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Abstract

We investigate the zeros of polynomial solutions to the differential–difference equation

Pn+1 = An P ′n + Bn Pn, n = 0, 1, . . .

where An and Bn are polynomials of degree at most 2 and 1 respectively. We address the question of when
the zeros are real and simple and whether the zeros of polynomials of adjacent degree are interlacing. Our
result holds for general classes of polynomials including sequences of classical orthogonal polynomials as
well as Euler–Frobenius, Bell and other polynomials.
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1. Introduction

Let {Pn}
∞

n=0 be the sequence of polynomials defined by

P0 = 1

Pn+1 = An P ′n + Bn Pn, n = 0, 1, . . . , (1)

where An and Bn are polynomials of degree at most 2 and 1 respectively. The best-known
families of classical orthogonal polynomials satisfy differential–difference equations of this type:

• Jacobi polynomials

P(α,β)n+1 (x) =
(2n + 2+ α + β)

(
x2
− 1

)
2(n + 1) (n + 1+ α + β)

dP(α,β)n (x)

dx

+
(2n + 2+ α + β) x + α − β

2(n + 1)
P(α,β)n (x).

• Laguerre polynomials

Lαn+1(x) =
x

n + 1
dLαn
dx

(x)+
α + n + 1− x

n + 1
Lαn (x).

• Hermite polynomials

Hn+1(x) = −
dHn(x)

dx
+ 2x Hn(x).

In these cases, it follows from the theory of orthogonal polynomials (cf. [10]) that the zeros
of Pn are real and simple and that the zeros of Pn+1 and Pn are interlacing. This leads to
the question of what can one say about the zeros of a sequence of polynomials satisfying (1)
that is not orthogonal. Examples of such sequences include the Bell polynomials (cf. [1]), the
Euler–Frobenius polynomials (cf. [6]) and the so-called derivative polynomials (cf. [7]).

A number of authors have investigated the properties of the zeros of sequences of polynomials
that are solutions of (1) but are not, in general, orthogonal. In [11], Vertgeim considered
polynomials generated by (1) with

An(x) = an x2
− bn, Bn(x) = αan x, α, an, bn > 0,

that generalize the Euler polynomials. In [4,5], Dubeau and Savoie study interlacing properties
of the zeros of polynomial solutions of (1) with

An(x) = κn

(
1− x2

)
, Bn(x) = −2κnrn x, rn > 0, κn 6= 0,

which contain the generalized Euler–Frobenius and the ultraspherical polynomials as special
cases. They also consider the Hermite-like polynomials defined by (1) with

An(x) = κn, Bn(x) = −2κn x, κn 6= 0.

In [9], Liu and Wang analyze polynomial solutions of the equation

Pn+1 = An P ′n + Bn Pn + Cn Pn−1, n = 0, 1, . . . . (2)

By assuming that Pn has strictly nonnegative coefficients (resp. alternating in sign) and
An < 0 or Cn < 0 for x ≤ 0 (resp. x ≥ 0), they show that {Pn}

∞

n=0 forms a Sturm sequence.
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Although (2) is more general than (1), the condition on the sign of the coefficients of Pn is a
priori very difficult to check, except in rather isolated situations.

In this paper, we shall take an approach similar to that used in [11]. We establish criteria that
ensure, for a sequence of polynomials {Pn}

∞

n=0 satisfying (1), either that all the zeros of Pn are
real and simple, or the zeros of Pn and Pn+1 are interlacing, or both, based on conditions that
can be checked directly from An and Bn . We present several interesting examples and consider
possible extensions.

2. Preliminary results

It is obvious that any sequence of polynomials is a solution of (1), if we allow An and Bn to be
(non-unique) rational functions. The question of characterizing which sequences of polynomials
{Pn}

∞

n=0 are solutions of (1), when An and Bn are polynomials, is addressed in the following
theorem.

Theorem 1. Suppose that Pn is a polynomial with n simple zeros. Let

Pn(xn,k) = 0, yn,k =
Pn+1(xn,k)

P ′n(xn,k)
, k = 1, . . . , n. (3)

Then the following are equivalent:

(i) There exist polynomials An and Bn of degree at most 2 and 1 respectively such that {Pn}
∞

n=0
satisfies (1). For every n ≥ 3, An and Bn are unique.

(ii) For every n ≥ 2, there exists a quadratic polynomial An such that

An(xn,k) = yn,k, k = 1, . . . , n.

