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Abstract 
 
This article updates total factor productivity (TFP) growth in UK agriculture from 
1953–2005 and shows that public and private research and returns to scale explain 
TFP. Cointegration and causality tests are used to investigate the validity of attempts 
to explain UK agricultural productivity with R&D and related technology variables. 
Then, the length and shape of the lag structures are modeled and compared with the 
structures that are commonly imposed on the data. The rates of return (ROR) to R&D 
using the data determined lags differ considerably from those obtained by imposing 
lag shapes. These comparisons show that the ROR to public R&D are sensitive to the 
lag shape as well as its length and that the omission of other technology variables, 
such as mechanical and chemical patents pertaining to agriculture and farm size can 
bias the ROR.    
 
 

1. Introduction 
 
Changes in accounting procedures and index construction have substantially 
improved TFP measurement in UK agriculture. These changes are reviewed and 
summarized in Thirtle et al. (2004). The methodology is now very similar to that used 
by the United States Department of Agriculture (USDA) in constructing the US TFP 
statistics. Furthermore, the passage of time has added substantially to the length of the 
time series since Schimmelpfennig and Thirtle (1994) first applied time series 
techniques to these data. Thus, this article updates TFP in UK agriculture to 2005 and 
then explains TFP change using both time series techniques and data determined lag 
structures. 
 
The next section briefly explains the data and reports the TFP results, which show that 
the UK has had very little TFP growth since the severe cuts in the R&D budget that 
began in 1982. The TFP index is explained by technological progress, measured by 
both public R&D and private patents. The third section checks the validity of the 



relationship between TFP and the explanatory variables by investigating the time 
series properties of the data, establishing that cointegrating regressions exist and 
establishing causality. Section four uses the time series data to model the length and 
shape of the R&D lag, using beta, exponential, gamma, and polynomial lag 
distributions (PDL). The biases caused by omitting the patent variables that represent 
private technology generation are investigated. Then, in section five, the lag shape as 
well as the length, plus variable omission are shown to be important to the rate of 
return (ROR) estimates. This section illustrates that ignoring private sector patent 
activity can bias the ROR for public R&D downward, rather than upward. The final 
section offers conclusions that speculate on this unexpected outcome and the current 
state of knowledge.  
 

2. Measuring and explaining TFP in UK agriculture 
 
There is no doubt that UK TFP growth in the last two decades has been slow and this 
is shown most clearly by international comparisons. Fig. 1 uses data from an 
unpublished study for the UK Department for the Environment, Food and Rural 
Affairs (DEFRA) by Eldon Ball. As recently as 1981, the UK was level with France, 
but French growth continued, while UK growth ceased, so that by 2001 there is a 
huge gap between the UK and the leading EU countries. Indeed, the UK is now the 
least productive country in the EU, along with Sweden. This would be unremarkable 
if it were not for the fact that the UK national agricultural research system is still quite 
highly regarded internationally. To find the cause of the demise in UK productivity 
this article follows the conventional wisdom in supposing that TFP growth is 
generated by technological change, which results from public and private R&D, 
assisted by some contribution from increases in farm size, as there is the expectation 
of increasing returns to scale. 
   

 
Fig. 1. TFPs for the leading EU countries and the UK.  
 
 
Thirtle et al. (2004) reported on the construction of a new Tornqvist–Theil TFP index 
for the UK agricultural sector, which is very similar in construction to the index 



reported by the USDA. DEFRA has adopted the same methods, except that it reports 
Fisher's ideal index, but this makes little difference to the results. Thus, the index used 
here is the Thirtle et al. (2004) index updated to 2005 using data from DEFRA. TFP 
grew at almost 2% per annum up until 1983. Then, for the 18 years from 1983 to 
2005, growth falls to 0.2%. Indeed, the index is higher in 1983 than in 2000, although 
this is comparing a good year with a bad one. Then, there is some evidence of a slight 
recovery after 2000. 
 
The decline in TFP growth can be explained by public and private technology and 
returns to scale. Public sector R&D has generated most of the biological technical 
change in the past, while mechanical technical change has been much more the 
province of the private sector, which has also much improved the chemical inputs, 
such as fertilizer, pesticide, and herbicide. The structure of UK public and private 
agricultural R&D is explained in Thirtle et al. (1997). The TFP data are from 1953 to 
2005. Public agricultural R&D expenditures, in constant values, are updated from 
Thirtle et al. (1997). Although the series extend back to 1940, the long lags on R&D 
prevent fitting to the full TFP sample; with a 27-year lag the model is still fitted to 40 
years of data, from 1966. There is no R&D expenditure data for the private sector, but 
from 1940 there are data on mechanical and chemical patents pertaining to 
agriculture, first used by Khatri and Thirtle (1996). 
 
