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ABSTRACT
The point-spread function (PSF) is a fundamental property of any astronomical instrument. In interferometers, differing array
configurations combined with their 𝑢𝑣 coverage, and various weighting schemes can produce an irregular but deterministic PSF.
As a result, the PSF is often deconvolved using CLEAN-style algorithms to improve image fidelity. In this paper, we revisit a
significant effect that causes the flux densities measured with any interferometer to be systematically offset from the true values.
Using a suite of carefully controlled simulations, we show that the systematic offset originates from a mismatch in the units of the
image produced by these CLEAN-style algorithms. We illustrate that this systematic error can be significant, ranging from a few
to tens of per cent. Accounting for this effect is important for current and future interferometric arrays, such as MeerKAT, LOFAR
and the SKA, whose core-dominated configuration naturally causes an irregular PSF. We show that this offset is independent of
other systematics, and can worsen due to some factors such as the goodness of the fit to the PSF, the deconvolution depth, and
the signal-to-noise of the source. Finally, we present several methods that can reduce this effect to just a few per cent.
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1 INTRODUCTION

The point spread function (PSF) is a fundamental property of any
astronomical instrument and describes the response of an instrument
to a normalised point source. It characterises how much the true sky
brightness distribution is distorted by the instrument and is often
used to define the angular resolution of the instrument. Understand-
ing and removing the PSF contribution is of critical importance in
extracting accurate photometry from your image. For single aperture
instruments, the PSF shape is dependent on many factors such as
obscuration, aberrations, and pointing errors. This is exacerbated for
ground-based instruments where thermal and gravitational effects
come into play. As a result, the PSF is often time-varying and thus
sophisticated modelling is required to characterise it properly (e.g.,
Krist et al. 2011). However, single-aperture instruments have one key
advantage and that is a filled aperture. This means that the resultant
PSF is often well-behaved, with most of its amplitude located in a
main directional lobe and, with minimal side lobes that only affect
high dynamic range imaging.

In contrast, the PSF of an interferometer (often known as the ‘dirty
beam’ or ‘synthesised beam’) does not have this luxury, and the in-
complete Fourier sampling of the aperture means that the PSF often
has significant sidelobe structure that can affect the extraction of ac-
curate photometry. However, the PSF of an interferometer is highly
deterministic and can be calculated exactly from the visibilities mea-
sured by the interferometer. This means that interferometric images
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can often be improved by deconvolving the PSF from the image. The
most commonly used method of deconvolution is the CLEAN fam-
ily of algorithms. These algorithms deconvolve through a process of
iterative peak finding and PSF subtraction, down to some predeter-
mined threshold (also known as ‘matching pursuit’). However, the
estimated sky brightness model obtained from these algorithms is
typically comprised of delta functions and/or Gaussians which can
often look distinctly unphysical. As a result, a ‘restoration’ step is
usually employed. In this step, the model is convolved with a 2D
Gaussian fitted to the PSF that estimates the effective resolution of
the interferometer as if it had a filled aperture. This is then added to
the subtracted image (which can contain low-level unresolved flux)
and this restored image is then used for science.

However, this restoration step can result in a systematic error that
occurs when extracting the flux densities of sources. This was noted
early when the Fourier sampling was sparse (e.g., Högbom 1974).
As a result, early array designs were often optimised to generate an
approximately Gaussian PSF (e.g., the Very Large Array - VLA).
The error was first quantified by Jörsäter & van Moorsel (1995) who
found that there was a mismatch between the flux density of an input
model source and the resultant recovered flux densities when CLEAN
deconvolution was used. This was found to be from contamination by
faint flux that had not been deconvolved. While this effect has been
routinely corrected for in spectral line studies (e.g., Kennicutt et al.
2007; Cannon et al. 2009; Hunter et al. 2012; de Blok et al. 2018;
Novak et al. 2020), it had sparingly been taken into account during
continuum imaging studies (e.g., Benisty et al. 2021; Heywood et al.
2022; Booth et al. 2023).
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This is understandable, as the effect of this systematic error had
been lessened through the improved 𝑢𝑣 coverage and array designs
that resulted in PSFs that more closely resemble a filled aperture.
However, the designs of modern interferometric arrays, such as
MeerKAT, ASKAP, LOFAR, ALMA, the upcoming Square Kilo-
metre Array (SKA) and next-generation VLA (ngVLA), are driven
by multiple, diverse scientific objectives that require a high sensitivity
to diffuse structures, and high angular resolutions, and non-imaging
applications, such as pulsar timing, all at the same time. These com-
peting scientific requirements have resulted in the configuration of
these arrays being a compromise, resulting in the majority being
core-dominated with a sparser distribution of antennas on longer
baselines. As a result, the large number of shorter baselines produces
a naturally irregular PSF.

