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The increased densification of wireless networks presents complex challenges for mobile network

operators, which include but are not limited to site acquisition and fiber deployment costs. These

challenges, coupled with the maturity of millimeter wave (mm-wave) communication and its suitability

for wireless backhaul links have led to the development of integrated access and backhaul (IAB) for the

fifth generation (5G) networks. This research work investigated the applicability of machine learning

strategies, in particular, deep reinforcement learning (DRL), for solving resource management and

backhaul routing problems in mm-wave IAB networks.

Realizing network context and managing network resources based on real-time parameters are attractive

approaches to address the challenge of congestion in dense wireless networks. In this work, a

resource management solution that aims to avoid congestion for access users in an IAB network is

presented. The proposed solution applies DRL to learn an optimal policy that aims to achieve effective

resource allocation whilst minimizing congestion and satisfying the user requirements. The novelty

of the solution is the exploration and development of two learning algorithms that place emphasis

on congestion control and user satisfaction in maximizing throughput performance. With regard to

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



computational complexity, the individual learning algorithm was shown to have a lower complexity

whereas the complexity of the cooperative learning approach was shown to be the same as that of the

baseline approach. In terms of throughput performance, the two algorithms were found to have more

than 50% better performance when compared with a baseline algorithm. In terms of user satisfaction,

the two proposed algorithms provided at least 12% improvement when compared with the baseline

solution. From the results, the nearest neighbor cooperative learning approach was found more suitable

for the multi-hop mm-wave IAB networks because its throughput has a good correlation with the

congestion rate.

Backhaul availability and backhaul scalability are prominent challenges that are experienced in poor

wireless channel conditions that are typical for mm-wave frequencies. Such conditions may lead

to high energy consumption and packet losses, as such, it is essential that multi-hop IAB networks

have increased robustness to backhaul failure. Existing solutions for data routing in mm-wave IAB

networks do not consider ways in which resource exhaustion at a serving BS can be minimised. As

such, this work proposed a framework that avoids resource exhaustion and is of adapting to different

learning mechanisms while satisfying user requirements in real-time. To this end, this research work

presents a DRL-based backhaul adaptation scheme that is controlled by the access load. The DRL

strategy leverages a recursive discrete choice model (RDCM), which incorporates choice aversion

from prospect theory. Simulation results where the proposed DRL-RDCM algorithm was compared to

the conventional DRL and the generative model-based learning algorithms showed that the proposed

scheme provides better throughput and delay performance. With regard to computational complexity,

the proposed DRL-RDCM algorithm was shown to have the same complexity as that of conventional

DRL. In terms of cumulative throughput, the proposed DRL-RDCM scheme showed an average

of 0.2 Gbps higher achievement when compared with conventional DRL. On the other hand, the

delay performance of the DRM-RDCM solution was shown to be significantly higher than the two

baselines for a low number of IAB nodes and as the number of IAB nodes increased, the performance

matched that of the conventional DRL solution but these two continued to provide more than 20%

better delay performance when compared with the generative model-based learning approach. Overally,

it was observed that machine learning, in particular DRL, can be leveraged to improve throughput

performance in mm-wave IAB networks.
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CHAPTER 1 INTRODUCTION

The fifth generation (5G) of mobile and wireless communication networks has been envisioned to

support a much broader spectrum of quality of service (QoS) profiles compared to its predecessor, i.e.,

the fourth generation (4G) or long–term evolution (LTE) and its variants such as the LTE-Advanced.

The proposed improvements will be enabled by new features and technologies that affect both the

core network and the air interface. The 5G networks come with requirements of high data rates, high

reliability and low latency transmissions for mobile and wireless communication systems, and they

are motivated by a multitude of wireless standards [1]. With the global data rate demands estimated

to continuously increase by an annual rate of more than 30% until 2024 [2], effective solutions

for handling such relentless QoS demands are required. Recent reports reveal that the global data

traffic increased by 82% between 2018 and 2019 due to the escalating smartphone ownership and the

increased average data volume per subscription, owing to the increase in video traffic [3].

The 5G networks are currently under intense deployment all over the world with the objective of

satisfying all the use cases. The initial deployment of the 5G new radio (NR) under the non-standalone

(NSA) architecture is developmental, that is, it operates by leveraging the existing 4G network

infrastructure and 4G core [4]. In the NSA deployment scenario, the network access is overlaid

on the existing 4G/LTE network core through a feature known as dual connectivity. The objective

here is to continue delivering broadband services with higher data speeds and better coverage while

enabling seamless migration from 4G standalone to 5G standalone (SA) [5]. However, despite the

many benefits and advantages of having a fully-fledged 5G SA architecture, there is one challenge that

cannot be underestimated. The operation in millimetre wave (mm-wave) frequency bands is beneficial

in terms of providing more bandwidth and achieving high data rates, as well as improving the quality of

communications in complex environments, more especially enabling the 5G use cases; however, higher

frequencies have less penetration capabilities, which equate to limited network coverage. As such, to
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CHAPTER 1 INTRODUCTION

enhance wireless or cellular network coverage in higher frequency operation, a dense deployment of

small cells is required.

The main challenges associated with network densification are site acquisition and fiber deployment

costs [6]. According to the laws of physics, fiber technology has significant inherent bandwidth-

carrying capabilities and it has always been the future-proof solution in terms of backhaul technology.

However, wireless or microwave backhaul is the most used backhaul technology due to a combination

of its capability and relative ease of deployment. The Third Generation Partnership Project (3GPP)

conducted a study on IAB for 5G NR with the aim of evaluating potential solutions for its efficient

operation [7], [8], and since then there has been a great deal of research interest in IAB for 5G mm-

wave networks. As a result, IAB was standardized for 5G NR mm-wave operation in 3GPP’s Release

16 technical report, which was completed in the first quarter of 2020 [9]. To this effect, the 3GPP

has endorsed a multi-hop IAB architecture for operation in mm-wave frequencies. As a result, the

increasing maturity of mm-wave communications and their suitability for wireless backhaul links

has led to most mobile network operators (MNOs) heavily relying on mm-wave bands for wireless

backhaul solutions.

Backhaul infrastructure is an essential component of mobile wireless communication networks, which

offers data transportation to and from the core of the network. In traditional networks, that is in the

2G and 3G, backhaul refers to the transport network that connects the radio access network (RAN)

to the core of the network. However, with the advent of small cells in 4G networks, the fronthaul

concept, which is a transport network connecting the small cell BSs to the macrocell BS has emerged -

albeit not in the context of this work [10]. With a densified network, more stringent requirements

will be imposed in terms of data delivery, and mobile backhaul will become even more important.

Backhaul provides connectivity between small cells, macro cells, core networks, and possibly between

numerous gateway nodes. IAB is thus envisaged as the most flexible and cost-effective backhaul

technology for wireless and mobile networks in 5G and it has been found to be lucrative for practical

implementations, particularly in the mm-wave frequencies, where interference effects are subdued due

to large bandwidths and beamforming techniques [11].

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

2
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM DEFINITION

1.1.1 Problem Statement

Increasing network densification through the deployment of small cells while providing traditional

fiber backhaul access to every access point becomes difficult and costly [12]. On the other hand, the

availability of large amounts of spectrum in mm-wave frequencies makes it possible to achieve wireless

backhaul solutions for small cell access points whilst having sufficient bandwidth for access for the user

equipment (UEs) [8]. As a result, the 3GPP has endorsed a multi-hop IAB architecture for operation in

mm-wave frequencies. The IAB networks require accurate and adaptive resource management schemes

because of the directional transmissions, device heterogeneity, and harsh propagation conditions that

are experienced in the 5G mm-wave wireless networks. The latter, in particular, characterizes the

operations of such networks, thereby resulting in transmission links with varying link reliability. For this

reason, the traditional optimization techniques do not provide the best performance in these conditions.

Despite the provision of new spectrum bands in higher frequencies, achieving vast network capacity,

low latency, and reliability are still very challenging since these bands have a lack of penetration ability

and are prone to blockages. As a result, the deployment of IAB in these bands should be assisted by

relevant learning schemes that overcome these drawbacks and prevent service disruption.

1.1.2 Context of the Problem

The typical topology of an IAB network is as illustrated in Fig. 1.1. The wireless backhauling shown

in Fig. 1.1 is assumed to be based on mm-wave commmunications, that is frequencies above 10 GHz,

and it is constrained to line-of-sight (LOS) propagation conditions. The donor node, also known as the

gateway or master base station (MBS), is the node that is connected to the rest of the network in the

conventional way (through fiber). The donor node serves both the IAB nodes and the UEs that are

connected to it.

The standard for IAB networks that was specified in 3GPP Rel-16 [9] is based on the functional split

architecture that was introduced in Rel-15 [13]. In 3GPP Rel-15, the next-generation NodeB (gNB)

comprises a distributed unit (DU) and a central unit (CU). The DU terminates the lower layer protocols,

that is, the radio link control (RLC), the medium access control (MAC), and the physical layer, while

the CU terminates the upper layer protocols, that is, the packet data convergence protocol (PDCP) and

the radio resource control (RRC). The user plane and control plane protocol stack of an IAB network,

as defined in 3GPP Rel-16, is shown in Fig. 1.2.
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CHAPTER 1 INTRODUCTION

Figure 1.1. Typical topology of IAB network connectivity, illustrating the wireless backhaul among

IAB nodes and their access connections with UEs.

In the control plane, the RRC and the PDCP are terminated at the UE and the control plane part of

the CU (CU-CP) as shown in Fig. 1.3. The corresponding packets are transported over an F1-C

interface. The F1-C is realised via a set of stream control transport protocol (SCTP) associations

between the CU-CP and the DU part of the IAB node serving the UE. It is worth noting that the

protocol architecture of an IAB node is transparent to the UE, which means that it cannot differentiate

between that of a donor or an IAB node. The backhaul adaptation protocol (BAP) is a new protocol in

routing, which is responsible for the forwarding of packets in the immediate hops between the donor

DU and the access IAB node. In this protocol, the donor node configures each IAB node with a unique

BAP ID. Thus, for the downlink packets, the donor DU inserts a BAP routine ID on the packet it is

forwarding to the next hop. This is the BAP ID of the access IAB node serving the UE and a path

identifier, just in case there are several possible paths to reach the access IAB node.

The multi-hop capabilities of the IAB network help with providing more range, especially when

operating in mm-wave frequency bands due to the limited range. In addition, the multi-hop functionality

provides the capability to hop around fixed obstacles such as seasonal foliage that may impact the
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CHAPTER 1 INTRODUCTION

Figure 1.2. The user plane protocol stack of an IAB network, showing the links of the communication

protocols between the donor node and the UE with two hops, according to 3GPP Rel-16 [14].

signal. In terms of the technical aspects relating to spectrum usage, the IAB networks are flexible, that

is, they support both in-band (using the same frequency bands) and out-of-band [15].

For high spectral efficiency, the in-band approach is desirable; however, it requires interference

mitigation mechanisms such as multiple-input multiple-output (MIMO) beamforming. The in-band

wireless backhaul approach also offers reduced hardware costs from an implementation perspective.

Traditionally, the in-band implementation was restricted to synchronised access-backhaul (SAB),

however, since an MBS needs more backhaul slots compared to the SBSs, the SAB approach cannot

provide efficient resource allocation in self-backhauled networks [16]. Thus, unsynchronised access-

backhaul (UAB), which is also known as IAB, has been developed. In IAB, access and backhaul links

need not be scheduled on orthogonal resource blocks, which allows a small cell BS to use unscheduled

backhaul slots for its access. Although IAB presents increased interference in the backhaul links, it

has been found attractive for practical implementations in 5G networks particularly in the mm-wave

frequencies where the interference effects are subdued [11].
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CHAPTER 1 INTRODUCTION

Figure 1.3. The control plane protocol stack of an IAB network for the user plane shown in Fig. 1.2.

1.1.3 Research Gap

Matching the demand for resources, that is the load, to the supply of resources, which is the capacity,

is a basic problem across wireless networks. Mobile communication operators face a challenge of

providing the required access and backhaul for non-uniform mobile voice and data transmission

demands from users with varying quality of experience (QoE) requirements. In addition, the various

mobile users may be situated in different environments such as urban, rural, underground, and fast-

moving vehicles. Network modelling and optimization for smart devices in 5G networks, which are

capable of jointly using many different frequency bands and communication technologies in order to

achieve the required rate and latency performance, is very challenging [17]. As a result, the analysis

of network characteristics such as user association, resource allocation (RA) and data routing using

the received signal-to-interference-plus-noise ratio (SINR) as the base metric is not suitable for the

heterogeneous 5G networks.

This research work considered other contextual information such as the load on the serving and the

neighboring BSs for machine learning-based user access, resource management, and efficient backhaul

routing in mm-wave IAB networks. There are systems that support the collection and dissemination
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CHAPTER 1 INTRODUCTION

of context and applications that adapt to changing context that have been developed and proposed in

literature. The users of smart devices in current and future networks are faced with diverse interfaces

that are used in diverse environments. This is a step towards the realisation of a ubiquitous computing

paradigm whose integration into IAB systems is a requisite. However, there are still missing pieces

that are necessary to achieve this ubiquitous computing vision. The resource allocation problems in

IAB have been extensively studied and solved by formulating them as optimization problems. Most

of the optimization methods need accurate or complete network information, such as channel state

information (CSI), which are practically challenging to obtain in stochastic and dynamic systems

such as in the next-generation mobile and wireless networks. If achieved, the solutions usually come

with increased costly computational complexity. Furthermore, the network dynamics are seldom

addressed and many solutions to the optimization problem only apply to a snapshot of the network

or are only valid in a specific network architecture. Due to their network model dependence, such

models are inappropriate for highly complex and time-varying scenarios. As such, in this work, it is

proposed to incorporate machine learning models to address these drawbacks of classic optimization

approaches.

The user data requirements for current and future generation networks, which are stochastic and bursty

in nature, present a challenge of unbalanced network traffic distribution. In addition, the dynamics of

wireless cellular environments, such as fading, random user mobility, path loss effects and shadowing

make it difficult to rely on a model of the network environment for solving optimization problems

[18]. On the other hand, the design of efficient IAB networks that satisfy the 3GPP performance

requirements is still an open research challenge. One of the main challenges of 5G wireless backhaul

is the realisation of high capacity non-line-of-sight wireless backhaul links, which have a low footprint,

low power consumption, and are quick to install [19]. Most of the research contributions on RA

problems in the IAB networks sought to optimally allocate a fixed demand for resources by the UEs,

whose performance degrades with increasing congestion. This approach overlooks the inseparable

coupling of the demand and the cost for a resource. This coupling leads to “the tragedy of the commons”

[20], where the performance limitation along a path is controlled by its most congested edge. To

address this issue, part of this research work aimed to maximize the access capacity for the associated

UEs of a congested SBS in an IAB network, while dynamically reserving some resources for the

wireless backhaul traffic.

Despite the provision of new spectrum bands in higher frequencies, achieving vast network capacity,
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low latency, and reliability are still very challenging since these bands are prone to blockages and the

lack of penetration ability. As a result, the deployment of these bands must be assisted by relevant

architectures that overcome these drawbacks and prevent service disruption. To address the problem,

there has been a plethora of research contributions from both academia and standardizing bodies that

aim to enhance the operation of the 5G NR. However, lifting mobile broadband to the next level still

remains a challenge because the UEs as well as user behaviour are some of the problems that need

to be addressed to realize a multi-functional 5G NR. As a result, reinforcement learning (RL) and

deep reinforcement learning (DRL) have been shown to be the most promising strategies to enable a

multi-functional 5G communication system.

Another key problem that has been identified in recent works is that the authors usually envision diverse

scenarios for the same system model application, without determining the influence of traffic-related

characteristics on the latency. Because the traffic offered by the mobile devices has an effect on the

transmission rate, latency and energy efficiency, it should be considered in all the various network

optimization solutions.

Solving RA problems in wireless networks has been traditionally carried out using optimization-based

approaches, which can provide optimal solutions in quasi-static scenarios. However, in the dynamic

mm-wave access network environments, it is practically infeasible to achieve near-optimal solutions

on-the-fly using traditional optimization methods because of their time-consuming algorithms. This

motivates the consideration of RL strategies, which can provide solutions that learn to capture the

intrinsic irregularities of the dynamic environment to provide a robust network model in realistic

scenarios. The disadvantage of the RL-based solutions is that they can, however, get stuck into local

optima. Thus, a hybrid approach that realises the strengths of both optimization and RL techniques is

required.

Prior research works in IAB networks have highlighted that as BSs need to multiplex access and

backhaul resources, this may lead to excess buffering. This may result in high latency and low

throughput as the main consequences, when sub-optimal resource partitioning is selected, which

renders traditional optimization techniques less effective in IAB resource management. Considering

that power control extends the battery life of UEs by ensuring that they transmit at the minimum

possible power levels while achieving the required QoS, different approaches have been proposed

to properly model the power allocation by using the utility functions they seek to maximize. From
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CHAPTER 1 INTRODUCTION

observing most research contributions in this area, it is safe to mention that the focus is mainly on UE

and MBS power allocation, while small cell BS power allocation is least explored.

1.2 RESEARCH OBJECTIVES AND QUESTIONS

1.2.1 Research Objectives

In light of the aforementioned challenges, it is essential to attempt to solve the challenges faced in

IAB networks by combining traditional optimization approaches with learning strategies. To tackle

the access and backhaul resource management problem, RA solutions need to be designed with three

goals in mind, which serve as the main objectives of this work:

(i) Flexibility: To easily adapt RA strategies to different use case requirements that come with

different traffic classes.

(ii) Alignment with 3GPP specifications: For IAB networks to comply with 3GPP specifications,

the RA framework should rely on information that can actually be exchanged and reported in a

3GPP deployment. This means that the proposed IAB solution(s) have to be developed using

appropriate multi-hop IAB models that are based on the 3GPP specifications.

(iii) Low Complexity: If an algorithm is to be developed, it should have lower complexity whilst

achieving equivalent or even better performance when compared to existing algorithms.

Based on the above guidelines, the main aim of the research work was accomplished through the

following set of specific objectives:

• To develop an appropriate multi-hop IAB model based on the 3GPP specifications;

• To formulate typical resource allocation and user association problems for the proposed IAB

model;

• To investigate the performance of the access network under constant backhaul traffic;

• To investigate the performance of backhaul adaptation under constant and varying access traffic;

• To compare the performance of the solutions developed with other applicable solutions that are

available in literature.
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1.2.2 Research Questions

The research sought to find answers to the following questions.

1. Which network models are best suited to smart devices in 5G mm-wave IAB networks?

2. What are the main challenges when modelling mm-wave IAB networks, and how can they be

addressed?

3. What is the most efficient approach to solve context-aware resource management and user

satisfaction problems, as well as performing adaptive traffic admission control and backhauling

in mm-wave IAB network scenarios?

4. Which performance evaluation techniques are suitable for the proposed IAB network model?

5. Can machine learning techniques be leveraged for enabling context-aware resource management

and user satisfaction satisfaction user QoE requirements in mm-wave IAB network scenarios?

6. Can machine learning techniques also be leveraged to effectively perform traffic admission

control and backhaul routing mm-wave IAB networks?

7. Are there other comparable RL-based or DRL-based solutions that are available in literature?

1.3 HYPOTHESIS AND APPROACH

1.3.1 Research Hypothesis

Considering the intelligent solutions that have been proposed to address the challenges faced in

mm-wave IAB networks, the application of artificial intelligence (AI) strategies is currently being

progressively explored. The optimization for context-aware resource management and adaptive

backhaul routing in mm-wave IAB networks using DRL approaches can provide more efficient

solutions compared to using RL strategies.

While BSs are becoming more energy efficient, increasing packet arrival rates tend to outweigh

this achievement. In addition, the continuous operation of all SBSs in highly dense IAB networks

may increase the operational expenditure (OPEX) for MNOs. Recent research has proposed energy

harvesting schemes that integrate smart grid deployments and renewable energies such as solar and

wind, thus providing green communication networks [21]. However, in as much as these renewable

energy solutions may reduce the OPEX for MNOs and contribute towards green communication

networks, they generally require high capital expenditure (CAPEX). This research work considered

other smart ways of improving energy efficiency in IAB networks through the following hypothetical
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questions. How can a system learn how to handle dynamic backhaul traffic without compromising the

access QoS? How much of a role do transmission delays and buffer size play in the power management

and throughput performance in IAB networks? Can machine learning techniques be leveraged to

improve the energy efficiency and throughput performance in constrained IAB networks?

1.3.2 Research Execution

The research work was comprised of the following tasks.

• An extensive literature study on 5G NR, cognitive radio technology, and machine learning

techniques was carried out.

• A network model for an IAB network operating in the NSA mode of 5G NR was developed.

The developed model incorporated DRL for best action selection, where the SBSs are taken as

the learning agents.

• The optimization problems for the appropriate models were formulated as Markov decision

processes.

• The DRL algorithms to solve the formulated problems were developed and implemented in the

simulation software.

• Lastly, the system performance of the proposed solutions in the developed models was analyzed

from the simulations with comparisons to the baseline solutions, which enabled conclusions to

be drawn.

1.4 RESEARCH CONTRIBUTIONS AND OUTPUTS

1.4.1 Access Congestion Avoidance and Resource Management in IAB Networks

Since the traditional adaptive traffic signal control cannot resolve the type of congestion that is

experienced in dense mm-wave IAB networks, realizing context in the network and adapting content

based on real-time parameters is an attractive approach. As part of the contributions of the research

work, an optimization problem that aimed to maximize the transmission throughput of all UEs subject

to environmental context such as traffic load and transmission power was formulated. Here, the

objective was to optimize the policy that enables the system to provide better QoS to the UEs whilst

adhering to the power constraints. The problem was solved using a context-aware solution for access

resource management in an IAB network model using a DRL strategy, and details of the contributions

of this part of the work are as follows:
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CHAPTER 1 INTRODUCTION

• Adaptive congestion control: The impact of congestion on the link layer behavior of an access

IAB network is evaluated by defining the levels of congestion as the exact values of system

utilisation. In this work, an SBS’s traffic load was modelled using an M/G/1 queuing model

with an ergodic arrival process. The optimization problem was then formulated as a QoS

maximization problem that emphasized the estimation of the SBS load as context. In the

implemented system model, the agent aimed to learn the context-related behaviors that enabled

it to take appropriate actions within a reasonable time by efficiently leveraging the feedback

from the output.

• DRL-based adaptive learning scheme: A DRL algorithm that uses an online RL approach was

proposed, where the system continuously monitors the congestion of an SBS. Then, depending

on the already allocated resources, the DRL agent generates optimised actions using a defined

policy. The aim of the control actions of the DRL agent is to avoid a situation where the system

has to increase the packet transmission rate by raising the transmission power, which may

result in high and inefficient energy consumption. The proposed learning approach was then

evaluated using two algorithms: (i) an individual learning algorithm, and (ii) the nearest neighbor

cooperative algorithm. The performance evaluation thereof considers the SBS congestion rate,

user throughput, and user satisfaction.

The details of the peer-reviewed publications that resulted from this work are presented as fol-

lows.

1.4.1.1 Peer-reviewed conference paper

• M. M. Sande, M. C. Hlophe, and B. T. Maharaj, “Instantaneous Load-Based User Association

in Multi-Hop IAB Networks using Reinforcement Learning,” in Proceedings of the IEEE Global

Communications Conference (GLOBECOM), 2020, pp. 1–6.

1.4.1.2 Peer-reviewed journal article

• M. M. Sande, B. T. Maharaj, and M. C. Hlophe, “Access and Radio Resource Management for

IAB Networks Using Deep Reinforcement Learning,” IEEE Access, vol. 9, pp. 114218–114234,

Aug. 2021.
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1.4.2 Adaptive Backhaul Traffic Routing Scheme in IAB Networks

1.4.2.1 Knowledge-defined networking

With the aim of performing optimal backhaul route selection, an IAB network is modeled as a probab-

ilistic graph. Since each node in an IAB network should perform dynamic bandwidth reservation in a

distributed manner, a knowledge defined networking (KDN) scheme was proposed as an architecture

for network monitoring and the bandwidth reservation procedure was carried out in the MAC layer to

make the reservation process more rapid. The proposed model can be split into two planes, namely

(i) the data plane, and (ii) the knowledge plane. The data plane supports distributed traffic admission

control (DTAC), where a node in the IAB network allocates bandwidth resources for traffic flows in a

distributed manner. The RA problem for maximizing the overall backhaul capacity, subject to a flexible

range extension, was formulated as a non-convex programming problem with the objective of ensuring

that the QoS requirements of access users remain satisfied. The knowledge plane uses the probabilistic

graph model to estimate the Q values and determine the maximum bound latency. That is, a process of

learning network information from distributed network states is developed using Q-learning. This is a

transfer learning procedure for sharing information with nearest neighbors using the forward-backward

exploration technique. A performance prediction scheme that uses the principles of DRL strategies

was then proposed with the aim of tackling the complexity of the IAB network, as well as assessing

effective throughput, in addition to the latency upper bound.

1.4.2.2 Addressing the tragedy of commons

In order to solve the formulated backhaul routing problem, a QoS-aware routing optimization scheme

that uses a rigorous and unified framework based on constrained Markov decision processes (MDPs) is

presented. The optimization approach presents the reward and cost functions using implicit and explicit

constraints. This approach was followed to simultaneously utilise physical-centric and system-level

techniques to maximize the throughput and minimize delays as well as power consumption. A crucial

cognitive function, where an agent’s learning procedure applies the prediction error to adjust future

predictions was incorporated into the proposed DRL strategy. The DRL strategy was used together with

a recursive discrete choice model (RDCM) to evaluate the route choices in the presence of stochastic

channel and traffic conditions. Regret learning, which exploits historical information about channel and

queue states in selecting the optimal route, was leveraged with conditions of choice aversion.

The proposed DRL strategy was used to aggregate link states on paths in a flexible architecture that

represents a source-destination routing scheme. A multi-dimensional matrix format is presented to
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embed the topological and link reliability information of the IAB network. The incorporation of factors

such as traffic arrival distribution, channel state, buffer occupancy status, and power consumption

status into a single expression is infeasible with classical techniques. To provide better QoS to UEs in

the IAB network, a max-weight algorithm was used together with back-pressure routing. Consequently,

a multi-variable cost function that simultaneously accounts for both explicit and implicit constraints,

as well as several QoS parameters, is formulated. A post-decision state learning strategy was then

employed to deal with the known and unknown components of the cost function.

The details of a peer-reviewed article that has been submitted for publication, which comprises the

contributions highlighted in this subsection are as follows:

• M. M. Sande, M. C. Hlophe, and B. T. Maharaj, “A Backhaul Adaptation Scheme for IAB

Networks using DRL with Recursive Discrete Choice Model,” IEEE Access, vol. 11, pp.

14181–14201, Feb. 2023. DOI: 10.1109/ACCESS.2023.3243519

1.5 OVERVIEW OF STUDY

The persistent traffic congestion in dense wireless networks, coupled with the propagation effects in

mm-wave frequencies, are prominent obstacles towards realizing the performance requirements of the

5G NR. As such, this study comprised two main contributions, which are detailed in section 1.4. The

rest of this thesis is in turn organized as follows.

Chapter 2 aims to present an in-depth review of the solutions that have been proposed to address the

problems in IAB networks in the context of 5G NR. Here, an extensive discussion and analysis of

previous research works in IAB networks together with an analysis of the solution models used to

address the pressing problems are presented. The unaddressed problems that were identified from

the literature study consolidated the aforementioned research gap and highlighted the motivation for

this research work. In chapter 3, a dynamic user association and resource management scheme that

depends on instantaneous load-based bandwidth partitioning in multi-hop IAB networks is proposed

and presented. Chapter 4 presents a backhaul adaptation scheme that aims to maximize the access

capacity for the associated UEs of a congested SBS, while dynamically reserving some resources for

the wireless backhaul. Chapter 5 then details the overall concluding remarks of the study and notes

some future work aspects that can be explored.
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OBJECTIVES

This chapter aims to give an in-depth review of the solutions that have been proposed to address the

problems in IAB networks in the context of 5G NR. The introduction and the overview of the 5G

NR design principles, with a discussion on the two deployment scenarios, that is, the stand-alone

(SA) and the non stand-alone (NSA), as well as their benefits, form the first objective of this chapter.

Secondly, the relentless transformation of the 5G NR is discussed from the fronthaul, culminating

with the background of the mobile backhaul options that led to the development of IAB. Next, there

is a discussion of cognitive radio technology and the AI-enabled networks is presented, with more

emphasis on reinforcement learning and the deep reinforcement learning techniques, which have been

applied for the solutions proposed in this work. An extensive discussion and an analysis of previous

research works in IAB networks together with an analysis of the solution models that were used to

address the pressing problems is then presented. The unaddressed problems that were identified from

the literature study consolidated the aforementioned research gap and signified the motivation for this

research work.

2.2 5G NR SYSTEM SOLUTIONS

The design of the solutions for 5G NR should support the standards-based specifications to ensure

that the integrated circuits, the hardware, the software systems and the UEs all perform within the set

industry specifications. The test instruments for performance measurement should be flexible to enable

the easy upgrading of hardware and software for each use case and the respective specifications. It is

essential to test the operation and the performance of a 5G solution with a BS simulator that mimics

the near-to-real operating conditions. In addition, the evaluation of radio-frequency (RF) performance

requires measuring instruments that can connect to, communicate with, and control the hardware for

both RF testing and protocol testing.
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2.2.1 5G Enabling Technologies

The aforementioned technical objectives and the key performance indicators (KPIs) for 5G NR have

led to the development of various technologies that enable the existence of the 5G networks. This

subsection gives an overview and a brief description of the main technologies and/or the technological

concepts that enable the realisation of the 5G NR objectives.

2.2.1.1 Flexible spectrum management

The enhanced mobile broadband (eMBB) leg of the 5G use cases presents a large demand for wireless

capacity and traffic. To meet this demand, there was a need to provision more spectrum, and to

develop techniques for flexible and more efficient spectrum utilisation for 5G NR [22]. “Incorporating

more spectrum would most probably take into consideration the cm-Wave licensed bands (such as the

3.4–3.8 GHz band, which is emerging as a new small-cell band), unlicensed bands (such as the 5 GHz

Wi-Fi band, which is also considered for the unlicensed band LTE), and even the unallocated, higher

frequency bands in the mm-wave region (28, 38, 70 GHz)” [23]. The overall spectrum that has been

identified to be useful for 5G NR is classified into three main bands, that is,

• low band (< 2 GHz), which will be useful in suburban and rural areas to provide efficient wide

area coverage,

• mid-band (2-8 GHz), which is useful in less dense urban environments where there is need to

cater for the capacity/coverage trade-off, and

• high band (> 8 GHz), which aims to provide ultra experience for users with high quality of

experience (QoE) demands in urban hotspots.

