance of some animals to natural infection
and to inoculation as being due to the reaction of the tissues at time
of inoculation.

Further research is considered necessary hereon.

(b) **EXPERIMENTAL INFECTION.**

1. *In Cattle.*
2. *In species naturally refractory.*

1. **CATTLE.**

Infection by the respiratory tract.

Although infection by inhalation is supported to some extent by
the ingenious experiments of Nocard and Roux (1901) and Chauveau
(1903), it has not been possible to produce artificially, by inhalation
or injection of virulent material, the disease as it occurs under
natural conditions. Nocard and Mollereau (1901) did not succeed in
transmitting by inoculation of fresh virus into the trachea, and
Dujardin-Beaumetz (1913) records non-transmission (one in exper-
iments) by direct inoculation of a virulent culture into the lung
itself.

Subcutaneous Inoculation.

In about 6-14 days after the subcutaneous inoculation behind
the shoulder of a virulent culture of lymph virus, there occurs in a
varying percentage of susceptible cattle a rise of temperature and an
edematous swelling which, in some cases, extends considerably,
resulting in the death of the animal in from about 10 to 15 days
time. In other cases, the swelling remains localized and gradually
"disappears.

In suckling calves subcutaneous inoculation often produces specific
lesions in the joints and tendons, viz., synovitis and teno-vaginitis.

Infection by the Alimentary Canal.

Nocard and Roux (1903) showed that ingestion of large quan-
tities of aerosity gave negative results provided the virus did not
enter a defect in the tissues. At one time in South Africa drenching
with lung serum was employed for immunizing purposes but was
discontinued owing to the accidents which followed. Meyer (1909)
described the pathological-anatomy and histological lesions produced
in a calf by drenching.

Intravenous Inoculation.

Nocard and Roux (1903) inoculated into the ear vein and
immediately after removed a portion of the ear around the site
of inoculation so as to exclude the virus developing in the subcutaneous
tissue and obtained no reaction and no immunity.

Peritoneum.—Inoculation into the peritoneal cavity produces a
marked reaction and a sero-fibrous exudate usually ending fatally.

Brain.—The inoculation intracerebral of culture, after an
incubative period of 6-14 days, produces apathy and drowsiness
interrupted by symptoms of cerebral irritation.
Animals refuse food and there is a rapid loss of condition; death occurs in a variable number of days. In young suckling calves there may be no nervous symptoms, but synovitis and teno-vaginitis may occur as a sequel of inoculation.

Eyes.—Inoculation into the anterior chamber gave negative results; inoculated animals are said to have acquired an immunity. Noeard and Leclainche (1903).

Udder.—Inoculation into the udder produces a marked mammitis; within a few days the milk becomes yellowish, cæsous and purulent. The oedema extends to the abdomen and may produce death; the pus-like milk contains the virus even after two months and the virus is said to be increased in virulence.

Pleuræ.—The intrapleural inoculation is followed by an intense inflammation; the lung itself may show hepatization; the peritoneum may become involved by way of the lymph vessels.

(2) Species Naturally Refractory.

Dujardin-Beaumetz (1906) conceived the possibility of experimentally infecting sheep and goats with a virus of bovine origin cultivated in Martin's peptone sheep bouillon added with sheep serum, and succeeded in obtaining in sheep and goats by inoculation of from 50-100 c.c.s. of the culture a local and temperature reaction analogous to that which occurs in bovines inoculated with lymph virus, or cultures of virus of bovine origin in Martin's peptone beef bouillon ox serum but with this difference, there was an absence of an incubation period in the sheep and goats. He found that cultures in Martin's peptone beef bouillon sheep serum, possessed a high pathogenicity for the bovine, but virus isolated from a bovine reacting to inoculation of a culture in bouillon sheep serum, when cultivated in bouillon serum bovine is non-pathogenic for the sheep and goat; it thus sufficed to substitute the serum of one species for another to overcome the resistance of the naturally refractory species. This investigator then found that the culture in media addition with the serum of other naturally refractory animals, e.g. the horse, produced a reaction in naturally refractory species, viz., sheep and goats but not in highly susceptible species (bovine), and suggested the utilization of a vaccine for the preventive inoculation of cattle, prepared from cultures of virus of bovine origin in Martin's peptone beef bouillon added with horse serum with a view to conferring immunity without the risk of losses from inoculation.