It is in this context that we are re-examining this systematic effect
as will be important to account for when using these modern inter-
ferometric arrays (as long as the use of CLEAN-style deconvolution
methods persists). In this paper, we shall use a controlled simulation
of a core-dominated radio interferometer array to quantify this effect
on recovered flux densities, and present some methods that can help
correct it so that interferometric surveys can take this systematic error
into account.

The paper is organised as follows. In Section 2, we introduce the
simulations used. Our results are shown in Section 3, and we explain
the origin of the offsets in Section 4. We present the methods to solve
for the effects of the PSF in Section 5, and discuss the implications
and limitations of these results in Section 6.

Throughout this paper, we define the spectral index, 𝛼, as 𝑆𝜈 ∝ 𝜈𝛼

where 𝑆𝜈 is the specific integrated flux density (per unit frequency,
𝜈). We use the convention used in the Common Astronomy Software
Applications (CASA) package (The CASA Team et al. 2022) for
the robustness factor (𝑅) of the Brigg’s weighting scheme (Briggs
et al. 1999) which is defined to be between −2 and 2. These values
approach uniform and natural weighting, respectively.

2 SIMULATIONS

For the simulations, we opted to generate a combined VLA (in A-
configuration) and e-MERLIN array. This combination has a well-
documented irregular PSF due to the short spacings of the VLA
compared to the e-MERLIN array (e.g., see Muxlow et al. 2020). We
also have generated a representative MeerKAT array to prove that
this effect is evident in modern core-dominated interferometers (see
Section 6).

To build the simulated data, simms1 was used to create empty
CASA measurement sets with a delay-tracking centre located at a
Right Ascension of 12h and a Declination of +60◦ (or −30◦ for
MeerKAT), and a total on-source integration time of 12 hours. These
data sets have four correlations present with circular feeds for VLA
and e-MERLIN, and linear feeds for MeerKAT. We used a bandwidth
representative of a standard L-band (∼ 1.5 GHz) observation with
each array. The long integration times (10 s) and a small number
of frequency channels were used to keep the data sizes as small
as possible without adversely changing the PSF profile. The exact
specifications of each simulated data set are summarised in Tables 1
and 2.

Thermal noise was inserted into the visibilities for each baseline,
V𝑝𝑞 , that comprises antennas 𝑝 and 𝑞. We assumed that the system

1 https://github.com/ratt-ru/simms

Table 1. The properties of the simulated data sets. The sensitivities were
calculated using a natural weighting scheme when imaging.

Array Frequency SEFD # channels Sensitivity
(GHz) (Jy) (µJy beam−1)

VLA 1.024–2.048 420 32 1.91
e-MERLIN 1.254–1.766 see Table 2 64 6.04
MeerKAT 0.900–1.677 450 32 1.15

Table 2. System equivalent flux densities used for the e-MERLIN antennas.

Antenna SEFD
(Jy)

Lovell 40
Knockin 400
Pickmere 450
Darnhall 450
Defford 350

Cambridge 175

thermal noise was broadband and so can be described using a cir-
cularly complex Gaussian probability distribution N that has a zero
mean and a variance of 𝜎2

𝑝𝑞 per visibility. The standard deviation of
the visibility scatter, 𝜎𝑝𝑞 , is given by the radiometer equation that,
per visibility, is given by,

𝜎𝑝𝑞 =
1
𝜂𝑐

(SEFD𝑝 × SEFD𝑞

2𝑡int𝛿𝜈

) 1
2
, (1)

where SEFD is the antenna’s System Equivalent Flux Density, 𝜂𝑐 is
the efficiency factor (taken to be 0.88 assuming 4-level quantisation),
𝑡int is the integration time, and 𝛿𝜈 is the channel bandwidth. This was
then added into the visibilities of the measurement set as an additive
term per polarisation,

V′
𝑝𝑞 = V𝑝𝑞 + N(0, 𝜎2

𝑝𝑞). (2)