These are counts of all relevant patents registered in the USA, regardless of country of 
origin and where they were first used. These are the only patent series available that 
go back far enough, but they are quite suitable for capturing private activity in the 
UK, since Schimmelpfennig and Thirtle (1999) showed that international spillovers 
are more important than domestic patent activity for the European Union countries 
and also measured spillovers from foreign public research systems. The 
internationalization of private technology generation that has resulted from the 
increasing importance of multinational companies has led to a global pool of available 
technology and country of origin is relatively unimportant1. In addition to technical 
change, increasing returns to scale combined with increasing farm size may be 
expected to contribute to TFP growth and there are farm size data from 1953 onward 
from Thirtle et al. (2004). This article also investigates the evidence on how domestic 
and foreign patents and domestic public R&D are related, but again the data begin 
only at 1973. 
 
Thus, this study concentrates on the longest series available, in the hopes of not 
truncating the R&D lag. The specification is less complete in other ways as a result 
and there may well be misspecification due to omitting variables that would capture 
other technology generating activities. However, the most obvious deficiency is the 
lack of extension data, which is further discussed later. 
 
TFP growth appears to have followed the explanatory variables with a lag, as R&D 
grew rapidly until 1981 and then declined, while both mechanical and chemical patent 
counts had ceased growing by the 1980s and farm size growth practically ceased a 
few years later. Thirtle et al. (2004) presents diagrams showing these series and the 
variables that are expected to be causally prior to TFP all turn before TFP stopped 
growing. This was the period when the Thatcher government severely reduced public 
expenditures on agricultural research. 
 



In a preliminary investigation of these relationships, the unrestricted model should 
include as many individual lagged values of the variables as are needed. If the 
relationship is assumed to be linear in logarithms, the ordinary least squares 
regression equation for substantiating the relationships explained above is 

(1)where R&D is lagged i years, 
mechanical patents (MP) j years, and chemical patents (CP) k years. Farm size (FS) is 
not lagged and DUM is a dummy that is zero until 1983 and unity thereafter. The 
dummy variable is not crucial to the results, but can help to deal with the possible 
structural break at this point. This equation uses point estimates to find the lags that 
give the strongest impact on TFP and to drop those that are not significant. The 
strongest lag on R&D was initially found to be 12 years, which can be viewed as the 
midpoint estimate of a 24-year lag structure. Thirtle et al. (2004) found a second-
degree polynomial 24 years long. Mechanical patents fitted best with the short lag of 
three years and chemical patents with no lag at all. The main objective of this exercise 
is to determine the strongest lags in order to guide the imposition of restrictions, 
which is what the distributed lags structures are. 
 
The results are reported in Table 1, which makes it clear that lack of explanatory 
power is not the problem with these long series. The first columns, labeled Models 1 
to 4, show that R&D alone explains 98% of the variance; farm size alone 94%; 
mechanical patents alone 91%; and chemical patents a more modest 39%. When R&D 
has this level of explanatory power (even without fitting it as a distributed lag) the 
problem is likely to be that the coefficients of the associated variables will not be 
significantly different from zero. In fact, Model 5 in Table 1 shows this is not the case 
either, as the elasticities of farm size, mechanical patents, and the structural break 
dummy are all significantly different from zero at the 5% level. The test is taken to be 
one tailed as economic theory excludes negative elasticities. When chemical patents 
are added, as in Model 6, the significance levels are maintained, except in the case of 
farm size. 
 
   



Table 1  
Explaining TFP change without lag structures, from 1953  
 

 
 
Model 7 simply shows that the elasticity of R&D is significant with lags of both 10 
and 24 years, which may suggest a bimodal lag distribution, especially as Model 8 
shows that the coefficient is negative and insignificant at 15 years. Note too that if 
only R&D is used to explain TFP, the elasticity is biased upward. With over 98% of 
the variance already explained the coefficient on the weather index was not 
significantly different from zero. Lastly, the Durbin Watson statistics for these more 
completely specified regressions (Models 5 to 8) are in the indeterminate range, so 
serial correlation is not pursued further at this point. 
 