In recent experiments unrecorded, the writer found that cultures in Martin's peptone beef bouillon added with horse serum produced marked local reactions and some mortality in susceptible cattle.

Beller and Tahsin-Bey (1926) thought it desirable to test the possibility of the transmission of bovine pleuro-pneumonia to small ruminants, because of the possibility of some parallel existing between the spread of pleuro-pneumonia and rinderpest. Outbreaks of the latter occur particularly in the Caucasus, which cannot be explained on any other ground than by means of sheep and goats. Culture media were prepared from the flesh of foetuses added with amniotic fluid. Inoculation showed that it was possible to produce infection in both sheep and goats. In pregnant animals the virus appears to find a suitable organism in the foetus, and the and its contents.

These investigators conclude that sheep and goat must be kept in mi Camel.—The susceptibility of (1893) recorded is very doubtful.

Reindeer.—According to Deul the susceptible们 (1892) found that rabbit swine, do not react to inoculation.
Noeard and Roux (1898) did goats, swine, dogs, rabbits, guinea virus.

Ono (1925) recorded that introduces an iritis and intratissuecular 2-3 weeks; there was no suppressive gave a precipitin reaction with se (1922) found that subcutaneous virus to small laboratory animals, the subcutaneous inoculation of swine, as well as the intragular reaction.

In the writer's experiments i intracutural with a culture, but no of the rabbits did not agglutinate precipitin reaction in the presence

PATHOC

Different workers have inve processes which occur consequent lungs with the inspired air; the es primary seat of infection in the l and the first tissue changes somew Sussdorf (1879) recorded i in one or more places in the int lymph vessels become involved filtration necrosis and necoplastic alveolar tissue of the lobules pneumonia develops; the interloba extend, the former on the perib e matter on the alveoli and bronch fibrous, a more or less wide-necrosis and sequeseter formation.

Bourcelot (1851) concluded sequently inflammatory changes c pneumonia.

Woodhead (1888) found that through the alveoli or bronchi w and cultivates in the small i subsequently becomes occluded a men of the alveoli and vessels, r
A rapid loss of condition; death in 8 days. In young sucking calves there may be a marked lymphangitis with synovitis and teno-vaginitis may occur. The anterior chamber of the eye becomes yellowish, caseous and leads to the death of the animal. In mares, the virus may persist for 14 days in the abdomen and may produce abortion even after two months in the uterus.

In the udder produces a marked mammary edema, and the milk becomes rancid and off-yellow, and the virus may be found even after two months in virulence.

In the liver, the virus is found, followed by a marked hepatization; the peritoneum becomes thickened and the lymph vessels are inflamed.

The possibility of experimental infection with bovine origin in the experimenters using sheep bouillon with infected sheep and goats, inoculated with lymph from bovine origin in Martin's peptone broth, was investigated. The results showed that there was an absence of the virus in the sheep and goats.

He found that cultures of sheep serum, when infected with a high concentration of the virus, produced a precipitin reaction with serum from infected cattle. The reaction was specific for one species of bovine. The serological tests showed that the virus was not transmitted to other species.

He also investigated the use of the virus in the heart and the use of the serum in the heart. The results showed that the virus did not produce a precipitin reaction with serum from infected cattle.

The writer noted that the virus did not produce an intracellular infection in the tissues of the body. It did not produce a precipitin reaction in the presence of serum from infected cattle.

Pathogenesis

Different workers have investigated the pathogenesis of the processes which occur consequent on the entry of the virus into the lungs with the inspired air; the conclusions arrived at as regards the primary seat of infection in the lungs, the spread of the virus therein, and the first tissue changes sometimes differ.

Sussdorf (1879) recorded an inflammatory process first occurring in one or more places in the interlobular tissue through which the lymph vessels become involved resulting in a serofibrous infiltration necrosis and neoplastic tissue formation; simultaneously alveolar tissue of the lobules become affected and a fibrous pneumonia develops; the interlobular and parenchymatous processes extend. The former on the peribronchial and perivascular tissue, the latter on the alveoli and bronchi, there follows a pleuritis serofibrinosus, a more or less widespread thrombosis of the arteries, necrosis and sequestration formation.

Pourcelot (1881) concluded there is first a pleuritis and subsequently inflammatory changes of the interlobular tissues and later a pneumonia.