In line with the concepts of the 5G NR, the network operators have the ability to allocate spectrum

in a flexible manner to the various radio access technologies that would be able to operate at various

frequency bands across the three 5G spectrum bands [24]. The MNOs can also implement carrier

aggregation to circumvent the challenge of coverage that is posed by the use of mm-wave frequency

bands. Carrier aggregation is the combination of frequency carriers/channels to increase transmission

bandwidth, and this technique has been used in LTE-A [25]. The aggregated transmission bandwidth

may be comprised of contiguous channels or it may consist of non-contiguous chunks. For the 5G

NR, Ericsson [5] proposed an inter-band NR carrier aggregation technique to expand the coverage and

capacity. Unlike the in-band aggregation of LTE-A, here the mid-band and the high band frequency

channels are combined with NR on lower frequency bands. As a result, the indoor speeds and the areas
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with poor coverage are improved. This is a complement of the 5G platform that ensures a smooth

and cost-efficient way to expand the 5G network whereby the existing 4G low-band carrier can be

upgraded using software only to operate both the NR and the LTE-A simultaneously.

2.2.1.2 Emerging radio access technologies

The evolution from 3G to 4G saw the development of radio access technologies (RATs) from

TDMA/FDMA and CDMA to orthogonal frequency division multiple access (OFDMA) schemes. The

emerging RATs for the 5G NR aim to improve the use of radio resources in order to maximize spectral

efficiency [23], [26], and these RATs include:

– technologies that relax orthogonality in the air interface design, for example, the generalized

frequency division multiplexing (GFDM),

– schemes that provide asynchronous and non-orthogonal multiple-access, for example sparse

code multiple access (SCMA) and non-orthogonal multiple access (NOMA),

– enhanced inter-cell interference coordination (eICIC) schemes such as interference alignment

and coordinated multi-point (CoMP),

– scaling up multi-user MIMO (MU-MIMO) to exploit massive antenna arrays that apply spatial

diversity techniques, and

– incorporating MU-MIMO into Wi-Fi standards.

When deployed in isolation and under the idealised conditions of signal propagation, backhauling,

and processing power, these RATs offer substantial network performance gains. However, the main

challenges of 5G NR arise from including the technologies as integral parts of the full 5G architec-

ture.

2.2.1.3 Network densification

In a traditional macrocell network setup, the high throughput demand of modern wireless communic-

ations would make it difficult to satisfy the user QoE, particularly for the cell-edge users. The use

of small cells with low-power access points (APs) enhances energy efficiency and it provides better

SINR performance [27]. In addition, the dense deployment of small cells enhances spatial reuse of

the limited spectrum, which leads to increased spectral efficiency [28]. However, the heterogeneous

network (HetNet) structure has been developed for 4G networks, to reap the coverage benefits of

both the macrocells and the small cells. In this structure, a macrocell that serves a set of macrocell
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user equipment, is overlaid by a number of small cells that serve a varying number of small-cell user

equipment.

The term small cells is an umbrella term that has been defined by the Small Cells Forum as “operator-

controlled, low-powered radio access nodes, including those that operate in licensed spectrum and

unlicensed carrier-grade Wi-Fi” [29]. These small cells typically vary in radius ranging from 10m to

hundreds of metres. The various small cells are categorised as either metrocells, microcells, picocells

or femtocells depending on their radius and the cell range as summarised in Table 2.1.

Table 2.1. Summary of Types of Small Cells

Small Cell Type Description

Metrocells Small cells that are designed for high capacity metropolitan areas, which

have BSs that are typically installed on building walls or street lamp-

posts.

Microcells Cells with an outdoor short-range base station, which aim to enhance

coverage for users who are insufficiently serviced by macrocells. This

goes for users located both indoors and outdoors.

Picocells Cells with compact and low-power BSs, used in enterprise or public

indoor areas. The term may also refer to some outdoor small cells.

Femtocells Self-contained small cells with low-power, short range BSs. The term was

initially used to refer to small cells intended for urban residential homes,

but it has been extended to encompass higher capacity infrastructure for

enterprise, rural and metropolitan areas.

Some advantages of small cells are:

• improved network coverage, particularly for indoor connections;

• enhanced spectrum efficiency;

• improved network capacity through providing better SINR and user offloading opportunities;

• maintaining visual unobtrusiveness by being artistically incorporated in existing structures such

as buildings and monuments;
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• improved safety, since the BSs use low transmission power, which in turn reduces the impact on

health facilities;

• improved energy efficiency through low power requirements, which reduces the carbon footprint

of networks.

“The need for small cells will be even more critical in 5G networks due to the introduction of higher

spectrum bands, which necessitate denser network deployments to support larger traffic volumes per unit

area” [30]. To identify when small cells become necessary to supplement macrocells, some experts use

the traffic volume density per allocated unit of bandwidth (Gbps/km2/Hz) metric [28]. Some operators

in Asia would start deploying small cells when this metric surpassed 0.02 Gbps/km2/Hz.

Small cell deployment scenarios

Small cell deployment scenarios will be mostly targeted at outdoor urban areas, outdoor rural areas,

and indoor urban enterprise spaces. The outdoor urban scenarios arise from the need to provide spot

coverage in places where there are outdoor coverage holes in existing macro coverage areas. The

rural outdoor scenarios are typically motivated by the need to serve localised hotspots in remote areas,

whereas the enterprise deployment scenarios are typically indoor, premises-centric deployments. Figure

2.1 illustrates some examples of the small cell deployment scenarios under these three categories, as

well as other applications found elsewhere.

Figure 2.1. 5G small cell deployment scenarios and examples of the various deployment environments.
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Small cell deployment considerations

The following are some key aspects that need to be taken into consideration for the (dense) deployment

of small cells.

• Spectrum: Large amounts of spectrum will be required to support the densified small cell

deployment that is envisaged for the 5G NR systems. To this end, there has been allocation of

new spectrum bands and there are other targeted spectrum bands that are being envisioned for

5G NR [30].

• Backhaul and fronthaul: The design and implementation of backhaul links, which are the

fixed links that connect the cellular BSs to the core network, are critical for the overall network

performance.

• BS/AP powering: Although the small cell APs consume much less power compared to the

macrocell BSs, the increased network densification in the 5G NR networks means that there

would be much more sites that require powering. The required power will cater for signal

transmission power, processing power and the cooling systems. Hence, there is need for power-

efficient designs to overcome the powering barrier to network densification, especially for the

NSA 5G NR.

• Sharing of facilities: The contractual agreements between the mobile network operators with

respect to the sharing of small cell infrastructure need to be carefully considered.

• Safe operation: The deployment of small cells and the operation in the mm-wave frequencies has

brought up some health concerns with regard to human exposure to electromagnetic fields (EMF).

The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has proposed

safety guidelines for radio frequency (RF) electromagnetic fields (EMF). The guidelines, which

are recognised by the World Health Organisation, state that “Extensive research has been

conducted into possible health effects of exposure to many parts of the frequency spectrum

including mobile phones and base stations. All reviews conducted so far have indicated that

exposures below the limits recommended in the ICNIRP EMF guidelines, covering the full

frequency range from 0-300 GHz, do not produce any known adverse health effect. However,

there are gaps in knowledge still needing to be filled before better health risk assessments can be

made” [31].

• Environmental considerations: The antennas mounted on buildings and monuments may be

perceived as visual pollution, thus there is need for their artistic integration into these structures

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

20

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE STUDY

in order to preserve the historical and environmental aspects.

2.2.1.4 D2D and M2M communications

The Device-to-Device (D2D) communications and the Machine-to-Machine (M2M) communications

are two technological trends that have been envisaged to improve system performance whilst supporting

new services for the 5G networks. These two wireless technologies contribute the most part towards the

massive machine-type communications leg of the 5G use cases, which is also well known as the internet

of things (IoT). D2D communication refers to the direct communication between devices, that is the

direct links between the devices using the same spectrum and the radio interfaces for wireless cellular

communications [32]. On the other hand, the M2M communications aim to connect a large number of

low-rate, low-power devices through wireless links using cellular communication technologies.

The concept behind the D2D and the M2M communications is that the end-user equipment that are

in close proximity with each other communicate directly using wireless network resources, unlike in

traditional cellular networks, where this communication would go through the network infrastructure

such as the BSs [33]. This direct link communication reduces the data transfer and related signaling

load on the backhaul and the core network. Thus, a wireless user device with D2D capability can act

as a relay node and/or as an end-user device. This direct link communication has been viewed as a

necessary feature for supporting real-time services with good reliability in 5G networks.

The rationale behind the D2D and the M2M communications in the 5G networks context is the need to

improve the area spectral efficiency, and to enable new cellular services that can operate with the direct

links between the devices. The increase in spectral efficiency that is provided by this concept of direct

connectivity between nearby devices within the same cell, known as link densification, is similar to the

improved spectral efficiency that is contributed by cell densification [34]. The other benefits that result

from the D2D and the M2M communications include extended coverage, reduced latency, reduced

OPEX) and power efficiency.

2.2.1.5 Cloud networking, SDN and NFV

The concepts of cloud networking and network functions virtualization (NFV) aim to reduce the

CAPEX and OPEX costs for the MNOs [26]. The CAPEX and OPEX savings are achieved through

sharing the storage or computing resources, which results in the reduction of the redundancies in

repositories for network functionalities.
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C-RAN

The wireless networks are comprised of the core network and the radio access network (RAN), and

it has been shown that in terms of computation and real-time requirements, the RAN presents more

challenges for the MNOs. The basic concept of cloud-RAN (C-RAN) is to centralize the location of

the different baseband units (BBUs), which would be geographically scattered in a traditional cellular

network. “Once centralized, it would be possible to make different BBUs to communicate with each

other in a more timely way by connecting them with high-speed switch networks, therefore allowing

implementation of the cooperative algorithms to improve system performance” [35]. Coupled with

virtualization, the centralization allows for the sharing of resources among the different physical BBUs,

which would not be supported with simple centralization. In addition to the C-RAN concept, the

other cloud computing concepts such as green cloud computing [36], are envisaged to gain traction for

applications in the 5G networks.

SDN

Software-defined networking (SDN) is an emerging network architectural technology, where a central-

ized network controller that is situated in the control plane is responsible for allocating traffic to the

network elements in the data plane of the network [37]. In SDN, the network is vertically layered, with

the network layers separated by open application programming interfaces (APIs) such as OpenFlow

[26], [38]. The APIs enable the implementation of network services such as data routing, bandwidth

management and data security.

NFV

Network function virtualization (NFV) is a technology initiative that was started with an aim to

consolidate the various network equipment onto standardized high-capacity servers [39]. The servers

are typically located at different network nodes or at various end-user equipment. The architecture of a

network with virtualized network functions consists of a number of virtual machines that run different

software application processes, which simulate the functions of the network devices. These application

processes are meant to replace the custom hardware devices.

Towards achieving the objectives of the 5G NR, virtualization is viewed as a key technology enabler

for enhancing network efficiency, scalability and flexibility to accommodate various applications and

scenarios. The operation of carriers in a network with virtualized functions leads to reduced equipment

costs and more effective energy consumption [26]. Although NFV and SDN do not rely on each
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other, they can be seen as complementary technologies. NFV provides flexible infrastructure where

SDN applications can run, whereas SDN enables the flow-based configuration of virtualized network

functions.

2.2.1.6 Advanced antenna systems

The advancement in technology to develop advanced antenna systems (AASs) is driven by the need to

provide superior uplink and downlink performances for the end users. However, the development of

the AASs needs to also consider the feasibility of implementing cost-effective systems [40]. This is

supported by the integrating the baseband processing, the RF-unit and the antenna into one unit. This

results in a reduction in the digital processing cost of performing advanced beamforming and MIMO.

To meet the rapidly increasing capacity demands, the MNOs typically focus on maximizing the use of

existing sites before the acquisition of additional sites. In doing so, they reduce the cost and time for

acquiring new sites. The AASs are key enablers for both the lower-frequency and the higher-frequency

bands. For the lower-frequency bands, that is the sub-6 GHz, capacity enhancement is essential due to

the highly interference-limited environment. For the higher-frequency bands, coverage is crucial due

to propagation and path loss challenges.

2.2.2 5G Architecture

A mobile network architecture aims to define the interaction between the network elements that

ensures efficient system operation [38]. The network architecture considers the integration of different

technologies, the proper inter-working of multi-vendor equipment and the cost effective design of the

physical networks. The overall 5G network architecture must be able to integrate the aforementioned

technology enablers and communication paradigms whilst supporting the coexistence of human-centric

and machine type applications [41]. Figure 2.2 shows the overall 5G architecture as envisioned

by the 5G Infrastructure Public Private Partnership (5G PPP). The 5G PPP is a consortium of

collaborative research projects that is working to develop the specifications of the main elements of the

5G architecture.

The 5G network topology will consist of network slicing, service-based architecture, SDN, and NFV

as the fundamental pillars that support the KPIs of the heterogeneous 5G architecture with reduced

CAPEX and OPEX. Network slicing is a technique where multiple logical mobile network instances

are executed on a shared infrastructure [42]. This requires a continuous reconciliation of customer-

centric service level agreements among the MNOs. At the network level of the 5G architecture, each

network slice is a virtualized independent platform and an application only accesses the network slice
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Figure 2.2. 5G overall architecture, illustrating the concept of network slicing. (Taken from [41], ©

2017 5G PPP).

that it is subscribed to [43]. The proposed architecture in Fig. 2.2 forms a recursive structure, where in

the context of the 5G networks, it is defined as the ability to build a service out of existing services,

including repetition of the same service [41]. This recursive structure improves scalability and it allows

5G networks to handle more complex workloads compared to prior network generations.

2.2.3 5G Deployment

Although the 5G NR is a totally new interface, it is scheduled to be deployed in two modes, that is,

the NSA mode and the SA mode. The initial wave of the 5G NR deployment focused on the NSA

deployment scenario, whose operation leverages the existing 4G/LTE network infrastructure and the

core. In this NSA deployment scenario of the 5G NR, most solutions have aimed to deliver eMBB

services with high data speeds and better coverage. In the NSA mode, a 5G NR device requires an

LTE BS to connect to the Evolved Packet Core (EPC) for access to the control plane [4]. In the SA

mode, the 5G network operates independently of the LTE core network, thus making use of its own

infrastructure. Figure 2.3 illustrates both the NSA and the SA system architectures.

2.2.3.1 5G NSA - An integrated architecture

The integrated architecture of the NSA mode shown in Fig. 2.3 allows the service providers to deliver

high-speed connectivity using the already existing 4G evolved packet core (EPC). Thus, the current

5G roll-out has been a smooth transition from LTE because the NR base stations are integrated into

the existing LTE network infrastructure in the NSA mode. The carrier aggregation (CA) technique
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Figure 2.3. System architectures of (a) the NSA and (b) the SA modes of 5G NR from the concepts in

the GSMA 5G deployment guide, where the NSA deployment runs independently on its own evolved

core [44].

proposed in [5] is a complement of the 5G platform that ensures a smooth and cost-efficient way to

expand the 5G network, where the existing 4G low-band carriers can be upgraded using software only

to operate both the NR and the LTE simultaneously. This CA technique, which improves the indoor

speeds and the areas with poor coverage, in its own right can be thought of as the 5G NSA deployment

scenario. However, for the mid and high-band frequency bands network coverage is limited by the

radio uplink signal quality, as a result, the effect of CA on the system capacity is severely limited. In as

much as CA is supposed to improve system capacity, its impact is limited due to the different SINRs

of the different spectrum bands. Thus, achieving this vision has become a very big challenge, owing to

the fact that different SINRs of the different frequency spectrum bands suffer from the exiting radio

nature of component carriers. This brings about the challenging implementation issues in terms of

delivering a multi-functional 5G wireless communication.

2.2.3.2 5G SA architecture

To achieve a broader digitization impact and access new revenue streams, the next wave of 5G is

of an SA network that operates independently from the 4G core. The 5G SA uses only the 5G NR

technologies and a new 5G packet core architecture to provide full support for the crucial capabilities

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE STUDY

designed to work only in this new architecture. Since the beginning of 2021, a rising number of

operators are promoting their 5G SA initiatives. The 5G SA means that the radio part is 5G NR and

the core part is a cloud-native 5G core [45]. The relentless evolution of the wireless networks will see

the LTE core being replaced by a complete stand alone network that facilitates the 5G SA deployment,

improves the throughput performance at the network edge, and also assists the development of new

cellular use cases such as the ultra-reliable low latency communications (URLLC). Thus, at the time a

fully stand-alone operation is realized, the 5G wireless network is expected to deliver multi Gigabits

per second data rates to improve businesses, education and different technologies around the globe.

However, due to the shortage of the radio spectrum, this vision requires that the new spectrum bands

should be released in the millimeter wave frequencies to support better access to information.

2.2.3.3 Deployment timeline

To give a sense of the development and deployment of IAB in the progressive deployment of 5G

technologies, Fig. 2.4 shows the timeline for the development of standards and their respective

deployment, according to the 3GPP standard releases. The 5G NR deployment consists of two main

phases, which are

Phase 1: 5G NR Release 15, with NSA and SA options that lay the foundation for eMBB and URLLC

use cases.

Phase 2: 5G NR optimization with the introduction of new use cases specified in Release 16.

There are seven connectivity options that have been identified for the 5G NR deployment, and Fig. 2.4

defines the relevant options and it illustrates the stages at which each option is deployed.

Phase 1 (Release 15)

The main capabilities of the 5G NR as given by the 3GPP’s Release 15 specifications include

[13]:

• An architecture that enables various user services with different access systems.

• 5 Gbps peak downlink throughput initially, which increases to 50 Gbps in later releases.

• Scalable OFDM, with numerology for 2N× 15 kHz subcarrier spacing.

• Massive MIMO and beamforming

• Application support with edge computing.
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Figure 2.4. 5G deployment timeline. (Adapted from [13]).

Phase 2 (Release 16)

Some of the main specifications of the Release 16 will include support for:

• URLLC, with industrial IoT support;

• operation in unlicensed spectrum below 7 GHz;

• IAB;

• V2X communications ;

• study on support for radio bands above 52.6 GHz;

• study on non-orthogonal multiple access;

• enhancement of network slicing.
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Release 17

The specifications of Release 17 include the improvements of the 5G NR, just as the LTE continued to

be improved through the LTE-A. These improvements will include:

• NR-light to support wearable devices and energy efficient IoT;

• operation in frequencies above 52.6 GHz, including unlicensed bands;

• support for non-terrestrial networks, for example the operation of drones;

• mobile IAB applications such as on buses or trains.

Release 17 was completed in March 2022, “with its scope largely intact despite the fact that the entire

release was developed in the midst of a pandemic that hit the world, including 3GPP, right after the

scope of the Release was approved in December 2019” [46].

2.2.4 Challenges for 5G NR

The 5G NR is promising to provide a radical transformation for future wireless communications.

However, the implementation of the 5G NR enabling technologies and the realisation of the proposed

architecture faces a multitude of challenges. The following list highlights some of the high-level

challenges as identified in [35], [43], [47].

• Integration of edge computing and cloud services, and the need to accommodate a number of

different operator architectures;

• The requirement of greater real-time processing for the operation of higher frequency components

and virtualized network functions;

• Propagation limitation in Tetrahertz frequencies, which would be much worse than that of

mm-wave transmissions;

• More heat that is generated by increased processing power limits the compactness of devices;

• Dense deployment of small cells may face resistance from communities and regulatory authorit-

ies, in addition to the delays in deployment due to site acquisition and approval;

• Data security and privacy are significant concerns for 5G networks;

• There is potential of the global technology fragmentation that could occur as a result of political

or social tensions, such as the conflict between USA and China;
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• There is a need for the accurate acquisition of instantaneous CSI for the efficient implementation

of massive MIMO.

2.3 5G WIRELESS BACKHAUL

Although fiber-optic is emerging as a preferable backhaul choice for 4G and 5G systems, the MNOs

are looking into backhaul solutions in the microwave frequencies (i.e. 7 GHz to 40 GHz) and mm-wave

bands (i.e. > 40 GHz). The microwave and mm-wave mobile backhaul is a flexible low-cost option

that is well suited for 5G applications. The solution implementations for both frequency bands can be

deployed in a few days and they are capable of supporting distances of up to several miles. There has

been advancement in the development of technologies that enable microwave and mm-wave backhaul

in 5G networks such as

• adaptive coding and modulation (ACM);

• higher-order quadrature amplitude modulation (QAM), e.g. 64-QAM, 256-QAM, and 1024-

QAM;

• cross polarization interference cancellation;

• massive MIMO and beamforming;

• compression accelerators;

• multi-carrier bonding.

The microwave and mm-wave backhaul has been found attractive for practical implementations in

5G networks due to its capability of providing large bandwidths. A drawback of the microwave and

mm-wave backhaul is that it requires a license for operation in the respective frequencies, unless if

the operation is in the unlicensed bands. Although the mm-wave frequencies suffer from high signal

attenuation and are thus range limited, they are finding popular and practical applications as a solution

for high bandwidth, short distance links, which are found in the densified 5G networks.

Table 2.2 highlights the trade-offs that are usually considered for the various backhaul solutions in

the context of the 5G network architecture. The simulation and measurement results showed that

the mm-wave frequencies provide a viable high-performance wireless backhaul solution in non-line-

of-sight (NLOS) small cell networks compared to microwave frequencies [48]. In addition, the

high-performance NLOS mm-wave backhaul links can provide higher antenna gain than the microwave
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backhaul links for similar antenna sizes. This enables the realisation of small, compact, point-to-point

fixed backhaul links that can achieve up to hundreds of Gbps throughput.

Table 2.2. Mobile Backhaul Options Trade-Offs in the context of 5G networks

Characteristic Satellite Microwave mm-wave Fiber-optic Copper-line

(Bonded)

Available band-

width

Low Medium High High Very low

Deployment cost High Low Low Medium Medium/High

Support for Hetero-

geneous Networks

Rural only Outdoor cell-

site/access

network

Outdoor cell-

site/access

network

Outdoor cell-

site/access

network

Indoor access

network

Interference im-

munity

Medium Medium High Very high Very high

Range (km) Unlimited 5-30+ 1 - 3 <80 <15

Time to deploy Months Weeks Days Months Months

License required? No Yes Light license/

unlicensed

No No

2.3.1 Integrated Access and Backhaul

Wireless self-backhaul is when a slave base station (SBS) sends/receives backhaul data through a single

direct wireless link or over multiple links (or hops) to/from a master base station (MBS), which is also

known as an anchor BS [49]. Figure 2.5 illustrates the concept of wireless self-backhaul, where the RF

spectrum is shared by both access and backhaul. As shown in the figure, the wireless backhaul can be

a single-hop, as in the case of SBS1, or it can be multi-hop, as in the case of SBS3. In SAB, during a

scheduled backhaul slot between the MBS and SBS1, SBS2 would be silent. Thus, this approach does

not make efficient use of resources especially as the number of SBSs that are associated with an MBS

grows. On the other hand, the IAB approach allows SBS2 to utilise the unscheduled backhaul slots

between the MBS and SBS1 for access communication with its UEs.
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Figure 2.5. Illustration of wireless backhaul among an MBS and SBSs in 5G NR, where the MBS is

connected to the core network via fiber backhaul.

2.3.2 Benefits of IAB

Cost reduction

As aforementioned in Chapter 1, IAB is envisaged to be a flexible and cost-effective backhaul techno-

logy for 5G NR operation in mm-wave frequencies. Reducing the need for fiber backhaul to each cell

site in dense networks, which is very costly and time-consuming, is a capability that will be welcomed

by the MNOs of the 5G NR.

Remediating coverage gaps

In dense urban environments with high-rise buildings, IAB will be useful for the remediation of

coverage gaps through the use of small cell APs on but not limited to street lamp posts and building

walls. In addition, IAB will contribute towards bridging the outdoor to indoor access especially in

mm-wave frequencies, which have low penetration capabilities.

Enhancing capacity

“High-capacity wireless backhaul will enable mobile operators to keep up with capacity demands

and maintain excellent quality of experience for their customers” [19]. Leveraging wider channel

spacing, higher modulation schemes such as 1024 QAM, as well as spectral efficiency techniques such

as massive MIMO and beamforming in the microwave and mm-wave frequency bands will enable

high-capacity provision in the 5G networks.

2.3.3 IAB in Millimeter-Wave Frequencies

A reliable, cost-effective, and scalable wireless backhaul solution that is capable of providing gigahertz

bandwidth is a prerequisite for enabling effective communications in hyper-dense networks [50].

The mm-wave technology has found attraction for applications in 5G wireless communications,
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and numerous research works have investigated the features of mm-wave frequencies and electronic

components. “Furthermore, standardization bodies devote great efforts to establish a norm for mm-wave

communication applications. For example, European Computer Manufacturers Association (ECMA)-

387, IEEE 802.15.3c, IEEE 802.11ad and IEEE 802.11aj are all existing 60-GHz industrial standards”

[51]. Although the mm-wave bands had been deemed unsuitable for wireless communications for

many years due to their physical barrier limitations, which include high path loss and other degradation

losses, mm-wave transmission in the small cells of 4G networks in various urban environments was

shown to be feasible. Results based on extensive measurement data have supported the feasibility

of wireless communications in the 28-GHz, 38-GHz, 60-GHz, and the 73-GHz bands [52], [53]. In

addition, the small wavelengths of these bands make it feasible to produce low-cost compact antenna

packages [54].

2.3.3.1 Overview of mm-wave frequencies

Table 2.3 summarises the advantages and disadvantages of the mm-wave frequency bands in the

context of 5G NR applications. The quantitative research results showed that transmission in the

28-GHz and the 38-GHz bands has less losses, but it has smaller bandwidth, while the 60-GHz and the

73-GHz bands suffer from more losses, but have larger bandwidth and they use smaller antenna size.

Considering the coverage, the attenuation effects due to atmospheric absorption and rain are small

compared to the path loss effects in all the mm-wave bands.

A channel model that is based on real measurements in the 28 GHz and the 73 GHz bands has been

proposed [55]. Spatial statistical channel models in these frequency bands were derived to provide

a realistic analysis for channel parameters such as path loss, angular dispersion, and outage. It was

shown that even in the NLOS scenarios, relatively strong signals can be detected up to 200m away

from a transmitter, and as such, the simulations have shown that the mm-wave systems can provide up

to an order of magnitude higher capacity compared to the 4G networks for the same cell density in

urban environments.

2.3.3.2 IAB system architecture

IAB is expected to support both the indoor and the outdoor 5G NR deployment scenarios. The initial

deployments would typically be stationary SBS nodes and future deployments will extend to mobile

scenarios such as on buses or trains. The 3GPP study on IAB investigated multiple IAB architectures
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Table 2.3. Advantages and Disadvantages of mm-Wave Bands

Frequency Band Advantages Disadvantages

28GHz (Ka band) Low propagation losses;

Low oxygen absorption and rain

attenuation

License requirement not stringent;

Relatively small bandwidth

38GHz (Q band) Relatively less attenuation caused

by oxygen absorption and rain

No much research and applications

60GHz (V band) Falls under unlicensed bands;

Large bandwidth that provides

multi-gigabit rates

Peak point of oxygen absorption;

Relatively large rain attenuation

73GHz (E band) Small effects of absorption Largest rain attenuation;

Very large path losses due to high

frequency point

for both the SA and the NSA modes of 5G NR [7]. The architecture requirements are summarised as

follows:

• The SA and the NSA should be supported for the access link, and both SA and NSA should be

studied for the backhaul link;

• The IAB architecture design should support the multi-hop backhaul and should not impose limits

on the number of hops. A single hop is considered a special case of multi-hop;

• Fixed relays should support topology adaptation to enable robust operation, which aims to

mitigate blockages and consider the load variation on backhaul links;

• The IAB design should aim to minimize effects on the core network specifications and signalling

load;

• IAB should be backward compatible with the Release 15 specifications of 5G NR.

The multi-hop capability allows flexible communication, with some nodes backhauling over one hop

and others over as many as three hops as shown in Fig. 2.5. The results from the practical field trials

have also shown that compared to the single-hop only deployment, the multi-hop deployment provides

better performance in terms of coverage improvement, the UE rates, and cost reduction in a typical
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urban environment [56], [57]. Figure 2.6 shows a block diagram of the architecture 1a that has been

recommended from the architectures considered in the study by 3GPP. Although the recommended

architecture has no limit on the number of hops, the maximum practical number depends on a number

of factors such as the frequency band, the cell density, the channel conditions, and the traffic load.

Another consideration that increases with the number of hops is latency.

Figure 2.6. Block diagram for IAB architecture 1a showing the connections among the components of

the SBSs and the MBS (Taken from [7], ©2018 3GPP).

The overall IAB architecture that is illustrated in Fig. 2.6 is based on the functionality split between the

user plane and the control plane [58]. In this architecture, the MBS comprises a CU and no less than

one DU. The CU hosts the packet data convergence protocol, and the service data adaptation protocol

for the control plane, or the radio resource control protocol for the user plane. The F1 interface that is

indicated in Fig. 2.6 is a standardized interface between the CU and the DU, which defines the higher

layer protocols. The SBSs consist of mobile terminations (MTs) and the DU functionalities. Here, the

MTs act as normal devices and they associate with the DU of the MBS. The message transmission is

based on the lower layer functionality provided by the link between the MT of the SBS and the DU of

the MBS.

In addition to the mm-wave frequencies and their hybrid use with the sub-6 GHz frequency techno-

logies, the other two key requirements for the successful implementation of IAB are flexibility and

programmability. This constitutes the incorporation of SDN where an operator or controller should be

able to re-configure the data plane when new small cell APs are installed or are switched off [59]. The

controllers should be able to enforce per-user policies and in case of congestion or link failures, the

control plane should quickly re-route traffic. SODALITE, an SDN-based architecture for the backhaul

control of IAB nodes was presented in [59]. The architecture was implemented and validated on an LTE

network testbed using standard open-source solutions to illustrate its feasibility. Stochastic evaluations

using traffic traces that were obtained for the LTE network validated the scalability of SODALITE,

and the projection of this scalability study to future 5G networks was also presented.
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Two IAB system architectures for the 5G wireless backhaul were considered in [60], which are, a

centric approach and a distributed approach. In the centric approach, the MBS is centrally located, with

the SBSs uniformly distributed around it. The SBSs get access to the core network through the central

MBS and direct links between the SBSs are not allowed. In the distributed approach, the backhaul

data is relayed to the MBS through mm-wave links between adjacent SBSs. “System-level simulations

have shown that the distributed solution achieves higher energy efficiency and throughput gain, mainly

due to sharing cooperative traffic among multiple wireless SBSs” [60]. In addition, it can be seen that

the distributed architecture complies with the 3GPP requirement to support multi-hop backhaul.

Most works on IAB usually ignore the effect of network configuration and its interaction with user

traffic, which collectively affect the SINR of both access and backhaul links as well as the loads on

the various BSs [61]. Stochastic geometry is a mathematical tool that can be applied for accurate

interference modeling and the performance analysis of wireless networks with random topologies [62].

