
1 
 

Geospatial Based Analysis for Soil Erosion Susceptibility Evaluation: Application of a 
Hybrid Decision Model 

1Chris C. Okonkwo, 13Emmanuel C. Chukwuma, 1Louis C. Orakwe, 2Gloria C. Okafor 

1Department of Agricultural and Bioresources Engineering, Faculty of Engineering,  

Nnamdi Azikiwe University, Awka, Nigeria 

 2Department of Meteorology and Climate Change, Nigeria Maritime University, Okerenkoko 
Warri, Delta State, Nigeria 

3Research Fellow, Future Africa Institute, University of Pretoria, South Africa  

Corresponding author: Emmanuel C. Chukwuma;  

Email: ec.chukwuma@unizik.edu.ng 

Declarations 
Conflict of interest:  The authors declare that they have no known competing financial interests 
or personal relationships that could have appeared to influence the work reported in this paper. 
 

CREDIT author statement 
This work was carried out in collaboration between all the authors. Authors E. C. Chukwuma 
and C. C. Okonkwo designed the study, C. C. Okonkwo carried out the field survey and 
collected the data, C. C. Okonkwo and E. C. Chukwuma analyzed the data, wrote the protocol. 
L. C. Orakwe and G. C. Okafor wrote the first draft of the manuscript, and edited the 
manuscript.  
 
Funding: This research did not receive any specific grant from funding agencies in the public, 
commercial, or not-for-profit sectors. 
 
Data Availability: Data will be made available on request.  
 
Code Availability: This does not apply to this manuscript.  
 
 

 

 

 

 

 

 



2 
 

Abstract 

Erosion hazard is a major environmental change in developing countries and therefore 
necessitates investigations for effective erosion control measures. This study is hinged on the 
numerous advantages of a hybrid Multi-Criteria Decision Model (MCDM) to assess erosion 
vulnerability using remote sensed data and the application of Geographical Information System 
(GIS). Nine risk factors of erosion were selected for this study and their thematic maps were 
utilized to produce a spatial distribution of erosion hazard in the state. An integrated IVFRN-
DEMATEL-ANP model was used to investigate the interrelationships between the risk factors 
and also obtain their final weights. The assessment model identified Rainfall, Erosivity Index, 
Stream Power Index, Sediment Transport Index, Topographic Wetness Index and Soil as the 
most influential factors of erosion in the study area. The weighted linear combination method 
was used to integrate the risk factors to produce the spatial distribution of erosion vulnerability 
model. The method was validated using Anambra State of Nigeria.   The findings from the study 
revealed that Anambra State is vulnerable to erosion hazard with 45% of the state lying between 
Very High and Medium vulnerable zones. A good predictive model performance of 89.7% was 
obtained using the AUC-ROC method. The feasibility of integrating the IVFRN, DEMATEL and 
ANP models as an assessment model for mapping erosion vulnerability has been determined in 
this study and this is vital in managing the impact of erosion hazards globally. The model’s 
identification of hydrological and topographical factors as major causes of erosion hazard 
emphasizes the importance of critical analysis of risk factors as done in this study for effective 
management of erosion. This study is a veritable tools for implementation of erosion mitigation 
measures.  
Keywords: Erosion hazard, Vulnerability assessment, Geospatial analysis, Decision model, 

Anambra State of Nigeria 

Introduction 

Soil erosion is a major environmental, economic and social issue that constitutes land 
degradation and soil productivity loss which hampers the sustainable development of rural areas 
as well as the stability and health of the general society (Igwe et al. 2017). The problem of soil 
erosion is expected to increase due to climate change as the erosion process is largely influenced 
by variations in extreme precipitation (Eekhout & Vente 2022; Peng et al. 2022). The 
phenomenon of erosion is mainly attributed to the action of floods or running water and it can be 
described as a process that involves the detachment, transportation and deposition of soil 
particles by water, rainfall, and runoff (Isife 2019; Mushi et al. 2019). While there are four 
agents of soil erosion, i.e., water, wind, gravity, and freeze-thaw, however, 50% of global soil 
erosion is caused by water (Guo et al. 2019). Based on the nature of occurrence, soil erosion can 
generally be classified into two distinct categories. The first is a normal process that takes place 
for millions of years and leads to the formation of new soils, while the second is an accelerated 
process caused by anthropogenic activities such as deforestation, overgrazing, and unsuitable 
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farming practices which lead to more soil loss than soil formation (Ahmad et al. 2020). The 
second category is a major cause for concern as global population growth has resulted in a 
continual transformation of vast areas of natural vegetation into areas for human use, mainly for 
agricultural expansion (Xiong et al. 2019). Accelerated soil erosion has a negative effect on soil 
and crop productivity via reduction of nitrogen, phosphorus, and soil organic matter content; 
varying clay content of the soil; depletion of available water capacity; and the reduction of soil 
aggregation (Chalise et al. 2019). Other significant impacts of soil erosion on the environment 
include water quality degradation as a result of eutrophication in water bodies, siltation, 
increased flood risk, etc (Das et al. 2020). In addition to the land degradation caused by the 

detachment, the transported particles also affect human activities via the sedimentation of 
reservoirs for irrigation and drinking water purposes, and the destruction of housing and 
infrastructures (Eekhout & Vente 2022). The deposition of the transported particles in waterways 
can also lead to difficulties in navigation (Mushi et al. 2019).   
  

  
Soil erosion is an evident environmental issue in the Southeastern part of Nigeria as it has 
destroyed various life forms, properties, transportation and communication systems, arable lands, 
surface and groundwater sources (Egboka et al. 2019; Egwuonwu et al. 2019). Anambra state is 
one of the worst-hit erosion states in South-East Nigeria with over 500 active erosion sites which 
cut across several rural communities in the state  (Egwuonwu et al. 2019; Nwobodo et al. 2018). 
The issue of erosion in the state has attracted a lot of study and research. Mezie & Nwajuaku 
(2020) investigated the causes of gully erosion in some parts of Aguata local government area 
of the state and attributed the cause of erosion in the area to human activities as well as the 
inherent soil properties. In the upper Idemili River catchment of Anambra State, 
Nigeria, Chibuzor et al. (2020) observed that the porous and permeable nature of the soil, as well 
as its high hydraulic conductivity, triggered the development of gully erosion in the area. Iliyasu 
et al. (2019) studied the environmental effects of gully erosion in the Nanka community of 
Anambra state and observed that erosion in the area is caused by both natural and anthropogenic 
factors which include road construction without drainage, deforestation, disposal of solid waste 
in waterways, rainfall intensity and nature of soil among others. The study also identified 
the destruction of residential infrastructures, the loss of lives and farmlands, and psychological 
trauma as the effects of erosion in the area. Consequently, an investigation that enhances 
decision-making in mitigating the impact of soil erosion is critical for the study area 
  
The applications of geospatial technologies such as GIS, spatial interpolation techniques, and the 
ever-growing range of environmental data in recent times have increased the importance of soil 
erosion modeling in the plan and execution of soil management and conservation 
strategies (Borrelli et al. 2021). To effectively and efficiently tackle soil erosion and its 
associated environmental issues, there is a need to identify areas prone to erosion for the 
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implementation of measures that are essential for the conversation of soil resources and the 
restoration of ecological systems (Guo et al. 2021). The accessibility of remotely sensed data, 
developmental strides in computation, and the incorporation of data in GIS have facilitated the 
mapping and identification of areas vulnerable to erosion where conservation is highly 
needed (Tamene & Le 2015). Furthermore, the Spatio-temporal variations in soil erosion due to 
variations in climate, soil, topography, vegetation, and conservation measures (Jin et al. 2021), 
make GIS an ideal tool for its assessment. GIS is a very useful tool in developing automated 
methods for measuring the spatial variability of hazard and erosion-related issues, and it is 
largely employed in supporting modeling and hazard analysis (Rahman et al. 2015). With the aid 
of GIS, several machine learning tools have been employed for the assessment of various 
hazards. Mosavi et al. (2022) employed a Generalized Linear Model (GLM), Flexible 
Discriminate Analyses (FDA), Multivariate Adaptive Regression Spline (MARS), Random 
Forest (RF), and their ensemble to assess erosion and flood susceptibility in Iran. Mosavi et al. 
(2020) also studied soil erosion susceptibility using Weighted Subspace Random Forest (WSRF), 
Gaussian Process with a Radial Basis Function Kernel (Gaussprradial), and Naive Bayes (NB) 
methods. Amongst the various models which can be supported by GIS in vulnerability 
assessment, the multi-criteria decision-making (MCDM) model has gained attention in the study 
of hazard vulnerability. This can be attributed to the use of GIS to visualize and spatially analyze 
geographic data to support the environmental decision-making process (Saini et al. 2015). 
Furthermore, the combination of the multi-criteria decision-making (MCDM) models with GIS 
also helps to improve the decision-making process. The MCDM models can be used to identify 
vulnerable areas to erosion by evaluating different alternatives based on certain criteria (Halefom 
et al. 2018). The identification of the main factors which influence soil erosion is very important 
when considering the implementation of natural restoration policies ( Guo et al. 2021). The 
application of GIS and the MCDM models makes it possible to combine the spatial values of 
alternatives and the weights of criteria to identify the best option (Arabameri et al. 2019). 
  