Woodhead (1888) found that the virus enters the lymph vessels through the alveoli or bronchi without producing changes therein, and cultivates in the small lymph nodes; the lymph stream subsequently becomes occluded and there follows stasis and involvement of the alveoli and vessels, necrosis and sequestration formation.
Macleod (1982) concluded that the first changes occur in the inter-alveolar septa and that the alveolar and bronchial changes are secondary.

Uskrow (1905) finds that bovine pleuro-pneumonia is a chronic interstitial sequestration pneumonia; that the interstitial tissue is first affected; there occurs a mero and periarthritis of the vessels as a consequence; later the parenchyma becomes involved.

Meyer (1909) is inclined to believe that most pleuro-pneumonia infections originate in the bronchial and peri-bronchial lymph vessels, and spread "per continuitatem" to the rest of the lung and that in the initial stages an "interstitial pneumonia" due to serofibrinous lymphangitis occurs which later involves the neighbouring alveoli; the inflammatory process extends to the lymph spaces of the walls of the blood vessels, producing thrombosis, it being a peculiarity of the virus and its toxins to facilitate the closing of all nutritive channels; the blocking of the vessels give rise to ischaemic necrosis with sequester formation.

Ziegler (1921) found the virus produces a primary bronchiitis and broncholitis and then invades the surrounding perivasculare and peribronchial tissue; inflammatory changes occur within the area in which the lymph vessels are involved; the changes in the interstitia comprise three different stages, viz., inflammatory oedema, necrosis and organization processes (perivasculare and marginal), the parenchyma becomes involved when the bronchite and interlobular changes simultaneously exist, the inflammatory process extends to the pulmonary artery and vein; if the thrombus persists an apyridemic necrosis occurs in the whole of the area supplied by the arteries resulting in sequester formation, in less virulent cases the thrombus disappears and there is organization of the exudate (chronic indurative pneumonia).

Seifried (1926) concludes that the endobronchial are the primary seat of infection and that the earliest changes occur in the form of lobular aero-cellular seldom fibrinous bronchial pneumonia foci, such may appear as the only changes, from these foci arise either propagation of the inflammatory process with establishment of typical bovine pleuro-pneumonia or the initial and early stages remain localized to their primary focus; in the former case the spread of the virus occurs through the peribronchial (lymphogenie) route and leads to involvement of portion of the pleuro and interstitial tissue with inflammatory oedema, necrosis, and organization; the parenchyma becoming involved by the endobronchial (bronchogene) route; both the lymphogene and bronchogene processes keep pace with one another; in consequence of the changes in the perivascular tissue there occurs as a rule thrombosis of the pulmonary blood vessel and resulting necrosis and sequester formation.

Arloing (1921) found a sequester contained within a connective tissue capsule as early as the 50th day.

Walker (1924) observed sequestration and encapsulation had taken place in from 15 to 22 days.

The sequestrum after becoming encapsulated undergoes mumification and remains unaltered for a long time and in which the virus remains active; abscess formation and liquid action may also occur.

The virus does not propagate in the blood stream but may be transported thereby to different parts of the body, viz., in calves the joints and tendons; metastasis inoculation to other parts of the body is sometimes observed.

The virus of bovine pleuropneumonic action through a colloid suspension in the peritoneal cavity, cachexia and death of the animal.

MORBID ANATOM

It is usual to find only one hematized portion which is as a roundness and firm consistence in size that the most of a lobule yellowish, red, fluid exudes from a glistening-like mass; the in thickened and separates the hep varying in size and which color varies in colour, viz.: Dark re marbled appearance to the cut is filled with small cavities fluid, or fibrinous coagulum, given in later stages the septa becomes formation of neoplastic connective between are necrotic and may ev.

The walls of the bronchial show contains a fibrinous exudate. The older the stage the more fine sequester appears as a geryv connective tissue.

The pleura is sometimes cove there may be no exudate present deposits of 1-2 cms. thick are pre cavity contains a clear yellowish in quantity from one to two litres the pleura is thickened and the wall.

The bronchial and media oedematous. Accessory lesions as a serofibrinous pericarditis, the i be infiltrated and a fibrinous exuc ing calves there is frequently a vaginit.

Meyer (1909) recorded this (oxen). The spleen mediastinal is

HISTOLOGY.

Meyer (1909) concludes that the attacks chiefly the connective tissue and peribronchial, it causes microscopically presents itself: lympho thrombosis, emigration of along the lymph vessels into walls of the blood vessels result thrombus formation. The block necrosis. The lesions of bovine p
that the first changes occur in the alveolar and bronchial changes.

