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a b s t r a c t

Westudy interlacing properties of the zeros of two types of linear combinations of Laguerre
polynomials with different parameters, namely Rn = Lαn + aL

α′

n and Sn = L
α
n + bL

α′

n−1.
Proofs and numerical counterexamples are given in situations where the zeros of Rn, and
Sn, respectively, interlace (or do not in general) with the zeros of Lαk , L

α′

k , k = n or n−1. The
results we prove hold for continuous, as well as integral, shifts of the parameter α.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let µ be a positive Borel measure supported on a finite or infinite interval [a, b] and let {pn}∞n=0 be the sequence
of polynomials, uniquely determined up to normalization, orthogonal with respect to µ. Then

∫ b
a x
kpn(x)dµ(x) = 0

for k = 0, 1, . . . , n − 1 and it is well known that the zeros of pn are real and simple and lie in (a, b). Moreover, if
a < x1 < x2 < · · · < xn < b and a < y1 < y2 < · · · < yn−1 < b are the zeros of pn and pn−1 respectively, then

a < x1 < y1 < x2 < y2 < · · · < xn−1 < yn−1 < xn < b,

a property usually called the interlacing of the zeros of pn and pn−1.
The interlacing of zeros of polynomials is particularly important in numerical quadrature (cf. [1]) and also arises, inter

alia, in the context of extremal Zolotarev–Markov problems (cf. [2]), the Korous–Peebles problem (cf. [3]) and the Gelfond
interpolation problem (cf. [4]).
In [5], Alfaro, Marcellán, Peña and Rezola derived necessary and sufficient conditions for the orthogonality of {Qn}∞n=0,

where Qn(x) = pn(x) + a1pn−1(x) + · · · + akpn−k(x), ak 6= 0, n ≥ k and {pn}∞n=0 is a sequence of monic orthogonal
polynomials. Their work extends the results of Peherstorfer (cf. [6]) who established sufficient conditions, when supp(µ) =
(−1, 1), on the real numbers {aj}kj=1 such that pn + a1pn−1 + · · · + akpn−k has n simple zeros in (−1, 1). Marcellán raised a
more general question at OPSFA 2007: Given two different orthogonal sequences {pn}∞n=0 and {qn}

∞

n=0, underwhat conditions
does a linear combination rn = pn + aqn, a 6= 0, form an orthogonal sequence {rn}∞n=0? A related question, relevant for
applications, is whether and when the zeros of rn interlace with the zeros of pn, pn−1, qn or qn−1. One starting point for
answering these general questions is to consider linear combinations of classical orthogonal polynomials from the same
family but from different sequences.
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In this paper, we consider linear combinations of Laguerre polynomials Lαn of the form R
α,t
n = Lαn + a L

α+t
n and

Sα,tn = L
α
n + b L

α+t
n−1 where α > −1, t > 0 and a, b 6= 0. We recall that the Laguerre polynomials (cf. [7]) are orthogonal with

respect to the weight function e−xxα, α > −1, on the interval (0,∞).
For 0 < t ≤ 2, we give proofs (or counterexamples) for the interlacing of the zeros of Rα,tn and Sα,tn with the zeros of

Lαn , L
α+t
n , Lαn−1 and L

α+t
n−1.

We will make use of two well known identities (cf. [8], 22.7.30 and 22.7.29)

Lαn = L
α+1
n − Lα+1n−1 (1)

and xLα+1n (x) = (x− n)Lαn (x)+ (α + n)L
α
n−1(x). (2)

2. Linear combinations of Laguerre polynomials of the same degree

Let
Rα,tn = L

α
n + aL

α+t
n , a 6= 0, α > −1. (3)

Theorem 2.1. For 0 < t ≤ 2, the zeros of Rα,tn interlace with the zeros of (i) L
α
n , (ii) L

α+t
n .

Proof. We know from [9, Theorem 2.3] that the zeros of Lαn interlace with the zeros of L
α+t
n for 0 < t ≤ 2 which implies that

Lαn has a different sign at successive zeros of L
α+t
n and vice versa. Evaluating (3) at succesive zeros xi and xi+1 of Lαn we obtain

Rα,tn (xi)R
α,t
n (xi+1) = a

2Lα+tn (xi)Lα+tn (xi+1), 1 = 1, 2, . . . .n− 1
< 0 for all a 6= 0.