Whatever criteria are used for model selection, it is clear that Model 5 is likely to be 
preferred as it has the joint highest adjusted R2 and the best Akaike Information 
Criteria (AIC) and Likelihood statistics. The Schwarz Bayes Information Criteria 
(SBIC) statistic is almost top as well and it is only let down by the Durbin Watson 
statistic. As this can be taken to indicate misspecification, Models 7 and 8, which 
have more than one lag of R&D, would be preferred in this respect, but fare far less 
well in all the other tests. This issue of multiple impacts of R&D will be further 
investigated later, but note that although the more completely specified models have 
good test statistics, the improvement over Model 1 is very limited. One 12-period lag 
of R&D comes close to being the preferred model. 
 
These powerful results can be compared with the tenuous outcomes reported by 
Thirtle and Bottomley (1989), when the series were far shorter and the TFP index less 
competently measured. Though that study analyzed all five different TFP indices that 
were then available, the highest adjusted R2 obtained was only 0.75. Whilst this 
improvement is encouraging, the long time series now available also means that these 
data can now be subjected to more rigorous examination using time series techniques. 
The relationships postulated above may prove to be spurious according to the 
improved standards set by improvements in time series econometrics. Then there is 
the issue of using the information gained above in adequately modeling the R&D, 
mechanical and chemical patents, as all three are capital stocks, which need lag 



distributions to be imposed or estimated. This is not likely to improve regressions in 
which as much as 98% of the variance is already explained and the point estimates of 
the elasticities usually prove to be good approximations of the elasticities obtained 
using stock variables. However, if either the length or shape of the lag structure is 
incorrect, the elasticity estimates will be both inefficient and biased because of 
omitted variables. Also, both length and shape matter in that they affect the ROR 
considerably, since future impacts are discounted and information on the distribution 
of these impacts is important 
 
 

3. Time series tests, cointegration, and causality 
 
The time series properties of the variables are now checked using the augmented 
Dickey Fuller (ADF) tests reported in Table 2, which shows that all the variables used 
in Eq. (1) are stationary in first differences, so the equation may have a cointegrating 
regression.  
 
 
Table 2  
Time series characteristics and order of integration of the variables  
 

 
 
 
For this to be so, a linear combination of the variables must exist that is integrated an 
order one less than the original variables. That is, the error term from the 
cointegrating regression must be stationary. Since the coefficients estimated in Table 
1 are an efficient and unbiased linear combination of the variables, it is reasonable to 
check that equation for cointegration. The ADF test, with no intercept or trend, 
reported in Table 3 has the null hypothesis of a unit root, which is rejected at the 5% 
level, meaning that the residuals are stationary and this is a cointegrating regression 
(Vogelvang, 2005). The more general maximum likelihood approach of Johansen 
(1988) allows estimation of all cointegrating relationships and tests for the number of 
cointegrating vectors and the direction of causality. The null hypothesis of no 
cointegrating vectors is rejected in both the Eigenvalue and Trace tests, but that of 
less than two cointegrating vectors is not rejected. This implies that there is one 
cointegrating vector and there should be Granger causality in one direction, so the 
next test is to establish this.  



Table 3  
Johansen cointegration results  
 

 
 
 
The χ2 statistics in the first row of Table 4 test to see if R&D, patents, and farm size 
are Granger-prior to TFP and the probabilities in the next row show that this is true 
for all the explanatory variables, which is the required result. The remainder of the 
table shows that there is little evidence of any feedbacks in the opposite direction, 
although TFP and farm size do appear to be causally prior to chemical patents, which 
are themselves prior to mechanical patents. 
 
 
Table 4  
Granger causality Wald tests—Vector autoregressions  
 

 
 
Having established cointegration and causality in the required direction it may be 
possible to represent the relationships as an error correction model (ECM) as 
Granger's representation theorem proves that a cointegrated system of variables can 
be adequately represented as an ECM (Engle and Granger, 1987). The ECM form did 
not prove to be suitable for modeling the long lags inherent in technology generation, 
so the more conventional path of fitting distributed lag structures or creating stock 
variables is followed here. However, the properties of the data continue to be the 
center of attention, as models of the lag structures provide some continuity with the 
time series approach used so far (see Gilbert, 1990).   
 
