beginning of the primary infec-
tioned. In the case of O. column-
development of the parasite in
from its development in the
the larva stay in the intestinal
of the lumen of the intestine.
formation. In adult, resistant
larvae are found in such nodules
On. When the contents of the
caclify, the larvae either die
or about between the muscular
and them a trace of pus similar
do they pass into the lumen.
vidence, that, in the case of
one of the intestinal mucosa.

the host is very important in
and the length of its dura-
tion than that of Trichostrongylus
sites impossible to infect good-
susceptible lambs, with this
are allowed to improve in
ately. Natural Trichostrongy-
larvae are underfed or
like H. contortus. Although
bacterial diseases would lead
resistance in strong, healthy
this in the case of worms, since
food in a healthy host than
as in the bacterial diseases,
a, even though immunity may
knowledge should be to prevent
ion of the animals, by proper
ase of the most injurious para-
ave the way for others.

BE.
(1926). “Effects of the Nematode
Jnl. Parasitol., Vol. 10, No. 1,

− Biology of the Infective Larva of
Sheep,” Jnl. Helminthol., Vol. 1,

− History of Dictyocaulus abstrusus
Jnl. Helminthol., Vol. 5, No. 2,

− of Dictyocaulus floridus (Rad.) and

− et al., Therap., Vol. 33, No. 4,

− tribution to Helminthic Therapy,”

Assn., Vol. 72, No. 25, No. 6, pp. 716-721.

HERRICK, C. A. (1925). “Studies on the Resistance of the Chicken to the

Dub.” Records of the School of Medicine, Cairo, Vol. 4.

MAREK, J. (1927). “Neuere Beiträge zur Kenntnis der Leberegelkrankheit,
mit besonderer Berücksichtigung der Infektionswiese, der Entwicklung
Der Distomen und der Therapie,” Deut. Tier. Wschr., Vol. 35, No. 32,
p. 513-519.

MONNJIG, H. O. (1927). “The Life-histories of Trichostrongylus instabilis and

Developed by the Bureau of Animal Industry in McLean County,

SANDGROUND, J. (1928). “Some Studies on Susceptibility, Resistance, and
Acquired Immunity to Infection with Strongyloides rercorvalis in Dogs

SCHWARTZ, B. (1924). “Preparasitic Stages in the Life-history of the Cattle
Hookworm (Bunostomum phlebotomum),” Jnl. Agric. Res., Vol. 29,
No. 9, pp. 451-458.

SHILLINGER, J. E. (1923). “Parasitic Infection of Dogs before Birth,”

VEGLIA, F. (1915). “The Anatomy and Life-history of the Haemonchus con-

IDEM (1924). “Preliminary Notes on the Life-history of Oesophagostomum
p. 800-823.

Paper No. 10.

THE PREVENTION AND TREATMENT OF FASCIOLIASIS IN
CATTLE.

By P. L. Le Roux, B.Sc. (Edin.), M.R.C.V.S., Veterinary Research
Officer, Department of Agriculture, Union of South Africa.

For the control and the complete eradication of Fascioliisis (vel
Distomiasis) from our herds and flocks it is firstly essential that we
should be acquainted with the habits and bionomics of the fresh
water snails which may act as intermediate hosts of Fasciola hepatica
and F. gigantica and, secondly, that we should have a drug lethal
to these parasites but practically non-toxic to the vertebrate host.

Dicrocoelium lanceolatum will not be considered because, if
present in Africa, it is not of common occurrence and is regarded as
practically non-pathogenic to its definitive host.

I. THE INVERTEBRATE HOSTS AND THEIR HABITS.

Fascioliisis amongst cattle and sheep in South Africa is limited
to those areas where the freshwater snail Lymnaea natalensis (Krauss)
abounds. This mollusc is confined to Africa, south of the Sahara.
It is said to be an extremely variable snail and has been described
under many names. This species transmits both F. hepatica and
F. gigantica.
In the south-western districts of the Cape the common liver fluke is transmitted by *L. truncatula* (Müller), a snail imported from Europe. This species has also established itself in North Africa. In the Cape I have recovered the cercariae of *Fasciola* from a species of *Bulinus* collected from the waters of a spring on a fluke (*F. hepatica*) infested farm in the field-cornety of Goudini, Worcester.