Therefore Rα,tn has a different sign at successive zeros of L
α
n and so the zeros interlace. The same argument shows that the

zeros of Rα,tn interlace with those of L
α+t
n by evaluating (3) at successive zeros of Lα+tn . �

Remark: For the integer values t = 1 and t = 2, Rα,1n and R
α,2
n are in fact each a linear combination of orthogonal polynomials

from the same sequence. Indeed, using the identity (1), we see that

Rα,1n = (a+ 1)L
α+1
n − Lα+1n−1 , (4)

and the restrictions on a to ensure that {Rα,1n }
∞

n=0 has all its zeros in (0,∞) can be deduced from ([10], Theorem 3(v)).
Similarly, applying (1) iteratively, we obtain

Rα,2n = (a+ 1)L
α+2
n − 2Lα+2n−1 + L

α+2
n−2 (5)

and the zeros of this type of linear combination are discussed in ([10], Theorem 5, and [1]).
Evaluating (4) at successive zeros of Lα+1n−1 , one can also prove that the zeros of R

α,1
n interlace with the zeros of Lα+1n−1 .

However, the zeros of Rα,tn do not interlace with the zeros of L
α
n−1 even in the simple special case when t = 1, as illustrated

by the following example: For n = 5, a = 2.33, α = 1.45 and t = 1, the zeros of L1.454 are
{0.954365, 2.94834, 6.26071, 11.6366}

while those of R1.45,15 are
{1.17057, 3.01797, 5.80288, 9.83574, 15.9213}.

3. Linear combinations of Laguerre polynomials of different degree

Next we consider linear combinations of the type

Sα,tn = L
α
n + b L

α+t
n−1, b 6= 0, α > −1. (6)

We will need information on the interlacing properties of the two polynomials Lαn and L
α+t
n−1 in the linear combination.

Theorem 3.1. Let α > −1 and let

0 < x1 < x2 < · · · < xn be the zeros of Lαn ,
0 < y1 < y2 < · · · < yn−1 be the zeros of Lαn−1,

0 < t1 < t2 < · · · < tn−1 be the zeros of Lα+tn−1 and

0 < X1 < X2 < · · · < Xn−1 be the zeros of Lα+2n−1

where 0 < t < 2. Then

0 < x1 < y1 < t1 < X1 < x2 < · · · < xn−1 < yn−1 < tn−1 < Xn−1 < xn.
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Proof. A simple computation using (1) and (2) leads to

(α + 1)Lα+1n (x) = (α + n+ 1)Lαn (x)+ xL
α+2
n−1 (x). (7)

Evaluating (7) at successive zeros xk and xk+1 of Lαn (x), we obtain

xkxk+1Lα+2n−1 (xk)L
α+2
n−1 (xk+1) = (α + 1)

2Lα+1n (xk)Lα+1n (xk+1).

The expression on the right is negative since the zeros of Lαn and L
α+1
n interlace (cf. [9, Theorem 2.3]) and therefore

xk < Xk < xk+1 for each fixed k, k = 1, . . . , n− 1.

The zeros of Lαn−1 increase as α increases (cf. [7], p. 122), hence

yk < tk < Xk for each fixed k, k = 1, . . . , n.

Finally, since the zeros of Lαn and L
α
n−1 separate each other, we know that

xk < yk < xk+1 for each fixed k, k = 1, . . . , n− 1

and this completes the proof. �

Note that this result extends Theorem 2.4 in [9] to the case of polynomials of different degree with continuously varying
parameters.

Theorem 3.2. For 0 < t ≤ 2, the zeros of Sα,tn interlace with the zeros of (i) Lαn , (ii) L
α+t
n−1.

Proof. We know from Theorem 3.1 that the zeros of Lαn interlace with the zeros of L
α+t
n−1 for 0 < t ≤ 2 which implies that

Lα+tn−1 has a different sign at successive zeros of L
α
n and vice versa. Evaluating (6) at successive zeros xi and xi+1 of L

α
n we obtain

Sα,tn (xi)Sα,tn (xi+1) = b2Lα+tn−1(xi)L
α+t
n−1(xi+1), i = 1, 2, . . . .n− 1

< 0 for all b 6= 0.

Therefore Sα,tn has a different sign at successive zeros of Lαn and so the zeros interlace. The same argument shows that the
zeros of Sα,tn interlace with those of Lα+tn−1 by evaluating (6) at successive zeros of L

α+t
n−1. �

It is interesting to note that in the case of linear combinations of Laguerre polynomials of different degree, the zeros of
Sα,tn do not interlace with the zeros of Lαn−1. Indeed, even in the simplest case when t = 1 and n = 5, b = 2.33, α = 1.45 in
(6), the zeros of S1.45,15 are

{1.34638, 3.48132, 6.74108, 11.6384, 20.6928}

while those of L1.454 are

{0.954365, 2.94834, 6.26071, 11.6366},

and interlacing does not occur. The zeros of Sα,tn and Lα+tn are interlacing when t = 1 since Sα,1n = Lα+1n + (b − 1)Lα+1n−1 .
However, when t = 2, the zeros of S1.45,25 are

{1.94417, 4.47751, 8.08954, 12.6085, 16.7802}

while those of L1.45+25 are

{1.70945, 3.92167, 7.07942, 11.5061, 18.0334},

and interlacing fails in this case.
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