Various MCDM models have also been investigated for the assessment of erosion hazard 
vulnerability in Nigeria. Dike et al. (2015) evaluated the vulnerability of the Urualla watershed to 
soil erosion based on a multi-criteria technique of AHP. The model was used to assess the 
criteria of rainfall, soil, topography, land cover, and conservation practice. Igwe et al. 
(2020) employed the Analytical Hierarchy Process (AHP) models to assess areas prone to 
gully erosion in Gombe town and environs based on ten predisposing factors of erosion which 
include elevation, slope angle, curvature, aspect, topographic wetness index (TWI), soil texture, 
geology, drainage buffer, road buffer and land-use. In Anambra state, Odunuga et al. 
(2018) examined the susceptibility of the Orashi River Basin (ORB) to soil erosion. While the 
MCDM models have been employed in the vulnerability assessment of erosion hazards, a major 
limitation that exists with these models is the fact that they do not address the uncertainty which 
might occur in the decision-making process (Haidara et al. 2019).  To address this limitation, 
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researchers over the years have hybridized the MCDM models with other methods to improve 
the reliability of the decision-making process. In hazard vulnerability assessment, some of these 
methods used in the hybridization of the MCDM models include the Fuzzy Logic (Haidara et al. 
2019; Saha et al. 2019), Interval Rough Numbers ( Pamucar et al. 2017; Hatefi & Tamošaitienė 
2019; Wang et al. 2019), Interval Value Fuzzy Rough Numbers (IVFRN)  (Pamučar et al. 2018), 
etc.   
  
Sajedi-Hosseini et al. (2018) assessed soil erosion susceptibility in Iran using the Fuzzy-
DEMATEL-ANP method and obtained an accuracy of 83.4%. The study relied on the Fuzzy 
method to overcome uncertainty and vagueness in human preferences, whereas this present study 
seeks to employ the IVFRN method to do the same. In recent years, the IVFRN method has 
emerged as a more improved algorithm due to its ability to combine the advantages of both the 
Fuzzy and the Rough Numbers algorithms without retaining their disadvantages. The use of 
IVFRN owing to its advantages was employed in this study. It is important to state that the 
application of the IVFRN algorithms is a critical research area, but it has not been fully 
harnessed in Nigeria. Despite the benefits of hybridization of the MCDM models for erosion 
vulnerability assessment, it is yet to be utilized for better decision making in the study area as 
previous works for the study area utilized solely GIS or simplified decision models as stated 
above. To the best of the author’s knowledge, no study has investigated erosion vulnerability in 
the study area with a strong emphasis on the integration of decision models to eliminate the 
limitation of a single decision model as done in this study. The integration of various decision 
models with geospatial technology is therefore pertinent in the production of enhanced soil 
erosion geospatial models, for better decision-making in tackling the impact of erosion 
particularly for an erosion-prone zone of Southeast Nigeria. 
  
Hence this study aims to explore the hybridization of MCDM models in the assessment of 
erosion vulnerability in a geospatial setting. The study seeks to hybridize the Analytic Network 
Process (ANP) method by integrating it with the Decision Making Trial and Evaluation 
Laboratory (DEMATEL) and the IVFRN methods. The IVFRN method is an algorithm that 
handles imprecision and uncertainties contained in decision-making. Rather than relying on 
models of any assumption, the algorithm relies on internal knowledge from the data and employs 
objective indeterminacy to make decision-making possible (Pamučar et al. 2019). The 
DEMATEL method was developed by Gabus and Fontela of the Battelle Memorial Institute of 
Geneva and it was developed between 1972 and 1976 (Song et al. 2020). The method has been 
widely accepted as one of the best methods in the decision-making process for creating and 
examining the relationships between factors and their influences on the overall system (Kadoic et 
al. 2019). The ANP method can be described as a general form of the AHP method whereby the 
decision-making process is structured as a network rather than a hierarchy (Kadoic et al. 2019). 
In contrast to the AHP, the ANP doesn’t depend on a hierarchical structure but employs a 
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feedback-based system to address the problem (Hatefi & Tamošaitienė 2019). The objective of 
this study is to integrate the three aforementioned models for an efficient and effective decision-
making process in mitigating soil erosion. This is very important as the study will provide data 
on the most vulnerable areas to erosion threats which will ensure risk-based spatial planning 
toward the conservation and restoration of environmental resources. 
  
Study area 

Anambra state is a south-eastern state in Nigeria that is located between longitudes 6˚ 35ʹ and 7˚ 

50ʹ East and latitudes 5˚ 40ʹ and 6˚ 48ʹ North. The state (study area) and its Local Government 

Areas (LGAs) are shown in Figure 1 below. The state has a human population that is estimated 

to be over 6 million (Obioji & Eze 2019). There are two significant landforms in the state which 

consist of the low-lying regions that are in the western, northern, and north-eastern parts of the 

state, and the high-lying regions that are in the southern part (Okoyeh et al. 2014). There are two 

major climatic seasons in the state and this include the rainy season which spans from April to 

September and the dry season which spans from October to March (Enekwechi 2017). 

Furthermore, climate change effect has greatly disrupted the start and end of the two major 

climatic seasons in the state (Okoyeh et al. 2014).. Heavy and abundant rainfall can be observed 

in the state during the rainy season with an annual rainfall that ranges from 1400 mm to 2500 

mm and increasing from the northern part of the state to the southern part (Fagbohun et al. 2017).  
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Figure 1: Map of the Study Area 

Data and methods 

To assess erosion vulnerability, this study relied on 9 (nine) conditioning factors or criteria and 

these include Rainfall Erosivity Index (C1), Stream Power Index, SPI (C2), Sediment Transport 

Index, STI (C3), Topographic Wetness Index, TWI (C4), Soil (C5), Land Use (C6), Normalized 

Difference Vegetation Index (C7), Slope (C8) and Elevation (C9). The various steps which were 
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taken to integrate the risk factors to accomplish the goal of this study are shown in the 

methodological flowchart in Figure 2. This section further discusses the hybrid MCDM model 

and the processes employed to assess erosion vulnerability in the study area. To produce the 

thematic map layers of the risk factors, application of GIS was utilized. Furthermore, the 

interrelationship between the risk factors and their influence in inducing erosion hazard was 

examined using the IVFRN-DEMATEL-ANP model and their final weight subsequently 

obtained. Finally, the Weighted Linear Combination (WLC) method was employed to produce a 

spatial distribution of erosion hazard vulnerability in the study area. 

 

 

Figure 2: Flowchart of the Study’s Methodology 

Data collection and analysis  

The average annual rainfall data of the study area covering a period of 26 years (1991-2016) was 

obtained from Worldbank’s climate database. The data obtained was used to calculate the 

Rainfall Erosivity Index factor as shown in equation 1 below.  
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ଵଶ

௜ୀଵ

 

(1)  

Where Pi represents the average for i-th month and P is the annual average rainfall (Kanani-Sadat 

et al. 2019). The data was imported into the GIS environment to delineate the thematic layer map 

for the Rainfall Erosivity Index factor. The study area’s Digital Elevation Model (DEM) was 

collected from the Shuttle Radar Topography Mission (SRTM) instrument provided by the 

United States Geological Survey (USGS) and this data was used to produce the slope and 

elevation maps of the study area. The TWI factor which measures the accumulation of water in 

soil due to slope and upstream catchment area was calculated from the DEM using equation 2. 

 

𝑇𝑊𝐼 ൌ 𝑙𝑛ሺ𝐴௦/ tan 𝛽ሻ 

(2)                         

where 𝐴௦ is the upstream contributing area and 𝛽 is the slope gradient (in degrees). 

 

The SPI factor which measures the erosive power of flowing water, was calculated from the 

DEM using equation 3 

𝑆𝑃𝐼 ൌ 𝐴௦ ൈ 𝛽 

(3)                                    

The STI factor was also calculated from the DEM using equation 4 

𝑆𝑇𝐼 ൌ ሺ𝑚 ൅ 1ሻ ൈ ሺ𝐴௦/22.13ሻ௠ ൈ sinሺ𝛽/0.0986ሻ௡ 

(4)                         

Soil data of the study area was obtained from the Harmonized World Soil Database (HWSD) by 

Food Agriculture Organization (FAO) and data was used to produce the soil map of the study 

area. Three Landsat 8 Operational Land Imager (OLI) imageries covering the study area was 

obtained from the United State Geological Survey (USGS) website  

 

Table 1    Landsat 8 images of the study area 
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 and this was used to produce the landuse map of the study area.  

 

Table 1    Landsat 8 images of the study area 

LANDSAT 8 IMAGES PATH/ROW DATE 

1 189/55 1 February 2018 

2 189/56 1 February 2018 

3 188/56 27 December 2018 

The NDVI factor map was obtained from the Landsat 8 imagery of the study area using equation 

5 below. 

𝑁𝐷𝑉𝐼 ൌ  
𝐼𝑅 െ 𝑅
𝐼𝑅 ൅ 𝑅

 

(5)                         

Where IR is the infrared portion of the electromagnetic spectrum (Band 5) and R is the red 

portion of the electromagnetic spectrum (Band 4).  