Proof. Evaluating (1) at the zeros of Pn , we clearly see that (i) H⇒ (ii). Assume now that (ii)
holds. For n = 0, we have

P1 = A0 P ′0 + B0 P0 = B0

since P0 = 1. Thus, A0(x) can be any polynomial of degree at most 2 and B0(x) = P1(x). For
n = 1, let B1(x) be an arbitrary polynomial of degree at most 1 and define A1(x) by

A1 =
P2 − B1 P1

P ′1
.

Since P ′1 is a non-zero constant, we see that (i) holds for n = 1. For n ≥ 2, let An be a quadratic
polynomial such that

yn,k = An(xn,k), k = 1, . . . , n.

Then Pn+1 − An P ′n(x) is a polynomial of degree at most n + 1 that is zero at each xn,k and
therefore divisible by Pn(x). This yields the existence of a Bn that is at most linear. When n ≥ 3,
An is uniquely determined so (i) holds. �

Remark 2. The assumption that Pn has n simple zeros is not very restrictive in the sense that the
statement and proof of Theorem 1 can be modified to cater for other possibilities.
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Example 3. Let Pn be the family of orthonormal polynomials with respect to the Freud-type
weight

w(x) =

√
2
t

1

K 1
4

(
t2

2

) exp
(
−x4
+ 2t x2

−
t2

4

)
,

where Kν (z) is the Bessel function of the second kind. In this case, we have (cf. [8])

An(x) = −
1

4an+1
(
x2 + a2

n+1 + a2
n − t

) , Bn(x) =
x
(
x2
+ a2

n+1 − t
)

an+1
(
x2 + a2

n+1 + a2
n − t

) ,
where the numbers an are the coefficients in the three-term recurrence relation

x Pn(x) = an+1 Pn+1(x)+ an Pn−1(x)

satisfying the string equation

n = 4a2
n

(
a2

n+1 + a2
n + a2

n−1 − t
)
, n ≥ 0.

The initial values for an are

a0 = 0, a1(t) =

√
t

2

√√√√√K 1
4

(
t2

4

)
K 3

4

(
t2

4

) − 1, a1(0) =
Γ
(

3
4

)
2

1
4
√
π
, (4)

where a1 > 0 is chosen so that P1(x) = x
a1

has unit norm.
For n = 5, we have

P5(x) =
x5
− αx3

+ βx

a1a2a3a4a5
,

with

α = a2
1 + a2

2 + a2
3 + a2

4, β = a2
1a2

3 + a2
1a2

4 + a2
2a2

4

and therefore, with the notation of (3),

x5,1 = 0, x5,2 =
√
ζ+, x5,3 = −

√
ζ+, x5,4 =

√
ζ−, x5,5 = −

√
ζ−

and

ζ± =
1
2

(
α ±

√
α2 − 4β

)
.

One can show, using a simple algebraic argument, that the polynomial interpolating the points(
x5,k, y5,k

)
, k = 1, . . . , 5, has degree 4, unless a1 = 0, which contradicts (4). We deduce from

Theorem 1 that there are no polynomials An and Bn such that Pn satisfies (1).

3. Main result

In our proofs, we will find it convenient to rewrite the differential–difference Eq. (1) in the
form

Pn+1(x) =
An(x)

Kn(x)

d[Kn(x)Pn(x)]

dx
, (5)
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where Kn is an integrating factor, defined by

Kn(x) = exp
(∫ x

0

Bn(t)

An(t)
dt

)
. (6)

Since An and Bn are polynomials, we can obtain all possible functions Kn by considering
the location of the zeros of An and Bn . This leads to the following classification, where we
define the extended real line by (−∞,∞) ∪ {−∞,∞} and the notation f (±∞) = 0 means
limx→±∞ f (x) = 0.

Theorem 4. Let Kn(x) be defined by (6). Then, Kn(x) has at most two zeros on the extended
real line.

Proof. Since Kn depends on the ratio Bn/An , without loss of generality, we can choose An to be
monic. We consider the possible cases in turn.

1. Let An(x) = (x − λn) (x − ξn), deg (B0) = 1 and Bn(x) = µn ,µn 6= 0 for n ≥ 1. If λn 6= ξn ,
we have

Kn(x) = exp
[

µn

λn − ξn
ln
(

x − λn

x − ξn

)]
.

If ξn = λn , we have

Kn(x) = exp
(
−

µn

x − λn

)
.

2. Let An(x) = (x − λn) (x − ξn), and Bn(x) = κn (x − µn), κn 6= 0. If ξn 6= λn 6= µn , we
have

Kn(x) = exp
[
κn
λn − µn

λn − ξn
ln (x − λn)+ κn

µn − ξn

λn − ξn
ln (x − ξn)

]
.