That all species of *Bulinus* cannot transmit Fascioliasis is evident by the absence of liver flukes in areas where only certain *Bulinus* species abound. The South African members of this genus are imperfectly known and all attempts to have specimens identified have failed thus far.

B. Tropicus (Krauss) is listed by Annie Porter (1925) as an intermediate host of *F. hepatica*. A species of *Bulinus* from the farm "Breezy Brae," near Arlington Station, Orange Free State, transmits a species of paramphistome (*Cotylophoron cotylophoron*), which proved to be very pathogenic for Merino sheep. Near Petrus Steyn one farmer lost approximately 130 sheep out of a flock of 300 from the same parasite.

The only other mollusc which is known to act as an intermediate host of a parasite of domestic ruminants is *Physopsis africana* subsp. *globosa* (Morelet). It has a wide distribution in Tropical and Sub-tropical Africa and transmits a schistosome (*Schistosoma Mattheei*; Veglia and Leroux, 1929). It is also claimed as the intermediate host of the human schistosome (*S. haematobium*) in West Africa.

Bionomics of the Different Molluscs mentioned above.

The members of the genus *Lymnaea* (Lamarck) prefer slow running water. The back waters of rivers and streams are in some localities teeming with *L. natalensis* during the non-rainy season. They may at time be found in shallow stagnant pools with an abundance of water plants. Their eggs are deposited on submerged bits of plants and stones.

Bulinus appears in South Africa to thrive at higher altitudes than do the other species. They are as a rule quite common in permanent collections of water around Johannesburg and in the other higher parts of the Transvaal and the Orange Free State. I have known them to thrive in mud pools practically devoid of any aquatic plants. They may at times be found inhabiting the same waters as does *L. natalensis*.

The genus *Physopsis* is with *Bulinus* included in the sub-family *Bulinidae*. In South Africa I have recovered *Physopsis* only from pools where the blue lotus flourishes. This snail prefers the back waters of permanent streams and will be found most plentiful where there is a heavy deposit of mud and decomposing vegetable matter at the bottom. In these situations it is often accompanied by *L. natalensis* and *Planorbis pfeifferi* (Krauss). The last-mentioned is confined to South Africa and transmits *S. mansoni*, the causal agent of intestinal schistosomiasis.

There is undoubtedly no need to stress the importance to the veterinarian of knowing where to look for the different species of snails, and every field officer should be able to recognize the different genera which transmit trematodes parasitising domestic stock.

II. Fascioliasis

As every veterinarian is aware of the symptoms and diagnosis of this disease, there is no need to go into detail. The annual losses from fascioliasis in endemic areas must be considered, and the present status of this malady is now that the Malayan worm is now being used by the farmer in prophylactic measures. The chloroform and hexachlorothane adaptation of prophylactic measures are prepared to date. The chemotherapy used has proved to be successful in cattle and sheep, but in native territories the drugs are often neglected.

III. The Treatment.

The drugs which have been used are: D.H.R., and Calamistrum to claim good results for Fascioliasis in sheep.

Perronetti (1886) reported that *B. natalensis* is effective against fascioliasis in sheep and is claimed to be one of the most effective drugs in the world.

The price of male lambs on a large scale and is used as follows:

1. Methenamine
2. Isoniazide
3. Chloroform

I have found it to be effective against this parasite in cattle and sheep.

The Drug.

The use of the drug against Fasciola has been successful in Welsh sheep. It has been used for Fasciola in Europe and is considered a drug resulting from its use on cattle. It is used as a treatment for Fasciola in South Africa and is known to be effective against Fasciola in cattle and sheep.

Hall (1923) gave a heavy dose of the drug, 100 mgm. after 36 hours' starvation. A second heifer weighing 700 lb. was given 50 mgm. of the drug after 24 hours' starvation and 25 mgm. after 48 hours' starvation.
II. Fascioliasis in Cattle.

As every veterinarian is undoubtedly acquainted with the symptoms and diagnosis of fascioliasis in cattle there is no need for discussing them here. Since cattle cannot graze grass as short as do sheep they do not as a rule become too heavily parasitised.