 

 Based on their influence on erosion hazard occurrence, the conditioning factors for erosion 

vulnerability assessment were classified into various fuzzy memberships. This was done to form 

a basis for their comparison. The risk factors that had categorical values such as the land use and 

soil map layers were reclassified into numeric values before putting them into fuzzy membership 

class. Two fuzzy membership classes of Fuzzy Gaussian and the Fuzzy Large were employed for 

the analysis as shown in Table 2. The Fuzzy Gaussian function is used when the midpoint value 

is most likely to cause a hazard. In a situation where high input values of a risk factor are the 

most likely to induce a hazard, the Fuzzy Large function is employed (Okonufua et al. 2019). 
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Table 2    Fuzzy membership class of the risk factors for erosion vulnerability assessment 

RISK MAPS INITIAL VALUES RESOLUTION FUZZY MEMBERSHIP 

Rainfall Erosivity Index 79, 919.69531 — 82, 587.55156 

82, 587.55157 — 85, 255.40781 

85, 255.40782 — 87, 923.26406 

87, 923.26407 — 90,591.12031 

90,591.12032 — 93,258.97656 

1 : 78,000 Fuzzy Large 

SPI -5.567567825 —  -0.588114712 

-0.588114712 — -0.187980087 

-0.187980087 — 0.034316927 

0.034316927 — 0.256613941 

0.256613941 — 5.769579887 

30m Fuzzy Large 

STI 0 — 41.47129672 

41.47129673 — 311.0347254 

311.0347255 —1,161.196308 

1,161.196309 — 3,131.082902 

3,131.082903 — 5,287.590332 

30m Fuzzy Large 

TWI 3.602589607 — 7.31942648 

7.319426481 — 9.30173948 

9.301739481 —11.77963073 

11.77963074 — 15.00088935 

15.00088936 — 24.66466522 

30m Fuzzy Large 

Soil Fluvisol = 5 

Nitrosol = 4 

Plinthosol = 3 

Gleysol = 2 

Alluvial = 1 

1 : 78,000 Fuzzy Large 

Slope (degree) 0 — 1.363358801 

1.363358802 — 3.578816851 

3.578816852 — 6.475954303 

6.475954304 — 11.2477101 

11.24771011 — 43.45706177 

30m Fuzzy Large 

Elevation (m) 

 

 

 

313 — 388 

238 — 313 

163 — 238 

88 — 163 

13 — 88 

30m Fuzzy Large 

Land Use Agriculture = 5 

Barren Land = 4 

Urban = 3 

Forest = 2 

Water = 1 

30m Fuzzy Large 

NDVI -0.091505267 — 0.01907845 

0.01907845 — 0.105088008 

0.105088008 — 0.155991624 

30m Fuzzy Gaussian 
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0.155991624 — 0.203384646 

0.203384646 — 0.356095493 

 

Erosion assessment model 

The proposed hazard assessment model in this study employs a GIS MCDM structure, taking 

advantage of the applicability of GIS in managing geospatial data and the flexibility of MCDM 

to integrate spatial hydrological and topographical information with value-based information 

(survey) (Hategekimana et al. 2018; Wang et al. 2019). The model integrates the three methods 

of IVFRN, DEMATEL, and ANP in a step by step process to determine the weight of the risk 

factors. The first step involves the use of the IVFRN method to eliminate uncertainty in the 

decision-making process. In the second step, a network of relationship between the conditioning 

factors of erosion hazard is created and their degree of influence in the system is examined using 

the DEMATEL method. In the third step, the ANP method is employed to determine the 

individual weight of the risk factors. Finally, the WLC method is applied to produce a spatial 

model of the vulnerability of erosion in the study area. This section goes further to give a 

detailed description of the steps.  

 

Application of the IVFRN method 

The IVFRN method can generally be described as the use of an initial reference fuzzy set to 

define uncertainties in the decision-making process and the use of rough sets to analyze these 

uncertainties (Pamučar et al. 2018). The IVFRN method is the combination of both the 

traditional fuzzy set and the rough number set in such a way that their benefit is retained while 

eliminating their drawbacks (Roy et al. 2020). For more information on the IVFRN method and 

its mathematical equations, please see (Pamučar et al. 2018).   

 

The required input data for application of the IVFRN method is the initial pairwise comparison 

matrix which is provided by experts. A triangular fuzzy number 𝐴௜௝
௞ ൌ ൫𝑙௜௝

௞ , 𝑚௜௝
௞ , 𝑛௜௝

௞ ൯ is used for 

evaluation where k depicts the number of participating experts in which k = 1……..N. The 

decision of k-th expert regarding the effect of i-th criterion on j-th one is 𝐴௜௝
௞ . For this study, three 

(3) experts in erosion mitigation study participated in the questionnaire survey and the 
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questionnaire distributed employed the predefined fuzzy scale shown in Table 3 for evaluation. 

A sample of the questionnaire and the obtained responses are shown in the appendix.  

 

Table 3   Linguistic values and their corresponding fuzzy triples (Source: Kanani-Sadat et al. 
2019) 

Linguistic values  Triple Fuzzy Numbers 

Very High Influence (VH) (0.75, 1.0, 1.0) 

High Influence (H) (0.5, 0.75, 1.0) 

Low Influence (L) (0.25, 0.5, 0.75) 

Very Low Influence (VL) (0, 0.25, 0.5) 

No Influence (NO) (0, 0, 0.25) 

 

The obtained initial pairwise comparison matrix which constitute of triangular fuzzy numbers 𝑙௜௝
௞ ,

𝑚௜௝
௞ , 𝑛௜௝

௞  was transformed into rough sequences 𝑅𝑆ሺ𝑙௜௝
௞ ሻ, 𝑅𝑆ሺ𝑚௜௝

௞ ሻ, 𝑅𝑆ሺ𝑛௜௝
௞ ሻ (see appendix). 

Where 𝑅𝑆൫𝑙௜௝
௞ ൯ ൌ  ൣ𝐿𝑖𝑚 ሺ𝑙௜௝

௞ ሻ, 𝐿𝑖𝑚 ሺ𝑙௜௝
௞ ሻ൧, 𝑅𝑆ሺ𝑚௜௝

௞ ሻ ൌ  ൣ𝐿𝑖𝑚 ሺ𝑚௜௝
௞ ሻ, 𝐿𝑖𝑚 ሺ𝑚௜௝

௞ ሻ൧, 𝑅𝑆ሺ𝑛௜௝
௞ ሻ ൌ

 ൣ𝐿𝑖𝑚 ሺ𝑛௜௝
௞ ሻ, 𝐿𝑖𝑚 ሺ𝑛௜௝

௞ ሻ൧. 𝐿𝑖𝑚 ሺ𝑙௜௝
௞ ሻ,  𝐿𝑖𝑚 ሺ𝑚௜௝

௞ ሻ and 𝐿𝑖𝑚 ሺ𝑛௜௝
௞ ሻ,  represent the lower limits and 

𝐿𝑖𝑚 ሺ𝑙௜௝
௞ ሻ, 𝐿𝑖𝑚 ሺ𝑚௜௝

௞ ሻ and 𝐿𝑖𝑚 ሺ𝑛௜௝
௞ ሻ represent the upper limit of the rough sequences 𝑅𝑆ሺ𝑙௜௝

௞ ሻ,

𝑅𝑆ሺ𝑚௜௝
௞ ሻ, 𝑅𝑆ሺ𝑛௜௝

௞ ሻ.  

The next step in the IVFRN method is the aggregation of the rough sequence of all the decision-

makers and this is done by applying equations 6, 7 and 8 below. 

𝑅𝑆൫𝑙௜௝൯ ൌ 𝑅𝑆൫𝑙௜௝
ଵ , 𝑙௜௝

ଶ , … , 𝑙௜௝
௞ ൯  

⎩
⎨

⎧𝑙௜௝
௅

ൌ  
1
𝑀

෍ 𝑙௜௝
௞௅

ெ

௞ୀଵ

𝑙௜௝
௎

ൌ  
1
𝑀

෍ 𝑙௜௝
௞௎

ெ

௞ୀଵ

 

                                         (6) 

𝑅𝑆൫𝑚௜௝൯ ൌ 𝑅𝑆൫𝑚௜௝
ଵ , 𝑚௜௝

ଶ , … , 𝑚௜௝
௞ ൯  

⎩
⎨

⎧𝑚௜௝
௅ ൌ  

1
𝑀

෍ 𝑚௜௝
௞௅

ெ

௞ୀଵ

𝑚௜௝
௎ ൌ  

1
𝑀

෍ 𝑚௜௝
௞௎

ெ

௞ୀଵ

 

                                         (7) 
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𝑅𝑆൫𝑛௜௝൯ ൌ 𝑅𝑆൫𝑛௜௝
ଵ , 𝑛௜௝

ଶ , … , 𝑛௜௝
௞ ൯  

⎩
⎨

⎧𝑛௜௝
௅ ൌ  

1
𝑀

෍ 𝑛௜௝
௞௅

ெ

௞ୀଵ

𝑛௜௝
௎ ൌ  

1
𝑀

෍ 𝑛௜௝
௞௎

ெ

௞ୀଵ

 

                                         (8) 

 

where k refers to the kth expert (k = 1, 2,…, N), 𝑅𝑆൫𝑙௜௝൯, 𝑅𝑆൫𝑚௜௝൯and 𝑅𝑆൫𝑛௜௝൯  denotes the 

rough sequences that collectively make up the IVFRN 𝑑̿௜௝ = [(𝑙௜̅௝
௅ ,  𝑙௜̅௝

௎), (𝑚ഥ௜௝
௅ , 𝑚ഥ௜௝

௎ ), (𝑛ത௜௝
௅ , 𝑛ത௜௝

௎ )]. 