A stochastic geometry-based modeling approach has been adopted for multi-tier networks, which aims

to capture the independent random deployment of small cell APs [63], [64]. The approach not only

captures the randomness in the network arrangement and configuration, but it also provides tractable

analysis results. “These stochastic geometry-based models, initially applied to sub-6 GHz networks,

have been extended to the coverage analysis for mm-wave networks. However, none of these works

consider the impact of limited backhaul capacity (of which IAB is a special case)” [61].

2.3.3.3 Bandwidth partition and resource allocation

Full spectrum reuse in ultra-dense networks employing IAB is susceptible to severe inter-tier and intra-

tier interference, and to address this challenge, the legacy resource allocation optimization problems

require accurate CSI acquisition or computationally complex solutions [65], [66]. In addition, many

solutions for the optimization problem are solved in only a snapshot of the network, which does not

address the network dynamics. The rate that is allocated to user equipment is determined by the

minimum achievable rates of the wireless links and the number of UEs and SBSs that would be sharing

the available bandwidth.

The authors of [67] developed a tractable framework for analyzing the performance of three backhaul

bandwidth partition strategies in a mm-wave IAB network using tools from stochastic geometry. The

model assumes that the total downlink bandwidth B, for an SBS is partitioned into two parts, Bb = ηB

for wireless backhaul and Ba = (1−η)B for access, where η ∈ [0,1] represents the bandwidth partition
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factor. The three bandwidth partition schemes that were considered are

(i) equal partition, where all the SBSs share the total bandwidth equally, irrespective of their load,

(ii) instantaneous load-based partition, where the MBS partitions the backhaul bandwidth among

the SBSs based on load information that it frequently collects from the SBSs, and

(iii) average load-based partition, where the MBS collects the average load information from the

SBSs and the backhaul bandwidth allocated to each SBS is proportional to its average load.

The performance of the three partition strategies was evaluated by determining the downlink rate

coverage probability in each scenario, which is the probability that the downlink data rate experienced

by a randomly selected user will exceed a target data rate.

In [61], the authors consider the impact of limited backhaul capacity in mm-wave IAB networks by

analysing the rate coverage probability for two types of RA at the MBS, considering the same network

model in [67]. The two RA schemes are

1. Integrated resource allocation (IRA): In this scheme, the total bandwidth is dynamically split

between access and backhaul by considering the load on each SBS.

2. Orthogonal resource allocation (ORA): Here, a fixed access-backhaul partition of the band-

width is defined a-priori.

From the results of [61], it was observed that there is a near-optimal access-backhaul split for which

the probability of ORA is maximized. As expected, the optimal value of the optimal access-backhaul

split decreased as the density of the SBSs increased, since more bandwidth has to be reserved for

the backhaul to support a given data rate. It was also shown that offloading traffic from the MBS

to the SBSs in two-tier networks is more effective in fiber-backhauled SBSs than in mm-wave IAB

networks. However, the cost of installing fiber backhaul for every SBS outweighs the traffic load

handling advantage.

Th optimization for link scheduling and RA by applying binary interference classification, which

is an interference coordination scheme that prevents two links from being active concurrently, was

proposed in [68]. By using a conflict graph model, the authors proposed a maximum independent

set-based scheduling algorithm, which makes fixed routing decisions. For this proposed solution, the
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simulation results showed that it gives improved performance compared to common multiplexing and

interference mitigation schemes in terms of the achievable data rate and latency performance. Another

RA solution that performs joint power-carrier resource assignment in multi-hop IAB networks is

proposed in [69]. Here, the authors presented low-complexity optimal and sub-optimal RA algorithms.

The proposed solution formulation, however, does not consider the traffic load as was done in [68], but

instead it considers the dynamic channel effects that may be caused by the time lag between the CSI

measurement and the RA decision implementation.

2.3.3.4 Backhaul path selection

Wireless communications in mm-wave frequencies typically use direct links to reduce path loss effects,

through the application of steerable antenna arrays and beamforming techniques. This enables multi-

stream data support for multi-user scenarios and it paves way for spatial reuse, which should be fully

exploited for overall backhaul performance improvement [51]. In addition to the scheduling and RA

solution, the authors of [68] also presented a dynamic backhaul routing algorithm for optimal path

selection in multi-hop IAB networks. The proposed dynamic routing algorithm considers real-time

network context such as the BS load to generate the optimal backhaul path for each UE through a

greedy approach. Although the proposed dynamic algorithm considers context for optimal routing,

it is worth noting that incorporating machine learning (ML) techniques can help improve the system

latency and cost performance.

The authors of [51] solved the path selection and the time allocation problems in 5G mm-wave backhaul

by proposing an optimization model of the tractable hybrid system architecture. In this hybrid model,

more than one BS is connected to the core network via wired fiber links. The SBSs in the resulting

backhaul mesh network communicate with each other using pure mm-wave links or the backhaul

data can be routed via a wired SBS. This hybrid technique aims to improve reliability by addressing

blockage in mm-wave links, since mm-wave communication suffers from severe penetration loss. The

tractable system architecture combines performance enhancing physical layer techniques with routing

and scheduling schemes in higher layers to combat two types of blockages, namely temporary blockage

and permanent blockage. An example of temporary blockage is a moving vehicle, and in such instances

an SBS adopts a smart beamtracking method that enables it to switch between alternative links to avoid

the blockage. On the other hand, the permanent blockage may be due to a building between two SBSs,

and in this case transmitting data to adjacent SBSs as relays may be a more suitable option for high

capacity applications compared to using the NLOS paths. Ultimately, the simulation results showed
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that the physical layer techniques such as hybrid beamforming and full-duplex transmission provide

improved capacity and latency performance in mm-wave backhaul networks.

The D2D communication has been exploited for providing networks access to the UE experiencing

poor QoE via a technique known as the user provided network (UPN) [70]. Through the UPN, the

users with high channel quality are able to serve as relay operators to provide network connection to the

users with weak channel conditions using D2D links such as Wi-Fi [71]. In [70], the authors analysed

the UPN service in a 5G mm-wave IAB network framework. The modelled framework considered

a two-tier, multi-hop, multi-path hybrid mesh network, where the energy efficiency and monetary

data download cost are parameterized for each user whilst considering the interference between the

backhaul links and the capacity constraints. The formulated problem is solved using a Nash bargaining

solution, with the aim of establishing fair cooperation among the users and improving the SBSs’

resource utilisation efficiency. The Nash bargaining solution was developed for two algorithms, namely

the centralized algorithm and the distributed algorithm. The distributed algorithm addresses the UE

privacy issue, which is a drawback of the centralized algorithm.

A joint transmission and scheduling scheme for the mm-wave IAB networks was proposed in [72],

where a path selection criterion was designed to enable the D2D communications. The authors analyzed

the impact of path selection on performance improvement in the D2D network under various scenarios.

Similar to the work of [70], if the direct link between two users that wish to communicate has high

channel quality, direct transmission would be adopted instead of transmission via the backhaul network.

In [72], the direct transmissions between the devices was formulated as a mixed integer linear program,

with the aim of minimizing the number of time slots to accommodate the traffic demand of all the

flows. The proposed optimization solution was shown to achieve near-optimal delay and throughput

performance in some cases of varying path-selection parameter.

Backhaul path selection in a mm-wave IAB setup that applies beamforming and sectorized deployment

was investigated in [73]. The authors analyzed four path-selection techniques using a distributed

approach and they compared the performance of the path-selection schemes in terms of hop count and

bottleneck SINR in the mm-wave channel model of [55]. The four path selection policies that were

considered differ in the metric that is used to measure the link quality (using either the SINR or the

data rate), and the priority factors used to rank the different link that would be available at each hop.

These four policies are described as follows:
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(i) Highest-quality-first (HQF) policy: In this policy, the SBS at each hop selects the backhaul

link with the highest signal-to-noise ratio (SNR), without considering any other additional

information.

(ii) Wired-first (WF) policy: The WF policy aims to reduce the number of hops that are required to

reach the wired MBS, by selecting the link to a wired MBS even if it is not associated to the

connection with the highest SNR. The HQF policy is applied if there is no link to a wired MBS

at the current hop.

(iii) Position-aware (PA) policy: This scheme considers context-awareness for the SBS that has to

perform link selection in relation to the position of the MBS. The aim here is to select the path

to the closest MBS from the current SBS.

(iv) Maximum-local-rate (MLR) policy: In this policy, each hop selects the path to the MBS that has

the highest achievable Shannon rate. It is worth noting that the MLR policy does not consider

the SNR as a metric, but instead it considers the achievable data rate.

The simulation results showed that the number of hops required to connect to an MBS can be decreased

by designing aggressive bias functions which do not affect the average bottleneck SNR. It was shown

that the WF policy is ineffective in cases of sparsely deployed networks and for low SNR scenarios.

On the other hand, the PA scheme, which applies context-awareness to perform the path selection,

significantly improves the overall performance in terms of both the number of hops and the QoS.

2.3.3.5 Research motivation

From the reviewed literature on contributions that have been made to solve problems in the IAB net-

works, it is apparent that dynamic resource management and data routing still remain underinvestigated

problems in the mm-wave IAB networks. The existing solutions focus on finding low-cost routes for

traffic to reach the MBS, without considering the ways in which resource exhaustion at a serving BS

can be minimised. Resource exhaustion is the unavailability of communication resources to satisfy

all the associated user requirements at a BS, mainly due to congestion. A framework that avoids

resource exhaustion should be capable of adapting to different learning mechanisms while adhering

to system requirements in real-time effectively. Considering that the operational spaces of the next

generation wireless networks will be very diverse and that the future wireless environments will be

highly unpredictable, rule-based decision-making, that is learning directly from training, may not

be ideal. As a result, designing apriori cost functions and then solving optimal control problems in

real-time may be ineffective. For this purpose, the decision maker of an IAB system can incorporate a
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deep neural network (DNN) to provide action choices for any given state of the system. The DNNs

are essential for optimal solutions in highly stochastic and dynamic environments such as mm-wave

IAB networks, where an action’s reward value depends on future actions and states. In such cases,

the DRL-based schemes become an attractive alternative. As such, the subsequent section gives an

overview of literature with respect to machine learning applications in wireless networks, leading up to

DRL applications in 5G networks and consequently IAB networks in particular.

2.4 COGNITIVE RADIO AND AI-ENABLED NETWORKS

Modelling and optimising for smart devices in 5G networks, which would be capable of jointly

using many different frequency bands and communication technologies to achieve the required rate

and latency performance, is very challenging [17]. The evaluation of network performance using

metrics such as peak data rates and spectral efficiency is not suitable for the HetNet architecture of 5G

networks. The performance metrics for the 5G networks are centered around enhancing the QoE of the

UEs [18]. Thus, modeling the wireless networks and the analysis of network characteristics such as

user satisfaction, RA and backhaul routing using the received SINR as the base metric for resource

allocation is inadequate for 5G scenarios [74]. To address this limitation, there has been considerable

research that looks at the application of CR technology and AI for smart devices in 5G networks. The

application of AI techniques in 5G networks enables the optimization of the network in real-time

through the control of BS association, the routing configurations for wireless multi-hop backhaul, or

load balancing [40].

2.4.1 Context-Awareness in Wireless Networks

The term context-awareness was first introduced in the 1990s with a focus on computer applications

for context-aware computing [75]. The term was redefined for systems to state that “a system is

context-aware if it uses context to provide relevant information and/or services to the user, where

relevancy depends on the user’s task” [76], where context is any information that can be used to

characterise the state of a device/element. From the wireless communications perspective, context

awareness is a mobile networking paradigm in which devices or applications can discover and take

advantage of wireless contextual information such as user association, BS load, and user behaviour.

This phenomenon has been studied extensively in mobile computing to build diverse context-aware

applications [77]. It has been established that there is need for integration of multiple parameters in the

optimization of network functionalities in designing models for 5G networks smart devices [78], and

as such, a number of models that consider context-awareness for network elements in 5G networks

have been proposed. To provide high QoE to end users, “5G systems will need to be context-aware,
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utilizing context information in a real-time manner based on network, devices, applications, and the

user and his/her environment” [18]. Hence, there is need to develop new ways of obtaining context

information as well as new ways of sharing context information between applications, network layers,

and devices. The context that need to be considered by 5G systems include:

• device-level context, which includes the battery state, the CPU load, and the device characterist-

ics;

• user applications such as video streaming, web browsing, gaming, or interactive cloud-based

applications;

• user environment context, which considers factors such as user mobility, user location, and the

proximity of other users;

• network context, which considers factors such as congestion/load, wireless channel state, back-

haul quality, and the availability of alternative spectrum or routes.

An ideal solution for a context-aware user association problem for 5G HetNets is found at the intersec-

tion of three perspectives that are usually considered individually in literature [78], which are (i) a load

balancing perspective, (ii) a seamless mobility and handover perspective, and (iii) a self-organizing

network (SON) perspective that aims to improve network efficiency and ease the management tasks

for diverse complex networks.

2.4.2 Cognitive Radio Technology

A key enabler for flexible spectrum management, which is one of the techniques that make it possible

to achieve the 5G NR objectives, is cognitive radio (CR) technology [26]. A CR is an intelligent device

that makes decisions that enable opportunistic spectrum access by being aware of and understanding its

environment [79]. Although the spectrum may be exclusively reserved to be used by licensed primary

users (PUs), the PUs may not always make efficient use of the spectrum. Hence, in a cognitive radio

network (CRN), the unlicensed secondary users (SUs) are allowed to be temporarily allocated the

available spectrum in an opportunistic manner [80], [81].

In most of the literature on CR technology and CRNs, the “cognitive” aspects are focused on spectrum

sensing, channel selection and adaptive communication. However, a broader definition of CR, which

incorporates cognition aspects such as intelligent observation, learning, and decision-making, has

found preference in 5G networks [82]. Hence, a CR should be aware of its environment by being able
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to sense and characterize the various RF activities in its surroundings, and it should learn and make

reasonable decisions that improve future performance [83], [84].

There are three main constituents of intelligence that should be built into the CRs of future networks,

which are perception, learning, and reasoning [85]. Perception can be viewed as sensing the wireless

environment to identify ongoing RF activities in the CR’s surroundings. The CR then tries to learn

from the acquired information to generate knowledge that is used to make decisions and take action

that allows the CR to achieve its objectives. This relationship of the three constituents of an intelligent

CR is illustrated in Fig. 2.7. It can be seen that learning is an essential tool that allows a CR to

acquire knowledge from its observed data, and as such, the succeeding subsection delves more into the

applications of machine learning for CRs in 5G networks. The learning capability enables the CRs to

autonomously learn to adapt to the dynamic wireless environment in an optimal manner.

Figure 2.7. Illustration of an intelligent design of a CR, showing the connection of the three components

of a CR.

The need for optimised resource usage and management in wireless networks has led to the introduction

and application of AI in the learning and reasoning stages of CRs [86]. The reasoning stage of CR

technology comprises inference and decision-making, as shown in Fig. 2.7. Cognitive inference is

responsible for making the choice of actions that lead to efficient decisions. In addition, cognitive

reasoning involves the complex interaction between current and learned information, and this can be

well-handled by applying ML.

2.5 INTRODUCTION TO MACHINE LEARNING

Machine learning is when a machine learns the execution of a particular task with the aim to maintain

a certain performance metric, based on some experience [87]. ML is an AI tool that is envisaged to

address a number of technical challenges that are presented by the need for accurate modelling in
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implementing some of the aforementioned technologies that enable 5G networks [88]. In addition

to being an AI tool, ML is also viewed as a modelling technique that draws upon ideas from a wide

range of disciplines such as information theory, probability and stochastics, as well as control theory

[89].

2.5.1 Machine Learning in 5G Networks

Machine learning-based models have found applications in gaming, data mining, telecommunications,

bio-sciences and control automation. ML algorithms can be classified into three main categories, which

have all found applications in 5G networks. Figure 2.8 shows an overview of the 5G NR use cases

where the various ML solution algorithms are typically applied. To supplement this, Fig. 2.9 shows

the family-tree of the ML algorithms and it summarises the potential applications of the respective ML

techniques in 5G NR problems according to [88].

Figure 2.8. Applications of the various ML solution algorithms in 5G use cases.
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Figure 2.9. Some applications of the three branches of machine learning in 5G networks, showing the

applicability of RL for resource management in IAB networks.

2.5.2 Supervised Learning

In supervised learning, the tasks are accomplished by learning from examples provided by an external

supervisor, where each training example consists of an input/output pair of data that is provided during

the training [90]. The input/output data is typically labelled and classified to provide a reference for

future learning processes. Thus, supervised learning provides learning algorithms that use known

quantities of examples and their respective labels to provide future judgement [91].

Considering a typical input denoted by x and its label y that form the input/output pair (x,y)∈D, where

D is an existing data set. The main goal in supervised learning is to learn a function that accurately

predicts the output y for an input x, or alternatively estimate its conditional distribution p(x|y). The

common supervised learning models and their associated data classification algorithms are

(i) Support vector machines: Support vector machines (SVMs), are supervised learning schemes

that were initially applied for binary classification, but were then extended for use in regression

and multi-class classification [87], [92]. The SVMs are non-parametric models, that is, the

number of parameters for an SVM model is not fixed when the model is constructed. The

SVM algorithm depends on nonlinear mapping, which transforms the input training data to

make it separable. The algorithm then searches for the optimal linear separating hyperplane that
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classifies the separable data, which relies on the family of non-linear kernel methods such as a

radial basis function [93].

(ii) K-nearest neighbour (KNN) algorithm: In the KNN technique, an input is classified into a

specific class, which would be the most common class among its k nearest neighbours [87]. The

output is determined by a certain property of the input, such as the average value of its k nearest

neighbours.

(iii) Decision trees: The decision tree algorithms offer a lightweight solution to classification prob-

lems by assuming that the inputs that lie close to each other in the data space should be similar

[94]. A decision tree is basically an aggregation of conditions that enable a new input to traverse

all nodes in a network until the terminal node, which gives the output.

(iv) Bayesian learning: The premise of Bayesian learning is computing the conditional a-posteriori

probability distribution on all of the training instances. The models that apply the Bayesian

learning techniques in wireless networks include the Gaussian mixture (GM) model, the ex-

pectation maximization (EM), and the hidden Markov models (HMM) [87]. In the GM model,

each input belongs to one of several Gaussian distributed clusters; the EM approach is a form of

maximum likelihood estimation, whereas the HMM approach aims to represent the probability

distributions of the sequences of observations that contain hidden variables.

In wireless networks, supervised learning has found applications in regression, classification and in

clustering problems. In regression and classification problems, supervised learning is applied to predict

continuous values for the current input, and to identify the class to which the prediction belongs. An

example of such problems in the 5G NR is channel estimation for the users in massive MIMO systems.

The KNN and SVM techniques have been applied for determining optimal handover solutions in

HetNets, where they were used for learning user contexts that were used in a location-specific interface

[95]. A hierarchical version of SVM, known as hierarchical support vector machines (HSVM) was

proposed for use in the data classification problems for channel estimation in MIMO networks [96].

The HSVM model was applied for learning the estimation of the distribution of channel noise.

Bayesian learning has found applications for learning spectral characteristics and channel conditions

in wireless networks. To address the challenge of pilot contamination in massive MIMO systems, the

sparse Bayesian learning techniques were applied in [97]. Here, the authors estimated the channel

parameters of a desired link as well as those of the interfering links. Bayesian learning has also

been widely applied for modelling channel occupancy in CRNs [98], [99], [100], [101]. In [102], a
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cooperative wideband spectrum sensing scheme that applies the EM algorithm was proposed. The

iterative technique first created a log-likelihood function for the unknown spectrum occupancy, the

channel state information, and the noise before maximizing the log-likelihood function to jointly

detect the PU signal and the channel information. A two-state HMM was developed in [103], where

the EM algorithm was applied for estimating channel parameters such as “the sojourn time of the

available channels, the inactive states of the PUs, and the PUs’ signal strength.” Another application

of Bayesian learning in CRNs is found in [104], where a tomography model, which is a Bayesian

inference framework, was proposed for modelling at both the link and the network layers. The model

aimed to conceive and to statistically characterize the techniques that are capable of extracting the

essential channel parameters and traffic/interference patterns in CRNs.

2.5.3 Unsupervised Learning

Unsupervised learning is a ML technique where the learning model aims to discover the required

information from unlabelled datasets. Thus, unlike supervised learning, the unsupervised learning

algorithms aim to discover a hidden structure in the input, without assuming a labelled example. This

allows unsupervised learning to perform more complex processing tasks compared to supervised

learning. The common unsupervised learning models that are applied in wireless communications

are:

(i) K-means clustering: The k-means clustering unsupervised learning approach aims to partition

n input observations into k clusters, where each input is assigned to the closest cluster. The

clustering algorithm is designed to minimize the intra-cluster Euclidean distance by iteratively

updating the cluster-centroid, until convergence. Here, convergence is achieved when the cluster

assignment reaches steady state, that is, when the clusters formed in two consecutive rounds are

the same [88].

(ii) Principal component analysis: Principal component analysis (PCA) is a technique where a set

of potentially correlated variables is transformed into a set of uncorrelated variables, which are

known as principal components. The number of principal components should be less than or

equal to the number of original variables, and the principal components are orthogonal since

they are the eigenvectors of the symmetric covariance matrix.

(iii) Independent component analysis: “Independent component analysis (ICA) is a statistical tech-

nique conceived to reveal hidden factors that underlie sets of random variables, measurements,

or signals” [88]. In an ICA model, the input variables are assumed to be linear mixtures of some
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unknown latent variables. The latent variables are known as the independent components of the

input data and they are assumed to be mutually independent and non-Gaussian. The process of

determining these latent variables is known as ICA [87].

In wireless networks, the k-means clustering approach is prevalently applied in clustering and associ-

ation problems, which are common problems in the 5G networks, particularly in HetNets and D2D

networks. Examples of such applications include but are not limited to:

• small cell clustering in Hetnets for interference management using CoMP,

• clustering of mobile users to obey an optimal offloading policy,

• clustering of devices in D2D networks to improve energy efficiency, and

• Wi-Fi users clustering for optimal access point association.

Because of their ability to recover statistically independent source signals from mixtures, both PCA and

ICA are considered as powerful statistical signal processing techniques that have found applications in

traffic monitoring problems in wireless networks. These applications include

• anomaly detection, fault detection and intruder detection in wireless sensor networks and mesh

networks,

• classification of PU behaviours in CRNs, and

• recovery of wireless transmissions of smart utilities in smart grids.

2.6 THE REINFORCEMENT LEARNING STRATEGY

The RL strategy aims to acquire the ability to generalise the learning process in a similar fashion to

supervised learning. However, the supervision in the reinforcement approach of RL means that the

supervision comes in the form of feedback from evaluation of the learner’s behaviour, in contrast to

supervised learning. In RL, a decision-making agent in a certain state takes action based on a defined

policy and it receives a reward based on the action it takes [105]. In selecting the next actions, the

agent aims to strike a balance between exploration, that is choosing untested actions, and exploitation,

which is the selection of actions already identified as beneficial. In doing this, the agent’s overall aim

is to reach an optimal policy for maximizing the reward. A generic illustration of the operation of the

RL strategy is shown in Fig. 2.10.
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Figure 2.10. The concept of RL in the context of wireless networks, showing the interaction between

the agent and the network environment.

Figure 2.10 shows the generic operation of the RL strategy, which can easily be understood by using

the concepts of agent, environment, states, actions, as well as the rewards as discussed below:

• Agent: The agent can be defined as an entity that interacts with the environment and performs

the learning process by transitioning between the states as a result of taking a actions and

obtaining associated rewards.

• Environment: The environment can be defined as the space through which the agent transitions.

By taking an action at in a current state st , the agent obtains a reward rt and it transitions to the

next state st+1. The transfer function of the environment is not always known and it is typically

modelled as a black box, where only the inputs and outputs can be observed.

• State: The determined immediate conditions that the agent can be in at any given time.

• Action: The action can be defined a s the output of the agent’s learning process when in a given

state, which is performed in the environment.

• Reward: The reward is the feedback that is a result of evaluating the agent’s actions. The

reward function defines how the goal of a RL problem is achieved. As aforementioned, the

main objective of the RL agent is to maximize the accumulated reward it receives. The reward

function is generally unalterable by the agent, however, the achieved reward may serve as a basis
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for changing the policy. That is, if an action selected by the policy generates a low reward, the

policy may be changed to select a different action in the same state in the future.

• Policy: A policy defines how an agent maps the perceived states of the environment to actions

that are taken in the respective states, which is the RL agent’s behaviour. The policy may be a

simple function, a lookup table, or a complex computation.

• Value function: A value function determines the total accumulated reward that an agent can

expect when starting from a given state. Whereas a reward function indicates the immediate

reward of a given state, the value function specifies the long-term rewards. As an example, a

state might always yield low immediate rewards yet it may have a high value because it would

be followed by states that achieve high rewards, or vice-versa.

2.6.1 Reinforcement Learning Methods

There are three main methods of classifying solutions for the RL problem namely, dynamic program-

ming, Monte Carlo solutions, and temporal difference learning [105], [106]. Each class of solution

methods has its strengths and weaknesses.

(i) Dynamic programming: Dynamic programming algorithms are used to determine the optimal

policies given an accurate model of the environment, which would be modelled as a Markov

decision process (MDP). The main idea behind dynamic programming is to use value functions

to organise and structure the search for good policies. An advantage of dynamic programming

methods is that they are mathematically well-developed. However, the drawback is that they

require a complete and accurate model of the environment and they can be computationally

intense.

(ii) Monte Carlo methods: The Monte Carlo methods are learning methods for discovering optimal

policies and for estimating value functions using experience only. That is, the Monte Carlo

methods do not require a model. They only require sample sequences of states, actions and

rewards that are obtained on-line or from simulations of the environment. The Monte Carlo

methods are based on solving the RL problem by averaging complete sample returns. In addition

to not requiring a perfect model, the Monte Carlo methods present simpler solutions, which is

desirable, but they are not suitable for step-by-step incremental computations.

(iii) Temporal difference (TD) learning: TD learning is a combination of the Monte Carlo methods

and the dynamic programming ideas. The TD methods can learn from raw experience without a

model of the environment’s dynamics, and similar to the Monte Carlo methods, and they update
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their learned estimate values based on other estimates without waiting for a final outcome, just

like the dynamic programming methods. The main TD-based solution approaches are the Sarsa

algorithm, Q-learning and the actor-critic methods. Although the TD learning methods do not

require a model and are incremental, they are generally more complex to analyse compared to

the other RL methods. On the other hand, the advantages of TD learning approaches are:

• they do not require a model of the environment, nor distributions of the reward or next

state probability;

• they are implemented in an online and fully incremental fashion, instead of waiting for an

episode to end as in Monte Carlo methods;

• they have been found to converge faster than Monte Carlo methods when solving stochastic

tasks;

• TD learning is optimal in a way that is more relevant to predicting returns compared to

Monte Carlo methods. TD gives lower error on future data, whereas Monte Carlo methods

are better on the given data;

• in large state-space operations, TD methods may be the only feasible way to approximate

the certainty-equivalence solution.

The TD learning methods are categorised as either on-policy or off-policy learning methods. “On-policy

methods attempt to evaluate or improve the policy that is used to make decisions, whereas off-policy

methods evaluate or improve a policy different from that used to generate the data” [107]. When using

trajectories that may not be obtained using the current policy, learning with off-policy methods is

straightforward, whereas on-policy methods usually introduce a bias when used with a replay buffer

[106]. This makes off-policy methods sample-efficient when using the trajectories that may not be

solely obtained under the current policy, π , since they are able to make use of any experience.

2.6.1.1 Actor-Critic Methods

Actor-critic methods are on-policy TD learning methods that have a separate memory structure for

explicitly representing the policy, independent of the value function. The actor represents the policy

structure, which is used for selecting actions when in a given state. The critic refers to the estimated

value function, which criticises the actions that are selected by the actor. As aforementioned, the

learning is on-policy, where the critic learns about and criticises the current policy being implemented

by the actor. The sole output of the critic, that is, the value function, is a TD error, which is a scalar
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signal that drives the learning in both the actor and the critic. The architecture of the actor-critic

learning operation is illustrated in Fig. 2.11.

Figure 2.11. The actor-critic operational architecture, illustrating the interaction between the main

components. The solid lines represent learning inputs, whereas the dashed lines represent the outputs.

The main advantages of the actor-critic methods over the other TD learning methods are

• they require minimal computation for action selection, which is useful in cases where there are

infinite possible actions such as continuous-valued actions, and

• “they can learn an explicitly stochastic policy; that is they can learn the optimal probabilities of

selecting various actions” [105].

Although many of the earliest TD-based RL methods were actor-critic, recent attention has been

devoted to the methods that learn the value function and determine the policy to implement using only

the estimated values.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

51

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE STUDY

As illustrated in Fig. 2.11, after each action selection by the actor, the critic, which is typically a

state-value function, evaluates the new state to determine whether there has been an improvement.

This evaluation is the computation of the TD error and it is given as

δt = rt+1 +βV (st+1)−V (st), (2.1)

where V (st) is the value-function of the current state st , which is implemented by the critic at time t.

This TD error gives the basis of evaluating the selected action at when in state st . If the error is positive,

it shows that selecting the action at should be favourable for the future, however, if it is negative, the

tendency to select at should be weakened.

2.6.1.2 Sarsa Algorithm

The Sarsa algorithm is another on-policy TD method. Here, the first step is to learn an action value

function. That is, the considered transitions are from the state-action pair to state-action pair, unlike in

state-value function learning where the considered transitions are from state to state. In this method,

the action-values Qπ(s,a) for the current behavioural policy, π , are estimated and updated for all

state-action pairs according to the following theorem.

Q(st ,at)← Q(st ,at)+α[rt+1 +βQ(st+1,at+1)−Q(st ,at)], (2.2)

where α ∈ (0,1] is the learning rate, and β ∈ (0,1) is a discount factor. This update is carried out

after every transition from a non-terminal state st . The general form of the Sarsa algorithm is given in

Algorithm 1.

Algorithm 1 Sarsa TD learning algorithm

Initialize Q(s,a) arbitrarily

For each episode do

Initialize st

Choose at from st using the selected policy for Q

For each step of episode (until st terminal) do

Take action at , determine reward rt+1 & next state st+1

Choose at+1 from st+1 using the selected policy for Q

Q(st ,at)← Q(st ,at)+α[rt+1 +βQ(st+1,at+1)−Q(st ,at)]

st ← st+1; at ← at+1

End for

End
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2.6.1.3 Q-learning

Q-learning is an off-policy TD approach that has enabled early convergence proofs. As mentioned in

Section 2.6, it is a RL technique that does not require the exact transition formulation of the system.

The basic idea of Q-learning is to maintain a Q-table consisting of Q values, which represent a measure

of goodness resulting from taking an action a when in state s. It can be seen as a category of ML

techniques that are useful for learning the policies to achieve a desired objective. The basic idea of

Q-learning is that a learning agent determines the current state of the environment, st , from a set of

all possible states, and it takes an action at ∈A, where A is the set of all possible actions. The agent

receives a reward, rt , for the action taken and the environment transitions to the next state st+1. In

choosing the state actions, the agent aims to maximise its discounted cumulative rewards over time.