If ξn = λn 6= µn , we have

Kn(x) = (x − λn)
κn exp

(
κn
µn − λn

x − λn

)
.

If ξn 6= λn = µn or ξn = λn = µn , we have

Kn(x) = (x − ξn)
κn .

3. Let An(x) = x − λn , and Bn(x) = κn (x − µn), κn 6= 0. If λn 6= µn , we have

Kn(x) = exp [κn x + κn (λn − µn) ln (x − λn)] .

If λn = µn , we have

Kn(x) = exp (κn x) .

4. Let An(x) = 1, and Bn(x) = κn (x − µn), κn 6= 0. We have

Kn(x) = exp
[
κn x

( x

2
− µn

)]
. �

Note that in some of the above cases Kn is multi-valued because of the logarithmic function.
However, Kn can be made single-valued by changing the lower bound in (6) and doing so will
not affect the use of Kn in the next theorem.
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Theorem 5. We denote the zeros of Pn in increasing order by γi,n , i = 1, . . . , n. Let

−∞ ≤ αn+1 ≤ αn < βn ≤ βn+1 ≤ ∞

and Kn be continuous on [αn, βn] and differentiable on (αn, βn) . Then:

(a) If Kn = 0 only at x = αn and x = βn for 1 ≤ n ≤ N and α1 < γ1,1 < β1, then the zeros of
Pn and Pn+1 interlace and are in the interval (αn, βn) for n = 1, . . . , N.

(b) If Kn = 0 only when x = αn (resp. βn), An
Kn
= 0 when x = βn (resp. αn), βn < βn+1 for

1 ≤ n ≤ N (resp. αn+1 < αn for 1 ≤ n ≤ N) and α1 < γ1,1 < β1, then the zeros of Pn and
Pn+1 interlace and are in the interval (αn, βn) for n = 1, . . . , N .

(c) If Kn = 0 only when x = αn (resp. βn), An
Kn
= 0 when x = βn (resp. αn) for 1 ≤ n ≤ N and

α1 < γ1,1 ≤ β1 (resp. α1 ≤ γ1,1 < β1), then all the zeros of Pn are real, simple and in the
interval (αn, βn] (resp. [αn, βn)) for n = 1, . . . , N.

(d) If Kn 6= 0, An
Kn
= 0 when x = αn, βn and αn+1 < αn < βn < βn+1 for 1 ≤ n ≤ N with

α1 < γ1,1 < β1, then the zeros of Pn and Pn+1 interlace for n = 1, . . . , N.

Proof. We use the familiar extension of Rolle’s theorem to an infinite open interval.

(a) When n = 1 we have P2(x) =
A1(x)
K1(x)

d[K1(x)P1(x)]
dx and K1(x)P1(x) = 0 at α1, β1 and γ1,1

with α1 < γ1,1 < β. It follows from Rolle’s theorem that P2(x) = 0 at γ1,2, γ2,2 with

α2 ≤ α1 < γ1,2 < γ1,1 < γ2,2 < β1 ≤ β2.

Now, let n ∈ N satisfy 2 ≤ n ≤ N and assume that we have proved the result for Pn . Since
Kn(x)Pn(x) vanishes at αn , βn and γi,n for i = 1, . . . , n with αn < γ1,n < · · · < γn,n < βn ,
Rolle’s theorem applied to (5) yields

αn+1 ≤ αn < γ1,n+1 < γ1,n < · · · < γn,n < γn+1,n+1 < βn ≤ βn+1

and the result follows.
(b) We prove the result for An

Kn
(βn) = 0 for n ∈ N, 1 ≤ n ≤ N , the other case being analogous.

When n = 1 we have P2(x) =
A1(x)
K1(x)

d[K1(x)P1(x)]
dx and K1(x)P1(x) = 0 at α1 and γ1,1 with

α1 < γ1,1 < β1 and it follows from Rolle’s theorem that α1 < γ1,2 < γ1,1. The second zero
of P2(x) coincides with β1, so we have

α2 ≤ α1 < γ1,2 < γ1,1 < γ2,2 = β1 < β2.

Now, let n ∈ N satisfy 2 ≤ n ≤ N and assume that we have proved the result for Pn . Since
Kn(x)Pn(x) vanishes at αn and γi,n for i = 1, . . . , n with αn < γ1,n < · · · < γn,n < βn ,
Rolle’s theorem applied to (5) yields

αn+1 ≤ αn < γ1,n+1 < γ1,n < · · · < γn,n .