The annual losses from fascioliasis amongst the herds and flocks in endemic areas must be considerable and warrant the attention which this malady is now receiving. In Central Europe it is so acute that some States are actually assisting in its eradication and control by refunding the farmers part of the money spent on drugs and prophylactic measures. In South Africa the use of carbon tetrachloride and hexachloroethane are recommended as a curative and the adaptation of prophylactic measures are consistently preached. The farmers are prepared to dose their stock, but very little else is done. In the Native Territories very little will be accomplished unless the Governments concerned take active steps. At present the prospects are that fascioliasis of stock will be with us for many years to come.

III. The Treatment of Fascioliasis in Cattle.

The drugs which have been tested and found effective against fasciola will be considered briefly below:—

(1) Male Fern Preparations.

Grassi and Calandrucius (1884 and 1885) are said to be the first to claim good results for the extract of male fern against flukes in sheep.

Perroncito (1886) reports favourably on the use of male fern.

Borini (1911) claims excellent results for ethereal extract of male fern against fascioliasis in cattle. The fact is mentioned that the animals belonged to a rich owner.

The price of male fern preparations prohibits their general application on a large scale and to scrub cattle.

(2) Carbon Bisulphide.

Floris (1907 and 1908) claims that by administering 10 to 15 grammes of carbon bisulphide in gelatine capsules three or four times a week he freed sheep of *F. hepatica*.

I have been unable to trace any records of its successful use against this parasite in cattle.

(3) Carbon tetrachloride.

The use of carbon tetrachloride for eradicating matured liver flukes from sheep was discovered by Montgomery, experimenting on Welsh sheep. It has since been proved over and over again that 1 c.c. of this drug is a specific cure for fascioliasis in sheep. The administration of carbon tetrachloride as a curative for liver flukes in cattle is in Europe considered a dangerous practice. In Germany the losses resulting from its use on cattle is said to have become so serious that it was listed as a dangerous drug and its sale for use on cattle prohibited except on a prescription from a qualified veterinary surgeon.

Hall (1923) gave a heifer weighing 175 lb. and suffering from hook-worm infestation, 100 c.c. carbon tetrachloride in hard capsules after 36 hours' starvation. The animal was found dead on the fourth day. A second heifer weighing approximately 250 lb. and a clinical case of Bunostomiasis was given 100 c.c. in 360 c.c. castor oil after
36 hours' starvation. This animal was off her feed until she was killed on the 6th day. Hall concludes that the drug was not very well tolerated by these animals.

A Dr. W. A. Barnette informed Hall (1923) that he had excellent results with carbon tetrachloride against hookworms. He gave one-half ounce in a half pint olive oil to yearlings, while cows weighing 700-800 lb. received one ounce in one pint of oil.

A Dr. W. K. Lewis was not so successful as Dr. Barnette. He dosed 9 adult cattle and 10 calves for the same complaint. Within 36 hours he had lost 4 of the adults and the remainder were sick. The adults had received 22 c.c. each. The youngsters had relatively higher doses without showing ill-effects.

Minot, experimenting with carbon tetrachloride on dogs, found that the toxicity of the drug varied with the calcium-content of the blood. His conclusions were:

1. Carbon tetrachloride is relatively toxic for dogs that have been on a prolonged low calcium diet;
2. Signs of intoxication can be prevented by the continued addition of calcium to the diet; or
3. Cured either by the intravenous injection of calcium chloride or the oral administration of ammonium chloride.

He observes that the immediate cause of death in his dogs should be attributed to the lack of ionized calcium in the blood, secondary to the bilirubinemia, following the administration of the drug.

Minot's observations suggest that the treatment of cattle and perhaps sheep for fascioliasis should only be practised after they had been on a bonemeal lick for some time.

The losses following the administration of this drug to fluke-infested animals should probably be attributed to a lack of ionized calcium in the blood. Prof. A. I. Malan and Mr. S. D. Rossouw, of the Department of Biochemistry, have recently examined for me the blood of fluke-infested sheep for calcium. They found a marked decrease from the normal. Sheep suffering from paramphistomiasis showed a most marked decrease of calcium. The lack of calcium in the blood of dairy cows would seem to account for the prevalence in Europe of milk fever, which, according to Prof. Sjollema (1929), can be prevented and cured by the administration of calcium salts. Greig (1929) records a fall in the calcium of milk from cows suffering from "Lambing Disease," which is known in South Africa as "Dansiekte," of pregnant ewes. Prof. A. I. Malan has, some months ago, found the blood calcium decreased in suspected "Dansiekte" cases which at death proved to have the fatty livers described by Prof. McFadyean for pregnant ewes from England. In pregnant animals carbon tetrachloride should therefore, be used with care.