In Q-learning, the learned action-value function, Q, directly approximates the optimal action-value

function, Q∗, independent of the policy being followed. The Q-learning algorithm makes use of the

Bellman equation to determine the one-step action-value, which is given by

Q(st ,at)← Q(st ,at)+α[rt+1 +β max
at+1

Q(st+1,at+1)−Q(st ,at)]. (2.3)

The learning rate, α , balances between using new information and using previous knowledge, whereas

β balances between the immediate and the future rewards.

Q-learning maintains a table that consists of estimates of the Q values, which are updated based on the

rewards received using the TD approach. The estimate at time t +1 is updated as follows.

Q̂t+1(st ,at) = Q̂t(st ,at)+α[Q(st ,at)− Q̂t(st ,at)]

= (1−α)Q̂t(st ,at)+α[rt+1 +β max
at+1

Q(st+1,at+1)].
(2.4)

The Q-learning algorithm operates based on the generic RL strategy shown in Figure 2.10. The basic

idea is to maintain estimates of Q values that represent a measure of goodness, which results from

obtaining a reward for taking a certain action when in a given state.

Exploration and exploitation

Exploration plays a vital role in RL. “Of particular interest is the manner in which exploration strategies

balance the need to learn more about the environment with the agent’s desire to perform well based

on its current knowledge of the environment” [108]. Although pure exploration might seem to be the

best learning approach, it may waste a lot of time and computing resources in exploring areas of the

environment that are irrelevant to the task. On the other hand, although exploitation might be the better
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approach for maximizing the expected reward in one episode, exploration may produce the greater total

accumulated reward in the long run [107]. There are a number of various approaches for finding the

compromise between exploration and exploitation of the state-action space that exists, since it is not

possible to both exploit and explore with any single action selection. In the case of wireless networks,

knowing whether it is best to exploit or to explore depends on a complex relationship between the

precise values of the estimates, channel uncertainties, and the number of remaining episodes at a given

instant.

The main objective for exploration and exploitation in RL approaches is to minimize costs and the

learning time. Typically, the smaller the learning time, the larger the cost, hence the poorer the agent’s

learning performance. By exploiting its current knowledge of the environment, the agent can identify

areas of the environment that are worth exploring. In addition, the learning cost cannot be minimized

without some degree of exploration of the environment to discover effective behaviours or actions. It is

worth noting that an effective exploration strategy in one environment may not be best suited in another

environment and it was observed that the negative impact of an ineffective or unsuitable exploration

technique on both learning time and learning costs can be “enormous” [109]. The exploration methods

for RL are classified into two categories namely, undirected exploration and directed exploration [108].

Undirected exploration techniques randomly explore the environment without considering the previous

history of the learning process, whereas directed exploration methods consider the agent’s history

of experienced states to influence the parts of the environment that the agent will further explore.

Following is a discussion of the common exploration and exploitation methods that are applied in

Q-learning.

The ε-greedy exploration

The ε-greedy exploration method is the most popular undirected policy selection method [105].

Considering that Q-learning maintains estimates of action values, then at any given time instant there

would be at least one action with the highest estimated value, and this is known as the greedy action.

Selecting the greedy action amounts to the exploitation of the current knowledge of the environment,

whereas selecting a non-greedy action means exploration since this enables the agent to improve the

estimate value of the non-greedy action. The ε-greedy exploration method behaves greedily most of

the time, that is, it selects the action with the highest estimated action value. However, in some time

instances, with a small probability ε that is uniformly distributed, it selects an action at random. An

advantage of this method is that in the limit as the number of episodes approaches infinity, it is ensured
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that the Q value estimates converge to the actual value. A disadvantage of the ε-greedy method is that

it equally selects the action to take among all the possible actions when exploring the action space and

this does not perform well in learning problems where some actions incur large negative rewards or

severe penalties.

Boltzmann-Gibbs exploration

The Boltzmann-Gibbs exploration, also known as the softmax exploration, is another undirected

exploration method that is similar to the ε-greedy method, except that it uses a Gibbs or Boltzmann

distribution for the random selection of actions, to enhance performance [105], [110]. The softmax

method aims to address the drawback of the ε-greedy method by varying the action probabilities as a

graded function of the estimated value. Here, the actions with the highest value estimates are assigned

the greatest probabilities, and the remaining actions are weighted and ranked based on their estimated

action values. When in state st , an action a is selected with probability p(st ,a) given by

p(st ,a) =
e

Q(st ,a)
T

∑
n
i=1 e

Q(s,ai)
T

, (2.5)

where T is a positive parameter known as the temperature, which controls the exploration process.

High temperature values causes all the actions to be equiprobable, whereas low temperature values

increases the probability of selecting one of the actions with the highest estimated values. Thus, as

T → 0, the softmax action selection method becomes the same as the greedy selection method. It is

generally difficult to discern the better method between the softmax and the ε-greedy action selection

methods, and this may depend on the task. Since both methods have only one parameter that must be

set, that is, either ε or T , determining the values for these parameters depends on the confidence or

acquired knowledge.

Bayesian Q-learning

Bayesian Q-learning is a directed action-selection method that uses probability distributions to strike a

balance between exploitation and exploration by applying a Bayesian approach to Q-learning [111].

Unlike in undirected exploration methods that use point estimates of Q-values, the idea here is to

keep and propagate distributions over the Q-values to make more informed decisions. There are two

techniques that are used in Bayesian Q-learning, namely Q-value sampling and the myopic value of

perfect information (myopic-VPI).

Q-value sampling is an exploration method that was initially proposed for solving bandit problems
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[112], which was then extended to multi-state RL problems [111]. In Q-value sampling, the learning

agent’s knowledge of the rewards is represented as probability distributions. “These probability

distributions depend on both the current expected reward and the current level of uncertainty about

the actual reward” [110]. Using the calculated probability distributions, the action with the current

optimal probability distribution is then selected.

Myopic-VPI is similar to Q-value sampling in that it is a direct way of evaluating the trade-off between

exploration and exploitation using the current probability distributions over the rewards to control

exploratory behaviour [111]. By using new information for information-gathering, the myopic-VPI

provides an approximation of the action’s utility in terms of the expected improvement in decision

quality.

Directed vs undirected methods

The major drawback of the directed action-selection methods is that they require complex and time-

consuming computations compared to undirected methods. On the other hand, the undirected action-

selection methods can be easily implemented and are suitable for applications that require real-time

decision-making; however, the values of the exploration parameters in undirected methods are usually

determined correctly after many iterations. Another drawback of the undirected methods is that they

do not consider the uncertainty of each action’s expected reward.

The Q-learning algorithm

Although Q-learning is an off-policy TD approach, the policy still plays a role in determining which

state-action pairs are visited and updated. The general procedure of the Q-learning algorithm is given

in Algorithm 2.

In practice, the convergence to the optimal value function is attainable under the following conditions

[106]:

• the state-action pairs are represented in a discrete manner, and

• repeated sampling of all actions is carried out in all states to ensure sufficient exploration.

These conditions are often infeasible, especially in scenarios with (possibly continuous) large state-

action spaces. In such cases, a parameterized value function, Q(st ,at ;θ), is needed. Here, θ represents
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Algorithm 2 Generic Q-learning algorithm

Initialise Q(s,a) arbitrarily

For each episode do

Initialise st

For each step of episode (until st terminal) do

Choose at from st using the selected policy for Q

Take action at , determine reward rt+1 & next state st+1

Q(st ,at)← Q(st ,at)+α[rt+1 +β maxat+1 Q(st+1,at+1)−Q(st ,at)]

st ← st+1

End for

End

some parameters that define the Q-values.

2.6.2 Model-free Reinforcement Learning Strategies

“In model-free RL, the value function is estimated first, then the policy can be determined based on the

estimated value function [113].”

2.6.2.1 MDP Solution Models

For both model-based and model-free RL methods, the extensions of the basic RL algorithms differ

mainly in the way in which the feedback from the environment is used for improving the learning

process [114]. These extensions have been shown to be efficient in scaling for problems with large

state-action spaces and depending on the the problem, the decision-making process usually follows any

of the variants of MDPs. According to [115], MDPs have become the de facto standard for learning

sequential decision-making in most RL applications. As such, this section gives an introduction and

an overview of the MDP models and algorithms that are predominantly applied in literature, some of

which were used in the contributions of this research work. The MDPs have been utilised in providing

solutions for a wide range of problems in the 5G networks. These include handling resource requests

and resource scheduling to maximize the throughput/reward. In a MDP model, an agent makes a

sequence of decisions with the goal of optimizing a given objective such as improving the performance

or the accuracy [116]. Each decision is dependent on the current state st , and typically leads to a new

state st+1. This is a purely Markovian process because the system’s current state completely determines

the future events. With the use of dynamic programming in combinatorial problems, it is generally

difficult to obtain exact solutions for most MDP-based schemes.
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2.6.2.2 Optimality criteria and discounted rewards

For an MDP, the learning process aims to gather rewards, and there are basically three approaches of

obtaining optimality for MDPs, which are:

• finite horizon model - The agent optimizes its expected reward over a finite horizon of a given

length.

• discounted, infinite horizon model - The rewards that are received in future are discounted

according to how far away in time they will be received. That is, the earlier rewards are

discounted less compared to the rewards obtained later. Here, a discount factor, β , 0≤ β ≤ 1

is selected at each time instant and it ensures that the sum of discounted rewards is finite, even

though the horizon may be infinite.

• average reward - This aims to maximize the long-run average reward. Here the averaged rewards

can be discounted rewards and as the discount factor approaches 1, it becomes the same as the

infinite-horizon discounted model.

“Choosing between these optimality criteria can be related to the learning problem. If the length of the

episode is known, the finite-horizon model is best. However, often this is not known, or the task is

continuing, the infinite-horizon model is more suitable” [115]. In addition, learning optimality is also

concerned with the assurance that the learning process reaches a global or local optimum, the speed of

convergence to the optimum solution as well as the complexity of the solution algorithm.

2.6.2.3 Partially observable Markov decision processes

The partially observable MDPs (POMDPs) are basically a combination of MDPs and the hidden

Markov models. They find applications in modelling dynamic systems by connecting unobservable

system states to observations. Here, the agent would not able to observe the system state directly and

at a given discrete time it can only make observations that help it create a belief state. The belief state

is determined by the probability distribution over the system states and the resulting solution of the

POMDP is a policy that determines the optimal action for each belief state. There are also decentralized

POMDP models that are usually implemented in complex scenarios considering the system uncertainty

such as wireless sensor networks, autonomous navigation, and e-commerce. While the decentralized

POMDP models provide elaborate frameworks for cooperative sequential decision-making under

uncertainty, they have increased computational complexity.
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2.6.2.4 Multi-agent Markov decision processes

The multi-agent MDPs are MDPs where the selected action at any given state consists of individual

action components performed by cooperative agents. They find applications in multi-agent planning,

where it is typically assumed that the heterogeneous agents may have their own set of actions for

a given task to be solved. Although each agent might have its own objectives, the system utility

for any given state is the same for all the agents [117]. The multi-agent MDPs are thus usually

considered to be a general form of stochastic games, where repeated interactions between a number

of participants whose environmental states change stochastically and the result depends on each

participant’s decisions.

2.6.2.5 Constrained Markov decision processes (cost criteria)

The constrained MDPs are a class of MDPs that are applied in cases where the agent or system has

more than one objective [118]. Instead of maximizing one utility or minimizing a single cost that

would be a function of the different objectives, in these models a single type of cost is minimized

while keeping the other types of costs below some given bounds. As such, the constrained MDPs

are also well-known as cost criteria approaches. The cost criteria approach uses value functions and

discounted rewards during the action selection process. In the context of wireless communications,

this enables the efficient allocation of resources to maximize the long-term reward in a cost-effective

manner.

The cost criteria can be concisely defined by the tuple {S,A,P,c,d}, where S is the set of all possible

states, A is the set of all possible actions, c : K→ R is the immediate cost, which is related to the cost

function that should be minimized, and d : K→ RK is a K-dimensional vector of immediate costs

related to a set of K constraints. For any policy π , and initial distributions ∂ , the finite horizon cost is

given by

CT (∂ ,π) =
T

∑
t=1

Eπ

∂
c(st ,at), (2.6)

where T is the finite horizon and E represents the mathematical expectation. For the case of having

discounted rewards, is an associated discounted cost, where for a given discount factor, β t , it is given

by

CT
β
(∂ ,π) = (1−β

t)
T

∑
t=1

α
t−1Eπ

∂
c(st ,at). (2.7)

For the finite horizon model, the cost function that is related to immediate cost dk is then defined in a

similar way as

DT (∂ ,π) =
T

∑
t=1

Eπ

∂
dk(st ,at). (2.8)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE STUDY

The constrained problem thus aims to find a policy that minimizes C(∂ ,π) subject to D(∂ ,π) ≤ V ,

where V is a predetermined threshold.

2.6.3 Applications of the RL Strategy in 5G Networks

This section focuses on the applications of RL in the 5G networks, particularly in the areas of network

modelling and network solutions for the CRs in 5G networks. Efficient and scalable online learning

algorithms are of particular interest and they have been successfully applied in various domains,

including CRNs. In CRNs, RL has been found applicable for maximizing the long-term system

performance by striking a balance between exploration and exploitation [90]. By virtue of not being

affected by emotions during the entire process of perception, learning and reasoning, the application of

RL in CRs is thus lucrative.

RL has been applied for solutions of various problems in CR-enabled networks and this section

discusses the 5G networks-related problems. The stochastic and bursty nature of user data requirements

in 5G NR presents a challenge of unbalanced traffic distribution. In addition, dynamics of wireless

cellular environments, such as random user mobility, fading, shadowing and lesses due to channel

effects, make it difficult to rely on a model of the network environment for solving optimization

problems [18]. As such, it is desirable to take advantage of the TD-based RL approaches in cognitive

wireless networks [119].

A distributed framework for the RAT selection in a CRN, which is based on RL, has been proposed [78].

The modular framework aims to satisfy the three user association perspectives mentioned in section

2.4.1 by applying RL for effective user association learning. In addition, it also applies unsupervised

machine learning to determine the state of the user and network model.

Two RL approaches that aim to improve the learning efficiency for dynamic channel selection in CRs

were investigated in [120]. The first approach, the pre-partition scheme, is a fast and efficient explora-

tion scheme that reduces the interruption overhead that is presented by applying RL in communication

systems. In this scheme, the UEs reserve spectrum resources randomly before transmission, which

reduces the action space that the CR needs to explore, thus reducing the exploration phase significantly.

In addition, the UEs in a local area will have a higher probability of avoiding each other. In the other

scheme, the weight-driven exploration scheme, weights are attached to a used resource to create a
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weight-driven probability distribution that shows the historical successful usage of a resource. The

assigned weights correspond to the information that would have been learned by the cognitive users

and they are constantly updated. This addresses the drawback of uniform random exploration that has

been shown to be less efficient [121]. It was shown that by employing the pre-partitioning scheme,

approximately 25% more activations are accepted during the exploitation stage, whereas with the

weight-driven scheme 40% more activations are accepted, compared to using the uniform random

exploration scheme.

2.6.3.1 MDP-based solutions

The decision making for CRs in 5G networks has been modelled by a family of MDPs or POMDPs [88].

The typical applications of MDP modelling that are found in the literature include energy harvesting,

BS association for users in HetNets, and spectrum sensing as well as RA in CRNs. A POMDP model

was applied in [122] to investigate the transmission power control problems in energy harvesting

systems. Here, the state space comprised the limited battery state, the time-variant channels, and the

packet transmission/reception states. The action was when a node sent a packet at a certain power level.

From the partially observable MDP formulation, two near-optimum solutions were presented.

The authors in [123] proposed a cross-layer 5G NR scheduling with component carrier aggregation that

compares different algorithms such as: (i) Markov decision process (MDP)-based cost reward packet

selection, (ii) adaptive packet scheduling, and (iii) adaptive component carrier scheduling. The results

obtained indicate that their cross-layer carrier aggregation scheme outperforms the other approaches in

terms of system capacity, network reward and packet failure rate. However, it should be noted that the

greedy solutions eagerly maximize the reward at each step and might be sub-optimal in the long run.

Since the analytical solutions to such scheduling problems usually scale poorly in the time horizon, the

TD-based RL methods have been shown to provide the best solutions.

A RL-based cooperative sensing method for SUs in a CRN operating in licensed frequency bands has

been proposed [124]. The RL approach aims to address the challenge of the overhead that is usually

incurred in the CRNs due to sensing delays for decision-making and increased control traffic. In the

proposed scheme, the cooperative sensing problem is formulated as a finite-horizon MDP and an SU

aims to:
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• determine the optimal number of cooperative neighbours with minimum control traffic and under

correlated shadowing,

• minimize the delay overhead, and

• improve the energy efficiency.

“Simulation results showed that the proposed reinforcement learning-based cooperative sensing method

reduces the overhead of cooperative sensing while effectively improving the detection performance to

combat correlated shadowing” [124].

2.6.3.2 Multi-arm bandit problems

The multi-armed bandits (MAB) and multi-player, and the multi-armed bandit game (MP-MAB) are

signal processing tools that are capable of solving RA problems in wireless networks by exploring the

channel environment and exploiting the known channels [88]. These reinforcement learning tools have

been used to model RA problems for the D2D communication systems operating in an underlay to a

cellular network [125]. Here, a distributed channel selection scheme for a MP-MAB model of the D2D

users is proposed, where no-regret learning and calibrated forecasting are applied in the solution. The

analytical results showed that the proposed approach gives vanishing regret compared to the global

optimal solution and the empirical joint frequencies of the game converge to the set of correlated

equilibria. In addition, the proposed solution is not only limited to channel selection problems, but it

can be applied to a broad class of multi-player stochastic learning problems.

2.6.3.3 Q-learning solutions

A number of Q-learning-based frameworks for enhancing SON functions, which include mobility ro-

bustness optimization (MRO), mobility load balancing (MLB) and coverage and capacity optimization

(CCO) for various distributed user scenarios, have been proposed in literature [78], [126]. In [126],

Q-learning was applied to manage spectrum access and to control the interference in a CRN setup. The

proposed framework was applied to solve the MRO and MLB problems in cognitive cellular networks.

The MRO approach learns to optimize handover performance, whereas the MLB approach learns to

optimize the instantaneous load among cells. Load balancing for MRO was also addressed in [127].

Here, the optimization problem was split into many small optimization problems and tasks, which

were then solved by applying machine learning algorithms.

A multi-agent RL approach for spectrum management in the CRNs operating in licensed bands was

proposed in [128]. The approach applies Q-learning to evaluate the choice of different transmission
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parameters and it enables spectrum allocation and energy efficiency improvement by maximizing the

long term reward. The authors also applied the Kanerva-based function approximation to improve the

approach’s ability to handle large CRNs and to evaluate the approach’s effect on network performance.

It was concluded that the RL-based spectrum management reduces interference to the PUs, while

maintaining a high probability of successful transmission for the cognitive users. On the other hand, in

[129], a channel access problem was formulated as a non-cooperative game where a single channel is

used by only one user at a time. Considering the transmission delays, the channel switching distance

for the SUs was limited to a certain scope, and the optimal access policy depended on the long-term

behaviour of primary users as well as the actions of other secondary systems. The solution for the

non-cooperative game was obtained through a multi-agent Q-learning algorithm, which requires neither

the prior knowledge of channel dynamics nor negotiations among players.

Q-learning has been applied for interference management and cell outage compensation management

in dense small cell networks [90], [119], [130]. In [119], a cell outage management framework that is

comprised of solutions for outage detection and outage compensation for a HetNet with separate data

and control planes is presented. By exploiting a large-scale collection of minimization of drive test

reports for many UEs in control cells, the authors applied ML-based anomaly detection schemes for

outage detection. In [131], the heterogeneous RL algorithms were applied for opportunistic spectrum

access (OSA) in LTE-based HetNets. The RL model for the self-organization capability that was

proposed enables the small cells in HetNets to use different learning strategies for autonomous OSA

whilst reducing the interference between the two network tiers, with the aim of satisfying the QoS

requirements.

Broadband access for mobile terminals with high mobility such as users in high-speed trains requires

frequent seamless cell switching in harsh and dynamic environments. Bayesian Q-learning and the

multi-agent theory were applied for spectrum management in high-speed railway wireless networks in

[132]. The proposed multi-agent coordination Bayesian Q-learning algorithm proved to improve the

probability of successful data transmission whilst reducing wireless spectrum handovers in a model

of cascaded base station groups. In [133], the authors applied multi-agent RL for optimal channel

selection for cognitive base stations in a network model similar to that of [132]. The selection of

channels in [133] is done by fusing the interaction information between the different cognitive BSs,

and this was shown to reduce the handover failure in typical high-speed train scenarios.
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A cooperative Q-learning based spectrum sensing technique for SUs in an ad-hoc network was proposed

in [134]. In this technique, each SU maintains a dynamic priority list of channels that is determined

by the Q-value estimates from its own action-observation history, as well as from the spatial channel

information that would have been shared by local neighbours. The simulation results showed that the

proposed Q-learning approach improves the response time and the call block/drop rate with significantly

less computing and scanning overhead compared to other contemporary reinforcement learning based

approaches.

Most of the works on user association in wireless networks usually assume that the users instantaneously

switch between the BSs, which is not realistically feasible considering that the prospective BS might

not have free channels, hence transmission delays may be incurred. In [135], the problem of aggregated

interference that is generated by multiple CRs at the receivers of PUs is addressed. The CR system

considered by the authors is based on the IEEE 802.22 standard for wireless regional area networks

(WRANs), and was modeled as a multi-agent system. Here, the multiple agents acted as the different

secondary BSs that are responsible for controlling the secondary cells. A real-time multi-agent RL

technique known as decentralised Q-learning was then proposed to manage the aggregated interference

generated by the multiple WRAN systems. Two scenarios were considered: (i) users having complete

information, or (ii) users having partial information about the environment. The multi-agent system then

learned through direct interactions with the surrounding environment in a distributed fashion.

A cognitive spectrum management framework that aims to improve spectrum utilisation efficiency and

the energy efficiency of each sensor node in a CR sensor network was proposed in [136]. Considering

that the balancing of spectral efficiency and energy efficiency has become a critical challenge in

today’s resource-constrained networks, the channel characteristics and the energy efficiency of the CR

sensor networks were analyzed from a RL perspective. A joint channel selection and power control

spectrum decision algorithm that is based on distributed Q-learning was then proposed. In order to

evaluate the performance of the proposed framework, the authors formulated a problem to determine

an optimal Q-value subject to communication efficiency index. The RL action selection scheme was

designed to solve the optimization problem. In the proposed learning model, each node can get the

policy implemented by the other nodes to select the optimal policy by introducing distributed strategy

estimation.
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2.6.3.4 Overview of contributions in the literature

A summary and overview of the RL solutions and the corresponding problems that have been

addressed for the 5G networks in the literature is given in Table 2.4.

Table 2.4. Overview of some applications of RL for network optimization in 5G networks.

Network Problem 5G Network Application RL Method References

User association and

Coverage

optimization

Interference and cell outage com-

pensation management in dense net-

works

Q-learning [90], [119],

[130]

User association in CR systems Decentralized Q-

learning

[135]

Spectrum sensing in CRNs Q-learning [134]

Switch migration in distributed SDN

controllers

Multi-agent RL [137], [138]

Resource

management

RAT selection in CRNs Q-learning [78]

Dynamic channel selection in CRs Weight-driven

action selection

[120]

RA in D2D networks MAB, MP-

MAB

[125]

Spectrum access and interference

control in CRNs

Q-learning [126], [128],

[129]

Spectrum efficiency and energy effi-

ciency maximization in CRNs

Distributed

Q-learning

[136]

Routing in VoIP systems e-RLRP [139]

Spectrum management in high-

speed railway networks

Bayesian

Q-learning,

multi-agent RL

[132], [133]

Cost minimization/

Revenue maximization

User scheduling and cooperative

sensing in CRNs

MDP-based cost

minimization

[123], [124]
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2.7 DEEP LEARNING

Deep learning (DL) is a form of machine learning that utilises neural networks (NNs) to transform a

set of inputs into a set of outputs. DL has shown great potential in solving tasks involving complex and

high-dimensional data, thus enabling significant progress in the fields of computer vision and natural

language processing. Although the RL methods have been shown to provide efficient and scalable

online learning algorithms for solutions to problems in communication systems, “the advent of deep

learning has had a significant impact on many areas in machine learning, dramatically improving the

state of the art in tasks such as object detection, speech recognition, and language translation” [140].

An essential property of DL is that using deep neural networks (DNNs), compact low-dimensional

representations/features of high-dimensional data such as images, text, and audio, can be found

autonomously [141]. The statistical flexibility and computational scalability properties of DL enable it

to harness information in large and rich datasets.

2.7.1 Deep Learning Concepts

Deep learning is basically defined as a process that learns the relationship among several variables as

well as the knowledge governing the relationship [142]. DL is a ML technique that employs DNNs,

where a DNN is a multi-layer neural network that contains two or more hidden layers. Each hidden

layer consists of a non-linear transformation of the output of the previous layer, and the sequence of

these transformations leads to learning different levels of abstraction. All these layers are trained to

minimise a loss function, which represents the empirical error. Thus, there is need for a training data

set that is required for the initial training phase of a neural network. DL also consists of networks

that are capable of performing unsupervised learning from unstructured and unlabelled data sets by

utilizing a hierarchical level of artificial neural networks as was shown in [143].

An example of a neural network is the fully connected feed-forward network shown in Fig. 2.12. The

first layer is given the input values/features in the form of a column vector x0. The values of the first

hidden layer are a transformation of the input values through a non-linear parametric function given

by

f̂ (xl−1,θ l) = σ(Wlxl−1 +bl), (2.9)

where σ is the activation function, Wl and bl are the weights matrix and bias vector, respectively, at

the lth hidden layer.
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Figure 2.12. Example of a fully connected feed-forward neural network with two hidden layers in

addition to the input and output layers.

In addition to the feed-forward neural networks, the current applications of DL in wireless communic-

ations employ many other various types of neural networks. Each variation has its own advantages,

depending on the application. For example, one can provide a good trade-off between bias and over-

fitting in a supervised learning scenario. The number of layers in a neural network can be arbitrarily

large, and the current trend is to have an ever-growing number of layers with some tasks having more

than 100 layers [106]. The two types of neural networks that are mainly used in DRL are convolutional

neural networks (CNNs) and recurrent neural networks (RNNs). The translation invariance property of

CNNs makes them well suitable for image data. A convolutional layer can be seen as a special type of

feed-forward layer, where many weights are set to be zero, that is, they are not learnable, and the other

weights are shared. On the other hand, the RNNs are well suited for sequential data. Here, several

variants are advantageous in different scenarios.

The most common method for optimizing the parameters of a neural network is the stochastic gradient

descent (SGD) method, which employs the backpropagation algorithm. In the backpropagation process

of the SGD method, a gradient based on randomly selected samples is initially calculated before

updating the model parameter along the negative gradient direction of the current iterate. This update

of the algorithm’s internal parameters θ is given as follows:

θ ← θ −α∇θ Is[ f ], (2.10)

where α is the learning rate, and Is[ f ] is the empirical error. Due to its low computational complexity

per iteration and its ease of implementation, the SGD method is used in solutions for many optimization
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problems in ML and signal processing.

2.7.2 Activation Functions

After selecting the appropriate DL model to use, one challenge to consider is how to handle gradient

flow in a network. Some gradients tend to be steep in certain directions while they are gradual or even

zero in other directions. This makes the optimal selection of learning parameters a complex challenge.

An activation function is a transfer function that determines the state of a node in a NN as a function of

its bias and the weighted sum of inputs from other nodes [144]. The output of an activation function

determines whether a neuron or a neural node is fired or not and this is achieved by manipulating the

input to a neural node through some gradient processing such as the SGD method to produce an output

[145]. Table 2.5 gives the different types of activation functions that are used in DL methods. As

Table 2.5. List of common activation functions used in DL applications.

Function Name Activation Function Range

Linear function f (x) = x (−∞;∞)

Rectified linear unit (ReLU) f (x) = max(0,x) (0;∞)

Softplus function f (x) = log(1+ ex) (−∞;∞)

Sigmoid function f (x) = 1
1+e−x (0;1)

Softsign function f (x) = x
1+|x| (0;1)

Gibbs Softmax function f (xi) =
exi

∑ j ex j (0;1)

shown in Table 2.5, the activation function can be either linear or non linear, and this depends on the

application domain. The typical DL architectures use linear activation functions in the hidden layers

and a non-linear function at the output layer. For the linear models, the mapping of inputs to outputs at

each node is given by

f (x) = wT x+b, (2.11)

where w is the matrix of weights, x represents the input vector, and b is the bias value of the neuron

node. The output neural node takes the sum of the weighted inputs and applies it to the non-linear

activation function φ and the output is given by

f (x) = y = φ

(
n

∑
i=1

wixi +b

)
. (2.12)

In multilayered networks such as in the DNNs, these outputs are fed into the subsequent layer until

the final output is obtained. The non-linear activation function enables the learning of high order

polynomials in deeper networks.
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2.7.3 Loss Functions

The SGD method that is used in training the NNs requires that ones chooses a loss function during

the design of the model. In the context of an optimization algorithm, the objective function is either

minimized or maximized; when it is minimized, it is also called the cost function, the loss function,

or the error function [146]. A loss or cost function is used to evaluate the performance of an ML

model by determining the difference between the actual value and the estimated value. This difference

is estimated by running the ML model iteratively. “In each iteration, the estimated prediction (i.e.,

unknown value of y) is compared with the ground truth (i.e., the known value of y), with the objective

of finding parameters and structures or weights that minimize the cost function” [114]. In other words,

a loss function maps the ML decisions to their associated costs. In determining the error during the

optimization process, it is essential that the loss function accurately represents the design goal because

a poor error function leads to unsatisfactory learning results.

The loss functions are categorised as either regression loss or classification loss. The regression loss

functions predict values that are continuous in nature, such as predicting stock prices [147]. On the

other hand, the classification functions predict a discrete class output by dividing the dataset into

different and unique classes based on the different parameters, for example, classifying a mail as

spam or not spam. Table 2.6 gives the loss functions that are mainly used in ML algorithms for

communication network problems. For the functions in the table, yi represents a datapoint and ŷi is its

predicted value, hθ (xi) is the predicted value post hypothesis, and P(x) and Q(x) are distributions for

the Kullback Leibler Divergence loss. These distributions can be either discrete or continuous, and the

function expression for the two cases is shown in Table 2.6.

Table 2.6. Loss functions mainly used in ML algorithms for wireless communications.