Hence, the IVFRN decision matrix can be derived as 𝐷ന  

𝐷ന ൌ  

⎣
⎢
⎢
⎢
⎡𝑑̿ଵଵ 𝑑̿ଵଶ ⋯ 𝑑̿ଵ௖

𝑑̿ଶଵ 𝑑̿ଶଶ … 𝑑̿ଶ௖
⋮ ⋮ ⋱ ⋮

𝑑̿௖ଵ 𝑑̿௖ଶ ⋯ 𝑑̿௖௖⎦
⎥
⎥
⎥
⎤

௖ൈ௖

 

                                         (9) 

Where c refers to the number of risk factors  

 

The final step in the IVFRN method is the defuzzification of the IVFRN decision matrix to 

obtain our initial decision matrix. This was proposed by Kanani-Sadat et al. (2019), as a 

necessary means of understanding the relationship between the risk factors. Here we defuzzify 

the matrix 𝐷ന using Equation 10 below to obtain the elements of our initial decision matrix 𝐷 

(Equation 11).  

𝐷௜௝ ൌ  ቆ1 ൅ 
𝑙௜̅௝

 ௅ ൅ 𝑛ത௜௝
௎

2
ቇ ൈ ቆ

𝑙௜̅௝
௅ ൅ 𝑙௜̅௝

௎ ൅ 2𝑚ഥ௜௝
௅ ൅ 2𝑚ഥ௜௝

௎ ൅ 𝑛ത௜௝
௅ ൅  𝑛ത௜௝

௎

8
ቇ 

                                         (10) 

  

𝐷 ൌ  ൦

𝐷ଵଵ 𝐷ଵଶ ⋯ 𝐷ଵ௖
𝐷ଶଵ 𝐷ଶଶ … 𝐷ଶ௖

⋮ ⋮ ⋱ ⋮
𝐷௖ଵ 𝐷௖ଶ ⋯ 𝐷௖௖

൪

௖ൈ௖

 

                                         (11) 



15 
 

Application of the DEMATEL method 

The DEMATEL method utilizes graph theory to visualize the process of addressing a problem in 

such a way that all significant factors can be classified as a cause or an effect, thereby making it 

easier to understand the complex nature of the problem, the interrelationship between its factors, 

and the degree of influence of the factors (Pamucar et al. 2017). The input data for the 

DEMATEL method is the initial decision matrix D, which was derived from the IVFRN method.  

 

In the first step of the DEMATEL method, we normalize the elements of the initial decision 

matrix 𝐷 to obtain normalized matrix 𝑍̿  as shown in Equation 12 below  

𝑍̿ ൌ  ൦

𝑧ଵ̿ଵ 𝑧ଵ̿ଶ ⋯ 𝑧ଵ̿௖

𝑧ଶ̿ଵ 𝑧ଶ̿ଶ … 𝑧ଶ̿௖
⋮ ⋮ ⋱ ⋮

𝑧௖̿ଵ 𝑧௖̿ଶ ⋯ 𝑧௖̿௖

൪

௖ൈ௖

 

                                         (12) 

The elements 𝑧௜̿௝ of the matrix 𝑍̿ are derived using Equation 13 below.  

𝑧௜̿௝ ൌ  
𝐷௜௝

ƛ
 

                                         (13) 

                        

where ƛ is given by the equation:  ƛ ൌ  1
max
ଵஸ௜ஸ௡

൫∑ 𝐷௜௝
௡
௝ୀଵ ൯൘   

                                         (14) 

 

The next step in the DEMATEL method is to examine the total relationship between the 

conditioning factors illustrated by the matrix 𝑇 which describes the direct and indirect 

relationships between the risk factors. The matrix T is calculated using Equation 15 and 16 

below, where I is an Identity matrix. 

𝑇 ൌ  ൦

𝑡ଵଵ 𝑡ଵଶ ⋯ 𝑡ଵ௖
𝑡ଶଵ 𝑡ଶଶ … 𝑡ଶ௖

⋮ ⋮ ⋱ ⋮
𝑡௖ଵ 𝑡௖ଶ ⋯ 𝑡௖௖

൪

௖ൈ௖

   

                                         (15) 
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                        𝑡௜௝   ൌ  𝑧௜̿௝ ൈ ൫𝐼 െ  𝑧௜̿௝൯
ିଵ

 

                                         (16) 

 

Next, we calculate the values of 𝑅 and 𝑆, where 𝑅 describes the direct and indirect effect that 

each factor i has on other factors. This is determined by computing the sum of the i-th row of the 

matrix 𝑇 as shown in Equation 17 below. Also 𝑆 describes the overall effect all other factors 

have on the j factor and this is determined by computing the sum of the j-th column of the matrix 

𝑇  as shown in Equation 18 below.  

𝑅 ൌ  ሾ𝑅௜ሿ௖ൈଵ ൌ ෍ 𝑡௜௝

௖

௝ୀଵ

 

(17) 

                        

𝑆 ൌ  ൣ𝑆௝൧
ଵൈ௖

ൌ ෍ 𝑡௜௝

௖

௜ୀଵ

 

                                         (18) 

                        

 The values of 𝑅 ൅  𝑆 and 𝑅 െ 𝑆 are used to describe the importance of the various factors and 

understand the interrelationship between them. 𝑅 ൅ 𝑆 describes the degree of influence that 

factor i has on other factors and as such denotes its significance to the problem. 𝑅 െ 𝑆 on the 

other hand describes the influence the factor has in the system, with a positive value  indicating 

that the i-th factor is effective and as such is categorized into “causes”. Furthermore, obtaining a 

negative value of 𝑅 െ 𝑆  means that the i-th factor will be under the influence of other factors 

and as such is categorized into “effects”. Factors that have high values of 𝑅 െ 𝑆 have greater 

priority than those with low values. 

Application of the ANP method 

In the ANP method, supermatrices are employed to examine the dependences of the risk factors 

and these supermatrices must be based on the principle of column stochastic, hence the 
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summation of elements in each column must be equal to 1 (Pamucar et al. 2017). The ANP 

method makes use of the total relationship matrix T as input data to determine the final weight of 

the risk factors. The application of the ANP method to determine the weight of the risk factors 

guarantees that the interdependence levels of factors are assessed as reciprocal values (Wang et 

al. 2019).  

 

The first step in the ANP method is to create an unweighted supermatrix from the total 

relationship matrix 𝑇 and this is done by defining an α-cut threshold to eliminate minor 

influences in the matrix 𝑇. The α-cut threshold is determined by experts and Equation 19 below 

shows the resultant matrix 𝑇∝. If 𝑡௜௝ ൏ ∝ then 𝑡∝
௜௝ = 0, otherwise 𝑡∝

௜௝ ൌ  𝑡௜௝, where 𝑡௜௝ 

constitutes the elements of the matrix 𝑇. 

𝑇∝ ൌ  

⎣
⎢
⎢
⎢
⎢
⎡
𝑡ଵଵ

∝ ⋯ 𝑡ଵ௝
∝ ⋯ 𝑡ଵ௡

∝

⋮ ⋮ ⋮
𝑡௜ଵ

∝ ⋯ 𝑡௜௝
∝ ⋯ 𝑡௜௡

∝

⋮ ⋮ ⋮
𝑡௡ଵ

∝ ⋯ 𝑡௡௝
∝ ⋯ 𝑡௡௡

∝ ⎦
⎥
⎥
⎥
⎥
⎤

 

                                         (19)                                    

The matrix 𝑇∝ gives us our unweighted supermatrix. 

 

Next, we create a weighted supermatrix by normalizing the unweighted supermatrix 𝑇∝. To 

achieve this, we determine the sum of elements of the matrix 𝑇∝ by columns. The normalization 

of the matrix  𝑇∝ yields the elements of the matrix 𝑊෩ , which is our weighted super-matrix and 

the equation is given as: 

𝑊෩ ൌ  ൦

𝑤෥ ଵଵ 𝑤෥ ଵଶ ⋯ 𝑤෥ ଵ௖

𝑤෥ ଶଵ 𝑤෥ ଶଶ … 𝑤෥ ଶ௖

⋮ ⋮ ⋱ ⋮
𝑤෥ ௖ଵ 𝑤෥ ௖ଶ ⋯ 𝑤෥ ௖௖

൪

௖ൈ௖

   

                                 (20)                         

                                   

Where 𝑊෩ ௜௝ ൌ  𝑡∝
௜௝/𝑑ሚ௜, and the value of  𝑑ሚ௜ is obtained from 𝑑ሚ௜ ൌ ∑ 𝑡∝

௜௝
௡
௜ୀଵ . 
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In the final step, the weights of the risk factors are determined by obtaining a limit super-matrix. 

This is done by multiplying the matrix 𝑊෩  by itself multiple times or raising it to a power where 

the super-matrix converges and become a long-term stable super-matrix to obtain global priority 

vectors, called IVFRN-DEMATEL-ANP weights. This can be represented as lim
௞→ஶ

ൌ  𝑊෩ ௞, where 

W refers to the limit super matrix and k refers to any power. After the determination of the 

individual weights of the conditioning factors, we aggregate them to produce our erosion 

vulnerability map. 

 

Erosion vulnerability map 

To obtain the erosion vulnerability map, the weighted linear combination method was employed 

to integrate the risk factors based on their relative weights. The equation of the weighted linear 

combination method is given below as 

𝑉𝐼 ൌ  ෍ 𝑊௜𝐶௜

௡

௜ୀଵ

 

(21)                                    

Where VI represents the vulnerability index, Wi is represents the relative weight of each factor 

and Ci represents the relevant score of each factor which is the fuzzified map layer in this study. 

The resultant vulnerability index map was then categorized into five distinctive classes that 

consist of “very high”, “high”, “medium”, “low” and “very low”. 