Hall observed that the simultaneous administration of magnesium sulphate decreased the toxicity of the drug. He also recommends the use of calcium lactate to increase the ionized calcium in the blood of dogs to be treated with this drug for Uncinariais.

Personally I have dosed six thin dairy cows with 8 c.c. carbon tetrachloride for liver flukes. No ill-effects were manifested, but these animals had access to a lick of bonemeal and salt for some time. The examination of their faeces showed a decrease in the number of liver fluke eggs.

Calves badly affected with hook-worms stood 10 c.c. carbon tetrachloride and magnesium sulphate well and were cured.

My experience is that it is a useful and can be killed by a rat poison.

The Administraion

Hall recommends that the drug be given in gelatin capsules, but may be diluted in either water, milk, quinine, or other suitable medium. Lamson, et al. (1929) have reported that a dose of 50 mg. per kilogram of body weight, given three hours after the administration of a similar dose, results in a marked increase of the A.G.P., which is due to the metabolic breakdown of the drug. This led some authorities to consider it as a dangerous drug to be used with caution. Lamson, et al. (1929) have recommended that it is used only when milk production is greatly reduced, and that it should be administered only when milk production is affected, and then only under the supervision of a veterinary surgeon. Lamson, et al. (1929) have also recommended that it is administered only when milk production is greatly reduced, and then only under the supervision of a veterinary surgeon.

Only chemically pure carbon tetrachloride should be used for the purpose. Lamson, et al. (1929) have also recommended that it is administered only when milk production is greatly reduced, and then only under the supervision of a veterinary surgeon.

Because the former authorities have recommended the use of carbon tetrachloride instead of chloroform, which is more toxic and less effective, and because the latter is a factor in the treatment of tuberculosis, I consider the former authorities to be more correct.

De Blois and Baert Schmid, from Germany, have reported the use of carbon tetrachloride in cattle. They obtained a dose of 50 mg. per kilogram of body weight. The dose is administered first thing in the morning, and three hours after the administration of the drug, the administration of 50 mg. per kilogram of body weight, results in a marked decrease of the A.G.P., which is due to the metabolic breakdown of the drug. This led some authorities to consider it as a dangerous drug to be used with caution. Lamson, et al. (1929) have recommended that it is used only when milk production is greatly reduced, and then only under the supervision of a veterinary surgeon.

(5) Paternally

The discovery of carbon tetrachloride has flooded the market with many other chemicals which are much cheaper. Some of these chemicals are used for the production of compounds for male fertility remedies. They have to be taken well, for they were used as veterinarians assist the treatment.

IV. PROPHYLACTIC

The prophylactic measures must include a direct attack on the snail population. Where a population of the snail population is present, the disease can be prevented by the use of a chemical which is toxic to the snail. Where the snail population is not present, the disease can be prevented by the use of a chemical which is toxic to the snail. Where the snail population is not present, the disease can be prevented by the use of a chemical which is toxic to the snail.
My experience is that fat cattle do not tolerate this drug well, and can be killed by a relatively small dose (10 c.c.).

The Administration of Carbon Tetrachloride.

Hall recommends that the drug should be administered in hard gelatine capsules, but most workers seem to favour administering it diluted in either water, milk, salines, or an oily vehicle.

Lamson et al. (1923) found that if heavy cream was given an hour after the administration of carbon tetrachloride, its toxicity was increased. This led some workers to conclude that the use of milk as a vehicle was a dangerous practice. Personally I prefer using it mixed in raw linseed oil or liquid paraffin, which both mixes readily with it and there is no separation-out of the drug on standing as is the case when using milk as the vehicle. The use of milk as is often recommended by some is not quite dangerous, but is much slower and the latter is a factor to be considered where many animals are to be treated.

Only chemically pure carbon tetrachloride should be used. The drug is quite inexpensive.

(4) Hexachlorethane.

Because the former drug proved to be rather toxic for bovines other drugs of the same class were tried, with the result that hexachlorethane was pronounced safe for cattle and yet effective for the purpose required.