To ensure that the natural weighting scheme generates an image with
the optimal sensitivity, the weights of each visibility, 𝑊𝑝𝑞 , were set
such that,

𝑊𝑝𝑞 =
1

𝜎2
𝑝𝑞

. (3)

This is important for the heterogeneous e-MERLIN array where
the majority of the sensitivity is provided by the baselines to the
more sensitive Lovell and Cambridge telescopes. These visibilities
should now be representative of the thermal noise of the array given
their nominal antenna sensitivities. Next, elevation-dependent flag-
ging was conducted by removing data from each antenna when the
pointing centre is below 5 degrees elevation for that antenna.

With the noise inserted into the data, we then generated the sky
model. To keep the number of variables as small as possible, our input
sky model was comprised of a total of 13,500 point sources. This was
split into three individual realisations each with 4,500 sources. Point
sources were selected as our model to eliminate any complications
arising from the ‘resolving out’ of flux due to the incomplete Fourier
sampling of an interferometric array. These sources had randomly
assigned integrated flux densities which were designed to cover a
signal-to-noise (S/N) range of 5–70. The sources were distributed
randomly with the caveat that each source was at least 10′′ from its
nearest neighbour. This was chosen to eliminate any complications
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arising from source confusion when attempting to measure the indi-
vidual flux densities. In addition, the point sources were defined to be
located at an integer number of pixels in the model image to prevent
any pixelation errors when it was transformed into model visibilities.

This sky model was inserted into the measurement sets by con-
verting the model sky (via de-gridding) into model visibilities using
the wsclean (Offringa et al. 2014) package. This method ensures
that wide-field effects, such as baseline non-coplanarity (known as
the 𝑤-term), are not present in the modelled sky. This model was
then added into the visibilities using the CASA task uvsub. For the
subsequent imaging runs, wsclean was used due to its versatility
and speed. We cross-checked the imaging outputs of wsclean and
CASA’s tclean task when using identical parameters and we found
an average fractional difference of just 0.3%. We are therefore confi-
dent that our results are minimally impacted by the choice of imaging
software. The exact imaging runs are presented in Section 3.

3 RESULTS

To show the effects of an irregular PSF upon the resultant measured
flux densities, the combined VLA and e-MERLIN array were im-
aged using a robust value of zero. This produces an irregular PSF
with a secondary component on larger angular scales that is caused
by the short spacings provided by the VLA. This is shown in the
right-hand panel of Figure 1 which shows a 1D slice through the
PSF. Each image was 25k × 25k pixels in size with each pixel cor-
responding to an angular size of 0.′′05. These choices enable all
4,500 sources of each realisation to be imaged at once. The PSF was
deconvolved from the source brightness using the Clark algorithm
(Clark 1980). We used multiple different deconvolution thresholds
(i.e., the flux density level where deconvolution stops) ranging from
1–4 times the local root-mean-square (rms) noise levels (𝜎) so we
can illustrate how the deconvolution process can drastically affect the
recovered fluxes. Once deconvolution had ceased, the source bright-
nesses were restored by convolving the model with two different 2D
Gaussian fits to the PSF; a∼ 0.′′3 full-width half-maximum (FWHM)
fit that was produced CASA’s tclean task and a ∼ 0.′′6 FWHM fit
from wsclean. The fact that two different imaging packages produce
completely different fits is indicative of the difficulty of assuming a
Gaussian fit to a highly non-Gaussian PSF. The convolved model is
then added back to the residual image (where the source flux densities
have been removed and deconvolved). To summarise, we produced
a total of eight images, with four different deconvolution thresholds,
and two different fits to the PSF.

Flux density extraction was conducted using aperture photometry
(implemented using photutils; Bradley et al. 2020). We used an
aperture that is 2.5 times larger than the major axis of the fitted
PSF. This enables us to recover > 99% of the source’s flux density
while compensating for the widening of the source structure due to
the convolution of the model sky with the restoring beam. By using
aperture photometry and the knowledge of where our sources are, we
can mitigate the well-known effect of ‘flux-boosting’ (e.g., Jauncey
1968). This occurs because typical source-detection routines use a
sigma detection threshold to determine what is a true source above the
noise. In the low S/N regime, local noise variations can cause some
sources to be co-located with a noise peak which results in the source
exceeding the detection threshold, while those sources on a negative
noise peak would not be detected. This will bias the distribution of
sources upward in flux density in the low S/N regime. In addition,
the fitting routines often employed perform inadequately in the low
S/N regime (e.g., Hale et al. 2019). Aperture photometry will not

suffer from this issue as the noise contribution should (statistically)
average to zero, while all the real flux located within the aperture
will be detected. In addition, no sources will be missed (e.g., due to
being co-located on a negative noise peak) as we know the source
positions beforehand.