 
 



4. Modeling lag length and shape 
   
   
4.1. Lag relationships between research and productivity growth  
Expenditures on R&D are investments generating new technologies that augment the 
existing stock of techniques, which are at the same time being diminished by 
depreciation as old technologies cease to affect productivity. All attempts at modeling 
capital stocks amount to estimating or imposing the weights on a lag distribution 
(quite simply a weighted moving average). There are numerous alternative shapes, 
many of which are well summarized in Maddala (1977, Ch.16), but in most cases the 
impact of new investment must be determined and so must the rate of depreciation. 
However, when the lag covers the entire relationship from R&D expenditures to the 
impact on farm level TFP, rather more is involved. First, there is the lag from 
expenditures to technology generation, followed by the diffusion lag. 
 
For patents, the gestation lag is removed, but the rates of diffusion and depreciation 
have to be captured. One extreme is the lack of diffusion lag and exponential decay of 
patent knowledge stocks that were pre-constructed by Khatri and Thirtle (1996), using 
a perpetual inventory model (PIM), where the patent's stock in year t is the number of 
patents registered in year t plus the stock of past patents, multiplied by (1-δ), where δ 
is the depreciation rate and is set at 0.08. The significance of 0.08 is that a patent's 
contribution becomes negligible after 17 years, which was roughly the life of a U.S. 
utility patent during this period. Other common alternatives are the linear distributed 
lag (akin to straight line depreciation), the uniform distribution of a simple moving 
average, inverted V or trapezoidal shapes, and inverted U shapes associated with 
Almon lags. The last three of these allow for both gradual adoption and decay. 
 
Thus, Alston et al. (2000) found that in agricultural economics the two most common 
approaches have been low-order polynomial lags and pre-constructed trapezoid and 
inverted V lags. In the second-degree PDL structures, usually both end points are 
constrained to equal zero and the R&D is in logarithms. The inverted U shape, formed 
by the estimated elasticity weights of the PDL, is thus the shape of the knowledge 
capital stock. Alternatively, a knowledge stock variable can be manually created and 
imposed, using inverted V or trapezoidal lag weights, to give an alternative form of 
moving average, which is then subjected to logarithmic transformation. 
 
Thus, the two approaches are somewhat different in that the trapezoid is used to 
construct a knowledge stock and then the logarithm is taken, whereas the PDL is 
estimated with the R&D data in logarithms. The PDL was intended to allow 
estimation of elasticities for individual years, while still conserving degrees of 
freedom and overcoming the fact that unconstrained estimation is difficult because 
numerous lags of the same variable are normally collinear. The PDL and trapezoid are 
compared in Fig. 2, using UK data. The diamonds in the figure depict a second-degree 
PDL, which allows only one turning point and is also constrained to zero at each end 
point. Test statistics like those reported in Table 1 were used to select the preferred 
model, which was found to have a three-year lead time, meaning that the lag begins at 
zero in the third year and then persists for 25 years. 
   



 
 
Fig. 2. Constrained polynomial, trapezoid, and unconstrained PDLs.  
 
 
The estimated coefficients for the PDL, which are elasticities, since all the variables 
are in logarithms, are reported in the first column of Table 5 (Model 9), while the t-
statistic of 6.30 in the second column shows that they are collectively statistically 
different from zero. The other technology variables are mechanical and chemical 
patents pertaining to agriculture, for which several alternatives were tried for creating 
stocks. The PIM and other pre-constructed series did not give significant estimates, 
but when chemical patents are modeled as a stock using a five period, second-degree 
PDL, again constrained to equal zero at both end points, the PDL is significant and 
model fit is improved. Mechanical patents are modeled in the same way, but with a 
one-year lead time and seven period lag. Together the private sector patent series have 
elasticities that sum to almost 0.3, which is greater impact than the total R&D 
elasticity of 0.2. This reflects the fact that private sector expenditures in the advanced 
countries have overtaken public expenditures (Alston et al., 1999). Farm size is also 
included, to capture the possible contribution of increasing returns to scale in TFP 
growth, as farm size was growing substantially until the late 1980s, when it stabilized 
and then fell. The farm size variable was not significant, but the diminishing and then 
declining growth is captured by the negative sign on farm size squared, which was 
included to deal with this nonlinearity. 
 
 



Table 5  
Results for constrained PDL, trapezoidal, and beta lag distributions  
 

 
 
Note: *The number of estimated parameters for the PDLs is the degree of the 
polynomial, plus one. 
 