De Biek and Baudet, from Holland, and Noller, Flietner and Schmid, from Germany, pronounced this drug to be excellent for fascioliasis in cattle. They recommend 10 grammes per 25 kg. body-weight. The dose is administered over four days and the animals are dosed first thing in the morning and food withheld for from two to three hours. Food rich in fat should be avoided.

I have never yet used this drug, but the reports by those who have are very favourable, and those who may have to treat cattle should give it a trial. It can hardly be expected to be better than or quite as effective as carbon tetrachloride.

(5) Patent Medicines against Flukes.

The discovery of carbon tetrachloride and ethylene hexachloride has flooded the market with anti-fasciola remedies, and because these chemicals are much cheaper than the older male fern preparations, some manufacturing chemists have even substituted the chlorine compounds for male fern, and to retain the former colour of their remedies they had to colour the capsules. Needless to say it paid them well, for they were still charging the old price. Here we should as veterinarians assist the public.

IV. Prophylactic Measures against Fascioliasis.

The prophylactic measures practised against any fluke disease must include a direct attack on the proper intermediate host, and the measures to be employed in such a campaign will have to be varied according to circumstances and the habits and habitats of the species concerned. Where a pool or a pasture can be readily drained destruction of the snail population by the use of chemicals should not be advised. Most pools, if not all, are veritable sources for the propagation and the dissemination of helminths and should wherever practical be drained. The fencing-off of snail infested pools should only be
advised where draining cannot be effected at a comparative reasonable cost. It must be remembered that certain birds are rather potential factors in the spread of snails from one pool to another, and an infested pool would be a permanent source of danger to dams or other collections of water. Molluscs are almost invariably present only in permanent collections of water, but may during an abnormally wet season establish themselves and flourish in places which in a normal season would have dried up, arresting the multiplication of the disease-spreading snails.

The use of poisonous chemicals should be resorted to where snails have established themselves in the backwaters of streams and rivers where stock have to drink.

Copper sulphate and unslaked lime are probably the most suitable for general application. They are cheap and effective and are used in dilutions non-irritating to man and stock. Chandler (1920) found that copper sulphate was lethal to molluscs when used in dilutions of from 1 in 500,000 to 1 in 2,000,000 of water. According to Leiper (1922) B. contortus and P. bovis are killed by a 1 in 5,000,000 dilution, while one of 1 in 2,000,000 was required for the destruction of L. truncatula.

Walton and Jones (1925), from England, recommend the use of copper sulphate against the common carrier of Fasciola there. At Humanndorp I found that this chemical readily destroyed Physiopsis africana subsp. globosa in a pool in the river. It proved practically useless when tried on a Bulinus sp. inhabiting a rather muddy pool. The amount of organic matter present in stagnant pools renders the chemical inert.

The use of unslaked lime has been favourably reported on by various workers. It is reported to be extensively used in the Far East for the control of intestinal schistosomiasis.

Other chemicals such as calcium cyanamid, tartar emetic and ammonium sulphate have been tested and found efficient, but their cost prohibits their use on a large scale.

Hand Collecting the Snails.

It has been recommended that the snails may be collected by hand where their destruction by the use of chemicals or drying has failed or is impracticable. There is little hope of this method being readily resorted to while there is no likelihood of a rise in the price of beef, mutton and wool.

"Biological" Methods of Control.

As everything else, molluscs have their natural enemies and man has been applied to them for help. The results, as may be expected, have not been startling.

The keeping of domestic ducks to devour and so exterminate the snails has been advised. The duck and the snail have frequented the same pool for many years, and several of the duck's helminths have found the snail a most useful intermediate host.

It is also claimed that many species of fresh-water fish feed upon snails. Some of us may accept this as the reason why L. natalensis has taken to shallow water.

Another "biological" method to be exploited is the utilization of fire-flies whose larvae feed largely upon molluscs, but since the snails which concern us are aquatic in habit we cannot entrust the attack to the fire-fly or glow-worm.

Finally, I wish to acknowledge the collection of snails for identification made to the various African Veterinary Laboratories. The various institutions are most grateful for their specimens.

Veterinary malacologists in the various universities have, in the past, paid more attention to the study of fresh-water snails than has been the case in the past.

Paper No. 11

ONCHOCERCIasis OF cattle TO ITS POSSIBLE SOURCES.