Figure 1 shows the results of the flux extraction for the eight
images described earlier. In the left and centre panels, we present the
ratio of measured flux densities (𝑆measured) to the model flux densities
(𝑆model) against the S/N ratio for a range of deconvolution thresholds.
The flux densities of the sources are median binned into 7 bins with
each containing approximately an equal number of sources. The error
bars and filled-in areas correspond to the 1𝜎 standard deviation of
the flux densities within each bin. In the right panel, we show a 1D
slice of the PSF with the corresponding Gaussian fit which is used
to produce the output images.

We would expect that the ratio of 𝑆measured/𝑆model would be ap-
proximately equal to one if the flux densities were recovered perfectly.
However, as we can see in the left and centre panels of Figure 1,
the flux densities recovered differ significantly from those inputted.
There are four main results from this that we need to draw attention
to.

Firstly, regardless of the fit, the recovered flux densities are dif-
ferent to the model flux densities. These offsets can be significant
and can range from just 5% to 250%. Such a systematic error can
surpass the typical amplitude errors of interferometers which are of-
ten taken to be of the order of 10%. Secondly, the extent of the flux
density offsets worsens when we deconvolve to higher thresholds (or
a ‘shallower’ deconvolution). This indicates that the flux densities
recovered in any interferometric array are highly dependent on the
deconvolution depth. For interferometric arrays with a large number
of elements (e.g., LOFAR, MeerKAT, SKA), the additional com-
putational requirements to deconvolve to much lower flux densities
could be prohibitive, subsequently adversely affecting the measured
flux densities of these arrays.

Thirdly, the flux density offset becomes more severe towards the
low S/N regime showing that flux uncertainties at the noise limit are
increasingly uncertain irrespective of the increasing fitting errors.
The PSF must be taken into account within this regime. Finally,
the flux density offsets are more extreme when the fit between the
restoring beam is worse. In the next section, we shall explain how
the flux density systematics arise and their relationship to both the
S/N and deconvolution.

4 THE ORIGIN OF THE MEASURED FLUX DENSITY
ERRORS

As inferred previously, these trends are all related to the deconvolu-
tion method used. To illustrate this, we are going to use a toy model
of the deconvolution process. For simplicity, we are going to assume
that there is no thermal noise present and that we are observing a
simple 1 Jy point source. This source is observed with an instrument
that has the same irregular PSF profile as shown in the right panel of
Figure 1. As expected, the measured sky brightness is just equal to
the PSF response. The key here is that the interferometer measures
the source brightness in units of Jansky per PSF.

The PSF contribution is then deconvolved from the true source
brightness using the Högbom (1974) CLEAN algorithm. In this
method and many other deconvolution methods used in radio interfer-
ometry, the pixel of peak brightness is found and then a percentage
of this brightness is convolved with the PSF and then subtracted
from the image. The value and position of the brightness that is re-
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Figure 1. Left and centre panels: The flux density recovery performance of the simulated combined VLA and e-MERLIN arrays using two different Gaussian
to the PSF. The binned S/N of the 13,500 sources are plotted against the ratio of the measured to model flux densities for a range of deconvolution thresholds.
The error bars and shaded regions correspond to 1𝜎 deviations within the bins. The fits are ∼ 0.′′3 (left panel) and ∼ 0.′′6 (centre panel) which correspond to
the resultant fits by CASA’s tclean task and the stand-alone wsclean package. Right panel: A 1D slice through the PSF with the resultant fits overlaid. The
bottom panel shows the residuals are plotted per pixel
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Figure 2. A 1D toy model of the deconvolution process using the PSF profile presented in Figure 1. The deconvolution threshold is shown by the blue dotted
line. As deconvolution proceeds to lower thresholds (from the left to the right panel), the number of beam widths which the flux density is measured across tends
to be one. Theoretically, we would get a perfect recovery of the flux density if we were able to deconvolve to a 0 Jy threshold.