Category Function Name Loss Function

Regression
Mean Squared Error (MSE) MSE = 1

n ∑
n
i=1 (yi− ŷi)

2

Mean Squared Logarithmic Error (MSLE) MSLE = 1
n ∑

n
i=1 (log(yi)− log(ŷi))

2

Classification
Cross Entropy Loss J =−∑

N
i=1 yilog(hθ (xi))

Kullback Leibler Divergence DKL(P|Q) =

 −∑x P(x).log Q(x)
P(x)

−
∫

∑x P(x).log Q(x)
P(x) .dx
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2.7.4 Deep Learning Applications in 5G networks

The heterogeneous data that is generated by 5G mobile networks leads to a wide range of problems that

have been shown to be challenging to solve with traditional machine learning tools. As aforementioned,

DL is capable of handling big data by employing hierarchical feature extraction and eliminating

domain expertise [148]. DL thus enables efficient information distillation and abstract correlations

with reduced pre-processing overhead. This section highlights some of the novel applications of DL in

5G networks that have been presented in literature, with the main focus being on the network control

schemes. Neural network-based control, also known as analysis-based control is gaining traction in

mobile network control. Contrast to RL, which learns through interaction with the environment and

acts directly on the environment as illustrated in Fig. 2.10, the analysis-based control extracts useful

information and passes it to the agent to execute the actions. Figure 2.13 illustrates the operation of the

analysis-based control approach in the context of wireless mobile network environments.

Figure 2.13. Illustration of analysis-based control in wireless networks, where the analysis results

from the DNN are used by the controller to determine appropriate actions to take.

There are many examples of iterative algorithms that asymptotically reach an optimum or near-optimum

solutions to optimization problems in wireless communications, but converging after many iterations

or complex operations in each iteration. Such algorithms might not be practically useful in wireless

networks that have very low latency or real-time implementation requirements. In such scenarios, DL

has been applied to approximate known but computationally complex algorithms [149], [150]. Such

applications of DL enable the neural network to learn how to make algorithmic shortcuts to obtain a

good trade-off between accuracy and computational complexity.
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Table 2.7 summarizes some of the contributions that apply pure DL for the network control problems

in 5G networks, as was identified from [148] and [151].

Table 2.7. Summary of main applications of DL in 5G network control problems.

Network Domain Application NN model References

Resource allocation

5G broadband TV service RNN [152]

RA in 5G heterogeneous D2D networks CNN [153]

Load balancing in 5G ultra-dense networks Deep LSTM [154]

Routing Virtual routing in wireless ad-hoc networks NDC [155]

Network

optimization

Channel estimation, SE maximization, and

power control in massive MIMO

CNN, RNN [156], [157],

[158], [159]

Load balancing for IoT DBN [160]

NOMA RNN [161]

2.8 THE DEEP REINFORCEMENT LEARNING STRATEGY

The DRL technique is a sub-field of ML that combines both DL techniques and the RL strategies

[106]. Since the RL part considers the problem of a computational agent learning to make decisions

by trial and error, the incorporation of the DL technique allows the DRL agents to take actions based

on learning from unstructured input data. One of the greatest achievements of the DRL strategy is

in sequential decision-making under uncertainty, even with larger dimensions of the state and action

spaces. Here, a learning agent can perform sequential decision-making tasks under uncertainty with

the aim of taking actions inside an environment to maximize some cumulative reward. “In particular,

during real-time learning, the obtained experiences will be stored and used as data to train the neural

network” [162]. The trained neural network then aids the agent to make optimal decisions in real-time.

Thus, unlike the DL technique which typically performs once-off training of the neural network, in

DRL the neural network is trained frequently based on the new experiences obtained from real-time

interactions with the environment.

Due to its ability to learn different levels of abstractions from data, DRL can handle complicated

tasks with low or no prior knowledge. As such, DRL has found applications in video gaming, robotic

control and navigation, finance, and smart grids [106], [140]. Although the combination of DL and

RL algorithms has been shown to improve performance by providing simple and efficient solutions
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[156], there are a number of challenges that arise in applying the DRL algorithms. These include,

among others, the exploration of the environment or generalising a good behaviour in a (slightly)

different context is very complex. The general architecture that shows the elements of DRL that are

implemented in DRL algorithms is shown in Fig. 2.14.

Figure 2.14. Elements of DRL in a general wireless network architecture showing the components of

the agent (in green shading) and how they interact with the network environment.

The incorporation of DL techniques in RL to create the field of DRL algorithms has been used to

develop intelligent autonomous agents in wireless networks. Consequently, powerful DRL models

that are capable of scaling up to solve problems that could not be previously solved have been created.

As shown in Figure 2.14, the learning agent makes use of the relevant function approximators in the

DNN, whilst it gathers experience via a selected exploration/exploitation policy in implementing the

associated RL algorithm. The agent can also use a replay memory to store its experience, which

can be accessed for processing at a later stage. The data training and validation is carried out by the

controllers, which also control the policy selection for the RL algorithm. As such, DRL is suitable for

problems where decisions should not be solely based on the state of the network environment. Here,
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an NN is used to extract additional information such as traffic forecasts, which subsequently aids the

decision-making process [148].

2.8.1 DRL Methods

This section discusses the RL methods that scale to deep neural network function approximators. These

methods enable learning in many various challenging sequential decision-making tasks by learning

directly from rich high-dimensional inputs [106]. In particular, the focus is on value-based algorithms,

which aim to build a value function that defines a policy. Here, the most popular variants of the

Q-learning algorithm that have been applied for learning in wireless network problems, which use

parameterised function approximators, are considered.

2.8.1.1 Fitted Q-Learning

The fitted Q-learning algorithm starts with randomly initialised Q-values, Q(st ,at ;θ0), where θ0

represents the initial parameters. The initial parameters are set such that the initial Q-values are

relatively close to 0 to avoid slow learning. The optimal Q-value estimate at the kth iteration is then

given by

Q̂k(st ,at ;θk) = (1−α)Q̂(st ,at ;θk)+α[rt+1 +β max
at+1

Q(st+1,at+1;θk)]. (2.13)

Neural fitted Q-learning [163] is a technique where the state can be provided as an input to the Q-

network, and for each of the possible actions, a different output is given. This enables the computation

of maxat+1 Q(st+1,at+1;θk) in a single forward pass in the neural network for a given state, which

makes the structure relatively more efficient. The Q-values are parameterised with a neural network

and the parameters θk are updated using the SGD method through minimizing the square loss. Thus,

the Q-learning update amounts to an update of the parameters as follows:

θk+1 = θk +α(Q̂k(st ,at ;θk)−Q(st+1,at+1;θk))∇θk Q(st+1,at+1;θk). (2.14)

This ensures that Q(st ,at ;θk) approaches Q∗(st ,at) after many iterations, considering that the neural

network is well-suited for the task and sufficient data has been gathered. However, as the weights are

updated, the optimal estimate changes, and due to the generalisation and the extrapolation abilities

of the NNs, the fitted Q-learning approach can accumulate large errors at various points in the state-

action space [106]. Thus, the mapping of the action-values via the Bellman operator in (2.3) does

not guarantee convergence. In addition, the use of function approximators tends to overestimate the

Q-values due to the max operator. These risks of experiencing instabilities or value overestimation

require special care to ensure proper learning.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

73

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2 LITERATURE STUDY

2.8.1.2 Deep Q-Networks

The deep Q-network (DQN) is an algorithm that leverages ideas from neural fitted Q-learning, which

aimed to improve performance in an online setting for a variety of ATARI games by learning successful

policies directly from high-dimensional inputs [164]. To limit the instabilities that are experienced

when a nonlinear function approximator is used to represent the Q-function in neural networks, the

DQNs apply the following two heuristics:

(i) Introduction of experience replay, which randomises over the data to remove correlations in the

observation sequence and smooth over the changes in the data distribution.

(ii) Iterative updating of the Q-value estimates to approach the optimal values that are only updated

periodically, thus reducing correlations with the target. This enables a relatively larger update of

the parameters, while having an efficient parallelization of the algorithm.

2.8.1.3 Double Deep Q-Networks

The use of the same values for action-selection and action-evaluation in the max operation in equations

(2.3) and (2.13) make Q-learning to be more likely to select overestimated values in case of inaccuracies

or noise [106]. This results in overoptimistic value estimates and an upward bias that is induced by the

DQN algorithm. The double deep Q-network (DDQN) approach is a double estimator method, where

two estimates are used for each variable [165]. This allows for uncoupling of the selection and the

evaluation of an estimator, and regardless of the source of errors in the estimated values, the positive

bias in estimation of the action values is removed.

In DDQN, the optimal Q-value estimate is determined by [166]

Q̂DDQN
k (st ,at ;θk) = (1−α)Q̂(st ,at ;θk)+α[rt+1 +βQ(st+1,max

at+1
Q(st+1,at+1;θk);θ

−
k )], (2.15)

which results in two sets of parameter weights, θk and θ
−
k , being used for each update. One set of

parameter weights is used to determine the greedy policy and the other determines its value. It can be

noted that the action-selection is still due to the online parameter weights, θk; however, the second set of

weights, θ
−
k , is used to evaluate the value of the action-selection policy. This leads to a reduced overes-

timation of the Q-values and improved stability, hence providing better performance compared to DQN.
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2.8.2 Applications of Deep Reinforcement Learning in 5G networks

In DRL, the NNs are the agents that learn to maximize the reward from the state-action transitions

by assigning weights to approximate a function that relates the input and the output [140]. The

learning comprises finding the appropriate weights by iteratively adjusting them along the gradients

that minimise the error. In wireless communication networks, an agent can use CNNs to establish the

state of the network environment, that is the channel conditions, through signal recognition. In such

cases, the action to be taken in a current state depends on the future states and the actions, and here the

CNN ranks the possible actions before selecting the best action. The policy agent then maps a state to

the best action.

At the beginning of the DRL process, the neural network coefficients can be initialised randomly.

Then, using the feedback from the environment, the neural network uses the difference between its

expected reward and the actual reward to adjust its weights. This feedback process is similar to the

backpropagation of error in supervised DL. However, unlike supervised DL, which begins with the

knowledge of the ground-truth labels that the neural network aims to predict, DRL relies on the

environment to send it a reward in response to each selected action. These rewards can be varied,

delayed or affected by the unknown variables, which introduces noise in the feedback loop. Having no

need for hand-crafted features to train the algorithm makes DRL promising in applications where the

agents need to act on sequential data for time series modeling, where the RNNs are the widely used

models.

A DRL algorithm for deriving an optimal time scheduling policy for an SU gateway in an RF-powered

backscatter CRN was proposed in [167]. To deal with large state and action spaces, the authors used a

double deep Q-network to enable the gateway to learn optimal policies for scheduling the transmissions

of multiple SUs. The simulation results showed that the proposed DRL algorithm enables the gateway

to learn an optimal time scheduling policy, which gives throughput that is significantly higher compared

to non-learning algorithms. “However, the proposed DRL algorithm still requires each secondary

transmitter to report its status to the gateway, which introduces communication overhead.”

The control of the trajectories of the unmanned aerial vehicles (UAVs) that provide coverage to vehicles

in a cell-free network was investigated in [168]. Here, the authors proposed a DRL framework for

the optimization of network performance with the aim of maximizing the coverage to highly mobile

vehicles with the minimum number of UAVs and with minimum energy consumption. The DRL
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framework applies an actor-critic method, where a central agent is trained to observe the network

environment and make decisions that determine the minimum number of UAVs and their trajectories.

The optimization constraints include maintaining an acceptable QoS for each vehicle, and limited

energy for each UAV. Another DRL-based solution for an MDP model RA problem in V2V networks

was proposed in [169]. In this decentralised resource management scheme, the agents, which are

the V2V links aim to select the resource block and transmission power to ensure satisfaction of their

latency constraints while minimizing the interference.

Another DRL framework for a cell-less network architecture was proposed in [170], where the dis-

tributed APs are dynamically clustered. Each cluster acts as a single virtual AP within a distributed

antenna system with a successive interference cancellation-enabled signal detection scheme and an

inter-user-interference-aware receive diversity combining scheme. The joint optimization problem of

maximizing the UE rate and AP clustering is then solved by applying a hybrid DRL scheme, namely,

the hybrid deep deterministic policy gradient double deep Q-network.

Table 2.8 gives a summary and an overview of some of the DRL-based solutions for the 5G NR

applications that have been proposed and presented in literature. Here, the focus is on the contributions

on the network optimization solutions as aforementioned as well as those identified in [162].

Table 2.8. Summary of some applications of DRL for network optimization in 5G networks.

Network Problem 5G Network Application DRL

Algorithm

References

Throughput

maximization

HetNets DDQN [171]

CR-based IoT DQN [172], [173], [174]

HD video streaming DQN [175], [176]

Cache-enabled interference alignment

networks

DQN [177]

Resource

management

D2D communications DQN [168], [169]

Cognitive satellite communications DQN [178], [179]

Vehicular networks with MEC DDQN [180], [181]

Cost minimization
MEC and caching DQN [182]

Fog computing DQN [183]
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2.9 REINFORCEMENT LEARNING-BASED IAB SYSTEM SOLUTIONS

Having given an overview of the ML schemes and their applications in 5G networks, this section

focuses on the application of ML particularly in IAB networks. This aims to further reveal the research

gap that was stated in Chapter 1. It should also be noted that some of the published contributions of

this research are discussed in this section.

2.9.1 User Association

In [184], the RL strategy was applied for association of UAVs at the network edge in a mm-wave

IAB architecture. The authors considered the dynamic environment of a UAV in motion to develop a

context-aware reinforcement learning-based solution for performance optimization. In addition to the

fixed SBSs, the considered model also leveraged the use of mobile UAVs as relay SBS nodes. It was

shown that with beamforming employed for both access and backhaul, a RL scheme based on reference

signal receive power (RSRP) provided an improvement in performance in terms of the achievable data

rate compared to alternative association algorithms.

As part of the contributions of this research work, a fully autonomous and distributed RL scheme

that aims to improve user satisfaction in a congested IAB network that uses instantaneous load-based

bandwidth partitioning was proposed in [185]. Here, a cognitive engine judiciously determines network

congestion to determine when to initiate bandwidth split. By considering network context in the form of

the neighbouring SBSs’ loads, reactive load balancing was then applied using exponentially weighted

moving average. The results showed that even at higher neighbouring load intervals, the load at an SBS

can be kept below a predetermined threshold. This gives insight on how much extra bandwidth needs to

be shared among different SBSs according to the instantaneous load-based partitioning scheme.

A fully autonomous and distributed DRL scheme for user association in a congested IAB network

was proposed in [186], where the model applies instantaneous load-based bandwidth partitioning.

The framework of the proposed DRL scheme that has been applied in this work for context access

resource management in a mm-wave multi-hop IAB network architecture, which builds on the model

from [185], is shown in Fig. 2.15. In the model, the decision maker that continuously monitors the

environment in an IAB system implements a DNN, coupled with a RL strategy, to make the best

decision of action selection in any given state of the system. Such work has shown that the DNNs are

crucial for optimal action selection in highly stochastic and dynamic environments such as mm-wave

IAB networks, where the reward value of taking an action depends on future actions and states.
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Figure 2.15. Illustration of the DRL model for UE association in a multi-hop IAB network showing

the components of the agent and how they interact with the IAB environment.

2.9.2 Link Scheduling

To address the problem of flow allocation and link scheduling in mm-wave IAB networks, a DRL-based

solution was proposed in [187]. The authors focused on tackling the link unreliability challenge that

is posed by realistic harsh environments in the mm-wave transmission frequencies. The approach

aimed to handle the dynamics of the network links and learn the best RA method in networks with

intermittent links. This was motivated by the principle that applying traditional optimization algorithms

in dynamic mm-wave environments would require that the optimization be performed each time the

network undergoes a change, which make the time consuming solutions infeasible. For their solution,

they proposed an online and an offline version of an advantage actor critic (A2C)-based approach to

solve a two-part problem. The proposed approach first solves a link pattern generation problem that

considers hardware constraints. The actor-critic method is then applied for the flow allocation and

pattern scheduling problem, where a RL agent activates sequences of per-slot patterns for data transfer

from the MBS to the UEs. The results showed that the proposed algorithm can automatically and

promptly adapt to environmental changes, thus recovering from failure more efficiently compared to

the traditional optimization approaches.
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Another DRL approach for addressing the link scheduling problem in multi-hop IAB networks was

proposed in [188]. Here, the authors aimed to minimise the end-to-end delay experienced by a typical

packet, where the system is modelled as a network of queues with a centralised scheduler. The problem

was then formulated as an MDP over a continuous action space and it was solved by applying the

deep deterministic policy gradient algorithm. The results of system-level simulations showed that the

proposed scheduling scheme performed better than the backpressure scheduler and the max-min delay

round-robin scheduler in terms of packet delay.

With the aim to deal with the blockages that are typically experienced in mm-wave IAB networks,

the authors in [189] proposed a hybrid DRL-based framework to solve a joint routing and scheduling

problem. The DRL framework applied LSTM to implicitly capture the irregularities of the environ-

mental dynamics of the mm-wave transmissions. This was applied to solve the optimization problem,

which was formulated using column generation. The authors implemented both offline and online

LSTM-based DRL approaches, where the online version of this approach was developed to increase ro-

bustness and account for system dynamics on-the-fly by adjusting the training to adapt to new changes.

The results obtained indicated that the proposed strategy outperforms the optimization approaches that

are typically used in multi-hop networks by automatically adapting to environmental changes.

2.9.3 Resource Allocation

A scalable and model-free framework for solving the spectrum allocation optimization problem in mm-

wave IAB networks was developed in [190]. The model applied RL and DNN techniques to address

the challenge of dealing with very large solution spaces when solving RA optimization problems in

dense IAB networks. Q-learning, was shown to provide good performance in small-sized networks

but it becomes less efficient as the network scales up. Owing to this limitation, the RL technique

was combined with the DNN techniques to leverage the DNN capability of providing more accurate

Q-value estimates in large state spaces. This deep reinforcement learning technique is capable of

handling dynamic systems with varying network setups and UE requirements. The scalable and

model-free framework developed in [190] performs dynamic spectrum allocation to maximize the

sum log-rate while satisfying the UE demands. The authors applied two DRL-based algorithms to

solve the optimization problem, namely the double deep Q-network and the actor-critic spectrum

allocation (ACSA) algorithms. It was shown that the ACSA algorithm gave better performance in

terms of convergence efficiency and system sum log-rate.
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To address the problem of joint spectrum and power allocation in the IAB networks, the authors of

[191] proposed an advanced DRL approach, namely spectrum allocation and power management

scheme by leveraging DDQN (SAPM-DDQN). The joint problem was formulated as a mixed integer

non-linear optimization problem and the SAPM-DDQN is applied in a decentralized manner, which

reduces the transmission overhead compared to the centralised approach. The strengths of this approach

are that (i) the users’ privacy is enhanced since no information exchange is required, and (ii) training

of the model can be performed offline, which eases communication overheads. The performance of

the SAPM-DDQN scheme was evaluated in terms of the average rate of the UEs for various network

scenarios and this was compared to a DQN approach. The simulation results showed that the proposed

SAPM-DDQN significantly outperforms the other method.

2.9.4 Summary and Overview

A summary and overview of the RL solutions that have been proposed for various problems in mm-wave

IAB networks is given in Table 2.9.

Table 2.9. Summary of RL-based solutions for problems in mm-wave IAB networks.

Network Problem Objective RL/DRL

Method

References

Congestion control
Instantaneous load balancing Q-learning [185]

Maximizing throughput and satisfying QoS

requirements of UEs

Individual and

Cooperative

learning

[186]

Link scheduling

Maximize throughput considering fairness A2C-based [187]

Minimise end-to-end packet delay DDPG [188]

Joint coordination between access and

backhaul to maximize throughput

LSTM-based

DRL

[189]

Resource allocation
Maximize throughput for all the UEs ACSA al-

gorithm

[187], [189],

[190]

Joint spectrum and power allocation SAPM-DDQN [191]

2.10 DYNAMIC BACKHAUL ROUTING USING MACHINE LEARNING

As the MNOs extend their 5G NR capacity beyond the initial 5G market launches, they need to

implement high-bandwidth backhaul solutions to the AP sites in a fast and cost effective manner. The
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5G NR deployment in mm-wave frequencies increases the challenge of securing optimum backhaul

solutions to the AP sites as the demand for access to the wireless network grows exponentially. In

high-throughput mm-wave IAB networks, from a reliability perspective, it is important to ensure

that each IAB node is be able to continually provide access coverage and service even when the

active backhaul routes are temporarily unavailable. In this regard, the 3GPP has endorsed the use of

topology adaptation for the IAB networks, which aims to autonomously reconfigure the backhaul

network without service disruption nor packet losses during the reconfiguration. The IAB topology

adaptation is comprised of integrating a new IAB node into the topology, removing a node from the

topology, detecting backhaul link overload, worsening of backhaul link quality, link failure, or other

related events. This technique enables the provision of a reliable, cost-effective, and scalable wireless

backhaul solution that is capable of providing enhanced mobile broadband in mm-wave IAB networks.

This makes IAB topology adaptation attractive for use in the 5G networks.

There are many research contributions that have focused on the optimization of network resources

with the objective of efficiently distributing the scarce radio resources between access and backhaul.

However, if the NR network is fully optimized to guarantee QoS, and if the transport network gets

congested, the backhaul might create large unfairness among the backhauled traffic, regardless of the

UEs’ QoS class. The application of ML strategies for backhaul optimization has been considered,

especially for context switching in mm-wave IAB networks.

2.10.1 Supervised Learning-based Approaches

The application of ML techniques in traffic handling problems in wireless networks is not new,

especially the supervised learning techniques. Supervised learning models for directly learning paths

for high-throughput dynamic packet routing have been proposed in [192] and [138]. The approach

in [138] first predicts future traffic before optimizing the routing plan using the predicted values.

“However, simulation results show that this approach might be ineffective” [193]. On the other hand,

the approach in [192] assumes a central controller, which uses the information gathered from the whole

network to train a different model for each source and destination pair in the network. The solution for

the congestion optimization problem is then provided by a heuristic algorithm.

The main challenge that these aforementioned protocols addresses is deciding the best path to be taken

by traffic from its source to the destination, under certain constraints. This is the routing problem.
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When more than one path between source and destination exists, the decision-making process should

follow some criteria. Routing decisions can be made in various ways depending on the desired

objective and the objective function thereof. As a result, various optimization techniques can be

applied, such as the mixed integer linear programming. However, obtaining such optimal solutions is

usually computationally complex and it cannot be typically performed in real time. Instead, heuristics

for these problems are often created but designing them is non-trivial in many cases. As such, in

addition to the supervised learning approaches, DL and DRL approaches have also been proposed for

solving routing problems.

2.10.2 Reinforcement Learning-based Approaches

Since network traffic in 5G wireless networks varies with time and space, there is need for dynamic

resource management to avoid uneven load distribution among nodes. The dynamic AI-based switching

of backhaul routes can provide a balanced load distribution among SBSs in IAB networks, which

can improve the QoE that is provided to the UEs. When an SBS becomes congested on the access

and it cannot admit-to-serve any more traffic, the traffic can be admitted to the backhaul portion of

the bandwidth and routed to the MBS. This process requires that the SBSs check if the traffic flow

to be admitted meets the admission control conditions. The RL-based decision-making for context

switching generally involves training the model adaptively in various network environments [194],

and this technique has been applied for switch migration in the distributed SDN controllers [137]. In

addition to the supervised learning approach, [138] also proposed a RL-based approach for the routing

problem.

With the view that the conventional routing algorithms do not consider the network data history such

as the overloaded routes and route failure, the authors in [139] used the advantages of network data

to present a RL-based routing strategy. However, a RL-based routing algorithm requires additional

control message headers. To address this, the authors proposed an enhanced protocol named enhanced

reinforcement learning routing protocol (e-RLRP), which aims to reduce the network overheads.

Here, different network scenarios were implemented, where the number of nodes, routes, traffic

flows and the degree of mobility were varied. From this analysis, network parameters such as packet

loss, delay, throughput, and overhead were then obtained. In addition, a voice over internet protocol

(VoIP) communication scenario is implemented, in which the E-model algorithm is used to predict the

communication quality. The performance of the e-RLRP scheme is compared to that of the OLSR,

BATMAN and the RLRP protocols. The experimental results showed that the e-RLRP protocol provides
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reduced network overhead in most network scenarios compared to all the other protocols.

2.10.3 Deep Learning-based Approaches

A DL model for directly learning paths for high-throughput packet transmission was proposed in [195].

The authors in [193] also proposed a DL-based solution for a traffic flow routing problem in computer

networks. Unlike the decentralised approach in [195], where each network node trains a model for each

destination and the output is the next hop, the authors of [193] presented a centralized model similar

to that of [192]. In the model in [193], the controller uses the knowledge from the whole network as

inputs and it gives full paths from source to destination as output. This routing framework presents

an alternative to the design of heuristics, whilst still achieving good performance. Here, a DL model

was trained on the optimal decisions over flows from the known traffic demands. The performance of

the solution was evaluated considering network congestion, and the experimental results, which used

publicly available datasets of networks with real traffic demands, showed that the solution achieves

near-optimal network congestion values.

2.10.4 Deep Reinforcement Learning-based Approaches

The conventional Q-learning methods are not capable of representing the load of each network node as

a continuous value due to the limited size of the Q-table [196]. This makes it difficult to incorporate the

dynamic change of the load among the APs. To address this problem, the authors of [137] and [194]

adopt a neural network to approximate the action values in continuous state space. This DRL-based

solution provides a better action-selection strategy and the results of the scheme proposed in [194]

achieves better performance compared to the conventional schemes. The DRL-based dynamic load

balancing scheme that was proposed in [137] applies multi-agent RL, whereas the one proposed in

[194] applies a DQN. In addition to the controllers being the DRL agents as was assumed in [137], the

authors of [194] also consider the switches as DRL agents. In IAB network models, the DRL strategy

has been applied for solving link scheduling problems as was discussed in Section 2.9.2. As part

of the contributions of this research work, Chapter 4 presents a DRL-based model and technique to

optimize the backhaul routing in IAB networks subject to SBS load, transmission power, and backhaul

bandwidth constraints. This provides a realistic model that is applicable for the 5G NR wireless

environment.

2.11 CONCLUDING REMARKS

From the reviewed research contributions, it transpired that the dynamic RA and resource configuration

problem, as well as the backhaul route adaptation problem, still remain less investigated problems

in the IAB networks. Despite the aforementioned intelligent developments in solution schemes for
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challenges in IAB networks, it is believed that the modeling for IAB network problems requires the

inclusion of AI strategies. It can be seen that including ML strategies in mm-wave IAB network

models, in particular RL, can provide smart and efficient solutions for some of the challenges faced

therein.

In terms of the solutions to resource management and backhaul routing problems in wireless networks,

the existing algorithms tend to focus on finding low-cost routes for traffic to reach the MBS, without

finding ways to minimize resource exhaustion at the current BS. With the view that future mobile

and wireless networks’ operational spaces will be very diverse and will vary significantly, rule-based

decision-making, where decisions are made directly from training, may not be ideal. Consequently, it

may not be effective to design apriori cost functions and solve the optimization problems in real-time.

It is thus proposed that the decision maker in an IAB system be implemented using a DNN in order to

provide action choices for any given state of the system. This is because DNNs enable optimal action

choices in highly stochastic and dynamic environments such as IAB networks. As such, it is at this

point where the DRL strategies become attractive alternative solutions.

From the literature review, it can be seen that most contributions for the IAB networks focus on user

association and RA without considering much of the environmental context such as the SBS load. It is

on this note that this research work developed an access resource management scheme that considers

context whilst leveraging DRL for the solution formulation of the problem. To provide an end-to-end

solution, the work then goes further to explore the optimization of backhaul transmission by applying

DRL-based context-switching for backhaul traffic. These contributions are presented in the subsequent

two chapters.
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CHAPTER 3 DRL-BASED ACCESS RESOURCE

MANAGEMENT IN IAB NETWORKS

3.1 CHAPTER OVERVIEW

This chapter presents a dynamic user association and resource management scheme that depends on

instantaneous load-based bandwidth partitioning in multi-hop IAB networks. The proposed framework

is expected to have the capability of scaling to large IAB network topologies effectively. In addition, the

framework should be capable of adapting to the network topology changes and the different real-time

IAB system requirements. Most user association and RA methods in the literature use the SINR

as the base metric for decision-making. However, supplementing this with the combination of AI

and network traffic filtration such as deep packet inspection (DPI) might improve the performance

by avoiding resource exhaustion. Thus, in this work’s model, the decision maker in an IAB system

implements a DRL algorithm to provide action choices for any given state of the system. The proposed

approach relates more to the UEs’ needs than the global form of the network. The rest of the chapter is

organised as follows: Section 3.2 gives the background motivation and a review of the related work

on congestion control and dynamic resource management in IAB networks; Section 3.3 describes the

IAB multi-hop network model, and Section 3.4 defines the problem and presents the mathematical

formulation thereof. Section 3.5 details the proposed solution approach and algorithmic analysis. In

Section 3.6, the simulation results are presented together with their performance analysis, and Section

3.7 concludes the chapter.

3.2 BACKGROUND AND RELATED WORK

To address the problem of traffic balancing in IAB networks, advanced node coordination is a require-

ment. Node coordination in IAB networks requires efficient signaling exchange between the MAC

layers of different IAB nodes whilst considering the throughput and latency constraints of wireless

backhaul links. Thus, intelligent algorithms that make adaptive decisions on the link and UE/BS
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scheduling with fairness and half-duplex constraints need to be implemented at the MAC layer of IAB

nodes. However, this requires centralized training procedures to be distributed among the local IAB

nodes.

Considering that the CR technology will eventually be integrated into every future wireless commu-

nication technology, each AP in a wireless network should have a cognitive engine that is capable of

performing automated handover. The cognitive engine will be responsible for assisting with the BS-UE

association, where the UEs can instantaneously switch between the BSs for better QoE. However, if

the prospective BS does not have enough resources available to satisfy the QoE requirements of new

UE arrivals at that instant, the resulting handover delays may lead to transmission delays. This leads

to a deterioration of the users’ QoE. Most contributions on user association in 5G networks focus on

addressing the problem of aggregated interference that is experienced by users [135]. Such problems

are usually modeled as multi-agent systems where the BSs are usually the agents that control user

admission. Real-time multi-agent RL strategies such as decentralized Q-learning are then applied to

manage the aggregated interference generated by multiple users. In this regard, two scenarios have been

considered to enable the multi-agent systems’ learning. In the first scenario, the agents have complete

or partial knowledge of state of the environment, and in the second scenario, the agents interact with

the environment directly in a distributed manner. As a result, the developed spectrum management

framework was shown to improve the spectral efficiency as well as the energy efficiency performance,

as reported in [136]. However, since balancing the spectral and energy efficiencies is becoming a

critical challenge in current heterogeneous and resource-constrained networks, the energy efficiency

and channel characteristics are analyzed using joint channel selection and power control spectrum

decision algorithms based on distributed Q-learning. This leads to distributed strategy estimation in

the selection of the learning strategy that is designed to solve the optimization problem.