 

Results and discussion 

Thematic Map Layers of the Criteria for Erosion Vulnerability Asessment 

The risk factors considered for the purpose of this study were selected based on expert opinion, 

literature review and availability of data for the study area. These factors include Rainfall 

Erosivity Index, SPI, STI, TWI, Soil, Land Use, NDVI, Slope and Elevation. The necessary data 

for the investigation were obtained and processed through the application of GIS to produce the 

map layers of the risk factors. Figure 3 shows the fuzzified map layers of the risk factors for 

Erosion vulnerability assessement. The rainfall erosivity index observed in the study area varied 

from 79919 in Ayamelum LGA to 93258 in Orumba South and Ihiala LGAs. As a catalyst for 
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sheet and rill erosion, the rainfall erosivity index is a very important factor in assessing soil 

erosion with rainfall characteristics such as annual amount, seasonal distribution, and intensity 

having a huge influence on the erosion process (Saha et al. 2019). Higher rainfall erosivity index 

is associated with higher erosion risk, hence the rainfall erosivity index factor was fuzzified 

using the Fuzzy Large membership function and the obtained result is shown in Figure 3a. The 

SPI of the study area ranged from -5.5676 to 5.7696. The SPI factor describes the potential 

energy surface water has to erode soil particles and this energy is a function of the combinative 

effect of water flow path, flow accumulation and slope (Andualem et al. 2020). An increase in 

this energy leads to an increase in erosion risk, hence the SPI factor was fuzzified using the 

Fuzzy Large membership function and the resultant map is shown in Figure 3b. The STI factor 

measures the ability of the overland flow to transport soil particles and in the study area, STI 

values ranged from 0 to 5287.5903. Higher capacity to transport sediments indicate a higher risk 

of erosion as they tend to favour the erosion process, hence the Fuzzy Large membership 

function was used to standardize the STI factor and the resultant map is shown in Figure 3c. The 

TWI of the study area which describes the infiltration rate in the area ranged from 3.6025 to 

24.6647. Higher values of TWI indicate a higher risk of erosion based on its potential to facilitate 

the development of piping and roof collapse (Bashir et al. 2020). As such, the TWI factor was 

fuzzified using the Fuzzy Large membership function and the fuzzified map is shown in Figure 

3d.  

 

The soil factor has a major influence on the erosion process as the development of subsurface 

flow and piping is dependent on the physical characteristics of the soil (Ogbonnaya et al. 2020). 

The soil map of the study area showed five classes of soil and these include Alluvial, Fluvisol, 

Plinthosol, Nitrosol and Gleysols. The soil map was further reclassified to create a basis for 

standardization utilizing numeric values that range from 1 to 5. Here, Fluvisol was given the 

highest numeric value of 5 as it is characterized by weak topsoil formation which favors the 

erosion process. Five classes of landuse were also delineated in the study area and these include 

water, forest, agricultural lands, barren lands and urban areas with agricultural and barren lands 

dominating most part of the state. The landuse factor plays a critical role in the erosion process 

as the geological stability of the slope is hugely influenced by landcover (Aslam et al. 2021). 

Furthermore, different types of landuse have different effect on the ability of rainfall to erode soil 
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particles as areas which experience soil disturbances and those with less vegetation tend to favor 

the erosion process. Based on this, the landuse map was also reclassified for standardization 

utilizing numeric values that range from 1 to 5. Here, agricultural lands were assigned the 

highest numerical value of 5. The membership function of Fuzzy Large was then utilized for 

fuzzifying the soil and landuse as shown in Figure 3e and Figure 3f for soil and landuse 

respectively. Vegetation plays a significant role in the erosion process as barren lands favor the 

erosion process by depriving soil surface the required protective cover against the erosive power 

of water. The NDVI is a vegetative factor which describes the greenness and healthiness of 

vegetation (Aslam et al. 2021).  In the study area, the NDVI values ranged from -0.0915 to 

0.3561. Negative values of NDVI refer to water and the positive values refer to shrubs, 

grassland, temperate and tropical rainforests while values near zero refer to barren areas (Aslam 

et al. 2021). Hence, the Fuzzy Gaussian membership function was used to fuzzify the NDVI 

factor and the result is shown in Figure 3g. The slope of the study area ranged from 0 to 43.457 

degrees with a flat slope dominating the Northern part of the state and a steep slope dominating 

the Southern part of the state. The slope factor has an effect on soil erosion as runoff, drainage 

intensity and the removal of soil particles are largely influenced by steepness (Saha et al. 2019). 

The Fuzzy Large membership function was used to standardize the slope factor because steep 

slopes are more prone to erosion in comparison to flat slopes as more runoff occurs on them due 

to force of gravity. The result is shown in Figure 3h. 

 

Elevation as integral factor in erosion vulnerability assessment determines the microsite’s 

condition and influences the distribution of plants in the area such as their morphology, 

physiology and growth (Halefom et al. 2018). The elevation of the study area varied from 13m 

observed in the Northern part of the state to 388m observed in the Southern part of the state and 

the Fuzzy Large membership function was used for fuzzification as shown in Figure 3i. This is 

because areas with higher elevation are more prone to erosion as they are less likely to be 

protected by vegetation. 
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Figure 3: Conditioning Factors for Erosion Vulnerability Assessment. (a) Rainfall Erosivity 

Index; (b) SPI; (c) STI; (d) TWI; (e) Soil; (f) Landuse; (g) NDVI; (h) Slope; (i) Elevation 

(a) (b) 

(c) (d) 
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Figure 3: (continued)

(e) (f) 

(g) (h) 
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Determination of the interrelationship between risk factors 

The interrelationship between the risk factors of erosion hazard was assessed and determined by 

integrating the IVFRN and DEMATEL methods was used to obtain the final weights of the 

various conditioning factors. The pairwise comparison matrix obtained through questionnaire 

survey was utilized as input data for the model. To eliminate the uncertainty and vagueness that 

exist in the decision making process, the triple fuzzy value of the initial pairwise comparison 

matrix was converted to Interval Value Fuzzy Rough Numbers. Then the average IVFRN matrix 

which represents our IVFRN decision matrix 𝐷ന was derived by employing Equations 6, 7 and 8 

to aggregate the IVFRN pairwise comparison matrix. To aid the interpretation of data, the 

IVFRN decision matrix was defuzzified using Equation 10 to produce the matrix D and the result 

is shown in 

Figure 3. (continued)

(i) 
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Table 4 below. 
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Table 4    Initial decision matrix 

 
 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0.07 0.76 0.93 0.76 0.59 0.93 0.44 1.06 1.58 

C2 0.76 0.07 0.93 0.93 0.76 0.76 0.76 1.58 1.44 

C3 0.44 0.46 0.07 0.93 1.01 1.32 1.11 1.44 1.58 

C4 0.34 0.34 0.34 0.07 1.11 1.11 0.90 1.44 0.93 

C5 0.15 0.34 0.34 0.34 0.07 0.57 0.90 1.44 1.58 

C6 0.34 0.44 0.44 0.44 0.44 0.07 1.44 1.44 1.58 

C7 0.15 0.44 0.44 0.44 0.44 0.44 0.07 0.59 0.75 

C8 0.46 0.75 0.75 0.75 0.46 0.93 0.46 0.07 1.44 

C9 0.46 0.75 0.75 0.75 0.46 0.46 0.46 0.46 0.07 

 

Equation 12, 13 and 14 was then used to normalize the elements of our initial decision matrix to 

obtain the matrix 𝑍̿. The matrix 𝑍̿ was then used to calculate the total relation matrix 𝑇 which 

describes the interrelationships between the risk factors. This was achieved using Equations 15 

and 16 and the result is shown in Table 5 below. 

 

Table 5     Total relationship matrix 

 
 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0.15 0.29 0.33 0.32 0.29 0.38 0.33 0.49 0.61 

C2 0.24 0.23 0.35 0.37 0.33 0.39 0.38 0.58 0.64 

C3 0.21 0.28 0.25 0.36 0.36 0.44 0.43 0.57 0.66 

C4 0.16 0.22 0.23 0.21 0.32 0.36 0.34 0.48 0.49 

C5 0.13 0.2 0.21 0.22 0.17 0.27 0.3 0.43 0.5 

C6 0.16 0.23 0.24 0.26 0.24 0.24 0.39 0.47 0.54 

C7 0.1 0.16 0.17 0.18 0.17 0.2 0.16 0.27 0.32 

C8 0.18 0.26 0.27 0.29 0.25 0.34 0.29 0.33 0.53 

C9 0.15 0.22 0.23 0.29 0.21 0.24 0.24 0.31 0.31 



 

26 
 

Equations 17 and 18 were used to calculate the rows (𝑅) and the columns (𝑆) of matrix 𝑇 

respectively and the result is shown in Table 6. This was done to assess the effect of each risk 

factor and their significance in inducing erosion hazard.  The summation of the rows and 

columns of the matrix 𝑇 gave values which describe the total direct and indirect effects that each 

risk factor received from and transferred to other risk factors. These values were further utilized 

to illustrated the complicated interrelationship between the risk factors by developing the CER 

diagram (see Figure 4 below), where the values of 𝑹 ൅ 𝑺 are on the x axis and the values of 𝑹 െ

𝑺 on the y axis. 