moved are then stored as a sky brightness model (as delta functions
in the case of the Högbom (1974) algorithm). This process is then
re-iterated until a stopping criterion is met. Often this criterion is a
threshold where deconvolution stops when the brightest pixel in the
subtracted image falls below a pre-defined value. This threshold is
often a few 𝜎 above the noise for multiple reasons such as reducing
computational expenditure, preventing the divergence of the decon-
volution process, ensuring that a reliable sky model is generated (e.g.,
for self-calibration), or preventing unnecessary over-deconvolution
which can lead to other systematics such as CLEAN bias (e.g., Becker
et al. 1995).

The model sky brightness is then convolved with a restoring beam
which comes from a Gaussian fit to the PSF and is added back to
the residuals (the image after the PSF multiplied by the brightness is
subtracted). A Gaussian is often chosen as it is a good approximation
for the idealised response of the interferometer as if it has complete 𝑢𝑣

coverage. The restored image is assumed to have units of Jansky per
beam where the beam is defined by the angular size of the Gaussian.
A flux density is then measured by summing the brightnesses over
the number of beams that the source brightness extends over.

For example, in our toy model, the PSF is fitted with a ∼ 0.′′3
Gaussian that is used as the restoring beam. This gives us a fixed
solid angle which we can integrate over to obtain a flux density. In
Figure 2, we show the deconvolution process at four progressively
lower thresholds. At the lowest threshold (0.001 Jy; first panel from
the right in Fig. 2), the brightness in the output image covers almost a
single beam area therefore we recover the input flux density exactly.
However, when the PSF is still present in the output image (as in the
other three panels), the brightness of the source is summed over more
than one beam area hence a higher flux density is measured when
compared to the input model. This explains why the 0.′′6 fit, which is
larger than the true PSF, causes a reverse effect where the measured
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flux density is smaller than the input model flux density (as shown
in the central panel of Fig. 1). In this case, there are fewer beam
elements that the brightness is observed over, hence the recovered
flux density is measured to be lower than the model.

In other words, above the deconvolution threshold, the recovered
sky brightness has units of Jy beam−1, but below the deconvolution
threshold, the flux density is still in units of Jy PSF−1. This means that
the source of this error occurs when the residuals (which has units of
Jy PSF−1) are added back to the convolved model (which has units of
Jy beam−1), but we extract the flux densities from the image assuming
units of Jy beam−1 throughout. The subsequent mismatch between
PSF and beam area below the deconvolution threshold, therefore,
causes the flux density to be miscalculated. These flux density offsets
get progressively worse as the deconvolution threshold increases, as
is shown in Figure 2. This is because the percentage of flux restored
with the fitted beam width/solid angle (i.e., converted from units of
Jy PSF−1 to Jy beam−1) is increased when using a lower threshold.
This argument also explains the trends with S/N seen in Figure 1.
When a fixed deconvolution threshold level is used, sources with
a lower S/N have less of their total flux density deconvolved and
restored with the fitted beam which has a well-defined solid angle.
This results in a larger proportion of the flux density being incorrectly
estimated once measured.

5 POSSIBLE SOLUTIONS

Now that the issue has been outlined and explained, we shall introduce
some possible methods that can reduce these flux density offsets.
These solutions are not only motivated by the simulations presented
but also through experiences with real data.

5.1 Making the PSF closer to a Gaussian through re-weighting

The motivation for this solution comes from the e-MERGE survey
(Muxlow et al. 2020). This survey uses a combined VLA and e-
MERLIN array which results in a highly non-Gaussian PSF which
caused flux density offsets in these data.2 As part of this survey,
solutions to this problem were formed and implemented.

There are three main ways in which the flux density offsets can
be reduced. The first method is to deconvolve to deeper thresholds.
This is shown in the left and centre panels of Figure 1. However, it
is worth noting that this may not be possible for real data. Firstly,
deconvolution cannot continue indefinitely as the computational ex-
pense can become prohibitive but also, for many modern sensitive
arrays, such as MeerKAT, it is often residual calibration errors (such
as pointing errors) and direction-dependent effects that limit to which
deconvolution can be performed.