Pleuro-pneumonia is a chronic affection of the lung and interstitial pneumonia is due to sero-hemorrhagic infiltration of the vessels as the disease becomes involved.

The latter involves the neighboring lymph nodes to the lymphatic spaces of the bronchial and interstitial pneumonia due to toxins to facilitate the closing of all the vessels give rise to ischemic areas. Pleural effusion produces a primary bronchitis and the surrounding perivasculary and interstitial changes occur within the area involved; the changes in the interstitial pneumonia, inflammation, oedema, necrosis (perivasculary and marginal), when the bronchitis and interstitial the inflammatory process extends to the area supplied by the formation, in less virulent cases the organization of the exudate (chronic bronchitis).

That the endobronchial are the primary changes occur in the form of a chronic bronchopneumonic affections. that these first arise either with establishment of a new or the initial and early stages is present in the form that the spread of peribronchial (lymphogene) route and of the pleuro and interstitial tissue, the pleura, and organization, the parenchymal processes keep pace with one another in the perivasculary tissue is of the pulmonary blood vessel and capsule. The pleura is sometimes covered with a fibrous membrane and may be no exudate present (pleuritis sicca), in other instances deposits of 1-2 cms. thick are present on the surface, and the pleural cavity contains a clear yellowish or reddish yellow liquid, varying in quantity from one to two litres up to twenty litres. In older cases the pleura is thickened and the lung firmly adherent to the chest wall.

The bronchial and mediastinal glands are enlarged and oedematous. Accessory lesions are sometimes present and consist of a sero-fibro-hyaline pericarditis, the interlobar tissue of the liver may be infiltrated and a fibrous exudate on its surface. In young sucking calves there is frequently a sero-fibrous synovitis and tendon-necrosis.

Meyer (1909) recorded this condition in older cattle (cows and oxen). The spleen mediastinal is frequently infiltrated.

Histology

Meyer (1909) concludes that the virus of bovine pleuro-pneumonia attacks chiefly the connective tissues, viz., interlobular, interalveolar and peribronchial, it causes an inflammatory process which macroscopic presents itself as a lymphangiitis, sero-fibrosis, lymphoedema, emigration of leucocytes, etc., the process extending along the lymph vessels involves also the lymph spaces of the walls of the blood vessels resulting in a peri and meso arteritis and thrombus formation. The blocking of the vessels gives rise to necrosis. The lesions of bovine pleuro-pneumonia having originated
by metastasis present microscopically the image of a corpuscular infiltration with pronounced sero-fibrinous exudation without there being any localization of the process within definite portions of the tissue.

SYMPTOMS.

Incubative Period.

This is very variable but symptoms may appear under natural conditions in from three to six days with a minimum of 10 days after contact.

It is possible to distinguish according to the rapidity of evolution three forms, viz.: Acute, a per-acute, and a sub-acute.

Acute form.—In the early stages the symptoms give no precise significance, within the next few days symptoms become more marked. Animal is disinclined to move, skin is dry, hair erect, respiration accelerated, the temperature becomes elevated and may reach as high as 104° Fahr. or over, milk secretion diminishes. The local symptoms now manifest themselves, there is a short dry painful cough which is provoked by percussion of the chest wall.

The symptoms now become intensified, animal is disinclined to move and stands with the head extended and elbows turned outwards; temperature remains elevated; there is a partial anorexia; during inspiration the nostrils are widely opened, the stronger extension of the thorax is followed by a double contraction of the abdominal muscles, the cough becomes more frequent, moist and painful, expiration is accompanied by a groan.

Percussion of the chest wall indicates usually in the lower parts of the affected lung, behind the shoulder and up to a certain height, a partly or entirely dull sound limited above by a horizontal line (pleural exudate) or a zone of dullness and heptization. Auscultation at first shows a weakened vascular breathing and some crepitation in the anterior and lower parts, later in the region of the partially or entirely dull area, no vesicular or bronchial breathing may be heard but this is usually perceptible around the borders of the affected area.

In the later stages, the animal is exhausted, muscular tremors occur. There is usually a muco-purulent discharge from the nostrils, respirations become discordant.

There is often an oedematous infiltration of the dependent parts of the chest and abdominal wall.

Under this form the evolution is complete in from 2-3 weeks. In a percentage of cases the disease comes to a standstill, and the symptoms gradually subside, the cough persists and becomes stronger, respiratory difficulties subside. The appetite, rumination and milk secretion return to the normal, animal gains condition, and after the lapse of a varying period of time the animal although it appears to have recovered, remains a source of infection for a varying period.