3.2.1 Congestion Control in 5G Networks

Autonomous congestion avoidance and resource management are desirable features for 5G networks

to continuously satisfy user requirements. The MNOs are able to enforce per-UE or even per-BS

policies, and when there is congestion or link failure, the control plane can promptly reconfigure

itself to manage the available traffic by applying SDN [59]. A number of various ML-based resource

provisioning schemes for handling traffic in 5G networks, particularly through network slicing using

SDN, have been proposed [197], [198], [199]. By considering varying user requirements, system-level

simulation results of the shape-based heuristic algorithms that were proposed in [198] and in [199]
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showed that resource utilization and user satisfaction were both improved.

The authors in [200] proposed a topology formation algorithm that aims to enable efficient traffic flow

to minimise congestion and increase backhaul link reliability in multi-hop IAB networks. In addition

to a dynamic programming-based algorithm, the authors also proposed a less computationally complex

topology formation approach. Here, the IAB nodes are incorporated into the network in an “ideal

sequence-based topology formation”. This practical solution, which is based on the broadcast signaling

of received power thresholds, was shown to yield near-optimal performance and achieved 26% better

performance compared to a baseline approach. This chapter proposes a resource management scheme

that aims to improve user satisfaction through congestion avoidance in the access environment of

mm-wave IAB networks by applying DRL. Here, the resource management problem was formulated

as a constrained MDP and the objective of the solution approach was to obtain an optimal policy that

maximizes the transmission throughput of all the UEs while considering the environmental context

such as the traffic load.

3.2.2 Resource Management in IAB Networks using Reinforcement Learning

In ultra-dense environments such as the IAB mm-wave networks, the achievable thoughput of the UEs

that are associated with an SBS is regulated by how the total bandwidth is split between access and

backhaul. This makes the achievable throughput to be sensitive to the applied RA schemes and it has

been shown that the solution space for the RA increases exponentially with increasing BS load or

spectrum resources. Since in IAB networks radio resources are shared between access and backhaul, a

different RA approach from the typical wireless standards is required. This means that end-to-end RA

algorithms are most suitable for IAB networks and the contributions from the literature on RA in IAB

networks, including those that proposed end-to-end models, were explored in Section 2.9.3.

Despite the previously discussed intelligent developments in IAB schemes, it is believed that the

application of ML strategies in mm-wave IAB networks has not been extensively explored. The RNNs

are one of the state-of-the-art models that are favorable for such applications due to their capability of

storing information over extended time intervals. By using RNNs, historical information can potentially

be used to predict traffic from the various user groups and to enable the optimization of future network

configurations. However, with the RNN approach, even if all the relevant statistics are known, solving

the RA problem accurately in mm-wave IAB networks results in a POMDP with large state and

action spaces. Thus, the problem’s complexity is increased because of the lack of prior knowledge of
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the stochasticity of the traffic as well as the unobservable channel statistics at each IAB node. This

makes the RA problem generally intractable. As such, the dynamic transmission resource management

problem still remains a less investigated problem in mm-wave IAB networks.

The existing solution algorithms for the dynamic RA problem in IAB networks do not consider

ways to minimize resource exhaustion at a serving BS but instead they focus on finding alternate

low-cost routes for traffic to reach the MBS. In addition, a framework that avoids resource exhaustion

should be capable of efficiently adapting to different learning mechanisms as well as real-time system

requirements. The operational spaces of next generation wireless mobile networks are envisaged to

be very diverse and dynamic, which leads to scenarios that are not postulated during the design or

training phases of an algorithm. Because of the unpredictability of future wireless environments, action

selection based on rules that learn directly from training is not ideal. Thus, designing a-priori cost

functions and then optimally solving the allocation problems in real-time may not be effective. In

this regard, the decision maker of an IAB system should be implemented using a DNN to provide

action choices based on more accurate estimates within any given state of the system. The DNNs

enable optimal performance in highly stochastic and dynamic environments such as in mm-wave IAB

networks, where the reward for taking an action depends on future actions and states. Hence, in such

cases the DRL strategies become an attractive alternative.

3.3 SYSTEM MODEL

The proposed network model considers the uplink transmission of a two-tier 3GPP heterogeneous

broadband access network for multi-hop IAB networks [7]. In the IAB network structure, the MBS

has a single omni-directional antenna and it is connected to the core network through fiber backhaul.

The MBS is overlaid by a set M− = {1,2, · · · ,M} of SBS nodes that are uniformly deployed around

its area of coverage. The MBS-SBS and the SBS-SBS wireless backhaul links make use of mm-wave

frequencies. It was assumed that for each IAB node there is a group of associated UEs such that

K= {1,2, · · · ,K} denotes the set of associated UEs according to a call admission scheme [201], as

shown in the environment block of Fig. 3.1.

Assuming the NSA deployment setup of the 5G NR and in line with the IAB network model, the nodes

are assumed to be full-duplex capable and all SBS-SBS links are assumed to be symmetrical. The

BSs are modelled to employ the instantaneous bandwidth partitioning scheme of [67]. Each SBS is

assumed to have two antennas: one for access to serve its associated UEs, and the other for the wireless
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Figure 3.1. A multi-hop IAB network model that implements a DRL algorithm, where the inputs to

the DRL that come from the environment as well as the resulting outputs (actions) are shown.

backhaul. The analysis considers the effects of UE congestion on an SBS’s link layer behaviour, and

this is used to evaluate the performance in terms of achievable throughput and user satisfaction.

Figure 3.1 also shows the states that are taken as inputs by the DRL algorithm, that is, the average

waiting time, and the average SBS load. Based on the DNN agent’s evaluation, the output, which

is the resulting action, is given as the optimal transmit power or change of learning scheme. The

resulting reward, which comes from implementing the optimal action, leads to the next environmental

state.

3.3.1 Queuing Model and Traffic Load Evaluation

Considering that each BS has a fixed capacity, the available capacity and the achievable throughput

are inversely proportional. Thus, to avoid packet losses, the traffic load should be monitored and kept

balanced. The average SBS load is a result of the traffic that is injected by the K associated UEs, at a
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rate, λ (t), and arriving at the SBS in a collective arrival process, Λ(t), denoted as

Λ(t0) =
t

∑
t0=1

λ (t0), t0 = 0,1, · · · ,T −1. (3.1)

This indicates the arrival flow, whose bivariate extension for the range 0 ≤ t0 ≤ t is defined as

Λ(t0, t) = Λ(t)−Λ(t0), up to a time horizon T . When monitoring the system at discrete time intervals,

t = 0,1,2, · · · , a discrete-time M/G/1 queuing system with a stationary and ergodic arrival process

is assumed to guarantee the existence of stationary limits [202]. Assuming that the M/G/1 queue is

handled by a transmission buffer that is capable of handling C packets, the system utilization factor is

defined as

u(t) =
E[λ (t)]

C
, (3.2)

where E[λ (t)] is the long-term expectation of the packet arrival process, and ρ is the SBS load. The

capacity that is consumed is monitored and its trend is periodically tracked using an exponentially

weighted moving average, which is defined as [203]:

∆ρ = ω ·∆ρ(t)+(1−ω)(ρ(t)−ρ(t−1)), (3.3)

where ρ(t) is the current load, ∆ρ is the average load value and 0 < ω < 1 represents the decay factor,

which is selected through adaptive weights. To avoid congestion, the condition (ρ(t)+∆ρ(t)) = ψ ·Ba

should be satisfied, where ψ is the load/capacity threshold and Ba is the access bandwidth. This

approach gives the flexibility to compare the current SBS load with the load of its neighbours in order

to prevent premature bandwidth split.

3.3.2 State and Action Spaces

The state space of the system comprises the average waiting time and the average SBS load, ρ . This is

in response to the variation in the UE request generation rate, the varying distribution of the requests

as well as in the SBS processing speed. In this subsection, the state and action vectors as well as the

reward are defined, which are all essential for the implementation of SBS traffic load evaluation. Since

the computation of control variables is done at the initial time slot, t = 0 is regarded as the time when

the initial state, s0, is defined. Assuming that the delays and service rate are independent and generally

distributed with respect to the service rate, the state space is given by

s = {C(t),ρ(t)}, (3.4)

where C(t) is the average number of packets in the system from t = 0 up to time t, which approaches a

steady state value as t→ ∞. With the state space indicating the amount of pressure that is endured by

the SBS’s transmission buffer, the DNN agent’s action is either a change in the transmission power

or a change of learning mechanism. The action space can be thus represented in vector form as
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follows:

a ,< p(t),z(t)>, (3.5)

where p(t) is the selected transmission power and z(t) is the required transmission throughput. However,

to achieve the required throughput, the selection of the optimal transmission power takes precedence

over changing the learning scheme.

3.4 MATHEMATICAL PROBLEM FORMULATION

Let k ∈K represent the generic progression of UE admission such that the range of admitted UEs can

be represented as [1,K]. Assuming uniformity of channel fading within one sub-channel, which may

be different on the other sub-channels, the SINR between the kth UE and the mth SBS is expressed

as

γk,m =
pkgk,m

∑ j∈M− pkgk j +N0
, ∀k,m (3.6)

where pk is the transmission power, gk,m = τk,mhk,m. Here, τk,m is the distance-dependent fading

coefficient and hk,m = exp(1) is the frequency-dependent small-scale fading [190]. The first term in

the denominator represents the co-tier interference whereas N0 represents the white Gaussian noise

spectral density. Assuming that both the UEs and the SBSs have self-interference cancellation abilities,

the achievable instantaneous transmission rate between UE k and SBS m is determined by

Γ(γk,m) = Ba log2 (1+ γk,m) , (3.7)

where Ba denotes the access bandwidth.

The SBS aims to determine the optimal transmission power that corresponds to the throughput that

satisfies the QoE requirements for all the admitted UEs. In this case, the buffer occupancy status

and the transmission power allocation are inseparably related because transmission power should be

increased to increase the service rate and avoid congestion. However, proper power control is required

for the system to operate with good energy efficiency. As a result, the current load at an SBS can be

defined as

ρ(t) =
Ci(t)

∑
K
k=1 B∗ log2(1+ γk,m)

, (3.8)

where Ci(t)≤C is the capacity required by the admitted UEs, and B∗ the sub-channel width. To avoid

congestion, the average service time of all the UE requests should be minimized, hence the admission

and processing delays should be at their minimum. The average service time minimization problem

then becomes a QoS or rate maximization problem and the sum rate of the admitted flows can be
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defined as

Qk(Γ(γ
∗, [0,T ])) =

T

∑
t=1

K

∑
k=1

Γ(γk,m), (3.9)

where [0,T ] is the time interval over which the performance of the system is monitored. The objective

then becomes obtaining the optimal policy that maximizes the transmission rate of the UEs that are

associated with the SBS of interest. The optimization problem is given as

F = argmax
γ

Qk(Γ(γ
∗, [0,T ])), ∀k ∈K (3.10)

subject to

C1 :
K

∑
k=1

Γ
req
k,m ≤ Γ(γk,m),

C2 : Γ(γk,m)≥Ω(γ∗, [0,T ]), ∀k ∈K

C3 : ρ(t)< ψ ·Ba, ∀k ∈K

C4 : ζk(γ
∗, [0,T ])≤ 1− ε, ∀k ∈K

(3.11)

where F represents the maximum network utility and γ∗ represents the target SINR that is required to

achieve proportional transmission fairness, Γ(γ∗, [0,T ]). This is supported by constraint C2, which

indicates that the QoS requirements of the admitted UEs should be met. The constraint C1 ensures

that the sum of the transmission rates required by all the UEs is achieved by the allocated access

bandwidth Ba, with Γ
req
k,m being the required data rate. The constraint C3 ensures that the traffic load,

ρ , remains below the maximum capacity to avoid congestion, which would result in a decline in the

QoS [203]. In the proposed model, an SBS is allowed to admit UEs as long as it is still capable of

providing the requirements, until it reaches the threshold. At this point, the SBS becomes overloaded

and goodput begins to diminish. Lastly, the constraint C4 ensures that every action exploration is kept

within acceptable powers, where ζi(γ
∗, [0,T ]) = γ

γ+1 is the power allocation condition, and ε is the

exploration parameter. If congestion is reached when C3 is violated, the exploration of transmission

powers is initiated. However, this should be carried out within the allocated power budget and it should

not upset the system’s energy consumption.

3.5 DRL-BASED SOLUTION

To design an efficient solution for solving the optimization problem in (3.10), a finite-source traffic

model that is based on both the thinning process and the fading conditions is assumed [204]. The

input to the DNN thus originates from [5 : 5 : K] sources that inject packets into the SBS transmission

buffer. For the IAB network’s access, the DRL algorithm’s input, output, and feedback processes

determine the appropriate learning scheme that is used. For each learning scheme, the network status is
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relatively fixed and the application environment is assumed to be known. This makes the distribution of

states, the actions, and the rewards determine the dynamics of the IAB network. In this case, the node

behaviour can be anticipated based on the availability of and constraints on the transmission resources.

Thus, the proposed DRL algorithm computes the solution for Q(γ∗,a) ≈ σ/Ts using a hierarchical

approach and for simplification and ease of application of the DRL strategy, it is assumed that the state

and observation overlap perfectly.

3.5.1 Reward Maximization

For any UE that is admitted by an SBS, there should be adequate computational resources that are

allocated to it such that the required QoS is met. By applying ACM and using the peak data rate and

the gains from other co-cell devices, the spectral efficiency evaluation that was used in [205] is adopted.

The reward function can be formulated as

r(t), σ = dz(t)LTs/∆te, (3.12)

where d·e indicates that the throughput should be evaluated using the minimum power required to

transmit dxe bits per second, z(t) ∈ Z represents the throughput in packets per time slot, and L is the

packet length. Given the channel state and the throughput, the system evaluates the transmission

power, which is used to determine the reward in (3.12). The DNN agent thus generates an optimal

action a∗ ∈A, which is the power allocation action that is used to obtain the solution to (3.10). An

action-value function, which is stored in the Q-table at time t, is used to select the appropriate action

depending on the current state through a policy, π∗, as follows:

π
∗(a|s) =

 1, if a = argmaxa∈A Qπ(s,a)

0, otherwise,

 . (3.13)

Using the obtained Q-value estimates, an off-policy greedy search is used to determine the optimal

stochastic policy function π∗(a|s) [105]. A random variable, Q(st ,at), is then considered for the

estimation of Q(γ∗,a) as follows:

Q(st ,at) = rt + γ
t max

at+1
Q(st+1,at+1), (3.14)

where rt is the reward that is evaluated using (3.12), β t ∈ [0,1] is the discount factor, st+1 represents

the next state, and at+1 is the resulting action. At each time instant, the agent determines its state using

the information that is obtained from the queue dynamics. Using the information that relates to the

QoS of each UE, the system evaluates the throughput of each UE according to (3.7) and (3.10). In

this regard, a sequence of transition probabilities that describe the transitions from the current state st

to the next state st+1, the current actions at to the next actions, and the current rewards to the future
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rewards, is established and it is given by

P(st |at) = pp(ptx|[gk,m,xt ],hk,m)pg(gt−1|gt), (3.15)

where xt is the current power management. This enables the system to have a Markov property, which

results in a Markov model representation of the IAB network with the tuple (st ,at ,rt , pt ,st+1), t ∈ T .

Here, the current channel state, hk,m, which is determined using measurements from the received

signals, is expressed using the channel transition distribution, pg(gt−1|gt). The reward function can

then be given as

rt(st ,at)) = θ ·Q(st ,at), (3.16)

where θ represents the interference power constraint, which is essential for both power management

as well as the estimation of Q(γ∗,a), and it is controlled by the pp(ptx|[gk,m,xt ]) term in (3.15). Using

(3.14) and assuming that the value function of the state-action pair is independent of the reward features

of the current state and the current action, (3.16) can be reformulated as

rt(γ
∗, p̂)) = θ ·Q(γ∗, p̂), (3.17)

such that the solution to (3.10) can be summed into a state-value function over a finite horizon as

follows:

Qπ
t (γ
∗, p̂) = E

[
T

∑
t=1

β
trt(γ

∗, p̂)

]
, (3.18)

which is the expected value of the reward based on the transmission power. Here, π is the optimal

policy for all the state-action pairs that is used by a value function, which is evaluated using the

Bellman optimality equation [105]. The expression β trt(γ
∗, p̂) is the discounted reward at time step t

and the sum of the discounted rewards is obtained over a finite horizon, T . Here, β t is kept less than

unity because the agent is interested in long-term returns. Since the reward optimal values depend

on the physical conditions of the environment as well as the policy that is implemented by the DRL

approach, the objective of maximizing (3.18) can be defined as follows:

Qπ
t (γ
∗, p̂) = max

π
E

[
T

∑
t=1

β
trt(γ

∗, p̂)

]
. (3.19)

By applying the intuitive definition of the Bellmann optimality equation, where the value of a state

under an optimal policy should be equal to the expected return for the best action taken from that state,

Q∗ can be expressed as

Q∗(s,a) = E
[

rt+1 +β max
at+1

Q∗(st+1,at+1)

]
= ∑

st+1,rt

p(st+1,rt |st ,at)[rt +β max
at+1

Q∗(st+1,at+1],

(3.20)

where the expression ∑st+1,rt p(st+1,rt |st ,at) represents the transition probability. From the Bellman

optimality equation, the reward value of a given state can be split into the immediate reward and the
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discounted reward of the subsequent state [206], and the Bellman optimality equivalent of Q∗ can be

derived by assuming accurate estimates from (3.20). With this assumption as well as assuming that

the deterministic policy is optimal, (3.13) holds. From the state-value function in (3.18), the Bellman

optimality equation for Qπ is given by

Qπ(s,a) = Eπ

[
∞

∑
t=1

β
trt+1|st = s

]

= Eπ

[
rt+1 +β

∞

∑
t=1

β
trt+2|st = s

]

= ∑
a

π(a|s)∑
st+1

∑
rt

p(st+1,rt |st ,at)

[
rt +βEπ

[
∞

∑
t=1

β
trt+2|st+1 = st+1

]]

= ∑
a

π(a|s) ∑
st+1,rt

p(st+1,rt |st ,at) [rt +βvπ(st+1)] .

(3.21)

Defining the optimal Q-value as V ∗(s) = maxa∈A Qπ∗(st ,at) the objective to maximize (3.18) can be

computed as follows:

V ∗(s) = max
a∈A

Qπ∗(st ,at)

= max
a

Eπ∗

[
∞

∑
t=0

β
trt+1|st = s,at = a

]

= max
a

Eπ∗

[
rt+1 +β

∞

∑
t=0

β
trt+2|st ,at

]

= max
a

Eπ∗ [rt+1 +βV ∗(st+1)|st ,at ]

= max
a∈A ∑

st+1,rt

p(st+1,rt |st ,at) [rt +βV ∗(s)] ,

(3.22)

which is the Bellman optimality equation for V ∗.

For small-scale wireless network problems such as spectrum sensing problems, arbitrary assumptions

for the Q-value estimates can be made and the values are updated through trial-and-error as the policy

progresses towards convergence. When the Q-value updates and the action-selection are performed

randomly in such cases, the optimal policy may not give a global optimum [207]. However, in 5G

and Beyond 5G wireless networks, the problem can grow extensively with discrete states and actions.

The discrete state transition probabilities in such scenarios should be explicitly defined depending

on the large state space. Construction and storage of Q-tables for large-scale problems in dynamic

wireless transmission environments can become computationally complex since the state space grows

exponentially and the respective actions need to be determined. As a result, the memory requirement

for storing and updating the Q-values increases proportionally with the number of possible states, and
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the duration of exploring each state to create the required Q-table becomes unrealistic [208]. Due

to the challenges that are introduced by this scaling and increased computational complexity in the

traditional RL strategies, advanced strategies such as DRL have been proposed to address this [208].

Thus, to solve the RA problem in IAB networks, it is proposed that the RL strategy be combined with

the DL technique.

Since the states in wireless communications are generally discrete, discrete state transition probabilities

should thus be defined based on the state space. As such, a conditional a priori probability vector P is

defined as a sufficient statistic substitute for st , such that (3.19) can be reformulated as

Qπ
t (P,at) = max

π
E

[
T

∑
t=1

βtrt(Pi j,at)

]
, (3.23)

where Pi j represents the inter-state transition probability. By applying dynamic programming, the

solution can then be obtained by finding the state-value function, Qπ
t (P), as follows:

Qπ
t (P) = max

at
(rt(Pt ,at)+βE{Qt+1(Pt+1|Pt)}), (3.24)

where Pt and Pt+1 represent successive transition probabilities. Assuming that a limit on T exists, the

optimal transmission rate can be reformulated as follows:

Γ̄t(γ
∗, ·) = lim

t→∞

T

∑
t=1

Γt(γ
∗, ·). (3.25)

Furthermore, with the assumption that the interference caused by the other nodes is stationary and

ergodic, and that P̂ is a function of I, this limit exists with a probability of one and

E[Γ̄] = E[Γ(I),P(I)]. (3.26)

Using the Lebesgue-Stieljies integral [209], (3.26) can be converted to a constrained problem given

by ∫
∞

0
Γ(γ∗,P(γ∗)) ·dP(I ≤ γ

∗)≥ Γ, (3.27)

where the function P solves the problem into a relatively unconstrained power management function

as follows:

min
P≥0

∫
∞

0
P(γ∗) ·dP(I ≤ γ

∗). (3.28)

This is, however, applicable if the signal processing at the SBS is sufficient to provide accurate

estimates of the interference power from the received signal power.

3.5.2 Training of the DNN Agent

During each discrete time instant, the SBS should provide transmission throughput that satisfies the

QoS requirements of its associated UEs. Using the current state of the system, st ∈ S, the SBS, which
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is the DNN agent, should minimize the power that is required to transmit dze bits/symbol. Given a

DNN that consists of N : i = 0,1,2, · · · ,n layers, i = 0 refers to the input layer whereas i = n+1 refers

to the output layer; the other intermediate layers are known as the hidden layers. For the proposed

solution, the DNN consists of four hidden layers, and the DNN training process is comprised of the

two stages that are described below.

Stage 1

Firstly, the DNN’s parameter, θ , is initialized with a zero-mean normal distribution. The inputs to the

DNN are then transferred from the input layer to the first hidden layer as a sample vector, x. The feed-

forward network then goes through a process of determining the values of the hidden layers, which are

defined by h = f (x,θ). In this work, the value of the jth computational unit of the ith layer of the DNN

architecture is denoted by hi
j(a). Each link between two successive hidden layers is assigned a weight,

Wjk, while the respective node is assigned a default activation internal bias, bi
j. When the weight and

bias are assigned the node then computes the loss function using the input sample from the previous

layer by applying a rectified linear unit (ReLU) activation, ReLU(x) = max(0,x). This computational

pattern continues throughout the hidden layers of the DNN. The ReLU activation function is applied in

this case because of its delinquency in solving the vanishing gradient problem since it has better error

transmission capabilities compared to the prevalent sigmoid function. The ReLU activation function is

more applicable in DNN-based power control solutions, especially when employed in the hidden layers.

Stage 2

Considering that the output layer provides additional transformation to the hidden layer outputs, for

the DNN to complete its task, it should satisfy the design constraints. With y being the output of the

DNN, the probability of the last hidden layer is given by

P(y = 1|x) = max{0,min{1,ai
j(a)}}, (3.29)

where ai
j(a) = ∑k W i

jkĥi−1
k +bi

j, such that when W i
jkĥi−1

k +bi
j strays outside the unit interval, the slope

of the DNN output with respect to its parameters would not be zero. At the output layer, a logistic

sigmoid activation function is applied as follows:

ĥi
j(a) = Φ(ai

j), where Φ(a) = (1+ e−a)−1. (3.30)

During each step of the feed-forward procession after stage 1, the delta rule is used to determine

updates of the weights and the biases. This is done minimize the loss value, which depends on the loss
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function that is used. Here, an efficient SGD algorithm that derives the gradient by a running average

of its recent magnitude [210] is employed. Depending on the current policy, πθt , the DNN gives a

relaxed action x̂t as the output, which can be represented by a parameterized function

x̂t = Φ(ht), where x̂t = x̂t,i. (3.31)

This represents the candidate action xk, which represents the ith entry of x̂t , such that the action

selection of the transmission power at the output layer should satisfy x̂t ∈ (0,1). Thus, using the SGD

algorithm, the resulting output is given by

o(x) = ĥn+1(x) = Φ(an+1(x)), (3.32)

which is the required power allocation that the DRL algorithm uses to improve the QoS as well as to

support context awareness in the IAB network.

3.5.3 The Learning Strategy

Using the output of the DNN, the proposed DRL framework adopts a learning policy that is parameter-

ized by θ , i.e. πθt , to guide the DNN agent in learning the best power allocation solution. This policy

is determined by

πθt : p j→ a∗, (3.33)

which represents the agent’s behavioural guide on how to perform the best action selection, that is, the

optimal power that gives best solution of (3.10). Here, the ε-greedy exploration approach, which was

described in Chapter 2 (Section 2.4.3.6), is employed to perform the best action selection among the

candidate actions to be given as the output by the DNN. The greedy action selection that was defined

in (3.13), which can be given as

a∗t = argmax
ai∈ak

Q∗(ht ,ai), (3.34)

gives the learned action a∗t that has the highest Q-value to achieve the maximum reward, and the system

transitions to the next state st+1. After computing the resulting Q-value, Q(s,a), the packet throughput,

which depends on the transmission power, is then evaluated. The Q-learning strategy was proven to

converge effectively to an optimal solution for this problem as follows [185]:

Q∗(γ∗, ·) = rt(γ
∗, ·)+β

t
∑
s∈S

P(st+1|st ,at)max
at+1

Q∗(st+1,at+1), (3.35)

where P(: | :, :) is the probability measure that governs the state transitions, with state-action pairs that

update the Q-table at each instant to approach an optimal Q-value. After converging to the optimal

Q-value, the agent then transits to the next state st+1 and updates the corresponding new Q-value as
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follows:

Q(γ∗, ·)← Q(γ∗, ·)︸ ︷︷ ︸
old value

+αt(rt(γ
∗, ·)+β

t max
at+1

Q(st+1,at+1)−Q(γ∗, ·)︸ ︷︷ ︸
temporal difference

)

︸ ︷︷ ︸
learned value

, (3.36)

where αt ∈ [0,1] is the learning rate of the Q-learning algorithm. The reward is then awarded to the

best action that leads to an optimal Q-value, Q(γ∗, ·). The Q-values are updated at every time slot

according to the TD approach that was outlined in Section 2.6.1. Using the TD updating rule, the

learned value at the next time step, which is the immediate reward, is given by

r(γ∗, ·)+β
t max

at+1
Q(st+1,at+1). (3.37)

It is worth noting that the analysis in this work focuses on cases when the IAB system learns to deliver

the best possible association and guaranteed QoS to the associated UEs. This means that the agent

uses the status of the traffic load and its buffer status to learn the optimal actions that would deliver

successful transmissions with high reliability. Thus, the objective of the proposed algorithm is to

operate at equilibrium and to at least grant each flow the transmission resources that are enough to

meet its QoS requirements, without increasing the cost of transmission. The proposed algorithm

that performs transmission resource management using individual learning is outlined in Algorithm

3.
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Algorithm 3 Proposed individual learning DRL algorithm

Input: Bandwidth, B; Exploration policy, π; Learning rate, αt ; Discount factor, β t

Output: Reward, r(γ∗, ·)

01: Initialize θt with zero-mean normal distribution

02: Populate the Poisson arrival distribution

03: Initialise the network state st to s0

04: For t = 1 : T do

05: Input the sample vector of channel gains to the DNN

06: Train the DNN model to obtain the output vector y

07: Assign a← y

08: Take a greedy action according to (3.13)

09: Populate the state-action pair (st ,at)

10: Arbitrarily set Q(st ,at) and solve (3.10) and observe the reward r(γ∗, ·)

11: If condition C3 is true then

12: Update system using (3.36)

13: Else

14: Switch to cooperative learning

15: End If

16: Populate current transition probabilities and observe tuple (st ,at , pt ,rt ,st+1)

17: End For

When an SBS cannot accurately observe and learn from its environment, exchanging information with

its neighbours helps to improve its learning processes. In this context, the neighbouring SBSs teach

and learn from each others’ experiences via extensive information exchange. Here, the nearest SBS for

a given DRL agent is located using the Euclidean distance because the nearest neighbour algorithm

critically depends on metric spaces. The proposed nearest neighbour cooperative algorithm is outlined

in Algorithm 4.
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Algorithm 4 Proposed nearest neighbour cooperative DRL algorithm

01: Initialize θt with zero-mean normal distribution

02: Initialize number of chosen neighbours, and

03: Construct discrete state space of neighbouring SBSs

04: Learn distance metric to the nearest SBS

05: For i = 1 : T do

06: Learn the optimal Q-function using the nearest neighbour regression method

07: Execute steps 06 - 08 of Algorithm 3 to train DNN model

08: Populate the state-action pairs (st ,at)

09: Draw action at ≈ π(·|S) to solve (3.10)

10: Observe the reward R(γ∗, ·) and generate next state st+1 ≈ pt(·|st ,at)

11: If condition C3 is true then

12: Update system using (3.36)

13: Else

14: Increase transmission power

15: End If

16: Populate current parameters and observe the tuple (st ,at , pt ,rt ,st+1)

17: End For

3.5.4 Algorithmic Computational Complexity Analysis

In the proposed DRL strategy, the DNN contributes towards the efficient estimation of the expected

discounted sum of the future rewards when the agent is in a given state. Here, we define an accuracy, δ ,

which is used as a performance measure for the two proposed algorithms. With the individual learning

approach that is illustrated in Algorithm 3, the DRL agent learns from both positive and negative

rewards when it executes an action a ∈A(s). When the parameters are initialized, the DNN model is

then trained using the input sample of channel gains. By doing so, the agent comes up with a set of

possible output actions, which are the allocated powers. To aid with achieving this task, an efficient

SGD algorithm that derives the gradient by a running average of recent past magnitude values [210],

was considered. The DNN model is then updated to scale with the target variable and in this case,

when the size of the target variable is reduced, the gradient that is used to update the weights is also

reduced. This realises a more efficient model with a stable training process. As discussed in Section

3.5.2, when the weights of the DNN are represented by probability distributions over the possible

observable network states, the uncertainty in the hidden layers allows for the expression of uncertainty
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about the outputs [211]. However, for |a j| � 1, it can be assumed that Φsig(a j)≈Φ0,1(a j), provided

that the weights of the network are not regularized. Hence, the depth of the polynomial networks of

such a DNN can be approximated by O(log2(1/δ )), for some fixed accuracy, δ .