Since the largest zero of Pn+1(x) coincides with βn we have

αn+1 ≤ αn < γ1,n+1 < γ1,n < · · · < γn,n < γn+1,n+1 = βn < βn+1

and the result follows.
(c) We prove the result for An

Kn
(βn) = 0 for n ∈ N, 1 ≤ n ≤ N , the other case being analogous.

When n = 1 we have P2(x) =
A1(x)
K1(x)

d[K1(x)P1(x)]
dx and K1(x)P1(x) = 0 at α1 and γ1,1 with

α1 < γ1,1 ≤ β1 and it follows from Rolle’s theorem that α1 < γ1,2 < γ1,1. The second zero
of P2(x) coincides with β1, so we have

α2 ≤ α1 < γ1,2 < γ1,1 ≤ γ2,2 = β1 ≤ β2.

Please cite this article in press as: D. Dominici, et al., Polynomial solutions of differential–difference equations, Journal
of Approximation Theory (2009), doi:10.1016/j.jat.2009.05.010



ARTICLE  IN  PRESS
D. Dominici et al. / Journal of Approximation Theory ( ) – 7

Now, let n ∈ N where 2 ≤ n ≤ N and assume that we have proved the result for Pn . Since
Kn(x)Pn(x) vanishes at αn and γi,n for i = 1, . . . , n with αn < γ1,n < · · · < γn,n ≤ βn ,
Rolle’s theorem applied to (5) yields

αn < γ1,n+1 < γ1,n < · · · < γn−1,n < γn,n+1 < γn,n .

The largest zero of Pn+1(x) coincides with βn , so we have

αn+1 ≤ αn < γ1,n+1 < γ1,n < · · · < γn,n ≤ γn+1,n+1 = βn ≤ βn+1

and the result follows.
(d) When n = 1 we have P2(x) =

A1(x)
K1(x)

d[K1(x)P1(x)]
dx and P2(x) = 0 at α1 and β1 with α1 =

γ1,2 < γ2,2 = β1. When n = 2, γ1,3 = β2 and γ3,3 = β2. Furthermore, P3(x) =
A2(x)
K2(x)

d
dx

[K2(x)P2(x)] and Rolle’s theorem implies that α1 = γ1,2 < γ2,2 = β1. Hence

α2 = γ1,3 < α1 = γ1,2 < γ2,3 < γ2,2 = β1 < γ3,3 = β2.

Now, let n ∈ N with 3 ≤ n ≤ N and assume that we have proved the result for Pn . The small-
est and largest zero of Pn+1(x) are γ1,n+1 = αn and γn+1,n+1 = βn . The remaining n − 1
zeros are obtained by applying Rolle’s theorem to the function inside the square brackets in
(5) and we obtain

αn = γ1,n+1 < γ1,n < γ2,n+1 < · · · < γn,n+1 < γn,n < γn+1,n+1 = βn . �

4. Examples

We conclude by giving some examples where our results apply, highlighting particular choices
of An and Bn that give rise to known families of polynomials.

Example 6. Let

An(x) = κn

(
1− x2

)
, Bn(x) = −2κnrn x, rn > 0, κn 6= 0.

Then

Kn(x) =
(

x2
− 1

)rn

and Theorem 5(a) applies. In [4,5], the authors obtain the same result using a different approach.

Example 7. The Bell polynomials Bn(x) are defined by

Bn(x) =
n∑

k=0

Sn
k xk, n = 0, 1, . . . ,

where Sn
k is the Stirling number of the second kind. They satisfy the differential–difference

equation

Bn+1(x) = x
[
B′n(x)+Bn(x)

]
,

from which we obtain

An(x) = x, Kn(x) = ex .

In this case, we have αn = −∞ and βn = 0 and from Theorem 5(c) it follows that the zeros
of Bn(x) are real and simple and lie in the interval (−∞, 0]. This result has been obtained by
different methods, for example in [2, p. 271].
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Example 8. Let Pn be the family of polynomials defined by

Pn(x) = (c)n 2 F1

(
−n, b

c

∣∣∣∣ x

)
.

In this case, we have

An(x) = x(1− x), Bn(x) = n + c − bx

and thus

Kn(x) = xn+c(x − 1)b−c−n .

Provided that n ∈ (−c, b − c), it follows from Theorem 5(a) that the zeros of Pn and Pn+1
are interlacing and lie in the interval (0, 1). The same result is obtained in [3] using a different
technique.
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