 

Table 6   Values of importance and prominence 

 𝑹෩ 𝑺 𝑹 ൅ 𝑺 𝑹 െ 𝑺 

C1 3.19 1.48 4.67 1.71 

C2 3.51 2.09 5.6 1.42 

C3 3.56 2.28 5.84 1.28 

C4 2.81 2.5 5.31 0.31 

C5 2.43 2.34 4.77 0.09 

C6 2.77 2.86 5.63 -0.09 

C7 1.73 2.86 4.59 -1.13 

C8 2.74 3.93 6.67 -1.19 

C9 2.2 4.6 6.8 -2.4 

 

 

Figure 4: Cause and Effect Relationship (CER) Diagram of Conditioning Factors 
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The obtained values of 𝑹 െ 𝑫 for erosion vulnerability assessment show that Rainfall Erosivity 

Index, Stream Power Index, Sediment Transport Index, Topographic Wetness Index and Soil are 

the main inducers of erosion hazard and fall into the cause group while Land Use, Normalized 

Difference Vegetation Index, Slope, and Elevation are under the influence of the other risk 

factors and as such are classifed into the effect group. Rainfall Erosivity Index has the most 

significant effect with the highest positive value of 1.71 and Elevation is under the most effect 

with the highest negative value of -2.4. This signifies that with respect to erosion hazard process, 

the erosive power of rainfall has the greatest effect on other risk factors while elevation is 

affected the most by other factors. This can be attributed to heavy rainfall normally experienced 

in the study area with average rainfall that vary from 1400mm to 2500mm annually. 

Determination of final weights of risk factors 

Using the total relationship matrix obtained from the DEMATEL method as input data, the ANP 

method was employed to determine the relative weights of the risk factors. Firstly, we obtained 

an unweighted supermatrix by averaging the experts opinion regarding the optimum α threshold 

to arrive at a value of 0.02. All the values in the total relation matrix less than the threshold value 

were equated to 0 in matrix 𝑇, hence the unweighted supermatrix matrix 𝑇∝ was derived. 

Equation 20 was then used to normalize the matrix 𝑇∝ to obtain the weighted supermatrix 𝑊෩  and 

the result is shown in Table 7 below. Finally, to obtain the weight of the conditioning factors, the 

weighted supermatrix 𝑊෩  was raised to the power of 8 to limit it and produce convergent values 

which are the relative weights of the risk factors (Table 8). The obtained relative weights of the 

risk factors for erosion vulnerability assessment show that SPI has the greatest priority with a 

final weight of 0.1941, followed by STI, Rainfall Erosivity, Slope, TWI, Landuse, Elevation, 

Soil and NDVI with final weights of 0.1851, 0.1245, 0.1057, 0.1018, 0.0996, 0.0880, 0.0810 and 

0.0203 respectively. This indicates that SPI, STI, Rainfall Erosivity Index, Slope and TWI are 

the most significant risk factors for assessing the vulnerability of the study area to erosion 

hazard. 
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Table 7    Weighted supermatrix 

 
 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0.0000 0.1503 0.1564 0.1379 0.1450 0.1329 0.1222 0.1247 0.1326 

C2 0.5333 0.1192 0.1659 0.1595 0.1650 0.1364 0.1407 0.1476 0.1391 

C3 0.4667 0.1451 0.1185 0.1552 0.1800 0.1538 0.1593 0.1450 0.1435 

C4 0.0000 0.1140 0.1090 0.0905 0.1600 0.1259 0.1259 0.1221 0.1065 

C5 0.0000 0.1036 0.0995 0.0948 0.0000 0.0944 0.1111 0.1094 0.1087 

C6 0.0000 0.1192 0.1137 0.1121 0.1200 0.0839 0.1444 0.1196 0.1174 

C7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0699 0.0000 0.0687 0.0696 

C8 0.0000 0.1347 0.1280 0.1250 0.1250 0.1189 0.1074 0.0840 0.1152 

C9 0.0000 0.1140 0.1090 0.1250 0.1050 0.0839 0.0889 0.0789 0.0674 

 

 

Table 8    Relative weights of risk factors 

Conditioning Factor Final Weight 

Rainfall Erosivity (C1) 0.1245 

SPI (C2) 0.1941 

STI (C3) 0.1851 

TWI (C4) 0.1018 

Soil (C5) 0.0810 

Landuse (C6) 0.0996 

NDVI (C7) 0.0203 

Slope (C8) 0.1057 

Elevation (C9) 0.0880 
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Production of erosion vulnerability map 

The various conditioning factors were integrated using the weighted linear combination method 

to produce the erosion vulnerability map. The fuzzified map layers of the various conditioning 

factors were integrated into the GIS environment using the raster calculator function. The 

obtained erosion vulnerability index map was further classified into five distinct categories of 

“very high”, “high”, “medium”, “low” and “very low” using the classification methods of 

“Natural Breaks”. Figure 5 shows the produced erosion vulnerability map of the study area as 

well as its Local Government Areas (LGA). The study area occupies a land mass of about 4559 

sq km. The erosion vulnerability map revealed that 966.23 sq km, which represent 21% of the 

study area falls into very low vulnerable zone, 1555.05 sq km (34%) falls into low vulnerable 

zone, 1188.74 sq km (26%) falls into medium vulnerable zones, 664.60 sq km (15%) falls into 

highly vulnerable zones and 184.85 sq km (4%) falls into very high vulnerable zone. Very high 

vulnerable to medium vulnerable zones were mainly observed in the southern part of the state. 

This conforms with the work of Ajibade et al. (2020), which observed high erosion vulnerability 

that extend from the central part of the state to the southern  part with towns such as Agulu, 

Nanka, Oko and Ekwulobia amongst the most vulnerable towns.  With respect to land mass, the 

LGA most vulnerable to erosion hazard in the state is Orumba North with 290.97 sq km which 

represents 81% of the total Orumba North area lying between Very High and Medium 

Vulnerable zones. The second most vulnerable LGA is Orumba South with 218.44 sq km which 

represents 96% of the total Orumba South area lying between Very High and Medium 

Vulnerable zones. Other notable vulnerable LGAs to erosion hazards in Anambra State include 

Ayamelum, Awka South, and Awka North. In these LGAs, the high vulnerability to erosion 

hazard observed can be largely attributed to heavy rainfall recorded in the area, the topography 

of these areas where steep slopes dominate and the high rate of agricultural activities. High 

rainfall occurring on a steep slope of fluvisol will favor the erosion process and the development 

of gullies. This is due to a lack of cohesion between soil particles which makes their detachment 

by rainfall easier. Furthermore, the maximum gravitational force is provided by the slope for the 

subsequent transportation of sediment load in suspension or solution by transforming potential 

energy to kinetic energy (Bashir et al. 2020).    
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Figure 5: Erosion Vulnerability Map of the Study Area Showing the LGAs 



 

31 
 

Validation of the erosion vulnerability assessment model 

Validation of assessment models is a very important aspect of vulnerability assessment as it is 

used to determine the predictive performance of the assessment model. Amongst the various 

methods available for validating assessment models, the area under the curve (AUC) of the 

receiver operating characteristics (AUC-ROC) has been widely used and accepted. Hence this 

study uses the AUC-ROC method to determine the predictive performance of the IVFRN-

DEMATEL-ANP method. The AUC-ROC method signifies the ability of the assessment model 

to predict predetermined occurrences or non-occurrences. To apply the AUC-ROC, geospatial 

location of erosion features were obtained from the field survey and imported into the GIS 

environment. The result of the validation is shown in Figure 6 below. An AUC value of 0.897 

was obtained for the IVFRN-DEMATEL-ANP model which shows that the model has an 

accuracy of 89.7% for soil erosion prediction in the study area. According to the classification by 

Yesilnacar (2005), this indicates that the model has good predictive performance. 

 

Figure 6: Validation Result of the IVFRN-DEMATEL-ANP Model 

 

Conclusion 

This work aimed at investigating the use of a hybrid MCDM model in a GIS environment to 

assess the vulnerability to erosion hazard based on nine risk factors of Rainfall Erosivity Index, 
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SPI, STI, TWI, Soil, Land Use, NDVI, Slope and Elevation. The integration of the IVFRN and 

DEMATEL methods enabled the evaluation of the degree of influence of the risk factors and it 

was observed that rainfall erosivity index is the most significant factor of erosion hazard in the 

study area. The result of the aforementioned integration was used as input to apply the ANP 

method and the relative weights of the risk factors was determined. GIS was employed to 

delineate the map layers of the considered risk factors and integrate them based on the weighted 

linear combination method to generate a spatial distribution of erosion hazard vulnerability, a 

case study area of Anambra state was used to validate the outcome . The resultant vulnerability 

map reveals that the study area is prone to erosion hazards with 45% of the total area falling into 

Very High, High and Medium categories of vulnerability. It thus follows that there is a 

considerable likelihood of increased erosion processes in these areas as climate change continues 

to intensify hazards.  The results also show that Orumba North and Orumba South are the most 

vulnerable LGAs in the state. The model employed for vulnerability assessment was validated 

using the AUC-ROC method and an AUC value of 0.897 was obtained to show the model has 

good predictive performance. With an accuracy of 89.7%, the model has proved to be a viable 

option for assessing soil erosion vulnerability in data-scarce regions. The study was able to 

ascertain the feasibility of employing the three methods of IVFRN, DEMATEL and ANP as an 

assessment model in erosion vulnerability study. It is however recommended that the efficiency 

of this model should be studied in comparison to other MCDM models. The assessment model 

identified hydrological and topographical factors as the major cause of erosion hazards in the 

study area. Hence, the provision of adequate drainage systems is recommended as a means to 

mitigate erosion hazard in the state. Furthermore, activities that lead to the removal of vegetation 

and the disturbance of the soil structure should be largely discouraged to aid the control of 

erosion hazard in the state. The study observed certain limitations in obtaining the pairwise 

comparison matrix as experts encountered certain difficulties in using fuzzy triple numbers to 

describe the influence of the factors on one another. Despite this challenge, the method adopted 

in this study can be a useful tool for producing erosion vulnerability maps to aid soil 

management and conservation practices.  
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C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0,0,0.25 0.25,0.5,0.75 0.5,0.75,1.0 0.25,0.5,0.75 0, 0, 0.25 0.25,0.5,0.75 0, 0, 0.25 0.75,1.0,1.0 0.75,1.0,1.0 