In animals kept housed and well fed, the percentage of recoveries is greater than in cattle exposed under adverse field conditions.

Per-acute form.

Exceptionally the disease may have an acute onset with severe symptoms, the lesions develop with a sharp rise of temperature. The symptoms differ according to whether the pleural or pulmonary lesions predominate; when the auscultation indicate the presence the pulmonary lesions prevail in the lung.

Termination by asphyxia is days.

Sub-acute form.

Sometimes the lesions remain lung; in such cases, the only suspicion and auscultation does not always form; sometimes new foot of infection shows acute symptoms, but usually disease escapes detection.

In the Living Animal.

Diagnosis, particularly, can not be assured by clinical suspicion, the history of the man the herd and the possibility of introduced should be investigated; employment of facilities exist for post-mortem examination pathomorphological and histological desirable.

Pathological-Anatomical and I

The microscopic lesions, pleuritis and sequestration formation may sometimes be confused with form of haemorrhagic septicaemia specific histo-pathological change. Meyer (1909) found that deposits of fibrin which surround in circular symmetrical arrangement diagnosis.

Ziegler (1921) concludes the marginal organization processes bronchitic changes are specific.

Seifried (1926) concluded separately the histo-pathological initial and (2) middle stages an and that although the periva processes of the interstitialia are stage (acute bovine pleuro-pneumonia) other pneumonias; nevertheless “Herford” furnish a sure prospect nature of doubtful pneumonias. initial stages the parabronchitic be wanting and the possibility pneumonias is then extraordinary termination of the initial stage to be found in the majority of cases can be usually demonstrated in portion in which case differentia
lesions predominate; when the pleurisy is intense percussion and auscultation indicate the presence of an abundant exudate; when the pulmonary lesions prevail the cough occurs from the commencement.

Termination by asphyxia is the rule; death occurs in from 2-8 days.

Sub-acute form.

Sometimes the lesions remain localized in a small part of the lung; in such cases, the only symptoms may be a rare cough; percussion and auscultation does not furnish any precise indication. Sometimes new foci of infection occur in the lung and the animal shows acute symptoms, but usually the lesions disappear and the disease escapes detection.

IN THE LIVING ANIMAL.

Diagnosis particularly of the first case or two of an outbreak, cannot be assured by clinical examination; if the symptoms are suspected, the history of the movements of the cattle belonging to the herd and the possibility of an infected beast having been introduced should be investigated; serum diagnosis methods could be employed if facilities exist for such, but slaughter of a suspect beast for post-mortem examination and collection of material for pathomatiological and histological examination and cultural tests is desirable.

PATHOLOGICAL-ANATOMICAL AND HISTOLOGICAL DIAGNOSIS.

The microscopic lesions, viz., exudative pneumonia and pleuritis and sequestrum formation are as a rule characteristic, yet they may sometimes be confused with other pneumonias, e.g. the pectoral form of haemorrhagic septicaemia of bovines; on the other hand specific histo-pathological changes are usually demonstrable.

Meyer (1939) found that the thick rings of leucocytes with deposits of fibrin which surround the blood vessels of the interstitia in circular symmetrical arrangement can be used with certainty for diagnosis.

Ziegler (1921) concludes that necrosis and the perivascular and marginal organization processes in the interstitia and the parabronchitic changes are specific.

Seifried (1926) concluded that it is necessary to consider separately the histo-pathological changes which occur in the (1) initial and (2) middle stages and (3) the sequel of stages 2 and 3, and that although the perivascular and marginal organization processes of the interstitia are a regular occurrence in the middle stage (acute bovine pleuro-pneumonia) yet they may occur in some other pneumonias; nevertheless the existence of the parabronchitic "Herde" furnish a sure proof of the bovine pleuro-pneumonia nature of doubtful pneumonias. This investigator finds that in the initial stages the parabronchitic and perivascular "Herde" may be wanting and the possibility of confusion with other broncho-pneumonias is then extraordinary great, and that in the sequel and termination of the initial stage the perivascular "Herde" are not to be found in the majority of cases, but the parabronchitic "Herde" can be usually demonstrated in the inner half of the encapsulated portion in which case differential diagnosis is possible.
Cultural tests.—The pulmonary or pleural exudate is diluted in Martin's peptone beef bullion medium in the proportion of 2 of exudate to 98 of the medium, and 10 per cent. of bovine serum, filtered through the Berkefeld, added, and the tubes incubated at 38° Cent.; if the fluid becomes opaque in 3 to 4 days and microscopically there is no distinguishable bacterial infection, the diagnosis may be considered as established.