By P. L. Le Roux, B.Sc.

Officer, Department of Veterinary Science and Agriculture.

Onchocerciasis of cattle and in some parts of the world of man has been recognized for a number of years, but the life cycle of the parasite, *Onchocerca* volvulus, of which the disease is caused, has only been described in the last five years, and is therefore not at the present time a common disease. The life cycle of the parasite is closely associated with the subcutaneous or intramuscular tissue of the host animal, and it is known that the subcutaneous and intramuscular tissues, particularly in the ear of the host animal, are the chief sites of infection. The subcutaneous and intramuscular tissues, particularly in the ear of the host animal, are the chief sites of infection. The subcutaneous and intramuscular tissues, particularly in the ear of the host animal, are the chief sites of infection. The subcutaneous and intramuscular tissues, particularly in the ear of the host animal, are the chief sites of infection. The subcutaneous and intramuscular tissues, particularly in the ear of the host animal, are the chief sites of infection. The subcutaneous and intramuscular tissues, particularly in the ear of the host animal, are the chief sites of infection. The subcutaneous and intramuscular tissues, particularly in the ear of the host animal, are the chief sites of infection.

The *Onchocerca* complex consists of the following species:

1. *O. volvulus*, which is chiefly found in the West Indies.
2. *O. cervicalis*, which is found in the Oriental region.
3. *O. armillata*, which is found in the Western regions.
4. *O. bovis*, which is found in the Cretian, and subcutaneous and intramuscular tissues of the host animal.
5. *O. gutturose*, which is found in the subcutaneous and intramuscular tissues of the host animal.
6. *O. indica*, which is found in the subcutaneous and intramuscular tissues of the host animal.
7. *O. fasciata*, which is found in the subcutaneous and intramuscular tissues of the host animal.
8. *O. gibsoni*, which is found in the subcutaneous and intramuscular tissues of the host animal.
A Request.

Finally, I wish to appeal to my colleagues for the collection of snails for identification and the presentation of identified specimens to the various African Veterinary Research Institutions and Colleges. The various institutions would undoubtedly not hesitate to exchange specimens.

Veterinary malacology is a subject to which the veterinary colleges should pay more attention in the immediate future than has been the case in the past.

Paper No. 11

ONCHOERCIASTIS OF CATTLE, WITH SPECIAL REFERENCE TO ITS POSSIBLE LIFE-CYCLE AND CONTROL.

By P. L Le Roux, B.Sc. (Edin.), M.R.C.V.S., Veterinary Research Officer, Department of Agriculture, Union of South Africa.

Onchoerciasis of cattle has been known in Australia for almost fifty years, and is there due to the nematode Onchoerca gibsoni (Cleland and Johnston, 1910). York and Maplestone list fourteen species of Onchoerca Diesing, 1841, as parasitizing ligaments, vessels, subcutaneous or intramuscular connective tissue of mammals. Four of the fourteen species are imperfectly known, and eight of the remaining ten have been recorded from domestic stock. Man harbour the remaining two.

The Onchoerca recorded from domestic stock are:

1. Onchoerca reticulata, Diesing, 1841, parasitizes the horse, and is chiefly met with in the tendons of the forelegs. It may occur in subcutaneous nodules and elsewhere.
2. O. cervicalis, Railliet and Henry, 1910, is a parasite of the ligamentum nuchae of horses.
3. O. armillata, Railliet and Henry, 1909, is recorded from the wall of the aorta of the zebra and cattle in the East Indies.
4. O. bovis, Piettre, 1912, was collected in France from the ligaments and tendons off the knees of cattle.
 Cretien, 1920, observed a species of Onchoerca in the subcutaneous tissues in the neighbourhood of the ligamentum nuchae of bovines in France.
5. O. gutturose, Neumann, 1910, is recorded as the causal agent of subcutaneous and muscular Onchoerciasis of North-African cattle.
6. O. indica, Sweet, 1915, is named as the worm responsible for Onchoerciasis of Bos indicus in the Peninsula of India.
7. O. fasciata, Railliet and Henry, 1910, from subcutaneous nodules in camels from India and Australia.
8. O. gibsoni parasitizes cattle and occasionally sheep in Australia and cattle in the Malay Archipelago, and infests Bos indicus in the Malay Peninsula.