C2 0.25, 0.5,0.75 0, 0, 0.25 0.5, 0.75, 1.0 0.75,1.0,1.0 0,0.25,0.5 0,0.25,0.5 0.25, 0.5,0.75 0.75,1.0,1.0 0.5, 0.75, 1.0 

C3 0.5, 0.75, 1.0 0.75,1.0,1.0 0, 0, 0.25 0.75,1.0,1.0 0.25, 0.5,0.75 0.75,1.0,1.0 0.25, 0.5,0.75 0.75,1.0,1.0 0.75,1.0,1.0 

C4 0.25,0.5,0.75 0.25, 0.5,0.75 0.25, 0.5,0.75 0, 0, 0.25 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.75,1.0,1.0 0.5, 0.75, 1.0 

C5 0, 0, 0.25 0.25, 0.5,0.75 0.25, 0.5,0.75 0.25, 0.5,0.75 0, 0, 0.25 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.75,1.0,1.0 0.75,1.0,1.0 

C6 0.25, 0.5,0.75 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0, 0, 0.25 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 

C7 0, 0, 0.25 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0,0, 0.25 0.75,1.0,1.0 0.75,1.0,1.0 

C8 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0,0, 0.25 0.75,1.0,1.0 

C9 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0.75,1.0,1.0 0,0, 0.25 

Appendix 2: Initial Pairwise Comparison Matrix of Expert 1  
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C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0, 0, 0.25 0, 0.25, 0.5 0,0.25, 0.5 0,0.25, 0.5 0.25,0.5, 0.75 0.25,0.5, 0.75 0.5, 0.75, 1.0 0.75, 1.0, 1.0 0.75, 1.0, 1.0 

C2 0, 0.25, 0.5 0, 0, 0.25 0,0.25, 0.5 0,0.25, 0.5 0.25,0.5, 0.75 0.25,0.5, 0.75 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.75, 1.0, 1.0 

C3 0,0.25, 0.5  0,0.25, 0.5  0, 0, 0.25 0,0.25, 0.5 0.25,0.5, 0.75 0.25,0.5, 0.75 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.75, 1.0, 1.0 

C4 0,0.25, 0.5  0,0.25, 0.5  0,0.25, 0.5 0, 0, 0.25 0.25,0.5, 0.75 0.25,0.5, 0.75 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.75, 1.0, 1.0 

C5 0,0.25, 0.5  0,0.25, 0.5  0,0.25, 0.5 0,0.25, 0.5 0, 0, 0.25 0.25,0.5, 0.75 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.75, 1.0, 1.0 

C6 0,0.25, 0.5  0,0.25, 0.5  0,0.25, 0.5 0,0.25, 0.5 0,0.25, 0.5 0, 0, 0.25 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.75, 1.0, 1.0 

C7 0,0.25, 0.5  0,0.25, 0.5  0,0.25, 0.5 0,0.25, 0.5 0,0.25, 0.5 0,0.25, 0.5 0,0, 0.25 0.25,0.5, 0.75 0.5, 0.75, 1.0 

C8 0,0.25, 0.5  0.5, 0.75, 1.0  0.5, 0.75, 1.0 0.5, 0.75, 1.0 0,0.25, 0.5 0,0.25, 0.5 0,0.25, 0.5 0,0, 0.25 0.5, 0.75, 1.0 

C9 0,0.25, 0.5  0.5, 0.75, 1.0  0.5, 0.75, 1.0 0.5, 0.75, 1.0 0,0.25, 0.5 0,0.25, 0.5 0,0.25, 0.5 0,0.25, 0.5 0,0, 0.25 

Appendix 3: Initial Pairwise Comparison Matrix of Expert 2  
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C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 0, 0, 0.25 0.5, 0.75, 1.0 0.75, 1.0, 1.0 0.5, 0.75, 1.0 0.75, 1.0, 1.0 0.5, 0.75, 1.0 0, 0.25, 0.5 0, 0.25, 0.5 0.5, 0.75, 1.0 

C2 0.5, 0.75, 1.0 0, 0, 0.25 0.75, 1.0, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0, 0.25, 0.5 0.75, 1.0, 1.0 0.5, 0.75, 1.0 

C3 0, 0, 0.25 0, 0, 0.25 0, 0, 0.25 0.5, 0.75, 1.0 0.75, 1.0, 1.0 0.75, 1.0, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 

C4 0, 0, 0.25 0, 0, 0.25 0,0, 0.25 0, 0, 0.25 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0, 0.25, 0.5 0.5, 0.75, 1.0 0, 0.25, 0.5 

C5 0, 0, 0.25 0, 0, 0.25 0,0, 0.25 0, 0, 0.25 0, 0, 0.25 0, 0, 0.25 0, 0, 0.25 0.5, 0.75, 1.0 0.5, 0.75, 1.0 

C6 0, 0, 0.25 0, 0, 0.25 0,0, 0.25 0, 0, 0.25 0, 0, 0.25 0, 0, 0.25 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0 

C7 0, 0, 0.25 0, 0, 0.25 0,0, 0.25 0, 0, 0.25 0, 0, 0.25 0, 0, 0.25 0,0, 0.25 0, 0, 0.25 0,0, 0.25 

C8 0, 0, 0.25 0, 0, 0.25 0,0, 0.25 0, 0, 0.25 0, 0, 0.25 0.5, 0.75, 1.0 0,0, 0.25 0,0, 0.25 0.5, 0.75, 1.0 

C9 0, 0, 0.25 0, 0, 0.25 0,0, 0.25 0, 0, 0.25 0, 0, 0.25 0, 0, 0.25 0, 0, 0.25 0, 0, 0.25 0,0, 0.25 
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C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 (0,0,), (0,0), 

(0.25,0.25) 

(0.13,0.38), 

(0.38,0.63), 

(0.63,0.88) 

(0.25,0.5), 

(0.5,0.83), 

(0.83,1.0) 

(0.13,0.38), 

(0.38,0.63), 

(0.63,0.88) 

(0,0), 

(0,0.25), 

(0.25,0.67) 

(0.25,0.33), 

(0.5,0.58), 

(0.75,0.83) 

(0,0), 

(0,0.25), 

(0.25,0.58) 

(0.5,0.75), 

(0.75,0.83), 

(0.83,1.0) 

(0.67,0.75), 

(0.92,1.0), 

(1.0,1.0) 

C2 (0.13,0.38), 

(0.38,0.63), 

(0.63,0.88) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.25,0.5), 

(0.5,0.83), 

(0.83,1.0) 

(0.42,0.67), 

(0.67,0.83), 

(0.83,1.0) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0.13,0.38), 

(0.38,0.63), 

(0.63,0.88 

(0.67,0.75), 

(0.92,1.0), 

(1.0,1.0) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

C3 (0.17,0.33), 

(0.33,0.58), 

(0.58,1.0) 

(0.25,0.42), 

(0.42,0.58), 

(0.58,1.0) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.42,0.67), 

(0.67,0.83), 

(0.83,1.0) 

(0.25,0.42), 

(0.5,0.67), 

(0.75,0.83) 

(0.58,0.75), 

(0.83,0.92), 

(0.92,1.0) 

(0.25,0.42), 

(0.5,0.67), 

(0.75,0.92) 

(0.58,0.75), 

(0.83,1.0), 

(1.0,1.0) 

(0.67,0.75), 

(0.92,1.0), 

(1.0,1.0) 

C4 (0.08,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0.08,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0.08,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.41,0.5), 

(0.67,0.75), 

(0.92,1.0) 

(0.41,0.5), 

(0.67,0.75), 

(0.92,1.0) 

(0.33,0.5), 

(0.58,0.75), 

(0.83,1.0) 

(0.58,0.75), 

(0.83,1.0), 

(1.0,1.0) 

(0.25,0.5), 

(0.5,0.83), 

(0.83,1.0) 

C5 (0,0), 

(0,0.08), 

(0.25,0.33) 

(0.08,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0.08,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0.08,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.25,0.42), 

(0.42,0.67), 

(0.67,1.0 

(0.33,0.5), 

(0.58,0.75), 

(0.83,1.0) 

(0.58,0.75), 

(0.83,1.0), 

(1.0,1.0) 

(0.67,0.75), 

(0.92,1.0), 

(1.0,1.0) 

C6 (0.08,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0.17,0.33), 

(0.33,0.58), 

(0.58,1.0) 

(0.17,0.33), 

(0.33,0.58), 

(0.58,1.0) 

(0.17,0.33), 

(0.33,0.58), 

(0.58,1.0) 

(0.17,0.33), 

(0.33,0.58), 

(0.58,1.0) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.58,0.75), 

(0.83,1.0), 

(1.0,1.0) 

(0.58,0.75), 

(0.83,1.0), 

(1.0,1.0) 