The method introduced by Martino (1905) is of assistance in confirming results of cultural tests.

Biological Tests. The impossibility of detecting by clinical means animals with latent lesions, the so-called "Launziers," and the role which they play in the maintenance and spread of infection prompted workers to determine the value of certain biological tests for diagnostic purposes, viz., agglutination, complement fixation, conglutination reaction and precipitation methods. In addition to the above the lipid fixation (Meinicke BLE) and the Rocculation reaction of Sacks and Georgi, were investigated.

None of the methods are infallible, but the percentage of errors which occur with one may possibly be reduced by the simultaneous application of another.

Their practical value is reduced owing to the necessity of repeating the tests at intervals so as to exclude the risk of animals in the incubative stage of the disease, as well as animals which may have contracted the disease subsequent to the date of the original test, escaping detection.

Should the test fail to reveal all infected animals, and restrictions of movements of the herd be removed, serious consequences are likely to occur particularly in the case of trade and transport cattle which may originate widespread foot of infection.

Agglutination.—Although agglutinations have been demonstrated in the serum of some naturally infected or hyper-vaccinated cattle, and the agglutination method is of some assistance, yet the percentage of errors is too high for it to be used alone; but it could be employed in conjunction with other tests, viz.:—complement fixation or conglutination.

Complement Fixation Method.—This is of some practical value. Titze and Giese (1919) and Titze, Giese and Wedemann (1923) recorded satisfactory results, but found haemolysis subsequently occurred in the tube, which showed a fixation; necessitating the reading of the tests within a time limit, this difficulty was however overcome by using culture antigen.

Hoslop (1921) and (1922) concluded the method is not sufficiently accurate to warrant its general use, the main difficulty being to prevent errors owing to haemolysis which occurs consequent on the presence of conglutinin and some excess of complement. Dahmen (1922) and (1923) recorded observations on the value of various antigens; Nakamura, Futamura and Watanuki (1926) found with a suitable antigen the complement fixation method reliable.

Walker (1923) obtained practical results and found the haemolysis which occurs in the complement fixation method is eliminated by the use of the conglutination method.

Precipitation Method and its Limit.

Precipitin and precipitogen serum of infected cattle, and the The percentage of errors limit ti

Lipoid Fixation (Meinicke BLE) Reaction.

Titze, Giese and Wedemann results were unable to expre the methods.

Allergic Reaction.

Siedangrotsky and Nacak (1921) carried out diagnostic inoculation and Titze, Giese and Wedemann culture and obtained temperature as well as non-infected cattle. To practical value to introduce into a temperature reaction, it wo tries owing to the variations in non-housed cattle.

The latter workers found infection of concentrated pure c

CONTROL.

These comprise preventive, quarantine and in addit for such exist.

Preventive inoculation has Williams (1862) demonstrated ti pleural sero-fibrinous exudate against natural infection and re.

Pure culture vaccine is no virus where facilities exist for it.

Walker (1921) issued an a some countries, viz., Great Brita various European countries pr affected animals and quarantine extreme measures, viz., the a infected and in contact animals to control and eradicate the dia South Africa was officially pneumonin in 1914. The me preventive inoculation, sought quarantine of the herd for 3 mo.

In the writer's experience recover and are no longer a sou appear partially to explain the in South Africa.

In countries in which the periodic preventive inoculation the incidence of the disease wh could be considered.

In the case of isolated out contact animals is usually desir
ary or pleural exudate is diluted in
medium in the proportion of 2 of
and 10 per cent. of bovine serum,
added, and the tubes incubated at
es opalescent in 3 to 4 days and
n distinguishable bacterial infection, the
established.
Marino (1905) is of assistance in con-
possibility of detecting by clini-
cal tests, the so-called "Langers," and
maintenance and spread of infection.
the value of certain biological tests
Agglutination, complement fixation,
epitation methods. In addition to
Nemec and Bley and the flocculation
were investigated.
liable, but the percentage of errors
ly be reduced by the simultaneous
duced owing to the necessity of en-
us to exclude the risk of animals
sent, as well as animals which may
quent to the date of the original
all infected animals, and restric-
oved, serious consequences are likely
of trade and transport cattle which
infection.
agglutinins have been demonstrated
infected or hyper-vaccinated cattle.
not of some assistance, yet the
ned, yet the for it to be used alone, but it could
with other tests, viz.:—complement