3.5.4.1 Complexity of the action selection strategy

By having the output of the DNN as the set of possible transmission powers when in a given state,

the Q-learning algorithm is then used to select the best action, that is, the optimal power, using the

ε-greedy exploration policy. A persistent exploration learning policy, is used to store the information

about how the actions and the states are related in the Q-table. Since this is an undirected exploration,

the algorithm thus has no information about the action selection, upon which it bases its decisions. As

such, relying on ε-greedy exploration may result in low sample efficiencies because of the undirected

exploration. The action-value function, Q(s,a), is then obtained using the Q-learning algorithm and it

is iteratively improved by the DNN through the minimization of the loss function [212]. The action

selection step in Algorithm 3 (line 08) implements the exploration rule, which determines the next

state. With the individual learning approach, the agent only uses the information that is local to the

state of that SBS, which includes the Q-values for all the actions, a ∈ A(s). As stated in [213], the

number of executed steps is always bounded by an expression that depends only on the initial and

current Q-values. The complexity of action selection, which is well elaborated in [214]. However, for

the proposed DRL algorithm, an effective finite horizon power control condition is expected to reduce

the sample selection complexity to 1
(1−β t) . Hence, the expected time and space complexity of action

selection in Big O notation is O
(

1
δ 2(1−β t)

log 1
δ (1−β t)

)
.

3.5.4.2 Updating and reaching the reward state

When the selected action is executed by the learning agent, the state-action pairs are then populated,

and then Q(st ,at) is updated. The value of Q(st ,at) is then used to determine the accumulated reward

that is received by the agent when it executes an action at when in state st . If the congestion condition

is not met, an update step in Algorithm 3 (line 12) adjusts Q(st ,at). The agent then receives an

immediate reward, r(st ,at) ∈ R, and if the agent starts in s ∈ S and executes the selected actions for

which it receives the immediate reward rt at time step t, then the agent’s total accumulated reward for

this particular behaviour is r(γ∗, ·) = ∑
∞
t=0 β trt . As the agent approaches the reward state, the number

of steps can be exponential in the number of states. The Q-value of each state-action pair can be

augmented with an estimate of its uncertainty. This helps to guide exploration and to achieve a higher

reward during a faster learning process. As an example, when all the Q-values are initialised to zero,

and the RL strategy operates on the reward representation, the first Q-value that changes determines
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the action that leads to the reward state. For all the other actions, all the Q-values remain zero and no

information about the topology of the state space is stored. For the resource management purposes

that are considered in this work, because the Q-learning algorithm is admissible, the Q-values remain

consistent and monotonically decreasing. Because of this monotonic decrease of the Q-values, the sum

of the Q-values also decreases with every step, but it is bounded from below such that the algorithm

terminates. Thus, assuming that actions are not duplicated in the state space and that the shortest

distance between any two states is bounded by n−1, the feasibility result in [215] follows directly.

The complexities of a baseline Q-learning algorithm and the proposed DRL algorithms are summarized

in Table 3.1.

Table 3.1. Comparison of the computational complexities of the baseline and the proposed algorithms.

Strategy Algorithm Action Learning Overall

Selection Update

Baseline Q-learning O(n log2 n) O(n2) O(n2)

Proposed
Individual O(n logn) O(n) O(n logn)

Cooperative O(n logn) O(n2) O(n2)

As shown in Table 3.1, it is evident that the greedy action selection complexity and the learning

update complexity of the proposed individual learning algorithm are both less than those of the

baseline algorithm. However, it can be seen that by adding more elements to the DRL algorithm, it

becomes more computationally complex to implement. When the agent can no longer learn everything

from its own observations and experiences, it switches to the nearest neighbour cooperative learning

approach. The nearest neighbour cooperative approach may more complex dynamics in terms of the

required operations and memory, which increases the computational complexity with an increase in

the observation space. Thus, the worst-case complexity for the cooperative learning update becomes

O(n2), which is the upper bound on the complexity of the Q-learning algorithm.

3.6 SIMULATION RESULTS

This section presents the results of the performance of the proposed algorithms, which were obtained

from the simulations carried out in MATLABT M software. Table 3.2 gives the values of the simulation

parameters that were implemented.
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Table 3.2. Simulation parameters used for evaluating performance of the proposed algorithms.

Parameter Value

SBS transmission power 20 dBm

UE transmission power 18 dBm

Shadow fading, SF 4 dBm

UE - SBS Path loss 34.46 +20× log10(d) + SF

Maximum number of UEs, K 40

UE mobility model Random waypoint

Packet length, L 5000 bits

Traffic type Constant bitrate

Time slot duration, ∆t 10 ms

Fixed symbol rate, 1/Ts 500 ×103 symbols/sec

Achievable data rate, σ/Ts bits/sec

Capacity threshold, ψ 90%

Exploration rate, ε 0.9

Exploration decay rate 0.995

Learning step sizes, αt 0.4 - 0.6

Discount factor, β t 0.98

The performance was evaluated on a 250m×250m grid that simulates an urban environment using a

distance-based path loss, with transmission at a carrier frequency of 28 GHz and component system

bandwidth of 100 MHz [13]. Here, M = 10 SBSs that are randomly deployed are capable of sharing

learning information with each other to help with controlling their individual congestion levels. The

actions are selected randomly according to an ε-greedy approach with an exploration decay of 0.995.

The results also investigate the effect of the learning rate using values of either αt = 0.4 or αt = 0.6,

while the reward is discounted with β t = 0.98 for better convergence. The performance analysis was

conducted in three experiments, which are:(i) congestion rate, (ii) achievable bit rate, and (iii) user

satisfaction. Each of these experiments evaluates the performance of both the individual learning

scheme, where the SBSs are considered as independent learning agents, and the cooperative learning

scheme, where the SBSs are considered to have a multi-agent learning model. In this case, the learning
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performance of one SBS is not independent of other SBSs. The performance of the proposed DRL

schemes is compared to a baseline DRL algorithm from [190] in each of the experiments.

3.6.1 Experiment 1: Congestion Performance

To evaluate the level of congestion in the serving SBS, channel utilization was used in conjunction

with the utilization thresholds. This section presents results that show how the congestion rate of the

SBS varies with the number of admitted UEs for the two different learning schemes.

3.6.1.1 Individual learning algorithm

Figure 3.2 shows the congestion performance of the individual learning algorithm when the learning

rate is αt = 0.4. In this case, the proposed algorithm and the baseline algorithm exhibit similar

performance, having approximately 8% and 21% congestion rates for K = 5 and K = 10, respectively.

It can be observed that both algorithms achieve low congestion rates when the number of admitted UEs

is low and there would be a high probability that the SBS will satisfactorily serve all the UEs.

Figure 3.2. Congestion rate at SBS using individual learning with αt = 0.4.

The results of the congestion performance of the individual learning scheme when the learning rate

was increased to αt = 0.6 are shown in Fig. 3.3. Figure 3.2 and Fig. 3.3 show that the congestion

performance of the proposed individual learning algorithm and the baseline algorithm is more or less
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Figure 3.3. Congestion rate at SBS using individual learning with αt = 0.6.

the same. Although the proposed scheme follows the same performance trajectory as the baseline

algorithm, it gives a 2.2% better performance compared to the baseline algorithm when αt = 0.6,

whereas when αt = 0.4, the performance was only 1.2% better. For K = 40, the congestion rate is

approximately 93.2%, which is a 3.5% better performance than when αt = 0.4. This means that with

αt = 0.6, the SBS has a 3.5% higher probability of satisfying all the admitted UEs than when αt = 0.4.

Thus, the value of the learning rate does affect the congestion performance, as was also shown by

using different values of the learning rate in the results in [185].

3.6.1.2 Cooperative learning algorithm

For the case of cooperative learning, since a selected nearest neighbour knows the trajectory leading

to better rewards, it is then treated as a mentor that performs transfer learning to the current SBS.

This assumption resonates with viewing RL as a form of automatic programming [105]. Thus, in this

scheme, the current SBS is assumed to learn with the help of its nearest neighbour for better congestion

control. The practicality of the nearest neighbour approach was investigated and verified in [190] and

in [185].
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Figure 3.4 shows that the effect of using the cooperative learning approach is noticeable as the perform-

ance of the proposed algorithm begins to improve with an increasing number of UEs compared to the

individual learning scheme. The performance of the proposed cooperative algorithm is approximately

7% at K = 5, which is about 2.2% better than the baseline algorithm. However, in the range 7 < K < 17,

its performance becomes less than that of the baseline, but it reclaims superiority when K > 17. The

effect of changing the learning rate while using the cooperative learning algorithm is illustrated in Fig.

3.5.

Figure 3.4. Congestion performance for cooperative learning with αt = 0.4.

The performance of the cooperative algorithm in Fig. 3.5 is similar to that observed in Fig. 3.4. Thus,

it can be observed that the increase in the learning rate from αt = 0.4 to αt = 0.6 does not have much

effect on the cooperative learning approach’s congestion performance. This means that the algorithm

is insensitive to a change in the learning rate. Such an attribute is valuable for future IAB networks,

where the nodes would be capable of self-configuring and adjusting their parameters in to better suit

the dynamic network environments.
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Figure 3.5. Congestion performance for cooperative learning with αt = 0.6.

3.6.2 Experiment 2: Throughput Performance

It was deemed essential to monitor the throughput performance and relate that to the corresponding

levels of congestion. This section thus presents results of the performance of the proposed algorithms

in terms of the achievable bit rate of the current SBS’s admitted UEs. The objective was to maximize

the achievable bit rate subject to the two constraints, C1 and C2. Here, the main idea was to ensure

that the admission control was based on the satisfaction rate.

3.6.2.1 Individual learning algorithm

The throughput performance of the individual learning approach with a learning rate of αt = 0.4 is

shown in Fig. 3.6.
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Figure 3.6. Achievable bit rate at SBS using individual learning with αt = 0.4.

Figure 3.6 shows that with αt = 0.4, the proposed individual learning algorithm provides superior

throughput performance compared to that of the baseline algorithm. It was observed that the proposed

algorithm outperformed the baseline algorithm by 46.79% at K = 5; however, in the range 20≥K ≥ 40,

the difference is approximately 22.50%. It can be noted that the average bit rate that the proposed

algorithm achieves in the range 20≥ K ≥ 40, which is approximately 1.35 Mbps, is what the baseline

scheme achieves with K = 5. In addition, it is observed that the average bit rate performance for both

approaches remains constant in the range 20 ≥ K ≥ 40. This is because the solution methods aim

to keep satisfying the QoS requirements of all the UEs until the SBS is congested and would not be

able to admit any more UEs. From the results in [185], it was observed that when the number of UEs

increased above 40 for the same model, the achievable bit rate would significantly drop especially for

the cooperative learning approach. This indicates indicates that the systems would have reached a

point where there is need for a change in the bandwidth split or a migration of the UEs.

The throughput performance for the individual learning algorithm was also evaluated with a learning

rate of αt = 0.6 and the result is shown in Fig. 3.7. From the result in Fig. 3.7, when K = 5 the

performance of the proposed algorithm is 46.55% higher than that of the baseline algorithm, and
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this reduces to 22.50% when K ≥ 20. Similar to the result in Fig. 3.6, an average bit rate of 1.35

Mbps was achieved by the proposed scheme for the 20≥ K ≥ 40 range, which is the average bit rate

achieved by the baseline algorithm at K = 5. There is a 0.0113 Mbps decline in the throughput that

was observed after the learning rate was increased, and there is only a 0.24% difference between the

results of the two learning rates at K = 5. From this, it can be concluded that there is no significant

throughput performance sensitivity to the change in the learning rate for the individual learning

algorithm. However, the constant throughput performance in the range 20 ≥ K ≥ 40 for both the

learning rates shows that the throughput performance of the individual learning approach is not affected

by the congestion rate at the SBS.

Figure 3.7. Achievable bit rate at SBS using individual learning with αt = 0.6.

3.6.2.2 Cooperative learning algorithm

In the cooperative learning scheme, the current SBS shares the learned policies in the form of value

functions with its nearest neighbour. This sharing is consists of the set of states and the system variables

that are defined in the state space. The achievable bit rate performance when using the cooperative

learning scheme with αt = 0.4 is shown in Fig. 3.8. As shown in Fig. 3.8, when K = 5 the proposed

cooperative algorithm provides a 46.56% better performance compared to the baseline algorithm and

this difference decreases to 21.52% at K = 10. The achievable bitrate decreases steadily, maintaining
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almost the same 21.52% better performance compared to the baseline scheme until K = 40. In addition,

the achievable bit rate performance was also evaluated for αt = 0.6 and the result is shown in Fig.

3.9.

Figure 3.8. Achievable bit rate at SBS using cooperative learning with αt = 0.4.
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Figure 3.9. Achievable bit rate at SBS using cooperative learning with αt = 0.6.

From the results in Fig. 3.9, the proposed individual learning scheme has 43.84% better performance

compared to the baseline algorithm at K = 5. This shows a decline of 2.72% in the difference from

when αt = 0.4. As the number of UEs increases, the performance continues to decline gradually.

This shows that the cooperative learning scheme is sensitive to an increase in the learning rate as

well as an increase in the number of UEs on the access network. It can be concluded that with

larger values of αt , as the number of UEs increases, the cooperative learning approach exhibits

poorer bit rate performance. As a result, the performance of the nearest neighbour cooperative

algorithm is sensitive to a change in the learning rate. These results indicate that the achievable

bit rate performance of the nearest neighbour cooperative algorithm is affected by the conges-

tion rate. This is in turn justified by the behaviour shown in Fig. 3.4 at K = 17, and in Fig. 3.5 at K = 13.

3.6.3 Experiment 3: Quality of Experience

In addition to the evaluation of the congestion and the achievable bit rate performance, user satisfaction

was also evaluated to qualify the UEs’ perception of the service, that is, the QoE. The user satisfaction

is a quality metric that is measured using the mean opinion score (MOS). Some of the system-level
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parameters that are related to the throughput performance such as packet losses and the delay are

used to measure the QoE using an MOS scale of 1 (worst) - 5 (best). In this experiment, the user

satisfaction is evaluated using the regression of the relationship between the required QoS and the

available transmission time, while considering the congestion rate. It is then measured based on the

MOS, with 5 being the maximum score.

3.6.3.1 Individual learning algorithm

Figure 3.10 and 3.11 show the user satisfaction performance of the individual learning algorithm with

αt = 0.4 and αt = 0.6, respectively. The results in Fig. 3.10 and Fig. 3.11 indicate that the degree of

satisfaction of the UEs declines uniformly between 5≤ K ≤ 20, and it tends to remain constant for the

remainder of the range. With the learning rate of αt = 0.4, the satisfaction of UEs is as high as 4.5 at

K = 5, while it is distributed around 4.1 for the range 20≤ K ≤ 40. On the other hand, when αt = 0.6,

at K = 5 the satisfaction degree is distributed at approximately 4.8, and distributed at approximately 4.1

for the range 20≤ K ≤ 40. This showed that the QoE performance of the individual learning scheme

has significant sensitivity to a change in the leaning rate.

Figure 3.10. UE satisfaction at the current SBS using individual learning with αt = 0.4.
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Figure 3.11. UE satisfaction at the current SBS using individual learning with αt = 0.6.

3.6.3.2 Cooperative learning algorithm

Figure 3.12 and Fig. 3.13 show the user satisfaction performance of the cooperative learning algorithm

with αt = 0.4 and αt = 0.6, respectively. For the case of the nearest neighbour cooperative learning

scheme, the proposed algorithm’s good capability of offering better QoE compared to the baseline

was similar to the case of individual learning. This showed that user satisfaction performance is not

sensitive to a change in the learning scheme. These results are in agreement with recent findings and

support the results and analysis in [216]. Even though a discount factor that is closer to 1 requires

more time to converge, better performance is guaranteed, which is the objective of this work. Another

reason for using a higher discounting factor is the advantage that it has in congestion control. Since

congestion is incremental, a higher discount on the rewards maximizes generalization and also avoids

over-fitting of earlier learning.
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Figure 3.12. UE satisfaction at the current SBS using cooperative learning with αt = 0.4.

Figure 3.13. UE satisfaction at the current SBS using cooperative learning with αt = 0.6.
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3.6.4 Summary of Results

Table 3.3 gives an overview and summary of the performance of the proposed learning algorithms, in

comparison to the baseline Q-learning algorithm approach, based on the simulation results.

Table 3.3. Summary of the simulation results of the proposed solution in comparison to the baseline

algorithm.

Experiment
Individual learning Cooperative learning

αt = 0.4 αt = 0.6 αt = 0.4 αt = 0.6

Congestion

Performance

Equal perform-

ance

Equal perform-

ance

More or less same

performance

More or less same

performance

Throughput

Performance

Proposed solution

achieving 20% -

50% better per-

formance

Same perform-

ance as when

αt = 0.4 for both

proposed and

baseline

Proposed solution

achieving 20% -

50% better per-

formance

Same perform-

ance as when

αt = 0.4

User Satisfac-

tion

Proposed solution

achieving 5% -

15% better per-

formance

Proposed solution

achieving 10% -

15% better per-

formance

Same perform-

ance as for

individual learn-

ing for both

proposed and

baseline

Same perform-

ance as for

individual learn-

ing

3.7 CONCLUDING REMARKS

To provide satisfactory RA for users in a mm-wave IAB network model, the congestion rate of an IAB

node is monitored by introducing a transmission buffer. Due to the power consumption issues in the

RA framework, the problem was converted into a constrained MDP and dynamic power management

was also applied. A DRL algorithm was then proposed, where a DNN was trained for optimal power

allocation by initializing a power control parameter, θt , with zero-mean normal distribution. The DRL

algorithm then adopted its output to learn a policy, π , parameterized by θt , to achieve the logical

allocation of resources by placing more emphasis on congestion control and user satisfaction. The

performance of the proposed DRL algorithm was evaluated using two proposed learning schemes,

individual learning and the nearest neighbour cooperative learning. It was found that the nearest
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neighbour cooperative learning algorithm is suitable for IAB networks because its throughput has good

correlation with the congestion rate. From the algorithmic computational complexity analysis, it is

evident that the greedy action selection and learning update complexities of the the proposed individual

learning algorithm are less compared to the baseline Q-learning algorithm. However, the learning

update computational complexity, and consequently the overall complexity of the cooperative learning

scheme are the same as that of the baseline algorithm.
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CHAPTER 4 DRL-BASED BACKHAUL ADAPTATION

IN IAB NETWORKS

4.1 CHAPTER OVERVIEW

Considering the expected high demands for transmission resources and system reliability, especially

in urban areas, the IAB systems need to be designed to cope with such requirements. Due to ultra-

dense device connectivity, especially during peak hours, the SBSs tend to be congested and their

service quality consequently degrades. To address this issue and to answer the questions posed in the

hypothesis in Chapter 1, this chapter presents a smart way of achieving robust and efficient backhaul

routing in IAB networks by applying DRL. In this work, the effect of packet arrivals and buffer size

limitations on throughput and latency requirements in backhaul routing in IAB networks is analysed.

The backhaul traffic is routed in a SBS-to-SBS fashion until it reaches the MBS. In the network model,

we consider a hybrid access scheme, where the SBS-associated UEs and MBS-associated UEs coexist

in the same wireless network. The objective here is to maximize the access capacity subject to the

SBS load, the transmission power, and the backhaul bandwidth constraints. The rest of the chapter is

organized as follows: Section 4.2 presents the IAB network model, which describes and illustrates the

configuration of the data plane and the knowledge plane. Section 4.3 gives the routing optimization

problem formulation, whose DRL-RDCM solution is discussed in Section 3.5. A thorough description

and computational complexity analysis of the proposed DRL-RDCM algorithm, as well as that of the

baseline algorithms, is then given in Section 4.5. The simulation results are presented in Section 4.6

and then Section 4.7 gives the concluding remarks.

4.2 IAB NETWORK MODEL

The uplink transmission of a two-tier multi-hop IAB network, which consists of a single MBS, a set of

SBSs, and UEs is considered. The MBS is connected to the 5G core network via fiber backhaul and it

is capable of serving some UEs, while the IAB nodes, which also serve the UEs, are connected to each
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CHAPTER 4 DRL-BASED BACKHAUL ADAPTATION IN IAB NETWORKS

other or to the MBS through wireless backhaul links as shown in Fig. 4.1. The SBSs are distributed

according to a Poisson point process, and the MBS together with the SBSs are assumed to be equipped

with multiple antennas and they operate in full-duplex mode.

Figure 4.1. IAB network model setup in the 5G standalone deployment scenario showing network

components in the knowledge plane and the data plane.

Assuming that the traffic flows are allowed to be scheduled on multiple links, the topology of the IAB

network is modeled as an undirected graph. Thus, a graph G = (V,E), where V is the set of nodes,

and E is the set of edges or links. Here, i and j represent the indices of the transmitting and receiving

nodes, respectively, such that ei, j represents the edge/link between the two communicating nodes, and

M=N∪K is the set of all the nodes. In line with KDN as part of the 5G NR requirements, an IAB

network that can assemble itself given the high-level instructions, reassemble itself if the requirements

change, and autonomously reconfigure itself in the event of an outage, two separate but communicating

planes are proposed, which are the data plane, and the knowledge plane.
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CHAPTER 4 DRL-BASED BACKHAUL ADAPTATION IN IAB NETWORKS

4.2.1 The Data Plane

As shown in Fig. 4.1, the data plane is where the network nodes, the UEs, and the communication

channels are located. It is also where all the signalling and data handling occurs. The data plane of

the considered IAB network can be represented using a toy model graph and an example is shown in

Fig. 4.2 [58]. Let |V| and |E| denote the cardinality of the node and edge sets, respectively, and E+
i

represent the set of outgoing links from node i. In addition, let F = {1,2, · · · ,F} represent the finite

number of traffic flows, where each flow is assumed to have the attributes that define the source and the

destination nodes. Since in a graph tree, a source node or transmitter is defined using index i and the

destination node or receiver by index j, {(i, j)| j = par(i)} is used to describe the source-destination

relationship in the IAB network. Thus, the backhaul links between the IAB nodes and their immediate

neighbors, up to the destination, are modeled as edges, e ∈ E, such that when a route request message

from the i-th node reaches the destination node j, the communication link is represented as ei, j.

Figure 4.2. A graph model of the data plane of the IAB network showing possible wireless backhaul

links between IAB nodes as well as access links with UEs.

4.2.2 The Knowledge Plane and the Network Optimizing Module

The knowledge plane is a distributed network construct that is responsible for gathering, aggregating,

and managing information about network behaviour and operation [217]. Similar in operation to the
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control plane, it aims to obtain a view of the network topology and it handles all the functions and

processes that determine which routes are to be taken by the packets. The ability of the knowledge

plane to model the graph-based information of the data plane is made possible through the network

optimizing module, which is an OpenFlow device containing the flow table.As such, this plane enables

the data plane functions. Using the framework of the knowledge plane in Fig. 4.1, the proposed

architecture for this plane’s task is illustrated in Fig. 4.3.

Figure 4.3. Performance prediction and configuration evaluation of the knowledge plane using the

wireless card.

In this work, a traffic routing procedure that aims to find good paths between a source and the gateway

is developed as part of the framework that includes the support for DTAC. Another objective is to

evaluate the reliability of each and every link of nodes that communicate with one another. However,

depending on the channel model, the path losses may vary, and the channel gains take into account

small fading and interference penalties. To manage the proper resource allocation and routing, each

IAB node has to communicate with its neighbors in the network. The task of the optimization module

shown in Fig. 4.3 is to keep track of the network operation by monitoring the buffer occupancy status,
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that is, the queue state q(t), wireless channel conditions using the feedback obtained as the channel

state, h(t), as well as the power consumption status in terms of the power management, x(t). The

wireless transmission card shown at the top of Fig. 4.3 consists of a transmission buffer that accepts

packets arriving at a rate λ (t), with an arrival distribution of pλ (λ ) per time slot. In the evaluation of

the network, the following assumptions were made:

(i) the traffic arrival rate, λ (t), to each queue is approximated by the Poisson process

(ii) the packet lengths, L, are approximated by an exponential distribution, and

(iii) the queue lengths, Q, are assumed to be independent.

With these assumptions, the analytical results for the buffer occupancy status, that is, the queue load,

as well as for the delay distribution, can be derived. The proposed architecture for the knowledge

plane exploits the Q-learning technique, with the assumption that all the nodes have the same point of

view of the network and run the same algorithm. The exploration of the Q-learning technique in the

proposed model is shown in Fig. 4.4.

Figure 4.4. The simplified graph model of an IAB environment illustrating the learning exploration

procedure.

As part of this framework, the support for DTAC is incorporated using the max-weight scheme, where

node congestion is tracked by regularly checking the buffer queue or occupancy status. This provides
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a way of evaluating the reliability of the wireless links between the nodes using the backward and

forward exploration technique. The process proceeds as follows.

4.2.2.1 Route establishment

According to the process illustrated in Fig. 4.4, let an established transmission pass through the nodes

i, j, and j′ towards n0, such that Q j( j′,n0) is the time that a node j estimates it takes to deliver a

packet bound for n0 via j′. This time estimate includes the time that the packet spends in the queue

while being buffered at node j, that is, the holding time. After node j has sent the packet to node j′, it

immediately receives the estimate of the remaining time for it to reach the destination from node j′. In

the network model, each node maintains the information about the Q values for each of the possible

next hops. This information represents the delivery time for the packets to reach the MBS. An update

regarding the present Q value of each node is sent to the previous node in a process called backward

exploration. To keep the Q value as close as possible to the actual values and to also reflect the changes

in the state of the network, the estimates of the Q value need to be updated with the minimum possible

overhead [58]. Thus, as soon as node j sends a packet P(i,n0) destined for the MBS to one of the

neighboring nodes j′, node j′ sends its best estimate Q j′(z,n0) for the destination back to node j,

where z is a donor node.

4.2.2.2 Computation of Bounds

It is believed that the maximum bound on the latency can be calculated using the maximum buffer

occupancy of each node and the egress link rate [218]. Here, the queue lengths are used to determine

the upper bound of latency in terms of the number of nodes deployed to relay traffic to n0. Upon

receiving the estimate, Q j′(z,n0), node j computes the new estimate using the exploration of Q values.

This process is known as the forward and backward exploration, since it involves updating the Q

values of the sending node using the information obtained from the receiving node. With every hop of

the packet, only one Q value is updated, that is, when node j sends the packet, P(i,n0), to one of its

neighbors, for example, j′, the packet can take along information about the Q values of node j. When

node j′ receives this packet, it can use this information to update its Q values pertaining to its neighbor,

that is, node j. Then, when the node j′ makes a decision, it uses these updated Q values for node j,

then the Q value updates in backward exploration.

4.3 PROBLEM FORMULATION

Considering that the model described in Section 4.2 is discrete time-slotted, the following assumptions

were made: (i) the the traffic arrival rate, λ
f
j (t), at each node queue is approximated by a Poisson

process; (ii) the packet lengths are approximated by an exponential distribution, (iii) the traffic arrival
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distribution is unknown; (iv) a wireless transmission card of each node consists of a transmission

buffer that can hold a maximum of Q packets, whose average queue length, q̄, can be explained using

Little’s theorem [219]. Using the number of arrivals and the transmission rate, the evolution of the

queue in the transmission buffer can then be represented using the dynamic update equation, which

can be expressed as [220]

q f
i (t +1) =

[
q f

i (t)− ∑
∀ f∈F

r f
i, j(t),0

]+
+λ

f
i (t). (4.1)

This is the evolution of the queue over time, where [x]+ , max(x,0), and λ i
f (t) ∈ A f (t) represents the

data arrival rate at node i, with A f (t) being the set of packets of flow f arriving at the source node, s f .

The point-to-point channel-power states for channel state, h(t), and the transmission power are used to

realise the transmission rate as follows:

r f
i, j(t) = Bi, j(t) log2

(
1+ γ

f
i, j(t)

)
, (4.2)

where Bi, j(t) represents the backhaul bandwidth, and γ
f

i, j(t) is the SINR experienced by the traffic flow

when transmitted via link (i, j), defined as follows:

γ
f

i, j(t) =
p f

i, j(t)g
f
i, j(t)

∑
K
k 6= j pk, j(t)gk, j(t)+N0

, (4.3)

where p f
i, j(t) represents the transmission power of transmitting flow f from IAB node i to node j, g f

i, j(t)

is the distance-dependent channel gain assumed to follow a Rayleigh fading distribution with unitary

average power, g f
i, j(t)∼ exp(1). The first term in the denominator is the aggregated interference from

the access users, while the second term, N0, is the white Gaussian noise spectral density. Since in IAB

networks, part of the wireless spectrum is used for the backhaul connection of the SBSs, the SBSs

must be able to dynamically reserve resources for backhauling traffic to the gateway, n0. That is, if

r f
i, j(t) in (4.2) is the backhaul rate, then rn,k(t) represents the access rate. Therefore, based on this

intuition, the access-backhaul condition can be stated as follows:

r f
i, j(t) = Bi, j(t) log2

(
1+ γ

f
i, j(t)

)
≤ rn,k(t). (4.4)

4.3.1 The Markov Decision Process

Assuming that the system described follows a Markov process with discrete time intervals, the objective

of the agent is to determine an optimal policy, π , that maps a state space, S, onto an action space,

(π : S→ A), which maximizes the expected reward R, while minimizing network delay [221]. An

MDP that is represented by a tuple (S,A,R,P,S′) can then be formulated. Here, P : S×A×S′→ [0,1]

is the unknown transition probability function, where P(s(t+1)|s(t),as(t)) is the transition probability

from state s(t) to s(t +1) after taking action as(t). The state set, S, comprises the available bandwidth,
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the network load, that is, the number of traffic flows and the traffic demand, and the network status

(the channel conditions and interference levels). Generally, the state space can be be summarised into

utilisation and the port rate as follows:

s j(t) = {Uswi(t),Pz,swi(t)} ∈ S, , (4.5)

where Uswi(t) ∈ [0,1] represents the current utilization of the flow table of switch i, and Pz,swi(t)

represents the port rate of port z of switch i. On the other hand, the RA decisions constitute the action

set, which could be the spectrum and computational resources, as well as the network configurations.

In this way, the action set, A, consists of the route choice, the power management, and the throughput,

such that the i-th node scheduling action, a f (t), can be defined as the link to which the flow f is routed,

at the allocated transmission power, which can be defined as follows:

a(t) = a f
j (t), j ∈ V, f ∈ F. (4.6)

As such, a scheduling policy π , which maps the system state, s f (t), to the scheduling action, a f (t), is

defined such that a f (t) = π(s f (t)). The transition function of the MDP is denoted as P( j|i, l), which

is the probability that si, f (t +1) = j given that si, f (t) = i, and a f (t) = l, is defined as follows:

P( j|i, l) =

 1, if l = ( j,z)

0, otherwise. ∀ j
(4.7)

The reward function can then be represented as

Rπ
f ( j) =

 R(s,π(s)), if j = d f

0, otherwise,
(4.8)

where R(s,π(s)) is the discounted reward for a packet in flow f for being in state j, defined as

R(s,π(s)) = E
[
γ

t · r f
i, j(t)

]
, (4.9)

where 0≤ γ t ≤ 1 is the discount factor. The cumulative reward expectation of the access-backhaul

condition in (4.4) can thus be represented as

Rπ
f ( j) = Eτ∼π

[
T

∑
t=1

∑
f∈F

∑
(i, j)∈E

R(s,π(s))

]
, (4.10)

where T denotes the horizon for which the system is observed.