(0.67,0.75), 

(0.92,1.0), 

(1.0,1.0) 

C7 (0,0), 

(0,0.08), 

(0.25,0.33) 

(0.17,0.33),   

(0.33,0.58), 

(0.58,1.0) 

(0.17,0.33),   

(0.33,0.58), 

(0.58,1.0) 

(0.17,0.33),   

(0.33,0.58), 

(0.58,1.0) 

(0.17,0.33),   

(0.33,0.58), 

(0.58,1.0) 

(0.17,0.33),   

(0.33,0.58), 

(0.58,1.0) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.33,0.5), 

(0.5,0.67), 

(0.67,1.0) 

(0.42,0.58), 

(0.58,0.75), 

(0.75,1.0) 

C8 (0.25,0.42), 

(0.42,0.58), 

(0.58,1.0) 

(0.42,0.58), 

(0.58,0.75), 

(0.75,1.0) 

(0.42,0.58), 

(0.58,0.75), 

(0.75,1.0) 

(0.42,0.58), 

(0.58,0.75), 

(0.75,1.0 

(0.25,0.42), 

(0.42,0.58), 

(0.58,1.0) 

(0.42,0.67), 

(0.67,0.83), 

(0.83,1.0) 

(0.25,0.42), 

(0.42,0.58), 

(0.58,1.0) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.58,0.75), 

(0.83,1.0), 

(1.0,1.0) 

C9 (0.25,0.42), 

(0.42,0.58), 

(0.58,1.0) 

(0.42,0.58), 

(0.58,0.75), 

(0.75,1.0 

(0.42,0.58), 

(0.58,0.75), 

(0.75,1.0 

(0.42,0.58), 

(0.58,0.75), 

(0.75,1.0 

(0.25,0.42), 

(0.42,0.58), 

(0.58,1.0) 

(0.25,0.42), 

(0.42,0.58), 

(0.58,1.0) 

(0.25,0.42), 

(0.42,0.58), 

(0.58,1.0) 

(0.25,0.42), 

(0.42,0.58), 

(0.58,1.0) 

(0,0,), (0,0), 

(0.25,0.25) 

Appendix 5: Interval Value Fuzzy Rough Numbers for Expert 1  
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C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 (0,0,), (0,0), 

(0.25,0.25) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.83) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0.13,0.25), 

(0.25,0.5), 

(0.5,0.88) 

(0.25,0.33), 

(0.5,0.58), 

(0.75,0.83) 

(0.17,0.33), 

(0.33,0.58), 

(0.58,1.0) 

(0.5,0.75), 

(0.75,0.83), 

(0.83,1.0) 

(0.67,0.75), 

(0.92,1.0), 

(1.0,1.0) 

C2 (0,0.25), 

(0.25,0.5), 

(0.5,0.75 

(0,0,), (0,0), 

(0.25,0.25) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.83) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.83) 

(0.13,0.38), 

(0.38,0.63), 

(0.63,0.88) 

(0.13,0.38), 

(0.38,0.63), 

(0.63,0.88) 

(0.125,0.5), 

(0.5,0.75), 

(0.75,1.0) 

(0.5,0.67), 

(0.75,0.92), 

(1.0,1.0) 

(0.58,0.75), 

(0.83,1.0), 

(1.0,1.0) 

C3 (0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0,), (0,0), 

(0.25,0.25) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.83) 

(0.25,0.42), 

(0.5,0.67), 

(0.75,0.83) 

(0.25,0.5), 

(0.5,0.75), 

(0.75,0.92) 

(0.41,0.5), 

(0.67,0.75), 

(0.92,1.0) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

(0.67,0.75), 

(0.92,1.0), 

(1.0,1.0) 

C4 (0, 0.08), 

(0.13,0.38), 

(0.38,0.42) 

(0, 0.08), 

(0.13,0.38), 

(0.38,0.42) 

(0, 0.08), 

(0.13,0.38), 

(0.38,0.42) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.25,0.41), 

(0.5,0.67), 

(0.75,0.92) 

(0.25,0.41), 

(0.5,0.67), 

(0.75,0.92) 

(0.33,0.5), 

(0.58,0.75), 

(0.83,1.0) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

(0.42,0.67), 

(0.67,0.83), 

(0.83,1.0) 

C5 (0,0), 

(0.08,0.25), 

(0.33,0.5) 

(0, 0.08), 

(0.13,0.38), 

(0.38,0.42) 

(0, 0.08), 

(0.13,0.38), 

(0.38,0.42) 

(0, 0.08), 

(0.13,0.38), 

(0.38,0.42) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.13,0.25), 

(0.25,0.5), 

(0.5,0.88) 

(0.33,0.5), 

(0.58,0.75), 

(0.83,1.0) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

(0.67,0.75), 

(0.92,1.0), 

(1.0,1.0) 

C6 (0, 0.08), 

(0.13,0.38), 

(0.38,0.42) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

(0.67,0.75), 

(0.92,1.0), 

(1.0,1.0) 

C7 (0,0), 

(0.08,0.25), 

(0.33,0.5) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.13,0.25), 

(0.25,0.5), 

(0.5,0.88) 

(0.25,0.38), 

(0.38,0.75), 

(0.75,1.0) 

C8 (0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0.25,0.38), 

(0.38,0.75), 

(0.75,1.0) 

(0.25,0.38), 

(0.38,0.75), 

(0.75,1.0) 

(0.25,0.38), 

(0.38,0.75), 

(0.75,1.0) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.83) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

C9 (0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0.25,0.38), 

(0.38,0.75), 

(0.75,1.0) 

(0.25,0.38), 

(0.38,0.75), 

(0.75,1.0) 

(0.25,0.38), 

(0.38,0.75), 

(0.75,1.0) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0,), (0,0), 

(0.25,0.25) 

Appendix 6: Interval Value Fuzzy Rough Numbers for Expert 2  
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C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 (0,0,), (0,0), 

(0.25,0.25) 

(0.25,0.5), 

(0.5,0.75), 

(0.75,1.0) 

(0.42,0.67), 

(0.67,0.83), 

(0.83,1.0) 

(0.25,0.5), 

(0.5,0.75), 

(0.75,1.0) 

(0.33,0,5), 

(0.5,0.67), 

(0.67,1.0) 

(0.33,0,5), 

(0.58,0.75), 

(0.83,1.0) 

(0,0.13), 

(0.13,0.38), 

(0.38,0.75) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.83) 

(0.5,0.67), 

(0.75,0.92), 

(1.0,1.0) 

C2 (0.25,0.5), 

(0.5,0.75), 

(0.75,1.0) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.42,0.67), 

(0.67,0.83), 

(0.83,1.0) 

(0.25,0.5), 

(0.5,0.83), 

(0.83,1.0) 

(0.25,0.5), 

(0.5,0.75), 

(0.75,1.0) 

(0.25,0.5), 

(0.5,0.75), 

(0.75,1.0) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.75) 

(0.67,0.75), 

(0.92,1.0), 

(1.0,1.0) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

C3 (0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.25,0.5), 

(0.5,0.83), 

(0.83,1.0) 

(0.42,0.67), 

(0.67,0.83), 

(0.83,1.0) 

(0.58,0.75), 

(0.83,0.92), 

(0.92,1.0) 

(0.41,0.5), 

(0.67,0.75), 

(0.92,1.0) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

(0.5,0.67), 

(0.75,0.92), 

(1.0,1.0) 

C4 (0,0,), 

(0,0.25), 

(0.25,0.5) 

(0,0,), 

(0,0.25), 

(0.25,0.5) 

(0,0,), 

(0,0.25), 

(0.25,0.5) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.41,0.5), 

(0.67,0.75), 

(0.92,1.0) 

(0.41,0.5), 

(0.67,0.75), 

(0.92,1.0) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.83) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.83) 

C5 (0,0), 

(0,0.08), 

(0.25,0.33) 

(0,0,), 

(0,0.25), 

(0.25,0.5) 

(0,0,), 

(0,0.25), 

(0.25,0.5) 

(0,0,), 

(0,0.25), 

(0.25,0.5) 

(0,0,), (0,0), 

(0.25,0.25) 

(0,0,), 

(0,0.25), 

(0.25,0.67) 

(0,0.25), 

(0.25,0.5), 

(0.5,0.83) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

(0.5,0.67), 

(0.75,0.92), 

(1.0,1.0) 

C6 (0,0,), 

(0,0.25), 

(0.25,0.5) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

(0.5,0.67), 

(0.75,0.92), 

(1.0,1.0) 

C7 (0,0), 

(0,0.08), 

(0.25,0.33) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), (0,0), 

(0.25,0.25) 

(0,0,), 

(0,0.25), 

(0.25,0.67) 

(0,0,), 

(0,0.25), 

(0.25,0.75) 

C8 (0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.75) 

(0,0,), 

(0,0.25), 

(0.25,0.75) 

(0,0,), 

(0,0.25), 

(0.25,0.75) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0.25,0.5), 

(0.5,0.83), 

(0.83,1.0) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), (0,0), 

(0.25,0.25) 

(0.5,0.58), 

(0.75,0.83), 

(1.0,1.0) 

C9 (0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.75) 

(0,0,), 

(0,0.25), 

(0.25,0.75) 

(0,0,), 

(0,0.25), 

(0.25,0.75) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), 

(0,0.25), 

(0.25,0.58) 

(0,0,), (0,0), 

(0.25,0.25) 

Appendix 7: Interval Value Fuzzy Rough Numbers for Expert 3  

 