2.—This is of some practical value.
itz, Giese and Wedemann (1923)
den haemolysis subsequently
had a fixation, necessitating the
the limitation of this difficulty was however
on.
cluded the method is not sufficiently
ase, the main difficulty being to pre-
which occurs consequent on the
excess of complement. Dahmen
on the value of various
and Watanuki (1926) found with a
fixation method reliable.
practical results and found the
the complement fixation method is

Precipitation Method and its Modification.

Precipitin and precipitinin have been demonstrated in the
serum of infected cattle, and the latter in extracts of hepatised lung.
The percentage of errors limit the practical value of the methods.

Lipid Fixation (Melbuche Bley) and Sacks and (George Floccu-
lation Reactions.

Titz, Giese and Wedemann (1923) obtained unsatisfactory
results and were unable to express an opinion on the practical worth
of the methods.

Allergic Reaction.

Siedangsrotsky and Yauk (1892), Walter (1892), Beitten (1919),
carried out diagnostic inoculation with sterilized pulmonary serum
and Titz, Giese and Wedemann (1923) with concentrated sterilized
culture and obtained temperature reaction in a percentage of infected
as well as non-infected cattle. The test is not considered of sufficient
practical value to introduce into the practice. Since results depend
on a temperature reaction, it would be of less value in tropical
ntries owing to the variations in temperature which occur in healthy
n-house cattle.

The latter workers found the intraperitoneal and ophthalmic
fection of concentrated pure culture of no assistance.

CONTROL MEASURES.

These comprise preventive inoculation, slaughter of affected
animals, quarantine and in addition serum diagnosis tests if facilities
for such exist.

Preventive inoculation has been made largely use of since
Wilmans (1892) demonstrated that inoculation with pulmonary or
pleural sero-fibrinous exudate (lymph virus) confers a resistance
against natural infection and re-inoculation.

Pure culture vaccine is now generally substituted for lymph
virus where facilities exist for its preparation.

Walker (1921) issued an attenuated pure culture vaccine; in
some countries, viz., Great Britain, United States of America and in
various European countries preventive inoculation, slaughter of
affected animals and quarantine measures were found insufficient and
extreme measures, viz., the stamping out method whereby all
infected and in contact animals were slaughtered was found necessary
to control and eradicate the disease.

South Africa was officially declared free of bovine pleuro-
neumonia in 1914. The measures adopted there consisted of
preventive inoculation, slaughter of visibly affected animals and
quarantine of the herd for 3 months.

In the writer's experience a large number of infected cattle
recover and are no longer a source of infection, and this fact would
appear partially to explain the successful eradication of the disease
in South Africa.

In countries in which the disease is widespread generalized
periodical preventive inoculation should be of assistance in reducing
the incidence of the disease when slaughter of the visibly affected
could be considered.

In the case of isolated outbreaks slaughter of infected and in
contact animals is usually desirable.

1903, cited by Nogard & Leclaireche. "Les maladies microbioines des animaux." Ed. 3. 466.

POUREZOF, 1881. Diverses considerations sur l'étiologie pathologique de la pneumonie contagieuse. Lyon Medical. No. 22. 145.

THE EAST COAST FEVER

By J. B. Viljoen, M.R.C.V.S., Veterinary Services and Agriculture, Union of South Africa

INTRODUCTION

East Coast fever has now been in existence for over three centuries, and has caused the deaths of millions of cattle. It is a disease of the cattle which is characterized by a high temperature, cough, and a tendency to die suddenly. The disease is caused by a bacterium which is transmitted from cow to cow through the feeding of contaminated milk.

2. Past and Present Position

In order to show the progress of the disease, I have considered the number of new outbreaks that have occurred in the past, and to show these in the form of a chart. These figures are taken from all available records, and the results are then plotted in order to show the trend of the disease. The chart shows clearly that the disease is still a problem in the cattle industry, and that it is necessary to continue efforts to control the disease.

Generally speaking, it may be said that control of the disease has been successful in some areas, but that in others it is still a problem. In those areas where the disease is still a problem, it is necessary to continue efforts to control the disease and to prevent its spread.