 
The square symbols in Fig. 2 depict the shape of the trapezoidal lag used to construct 
the R&D knowledge stock in the alternative approach. The greater size should be 
ignored as the coefficients reflect the weights used rather than estimated elasticities. 
The lag of 35 years and the weights are the same as Huffman and Evenson (2006, p. 
671) have used for the USA and Mullen and Cox (1995) for Australian broadacre 
agriculture. To keep the results comparable to the PDL, it is fitted from 1967 to 2003, 
although this does mean projecting the 1940 value for R&D back another 10 years.2 
The program estimates a single elasticity, of 0.172, for this logarithmic knowledge 
stock variable, rather than annual coefficients. In comparison with the PDL, the R&D 
elasticity is lower and those for both patent series are higher. All the test statistics for 
Model 10 (the Durbin Watson, the SBIC, the log likelihood, and adjusted R2) are 



inferior, which suggests that even with a restrictive lag shape like the second-order 
PDL, letting the data choose the lag weights may be preferable to imposing them ex 
ante. Note though, that in terms of all the test statistics except the Durbin Watson, 
neither of these commonly used models fares as well as Model 1, let alone the better 
models in Table 1, such as Model 5. Attempting to allow for the lag distribution 
seems to impose penalties rather than improving the results, partly because the lag 
distribution cuts 10 years from the period for which the model can be fitted. 
 
Neither of the models fitted so far allows very much scope for the data to determine 
the shape of the lag distribution, so the first step in this direction is an unconstrained 
(neither end point set equal to zero) second-degree PDL. Frequently the lack of 
constraints results in unfortunate results, such as the PDL inverting itself, but these 
UK data now seem to be sufficient to support unconstrained estimates. The lag 
remains an inverted U, as the triangles in Fig. 2 show, but is no longer entirely 
symmetric. There is further useful information in Model 11, as the last column of 
Table 5 reports t-statistics for each year individually. These last results show that only 
the lags from five to 23 years are significantly different from zero. Even so, the sum 
of the significant lagged elasticities is 0.29, which is considerably greater than in the 
less flexible models. The two patent series are again estimated as PDLs, but relative to 
Model 9 that also has patent PDLs, the emphasis indicated by the two elasticities is 
reversed, with chemical patents now having the larger impact. In terms of model 
selection criteria, there is very little difference from the constrained model, which 
does indicate that end point constraints are valid. 
 
None of the models fitted so far allows much scope for the data to determine the 
shape of the lag distribution, so the remaining models try to impose fewer priors. 
Extensive use is made of model selection criteria, to allow the data to determine (i) 
the appropriate lag specification, (ii) the shape of the lag distribution, (iii) the lag 
length, and (iv) the lead time (the number of initial zero lag coefficients). There are a 
large number of finite and infinite lag distributions to choose from, reviewed in 
Maddala (1977, Ch. 16) and Judge et al. (1985, Chs. 9 and 10). A discussion of the 
methods used for the data-determined lag shapes and lengths can be found in Khatri 
and Thirtle (2000). The first two flexible structures considered are the gamma and 
beta distributed lags, which are explained below.   
 
4.2. Gamma and beta distributed lags  
These lag distributions assume that the lag coefficients lie on multiples of gamma and 
beta density functions. The gamma distribution is a flexible unimodal distribution that 
can approximate many of the forms mentioned above and allows for a skewed 
distribution. Particularly, Huffman and Evenson (1989, 1992) experimented 
extensively with lag shapes and favor a trapezoidal form for the R&D knowledge 
stock, as in Model 10 above. It increases linearly for seven years, is constant for six 
years, and declines for 20 years. The gamma distribution is of interest since it offers a 
smooth form of such a trapezoid, which can be estimated rather than imposed. It 
assumes that the lag coefficients lie on a multiple of the gamma density function. 
Judge et al. (1985) present Tsurumi's (1971) truncated form of the distribution, 
Schmidt's (1974) more flexible two-parameter distribution, and some simplifications. 
The empirical form of the gamma distribution that combines amendments from 

Tsurumi and Schmidt is (2)where α and S are 



parameters to be estimated. Judge et al. (1985, Fig. 10.1) notes that the lag can take 
many shapes, according to the value of S. 

For estimation, the function can be written as (3)Schmidt suggests 
the last expression in Eq. (3) can be regarded as the truncated remainder, which 
although time-dependent, is asymptotically negligible and thus can be omitted in 
estimation. The parameters S, γ, and α can be estimated from (3) to provide the 
approximating empirical form of the general gamma distribution. The gamma 
distribution provides a flexible structure suited to positively skewed distributions and 
ensures positive coefficients and a unique mode, for s > 1. 
 