It is therefore practically impossible to deconvolve all flux (espe-
cially that below the noise level) and fully remove this effect. The
extent of this systematic could be removed in statistical studies (e.g.,
source counts) using simulations as the exact extent of the flux den-
sity offsets will be sensitive to any process that changes the PSF
shape. This would include factors such as the exact 𝑢𝑣 coverage,3
and data weighting. However, on a source-by-source basis, extra care
would still need to be taken to account for this systematic effect.

2 In particular, see Section 2.5.1 of Muxlow et al. (2020) where this is
discussed.
3 This is in itself dependent upon a multitude of factors including the number
of antennas and their location, source location, flagging of data and more.

The second method would be to re-weigh the data so that the
resultant PSF more closely represents a Gaussian. This means that
the systematic effect is reduced and prevents complications caused
by deconvolving too deeply to be mitigated. We achieved this with
the simulated data sets using a Gaussian taper of 1 arcsecond. The
results are shown in Figure 3. As shown, the flux density offsets are
still present (due to the imperfect Gaussian PSF), but to a lesser extent
due to the much better fit. The offsets are only a few per cent compared
to Figure 1 which could be more than 5–10%. In addition, the spread
between the various deconvolution thresholds has been reduced with
differences of around ∼ 1% on the lowest S/N sources. However, as
with any re-weighting scheme, there are always sacrifices that have
to be made whether it be resolution or point-source sensitivity. In
this case, the sensitivity of the observation worsened by 90% which
would be detrimental to many surveys. In such cases, a compromise
should be required and so would need to subsume this systematic
effect into their error budget for individual sources.

This was the approach that was used for the e-MERGE survey
(Muxlow et al. 2020). We found for core-dominated arrays, as that
previously encountered in e-MERGE, applying a Tukey taper (Tukey
1962) allowed us to make the PSF more closely represent a Gaussian,
and reduce the systematic flux offsets to just a few per cent. The taper
allowed us to smoothly reduce the re-weight of the shorter baselines
which in turn, reduces the amplitude of the shoulders in the PSF.
While the sensitivity was degraded by around 30% the resultant flux
densities were now reliable when compared to other surveys.

Unfortunately, the sheer number of different weighting schemes
for interferometric data means that it should be viable to obtain these
compromises, but the exact parameters are often difficult to deter-
mine analytically as the resultant PSF shape is dependent upon many
interconnected factors. This means that a Monte-Carlo approach to
the exact compromise would often be required for each observation.

5.2 Rescaling the residuals

An alternative method was proposed by Jörsäter & van Moorsel
(1995) (see their Appendix A.2) and is the method commonly used
in many spectral line studies. Here, the mismatch between the restor-
ing beam and PSF areas, which causes the flux density systematic
error, can be estimated and corrected by rescaling the measured flux
densities to be in units of per beam rather than per PSF. Their for-
mulation is as follows. If we take a residual flux density, 𝑅, and a
restored/deconvolved flux density, 𝐶, the unknown true source flux
density, 𝐺, is given by residual map, 𝑅, rescaled by a factor 𝜖 by,

𝐺 = 𝐶 + 𝜖𝑅. (4)

The factor 𝜖 is unknown and is required for us to be able to rescale
the residual flux from units of Jy PSF−1 to Jy beam−1. This factor is
related to the ratio of the areas through,

𝜖 =
Restoring beam area

PSF area
. (5)

To estimate 𝜖 , Jörsäter & van Moorsel (1995) suggested that you
can conduct two separate deconvolution runs to different thresholds.
This will result in two recovered fluxes, 𝐶1 and 𝐶2, and two residual
fluxes, 𝑅1 and 𝑅2. These can be related to the true flux density, 𝐺,
by the following two equations,

𝐺 = 𝐶1 + 𝜖𝑅1 and 𝐺 = 𝐶2 + 𝜖𝑅2. (6)
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Figure 3. Left panel: The flux density recovery performance of the simulated combined VLA and e-MERLIN arrays using a reweighing scheme that forces the
resultant PSF to closely represent a Gaussian with FWHM of 1′′. The S/N of the 4500 sources is plotted against the binned ratio of the measured to model flux
densities for a range of deconvolution thresholds. The vastly improved performance compared to Figure 1 is evident and the flux density offsets are reduced to
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Figure 4. The estimated true flux density 𝑆𝐺 achieved by rescaling the dirty
map using Equation 8. The restoring beam was chosen to be of 0.′′6 as in the
centre panel of Figure 2.