Equation (3) was estimated with and without the other exogenous variables, using a 
grid search over a considerable range of starting values in an attempt to derive 
maximum likelihood estimates. The lack of convergence of the estimation algorithms 
was taken to indicate the inappropriateness of the gamma distribution. This suggests 
that the appropriate distribution has a negative skew, rather than the positive skew of 
the gamma distribution and the trapezoid of Model 10. This complies with previous 
results for both the UK and the USA. For the UK, Khatri (1994) found that the best fit 
was the beta lag distribution (chosen according to Pearson's method of moments) with 
a pronounced negative skew and 18 years of lags. Chavas and Cox (1992) found a 
considerably negatively skewed distribution (corresponding to a beta type 
distribution) for the U.S. public sector (more basic) agricultural research whereas the 
lag for private sector (applied/developmental) research was shorter and positively 
skewed, similar to the gamma distribution. For South Africa, which has an effective 
R&D system that concentrates on adaptive research, Khatri and Thirtle (2000) found a 
short lag of up to nine years, with a strong positive skew, which was best modeled 
with the gamma (or generalized exponential) distribution. 
 

The beta distribution lag coefficients are defined as (4)where βi 
is the ith lag coefficient and α, p, and q (together with the coefficients of the other 
conditioning factors) are estimated using maximum likelihood techniques. The beta 
distribution again ensures positive coefficients with a unique mode and is also a 
flexible structure that is suited to negatively skewed distributions. The nonlinear 
estimation algorithm converged reassuringly quickly to a solution for the beta 
distribution, with or without the patent and farm size variables. 
 
The diamonds in Fig. 3 depict the case where the other exogenous variables are 
omitted and the results show the distinctive negative skew that typifies the beta 
distribution. This model is not reported in the Table, as it is clearly misspecified, but 
correcting the specification by including the omitted variables changes the result 
entirely, as the second lag shape, depicted by squares, shows. This lag is not 
negatively skewed and is most like the PDL, but with positive and negative tails, 
rather like the normal distribution. Thus, if up to three turning points must be allowed 
for, the best choice of lag shape would be a fourth-degree polynomial. This shows 
both the flexibility of the beta distribution and the interdependence of the public and 



private technology generating activities. The R&D lag cannot be assumed to be 
independent of patents and farm size and should not be estimated alone. 
   

 
 
Fig. 3. Beta distributions and fourth-degree PDLs.  
 
 
If the shorter-run patent variables are omitted, the expectation would be that the 
public R&D variable would pick up their effects on TFP and would have higher 
coefficients for the early years. Comparing the two beta lags in Fig. 3 shows that the 
opposite is true here, with the elasticities for the early years of the R&D lag increasing 
substantially when patents are included and the later years diminishing. Perhaps this 
indicates that public R&D and patents are complements, which was suggested by 
Thirtle et al. (2004). Compared with the PDLs and the trapezoid of Table 5, Table 6 
shows the flexibility of the beta lag results (Model 12) and a total R&D elasticity of 
0.32, which is even higher than the unconstrained PDL. The impact of the mechanical 
patent series is not much changed, but chemical patents now have an elasticity of only 
0.034. This may be due to the better fit of the more flexible beta lag, which precluded 
the use of PDLs for the patent variables. Instead, the chemical patent's stock was 
included as a four year moving average and the mechanical patents as a moving 
average of the lags at six and seven years. 
 
 



Table 6  
Beta and fourth-degree PDL distributions 
  

 
 
 
The model selection criteria suggest that this is the best model so far, as the test 
statistics improve and so does the adjusted R2, although the Durbin Watson statistic 
suggests a possible problem with serial correlation. The second column of Table 5 
shows that only the lags from six to 19 years are significantly different from zero. 
Perhaps more interesting is the fact that the more flexible beta distribution is still 
unimodal. A final concern is that Models 7 and 8 in Table 1 suggested the possibility 
of a bimodal R&D lag by showing significant R&D lags of 10 and 24 years. Although 
the beta and gamma lags allow for skewness, all the models tested thus far impose lag 
structures that are unimodal and that may be finding maximum elasticities in the 
midrange of the lag structure because they average the impacts from a distribution 
that is actually bimodal. 
 
Thus, the final models estimated here are the least restrictive. Model 13 in Table 6 is a 
fourth-degree polynomial, with the starting value constrained, but not the end point. 



The improvement in the UK data is clear here, as models with this many degrees of 
freedom never worked with old data prior to DEFRA's new TFP series. The triangles 
in Fig. 3 show a very pronounced bimodal distribution with peaks at three and 20 
years. This would indicate that it might be possible to separate out the effects of short-
run R&D activities from the impact of projects with a long gestation period. Similar 
results have been reported for the USA by Chavas and Cox (1992) using a 
nonparametric model, and by Oehmke and Schimmelpfennig (2004), who found 
impacts of public R&D at 2 years and 24 years using impulse response functions. 
Table 6 shows that the elasticities are significantly different from zero for the years 
from 1 to 10 and from 18 to 24, with insignificant values in between. Thus, the seven 
years from lags 11 to 17 are all insignificant, and these are the lags that have the 
highest elasticities in all the previous models. The sum of the elasticities increases to 
0.52, while the impacts of the patents series are maintained, despite the lack of lagged 
values for chemical patents. This weakness, combined with model selection criteria 
that show this model finishes (a close) second to the beta lag, leads to further 
estimation. However, the most telling result may be the Durbin Watson statistic, 
which is now in the acceptable zone rather than being in the indeterminate area. This 
might be taken to indicate that the bimodal specification is sufficiently correct to 
avoid serial correlation problems. 
 
The final model, represented by the circles in Fig. 3, is remarkably similar to the beta 
distribution and a normal curve. This results from modeling both patent stocks as 
PDLs, which seems to restore the parity between the two private R&D series' that was 
emerging earlier. The bimodal form has now, however, gone as the last column of 
Table 6 shows. The lags from 7 to 21 are significant and show a distinctly unimodal 
lag shape. This model has model selection criteria that are clearly superior, explains 
95% of the variance, and has all three technology series properly modeled as stocks. 
The private sector elasticities sum to 0.38 and the public R&D still has a substantial 
elasticity of 0.23. This overall "best" model is unimodal, but there remains some 
possibility that if private sector impacts on productivity could be measured more 
finely, that the bimodal distribution of public R&D impacts might emerge again. 
Throughout this discussion, the effect of omitting relevant technology variables has 
been shown to be serious and there is one omission in the UK case, which cannot be 
overcome as there have been no data on extension expenditures since free public 
extension was ended in 1988. It is not possible to determine the effect this omission 
has on estimated elasticities for public and private technology generation. In 
discussing attribution problems, Alston and Pardey (2001) suggest that private R&D 
and extension may both be positively correlated with public R&D. Nor will it ever be 
possible to collect data on the extension costs of the hundreds of farm management 
consultancy companies that have replaced the public system. So, one challenge is to 
find another way of including extension in the model, perhaps by modeling the gap 
between trial plot and farm yields, which is usually taken to be a measure of the 
effectiveness of the extension system. 
 
Fitting any model over a period gives coefficients that are an average for that period. 
If more detailed data can be discovered, the assumption that the lag coefficients are 
constant should be relaxed. First, the targeting of R&D tends to change over time and 
in the UK there was some change toward targeting public interest issues, such as 
environment, animal welfare, and food safety, rather than productivity growth. The 



impacts of actual TFP enhancing R&D would thus be larger, if some of the R&D 
included here is being targeted elsewhere. 
 
The other related implicit assumption is that the R&D lag length stays the same over 
the period. The claims made for biotechnology included the shortening of the research 
lag. One trait from a plant can be incorporated without waiting for the crop to grow 
and bringing in all manner of other unwanted traits that then have to be bred out, if 
conventional methods were used. Set against this the increasing length of the 
regulatory lags, as checks have become more thorough and the lag length could be 
longer or shorter over time. These types of issues need to be attacked separately and 
the information imposed in this type of lag modeling. Expecting to discover more by 
fitting the lags in even more complex ways must hit diminishing returns. 
 
 

5. Comparing ROR to R&D 
 
One reason for modeling the shape of the lag is that it has just as much impact on the 
rate of return as do lead time and lag length. Higher returns will be shown by the more 
positively skewed distributions since the bulk of the productivity effects occur early 
on and thus their value is less eroded by discounting. Table 7 reports the sum of the 
elasticities of TFP with respect to R&D for all the models that fit the best and the 
marginal internal rates of return. The way in which these are calculated can be found 
in numerous publications, but these follow exactly the methodology explained in 
Thirtle and Bottomley (1989). The first two results are for single-year lags and it is 
clear that if a single peak year is used it attracts a similar elasticity to that of a 
complete lag structure, such as the third result, which is the constrained PDL. That for 
the trapezoid is not strictly comparable. It is slightly lower than the PDL because of 
the longer lag period of 35 years. The range of the RORs across these models is even 
smaller, being only from 22% to 27%, which conforms well with expectations based 
on surveys of past studies. For example, Alston and Pardey (2001) argue that the very 
high ROR that were common in the early literature were caused by short series 
truncating the lag structure. 
 