These can be solved for the two unknowns, 𝐺 and 𝜖 to give,

𝜖 =
𝐶2 − 𝐶1
𝑅1 − 𝑅2

,

𝐺 =
𝐶1𝑅2 − 𝑅1𝐶2

𝑅2 − 𝑅1
.

(7)

This can be simplified by using a single deconvolution run and the
un-deconvolved or dirty map so 𝐶2 = 0. This reduces Eqn. 7 to,

𝜖 =
𝐶1

𝑅2 − 𝑅1
and 𝐺 = 𝜖𝑅2. (8)

We applied Eqn. 8 to the imaging runs that used a 0.′′6 restoring
beam (see the centre panel of Figure 1). We found that the true
flux densities are almost perfectly recovered for all deconvolution
thresholds at S/N larger than 15, far exceeding the performance of
the re-weighting method presented in Section 5.2 (see Figure 4).
However, at low S/N, the recovery deviates with a few per cent errors
on all deconvolution depths. In addition, the calculation of 𝜖 for all
sources increases the scatter in an individual measurement whereas
the binned statistical population is correct.

An alternative method for correcting for this effect comes from
the MeerKAT MeerKAT International Gigahertz Tiered Extragalac-
tic Explorations (MIGHTEE) survey (Heywood et al. 2022). In
this paper, they deal with the PSF mismatch by using a PSF ho-
mogenisation kernel which is convolved with the residual image
(post-deconvolution model removal) to make the residuals match the
restoring beam sizes. The model is then convolved with the restor-
ing beam and added to the rescaled residuals. This ensures that the
whole image is now in the same units. This method has the distinct
advantage in removing the need to reweigh the data to get Gaussian
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beams but the open question still arises as to whether this artificially
affects the Fourier scales that are expressed in the image. We leave
this investigation to a future paper that will look at resolved sources.

6 DISCUSSION AND CONCLUSIONS

To conclude, the point spread function of an interferometer is integral
to every observation but can have far-reaching effects when we are
attempting to extract accurate flux density measurements. Whilst the
effect of the PSF and CLEAN-based deconvolution methods have
been noted for many decades (e.g., Jörsäter & van Moorsel 1995),
there have been only a few considerations in the literature (e.g.,
Benisty et al. 2021; Heywood et al. 2022).

The flux density systematic error shown in this paper affects all
interferometric images as long as CLEAN-style deconvolution meth-
ods are still employed. While many previous interferometric arrays
(e.g., the VLA) were originally designed to reduce the irregularities
/ non-Gaussianity of the PSF response, modern and upcoming inter-
ferometers (e.g., MeerKAT, LOFAR, SKA and the next-generation
VLA), with their core dominated array configuration will naturally
produce irregular PSFs. For example, in Figure 5 where we have
simulated a 12-hour, 64-antenna MeerKAT observation at 𝛿 = −30◦.
The left-hand panel shows the resultant PSF which shows a widening
due to the large number of short baselines present in the MeerKAT
array. This is more clearly shown in the 1D slice of the PSF in the
right-hand panel.

It is likely that CLEAN-based deconvolution algorithms will still
be used for many years to come due to their speed and versatility,
therefore this effect should be taken into account when analysing
any interferometric images. This means that users will need to adopt
some of the solutions that were presented in Section 5 and include
these in their data analysis/reduction pipelines. However, the methods
presented in this paper are not a comprehensive encyclopedia of all
possible methods that could alleviate this effect but instead, we wish
to open a discussion on the matter and ensure that this systematic
does not need to be revisited in the future.

To mitigate this issue in its entirety, we will likely need to deviate
from CLEAN-based deconvolution methods and adopt the more sta-
tistically robust algorithms that can produce more physically mean-
ingful sky models (e.g., Carrillo et al. 2012; Arras et al. 2021);
however, it is still to be proven how these algorithms could be im-
plemented on the datasets of the size that the next generation of
interferometers will produce.
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Figure 5. The PSF of a simulated 12 hr MeerKAT observation of a source at 𝛿 = −30◦ using robust weighting of 0.5. The left panel is a 1′ × 1′ cutout of the
PSF while the right panel is a 1D slice at ΔDec = 0 with the Gaussian fit to the PSF over-plotted. The shoulder of the PSF due to the large number of short
baselines present in both panels which results in a Gaussian unable to fit the PSF.
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