 
Table 7  
ROR to public R&D expenditures  

 



 
The next step was to relax the priors, with the unconstrained second-degree 
polynomial. The greater flexibility raises the elasticity to 0.29 and the ROR to 34%. 
The beta distribution without the other explanatory variables allowed the distinct 
negative skew, which combined with the low elasticity of 0.11, led to a ROR of only 
15%. This result can probably be disregarded, since when the patent variables are 
added the elasticity rises to 0.32 and the ROR to 34%. The highest elasticity and ROR 
result from the bimodal model, which gives a ROR of 71%, but the distribution of 
funding between short- and long-run projects would need to be known to make a more 
precise ROR calculation in this case. The last result, for the unimodal fourth-order 
PDL returns to the normal range, with a ROR of 26%, which on the basis of the 
model selection criteria would be the best choice with the improved but probably still 
faulty data that we have.  
 
 

6. Conclusions 
 
This article outlines the demise of TFP growth in UK agriculture since the early 1980s 
and explains almost all of the variance in TFP with public R&D expenditures, 
mechanical and chemical patents, which represent the private sector and farm size. 
Public R&D, private patents, and farm size were shown to explain all but 2% of the 
variance in TFP, which is a vast improvement on the past work on R&D and 
productivity in the UK. However, better data and longer series make for more 
stringent time series tests to ensure that the equations are valid. The tests here 
establish the time series properties of the variables, find cointegrating regressions and 
vectors and establish that Granger causality runs from the technology variables to TFP 
and not the reverse. 
 
Then, the R&D lag is modeled, with a view to imposing few priors and allowing 
model specification and testing of the lead time and the lag length and shape to be 
done together. The first contribution of this article is to show that the most commonly 
used lag structures, which are the second-degree PDL and the trapezoid, even though 
yielding significant elasticities do not fit the data very well. The PDL cannot represent 
the data if the lag is skewed and the trapezoid being used appears to have the wrong 
skew for the USA and the UK. 
 
The beta distribution is preferable, but the article then shows that the R&D lag cannot 
be fitted independently of the private sector patent data. Since the private sector now 
spends more than the public sector and the two efforts are interrelated this is hardly 
surprising, but the direction of the effect is robust and unexpected. Including the 
shorter-run patent variables could be expected to reduce the impact of the public R&D 
lag in early years. Instead, it very substantially increases it, raising issues of the 
substitutability or complementarity of public and private R&D. 
 
The third contribution is equally hard to reconcile with the commonly imposed lag 
structures, as the R&D lag tends toward bimodality in some models. It is possible that 
the type of near market R&D still done by DEFRA, which verges on extension, 
accounts for the first of the twin peaks, while the second, with a gestation period of 
over 20 years, results from the quite basic R&D undertaken by the Biotechnology and 
Biological Science Research Council. Between the twin peaks, at the point where 



second-degree polynomial and trapezoid lags estimate the highest weights, there is no 
evidence of and impact of R&D on productivity, in several of the models fitted. 
The conventional models may be at odds with the data and give poor estimates of the 
ROR to R&D, but definitive statements are foolhardy. Griliches (1994) points out that 
the data are the constraint is undoubtedly still valid, but more theory as well as more 
data are required for better estimates. But the theory should not lead to stronger priors 
being imposed on the data. Instead, it should be an attempt to break up and separate 
the many factors that spill into TFP change. It is a function of basic and applied, 
public and private, domestic and foreign R&D, extension, returns to scale, changes in 
crop and animal mix, the weather, and no doubt many other influences like trade. It is 
not surprising that reliable estimates are hard to obtain with so much going on, 
especially when even central issues like the interrelationships between public and 
private activity are so poorly understood. 
 
   

Footnotes 
 
1   For most of this period Imperial Chemical Industries (ICI) was one of the leading 
UK companies. It did most of its research in the UK, which was only 10% of its 
market and the rest in California, because of the availability of quality researchers 
(Thirtle et al., 1997). Typically, patents would be registered in all countries of interest. 
2   The long lags lead to slightly different start and end dates in these models. The 
estimation period is kept as long as possible by extrapolating series for a few years 
when this does not change the results significantly. The exact periods are recorded in 
the data appendix. The R&D data from Thirtle et al. (1998) was used to extend the 
series. 
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