4.3.2 Formulating the Constrained Markov Decision Process

Since the action taken to maximize a certain reward always goes with an incurred cost, a cost function,

Ci : S×A×S′→ R, is defined. Minimizing network delays require that the transmission buffer has to

be monitored for queuing delays and packet losses. In this way, a buffer cost is defined to reward the

system for minimizing queuing delays, thereby protecting against overflows and subsequent packet

losses, as well as penalizing every packet that is lost. The buffer cost is defined as the expected sum of
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the holding costs and the overflow costs with respect to the traffic arrival and goodput distributions

[222], and can be expressed as follows:

g([q, p],ψ,y,z) =
∞

∑
λ=0

z

∑
f=0

pλ (λ )p f ( f |ψ,z)[q− f ]+η max([q− f ]+λ −Q,0), (4.11)

where [q− f ] is the holding cost, which represents the number of packets that were in the buffer at the

beginning of the time slot. Since a stable buffer is assumed, according to Little’s theorem, the holding

cost is proportional to the queuing delay [223]. The overflow cost imposes the penalty for each packet

that is dropped and it can be given as

Cπ
f ( j) = Eτ∼π

[
T

∑
t=0

∑
f∈F

∑
(i, j)∈E

γ
tg(s,π(s))

]
. (4.12)

The objective of this formulated constrained Markov decision process (CMDP) is to find a policy, πθ ,

which maximizes (4.10), while satisfying (4.12).

4.3.3 The Optimization Problem

A stochastic optimization problem that maximizes the average expected total throughput, subject to the

bit rate, queue stability, and airtime consumption constraints is formulated. The optimization problem

is expressed as follows:

max
p,π

Rπ
f ( j) = Eτ∼π

[
T

∑
t=1

∑
f∈F

∑
(i, j)∈E

R(s,π(s))

]
, (4.13)

subject to

C1 : Cπ
f ( j)≤ Qth, ∀ j ∈ V

C2 : Cπ
f ( j)≤Ce, ∀(i, j) ∈ E+

(4.14)

where the decision vector, p,π in (4.13) consists of the transmission power vector, p, whose transmis-

sion power range can be defined as follows:

p f
i, j ≥ 0,(i, j) ∈ V| ∑

j∈Vi

∑
f∈F

p f
i, j ≤ Pmax

i , (4.15)

which ensures that the transmission power assigned to IAB node i does not exceed the maximum

allowed transmission power by enforcing a power control condition to the forwarding node. The Qth in

C1 is the threshold on the queue length to prevent buffer overflows and subsequent packet losses. This

constraint also puts emphasis on the transmission delay by controlling the packet processing time per

node, that is, 0≤ D j(t)≤ δ
f
j , where D j(t) is the instantaneous delay of node j, and δ

f
j is the upper

bound on the processing time. Based on the evidence in [221] that the node packet-processing capacity

is a very important measure in minimizing delays when the λ
f
j is high, then D j(t) depends on the node

processing capacity, that is,

Pr{D j(t)≥ d j,max(t)} ≤ δth, (4.16)
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where d j,max(t) is the maximum achievable delay of node j, while δth is the threshold of the probabilistic

delay. The constraint C2 ensures that the required backhaul capacity is always less than the capacity

of the link Ce. This constraint means that the average backhaul transmission rate, r̄ f
i, j(t), has to be

kept below the link capacity thereby ensuring that the long-term arrival rate does not exceed the

average transmission rate, which in turn prevents buffer overflows and subsequent packet losses, that

is, r̄ f
i, j(t)≥ limt→∞ ∑i

1
T E{λ f (t)}.

4.4 PROPOSED DRL-RDCM SOLUTION METHOD

The proposed solution algorithm combines the DRL strategy with the RDCM to form a DRL-RDCM

scheme that is suited for the next generation routing applications. This proposed approach can provide

rapid and accurate route predictions. In this scheme, the mechanism for adjusting the reward value is

flexible, that is, if the value of the punishment for choosing a bad route is low, the estimated value of

that route will slowly decrease and probably this “bad route” can still be selected in the foreseeable

future. On the other hand, if the punishment value is very high, a route may no longer be chosen

in future routing events. The proposed framework tries to find a balance between low and high

rewards/punishment using an efficient cost model. The proposed framework, which is based on a DRL

strategy is illustrated in Fig. 4.5. The proposed DRL-RDCM algorithm computes and updates a policy,

π , for the DNN agent to achieve a better level of performance and generality, as shown in Fig. 4.5. The

complexity of learning through trial-and-error is reduced using RDCM and this is further discussed in

the subsequent section.

In the context of IAB networks, path choice models aim to satisfy requirements such as

• scaling with the increased densification in large urban networks,

• interpreting the behaviour of network elements well, particularly UE behaviour and BS conges-

tion,

• providing accurate predictions under various network conditions.

According to the routing nature and dynamics of the routing problem, a forward-backward exploration

technique is used to learn the IAB network attributes such as throughput, average packet losses, and

latency. Using this process, both the local and global network attributes update, where the long-term

reward is related to the global network performance by looking for routes with the highest success

rate. With reference to the graph model in Fig. 4.4, the source node conveys route setup request
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Figure 4.5. Illustration of the interaction between the IAB network and the learning agent in the

proposed DRL approach for modeling reward estimation in an IAB network.

messages to the destination, i.e., the MBS. The reward generation and value estimates are presented

on a link-by-link basis, and the rewards are propagated based on acknowledgement messaging from

other network nodes. In this case, the local reward value is directly related to the receipt of the

acknowledgement message for a packet successfully received by the j-th node. A higher value of the

local reward means that node j is a good candidate for a link towards the gateway, which increases the

probability of being selected for backhaul route establishment in future. Therefore, the set of nodes that

are adjacent to node i in this probabilistic graph are referred to as its physical neighbors, and finding

the best route between the source and the destination must be rewarded. Since the reward function is

intimately tied to the state and action spaces, the Q-learning algorithm is used. In a time-dependent

problem such as this one, the distance to the reward is handled using the DRL strategy, where the agent

is trained to interact with the environment, and the goal is to maximize the total rewards and to also

learn by adjusting its strategy based on the rewards.

4.4.1 The Recursive Discrete Choice Model

The route choice model proposed in this work is based on the assumption that the nodes behave

rationally by maximizing a certain utility function, or equivalently by minimizing a certain cost

function [224]. In addition, the nodes observe additional parameters that affect their path choice. These
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factors vary across nodes and they are unknown to the model. As such, a random term, ε , is added

to the cost function. Although the modeller would not know the additional parameters, it knows the

family of distributions for ε . The objective is to then infer the probability that a given path is optimal

given the current distribution of states.

In this work, a recursive discrete choice model is incorporated in the DRL strategy with the aim of

inducing a Markov chain into the graph, G. Considering the graph model in Fig. 4.2, the sets of

edges entering and leaving node j are denoted as E−j and E+
j , respectively. The links or paths passing

through node j are represented by e j, and the route choice model is developed using discrete choice

experiment, which incorporates choice overhead by means of a penalty parameter [225]. Choice

aversion is computed for each outgoing edge, e j ∈ E+
j , and a collection of i.i.d. random variables,

{εe j}e j∈E, are assumed such that the RDCM becomes a recursive logit model [226]. The recursive

reward/utility associated with edge e j is defined as

Rπ
f (e j) = R f

e j
+E

(
max
e′∈E+

j

{Ve′−Ω je log |E+
j |}

)
, (4.17)

where R f
e j is the instantaneous reward of edge e j and the expectation E(·) is the adjusted continuation

value associated with the choice of edge e j, Ve is the observed realization of random rewards. The

factor Ω je log |E+
i | represents the penalty that captures the size of the choice set, that is, E+

je , where the

parameter Ω je ≥ 0 is the parameter representing choice aversion [226]. Assuming that the collection

of random variables at each node j 6= n0 satisfies the sufficient criterion with a sufficiently scaled

distribution as defined in [227], (4.17) can be reformulated as

Rπ
f (e j) = R f

e j
+ log

 ∑
e′∈E+

je

eVe′

−Ω je log |E+
je |, (4.18)

where the second and third terms represent the closed-form expression of the expectation in (4.17).

Since each flow has to find an optimal route to n0, when the flows reach node j 6= n0 they observe the

realization of random utilities, Ve,∀e j ∈ E+
j , and subsequently choose the edge with the highest utility.

This is done by leveraging regret learning, which exploits information about channel states and queue

states to choose the optimal route [228]. This intuition is influenced by the learning framework in Fig.

4.4, where the forward and backward exploration are employed in learning the maximization of the

long-term utility of traffic flows. This whole process is repeated at each subsequent node, j′ : j 6= n0,

which results in an RDCM. The expected traffic flow entering a node will then take an outgoing route

according to a choice probability defined by

P(e j|E+
j ) = P

(
e j = arg max

e′∈E+
j

Ve′

)
. ∀ j 6= n0 (4.19)
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It is worth noting that as the value of the parameter Ω je increases, the edge choice probability (4.19) is

increasingly penalised by the size of the choice set. This reflects the cost of choice overload onto the

edge utility of the user with a large choice set. According to the law of flow conservation, x j =∑e∈E−j fe,

∀ j 6= n0 is feasible if there exist a unique flow vector that satisfies all the flow constraints. Therefore, the

solution of this RDCM can be equivalently written in the form of route choice probabilities, assuming

that for each route the utility associated to it is a random variable defined as follows:

R̃ f (e j) = ∑
e∈E

(R f
i, j−Ω ja log |E+

ja |)

= ∑
e∈E

R f
i, j−∑

e∈E
Ω ja log |E+

ja |.
(4.20)

Under these conditions, using the choice probability in (4.19), the probability of choosing the route e j

can be defined as

Pe , P

(
e j = argmax

e′∈E
R̃ f (e j)

)
, (4.21)

which is equivalent to the greedy action selection in [186]. Among the possible multiple routes that

the flows can take between the source and the destination, the algorithm selects only one. The flow

regulation of rate and delay at ingress can only be ensured along a single path, hence the resource

utilisation bounds need to be established.

4.4.2 Formulation of Optimization Bounds

The existence of the non-linear probabilistic constraint (4.16), which ensures that C1 is satisfied,

makes the optimization problem difficult to solve. To circumvent this challenge, the constraint’s linear

deterministic equivalent is introduced using Markov’s inequality such that for a non-negative random

variable X and a > 0, one can have Pr{X ≥ a} ≤ E [X ]/a [229], which results in

Pr

{
q f

i (t)
λ f
≥ δth

}
≤

E[q f
i (t)]

λ f δth
. (4.22)

The mathematical models of queues with deadlines and rewards are used to describe the attributes

of the proposed system, such that if the utilization factor follows the accurate stability conditions

described in [230], the stability of the system can be guaranteed. Thus, to relax (4.16), the condition of

the expected queue length should be satisfied as follows:

E[Qi
f (t)]≤ λ f δthδ

f
j , ∀ f ∈ F,∀t ∈ T. (4.23)

To guarantee that all the flows have a certain minimum level of QoS, a minimum requirement rmin
i, j is

introduced as follows:

rmin
i, j (t)≤ r f

i, j(t)≤ rmax
i, j (t), (4.24)

where rmax
i, j is the maximum rate constraint which is enforced to avoid the over-allocation of resources

when a large number of packets are sent simultaneously, such that r f
i, j(t)� qi

f (t). The optimization
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problem can then be rewritten as

P∗ : max
r̄,π

T

∑
t=1

∑
f∈F

∑
(i, j)∈E

ω f Rπ
f (t), s.t. (4.24), (4.25)

where ω f is a weight assigned to each flow f .

Since the statistical information regarding all the candidate routes is not available, a proper solution to

(4.13) is difficult to obtain. Using the reward function in (4.8), the CMDP equivalent of (4.10) can be

represented as

max
π

lim
T→∞

1
T
E

[
T

∑
t=1

∑
f∈F

∑
(i, j)∈S

τ f

∑
τ=0

R f (sπ
i, f (t + τ))

]
, (4.26)

subject to

lim
T→∞

1
T
E

[
T

∑
t=1

∑
f∈F

∑
(i, j)∈S

τ f

∑
τ=0

I{aπ
i, f (t + τ) = e} ≤Ce

]
, (4.27)

where the E[·] is the expectation taken with respect to the traffic flow arrival process, the transition

function, and the optimal policy π . To solve the formulated CMDP in (4.25), the Lagrange duality

equivalent of the problem is formulated, where it it assumed that the problem is associated with a

Lagrangian, L. The Lagrangian equivalent of (4.26) and (4.27) can be written as follows:

L(π,κ) = ∑
e∈E

κeCe + lim
T→∞

1
T
E

[
T

∑
t=1

∑
f∈F

∑
(i, j)∈E

τ f

∑
τ=0

(
R f (sπ

f (t + τ))− ∑
e j∈E

κeI{aπ
f (t + τ) = e}

)]
,

(4.28)

where κ > 0 is the Lagrange multiplier. Then, for every feasible policy, π ∈ Π, it can be observed

that (4.26) is bounded below by the formulated L(π,κ). Therefore, if the rewards and transition

probabilities are the same for every packet in a given traffic flow are the same, then the state-value

function can be defined as follows:

V π
f (κ) = E

[
τ f

∑
τ=0

(
R f (sπ

f (t + τ))−∑
e

κeI{aπ
f (t + τ) = e}

)]
. (4.29)

where E[·] is the expectation with respect to the underlying transition probability under the policy

π f (κ). The Lagrangian in (4.28) can be written as follows:

L(π,κ) = ∑
e∈E

κeCe + ∑
f∈F

lim
T→∞

1
T

T

∑
t=1

∑
(i, j)∈V

V π
f (κ)

= ∑
e∈E

κeCe + ∑
f∈F

lim
T→∞

1
T

T

∑
t=1
|E|V π

f (κ)

= ∑
e∈E

κeCe + ∑
f∈F

ρ fV π
f (κ).

(4.30)

Then, the dual function is obtained as follows:

D(κ) = max
π

L(π,κ), (4.31)
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and the dual policy is represented as

π(κ) = argmax
π

L(π,κ), (4.32)

and the optimal dual variable is denoted as

d∗ = argmin
κ≥0

D(κ). (4.33)

Assuming that there is no duality gap, the optimal policy, π∗, of the CMDP is the same as π(d∗), and

that κ and V π
f (κ) of any flow are independent of all the other flows. In this case, the objective is to

obtain the optimal policy, π f (κ), for each flow as follows:

D(κ) = max
π

L(π,κ)

= ∑
e∈E

κeCe +max
π

∑
f∈F

ρ fV π
f (κ)

= ∑
e∈E

κeCe + ∑
f∈F

ρ f max
π f

V π f
f (κ)

= ∑
e∈E

κeCe + ∑
f∈F

ρ fV ∗f (κ),

(4.34)

where V ∗f (κ) = maxπ f V π f
f (κ), and π f (κ) = argmaxπ f V π f

f (κ). At this point, π f (κ) and V ∗f (κ) can be

computed using finite horizon dynamic programming.

4.4.3 The Cost Function

The proposed cost function’s ability to maintain prior knowledge enables it to accelerate the conver-

gence of the algorithm, which improves the overall delay-power trade-off performance. Since the

transition probabilities and the link probabilities cannot be known apriori, a post-decision state-based

dynamic programming technique is employed to compute the cost function. Here, the transition

probability function is split between the known and the unknown dynamics in order to learn the link

probabilities and obtain the optimal policy. Under the assumptions on arrival and processing rates, the

analytical results for the buffer occupancy status are used to compute the cost function. The queue

load and the delay distribution are taken as the known information and are exploited to develop a more

efficient cost function based on the CMDP. In this case, a post-decision state, s̃, is defined, which is

related to the current state as follows:

s̃(t) = (q̃ j(t),h(t),x(t +1))

= ([q j(t)−µ j(t)],h(t),x(t +1)) .
(4.35)

The post-decision state in (4.35) represents the state of the transmission buffer after the packets have

been transmitted, but just before the new packets arrive, such that the queue length can be represented

by q̃(t) = q j(t)−µ(t). Here, the channel state is assumed to be the same as the state at time t, and the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

132

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 DRL-BASED BACKHAUL ADAPTATION IN IAB NETWORKS

power management post-decision state is the same as the power management at time t +1. The state at

time t +1 can then be represented as

s(t +1) = (q(t +1),h(t +1),x(t +1))

= ([q(t)−µ(t)]+λ (t),h(t +1),x(t +1)) .
(4.36)

For the next state, s(t +1), the unknown dynamics such as the arrival rate and the channel state, have

been incorporated. The introduction of the post-decision state enables the factorization of the transition

probability function into known and unknown components. In this case, the known component

accounts for the transition from the current state, s, to the post-decision state, s̃. On the other hand, the

unknown component accounts for the transition from the post-decision state to the next state, s(t +1).

Factorizing the transition probability function results in

p(s(t +1)|s(t),a(t)) = ∑
s

pu(s(t +1)|s̃,a)pk(s̃|s(t),a(t)), (4.37)

where subscript k represents the known component and subscript u represents the unknown component.

Since the queue overflow depends on the arrival distribution, which is an unknown component, the

queue overflow cost may depend on the action and the post-decision state. Based on the goodput

distribution in (4.11), the cost function can similarly be factorised as follows:

c(s(t),a(t)) = ck(s(t),a(t))+∑
s̃

pk(s̃|s(t),a(t))cu(s̃,a(t)). (4.38)

Since the goodput distribution has to account for packet losses, the algorithm should penalise the

packet overflows. Considering that action exploration is not necessary to learn the optimal policy, the

known transition probability function can be defined as

pk(s̃|s(t),a(t)) = px(x̃|x(t),y)p f (q(t)− q̃|ψ,z)I(h̃ = h(t)), (4.39)

and the unknown transition probability can be represented as

pu(s(t +1)|s̃) = ph(h(t +1)|h̃)pλ (q(t +1)− q̃)I(x(t +1) = x̃), (4.40)

where I(·) is the indicator function, which takes a value of 1 if its argument is true, and 0 otherwise.

The known and unknown cost functions are then defined as

ck(s(t),a(t)) = ρ([h(t),x(t)],ψ,y,z)+µ

z

∑
µ=0

(µ,ψ,z)[q(t)−µ] (4.41)

and

cu(s̃) = µη

∞

∑
λ=0

pλ (λ )max( ˜q(t)+λ −Q,0), (4.42)

where the parameter η represents the penalty.
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The post-decision value function, Ṽ ∗, which plays a similar role as the action-value function in

Q-learning can be used to represent the unknown component of the discounted cost as follows:

Ṽ ∗(s̃) = cu(s̃)+ γ
t

∑
s(t+1)

pu(s(t +1)|s̃)V ∗(s(t +1)). (4.43)

The minimization of the cost function can be obtained by substituting the unknown component into

the known one as follows:

V ∗(s) = min
a∈A

{
ck(s,a)+∑

s̃
pk(s̃|s,a)Ṽ ∗(s̃)

}
. (4.44)

The optimal policy of the post-decision state-value function can then be computed as follows:

π
∗
post(s) = min

a∈A

{
ck(s,a)+∑

s̃
pk(s̃|s,a)Ṽ ∗(s̃)

}
. (4.45)

To keep the system at equilibrium, when the queue length approaches its maximum, the system

has to quickly generate a policy for an optimal action to reduce the queue length by increasing the

transmission rate. As such, the QoS parameters such as the packet goodput and packet holding costs are

considered to account for the increase in transmission power as the transmission rate increases.

4.5 ALGORITHM DESCRIPTIONS AND COMPUTATIONAL COMPLEXITIES

In this section, the basic formulation of the proposed DRL approach, which uses a DNN, is intro-

duced. The training and inference phases of the proposed algorithm are separated to improve clarity

and the understanding of the analysis of the computational complexity. In addition, the associated

computational complexities for the proposed algorithm and other baseline algorithms that were used

for comparison are also analysed.

4.5.1 Training and Optimization of the DNN for Action Selection

The topology of the DNN that is implemented by the agent in the DRL strategy is a feedforward MLP

neural network with linear hidden neurons and sigmoid output neurons [208]. The feedforward MLP

receives input data for routing in the IAB network, which consists of the node’s ID of the packet

that should be transferred through to the gateway. The interface status or utilisation represents the

information about the status of all interfaces for the node/router. As some nodes may fail due to power

issues, damage, congestion, as well as environmental interference, this should not affect the overall

performance of the IAB network. In terms of node failure due to either of these occurrences, the

routing protocol should use the information it has to find alternate links and routes towards the gateway.

The procedure for training the DNN is outlined in Algorithm 5.
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Algorithm 5 Procedure for training the DNN.

Input: State, s(t) ∈ S

01: Initialise environment for IAB network;

02: Input s(t) into DNN

02: For each state, s ∈ S, do

03: Calculate the step size, i.e., the learning rate

04: Randomly pick w1, · · · ,wd according to N(0, Id)

05: For each iteration of the training episode do

06: Find step length and sample minibatch of input data, and

07: Run SGD and update weights

08: End For

09: Determine available action a(t) ∈A and estimate Q(s(t),a(t))

10: End For

11: Return Q(s(t),a(t))

4.5.2 The DNN Optimization and the DRL Algorithm

To train the DNN, information about a known network such as the topology and the link capacities is

required. In addition, the time-series, that is, the knowledge of the traffic passing over the network in

a certain period of time, is another essential requirement. In this work, a dataset with topology and

aggregated information about the traffic, which comes in the form of an N×N traffic matrix was used,

where the element in row i and column j represents the total amount of traffic, that is, the average

bandwidth in a certain period of time between nodes i and j. With the state space shown in (4.5), the

optimization of the MLP was done using the analysis of the number of neurons in the hidden layer,

and using three training sets, which are: training, validation and testing. The training, validation, and

testing sets were created based on the topology of the IAB network, and the number of samples for

training the model depended on the type of router for which the DNN agent was created. For each

DNN layer, a matrix multiplication and an activation function is computed in forward propagation, and

the ReLU in the hidden layers computes the transfer function [231]. The procedure for the proposed

DRL strategy is outlined in Algorithm 6.
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Algorithm 6 Procedure for DRL with RDCM.

Input: λ
f
j (t); Buffer size, Q; T , αt , γ t

01: Initialize buffer occupancy as q(t)

02: Initialize post-decision state value function Ṽ 0

03: Create candidate set of routes for traffic flow

04: For each link (i, j) do

05: Find link to nearest node and observe SINR

06: If current SINR γi, j ≥ γ0 then

07: Select a f (t) = argmaxa Q(s f (t),a f (t);θ)

08: Take transmission action, i.e., a f (t) = argmina∈A
{

ck(s,a)+∑s̃ pk (s̃|s(t),a(t))Ṽ (s̃)
}

Observe transition to next state, s(t +1)

09: Else

10: Request route on another candidate link

11: End If

05: Observe the post-decision state experience tuple {s(t),a(t), s̃,cu,s(t +1)}

15: Populate transition probabilities, (s(t),a(t), p(t),r(t),s(t +1))

17: End For

18: Return π∗(q(t)), r̂(t), c(q(t),y(t))

4.5.3 Action Selection, Reward Computation, and Cost Computation Complexities

4.5.3.1 Action selection complexity

Without putting any restrictions on the weights in the DNN, each threshold activated neuron was

simulated with a sigmoid activation at the output by computing the transfer function. The max-

weight and back-pressure algorithms were used to determine which link to activate. The max-weight

checks the maximum queue at any node and gives out the results accordingly, while the back-pressure

algorithm checks the difference between two nodes to determine which link should be activated. The

whole operation has a run-time complexity of O(n) in forward propagation as well as in the backward

propagation. Then, the run-time computational complexity of both the forward and the backward

propagation can be obtained as O(n ·n) = O(n2) [232].

4.5.3.2 Reward computation complexity

The outputs of the DNN agent are the actions, which serve as the input to the Q-learning algorithm,

whose first task is to select the action that maximises the reward. Since the used evolution metric is the
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total reward that is collected by the agent in every training episode, the value of the learning rate is crit-

ical. The DRL considers obtaining the long-term reward by performing the choice evaluation/aversion

procedure to generate higher rewards and lower costs. This evaluation process is carried out using the

defined graph structure and the RDCM, where a number of candidate routes are evaluated in terms of

utility and cost. The learning update and the computation of the reward and cost consequently result in

a run-time complexity of O(n2).

4.5.3.3 Cost computation complexity

The mechanism for adjusting the reward value during the learning process has to be flexible, that is,

the adjustment may not be so small that it does not cause changes nor may it be too large to induce

sudden change due to a specific events. For example, if the value of the punishment after choosing a

bad route is very low, the estimated value of that route will slowly decrease and probably this bad route

can still be chosen for a long time. On the other hand, if the punishment value is too high, a route may

no longer be chosen because of just one packet loss event. Therefore, a balance should be established

between the low and high rewards/punishments. It is thus helpful to evaluate the reliability of backhaul

routes in terms of the cost of delays and power.

Unlike the conventional Q-learning algorithm, which uses a sample average of the action-value function

to approximate Q∗, the post-decision state learning approach uses a sample average of the post-decision

value to approximate Ṽ ∗. Assuming an overlay of application peers and end-to-end-links, which form

a data delivery tree, the costs of all the end-to-end links is required. In the post-decision state learning

algorithm, the state space is characterised by the buffer state, and the only action is the throughput,

which is subject to packet losses. As the algorithm updates the state-action pair, it only provides

information about the buffer-throughput pair. The post-decision state learning provides the information

about every state-action pair that can potentially lead to all the corresponding buffer-throughput

pairs. It is worth noting that here, the experience tuples are updated in parallel, and as such, the

post-decision state learning algorithm has the same memory requirements as the DRL algorithm. Thus,

the computation of the cost function through the use of the value iteration approach has a sample

complexity of O(n2), which is similar to the results found in [233]. Overally, the post-decision state

learning algorithm does not require more memory than the Q-learning algorithm that is used in the

RL strategy, hence the computational complexity of the post-decision state learning algorithm can be

determined as O(n ·n2) = O(n3).
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4.5.4 Descriptions of Baseline Algorithms

Due to the limitations surrounding the proper utilization of resources in the IAB networks as well

as the nature of the route requests and discoveries, a reliable benchmark algorithm has not been

identified. To this effect, based on the stochastic nature of the IAB networks, the traditional DRL and

the generative model-based learning (GMBL) approaches were selected as benchmark algorithms for

this work.

4.5.4.1 Generative model-based learning

The GMBL is a “plug-in” model-based ML technique that is used to build maximum likelihood

estimates of the transition model in the MDP from the observations to determine an optimal policy.

It operates by preserving a local linear relationship utilizing the Laplacian matrix with the aim of

maintaining the graph-based structure of the original data in the Hamming space [234]. In this

technique, each link is sampled a predefined number of times to determine its statistics to a desired

level of accuracy. The resulting model is then used as an input to the CMDP framework. Moreover, by

automatically assigning weights for each view to improve the clustering performance, the method takes

distinctive contributions of multiple views into consideration. In this work, an alternating iterative

optimization method is designed to solve the resulting optimization problems. It is, however, difficult

to implement since all the nodes have to generate packets on their own in order to sample links. The

sample complexity of the GMBL is proportional to the number of links in the network topology, which

is consistent with the number of unknown parameters such as link success probabilities.

4.5.4.2 Deep reinforcement learning

By incorporating DL into the RL-based solution, the DRL approach allows the agents to make decisions

from unstructured input data without manual engineering of the state space. As a result, the equilibria

of this strategy differs along three task complexity measures, that is, (i) the cardinality of the choice

space, where a state is equivalent to the information set facing the player along the path leading to the

equilibrium; (ii) the level of iterative knowledge of rationality, and (iii) the level iterative knowledge of

the strategy [235]. The greedy action selection of game theory and RL is illustrated with an almost

similar complexity. However, more information is integrated in the RL strategy with the learning update,

and as more information is integrated into an algorithm, it becomes more computationally complex to

implement. The state-of-the-art RL strategy in resource allocation states that the computation time is

lower-bounded by O(n3).
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4.6 PERFORMANCE EVALUATION

4.6.1 Network Model Setup

In the experimental setup, the IAB network was deployed according to the standards of the 5G

standalone deployment, with the 5G core network completely disconnected from the 4G EPC. The

radius of the deployment area is 1000 meters, and the donor node is 250 meters from the nearest IAB

node, while the IAB nodes are 100 meters apart. A random walk model was adopted in simulating

the UE mobilities. Since the wireless connections cannot be connected to the server at the same time,

each user activates its wireless connection to the server using 802.11 links. To avoid collision and to

provide better QoS to the traffic flows in the dynamic network, time-sharing is employed. The RDCM

was used together with the max-weight and the back-pressure routing for route choices, checking link

qualities, and handling the routing aspects of the network, respectively.

4.6.2 Simulation Parameters

To evaluate the performance of the proposed DRL strategy, the assumption of network heterogeneity

was made. The simulations, which affirm the potential of the proposed algorithm, were conducted

using MATLAB ®R2021b software. Here, 100 SBSs were deployed in a randomly distributed manner

over a 1000 radius, with the gateway placed towards the end of the network as shown in Fig. 4.1. Small

cell connection distances that are indicated in Fig. 4.2, were set to unity, which means that the route

lengths are measured in number of hops and delays are measured using queue lengths and waiting

times. The rest of the simulation parameters are tabulated in Table 4.1.

The learning parameters stated in Table 4.1 were adopted from the results in [186]. An initial

randomized policy was set to a uniform distribution, and the inter-arrival time of a Poisson arrival

process is an exponential random variable. In this way, the local reward is given to the route that has

the best rate of success in delivering packets within their deadlines. The NetworkX library in python

for producing random graphs from a given set of edges [236] was used to set up the network.
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Table 4.1. Simulation parameters.

Parameter Value Unit

Component carrier frequency 28 GHz

System bandwidth, B 20 MHz

Subcarrier spacing 60 kHz

Maximum transmission power 80 mW

Maximum number of nodes, N 5 -

Finite buffer size, Q 25 packets

Fixed symbol rate, 1/Ts 500 ×103 symbols/sec

Time slot duration, ∆t 0.5 ms

Finite horizon, T 125 time slots

Packet arrival rate 10 packets/slot

Base station processing time 0.6 msec/request

SDN controller processing time 0.2 msec/request

Discounting factor, γ t 0.75 -

4.6.3 DNN Training Performance

Using the online approach, the testing of the online training framework, where the DNN is continuously

being trained while being applied to the IAB network was carried out. The ability of the proposed

approach to adopt accuracy in IAB routing as well as the ability of the model to continuously learn

from ongoing interactions with the IAB network and automatically re-adapt on-the-fly to changing

dynamics was evaluated. The performance evaluation was performed for 40 epochs, which each epoch

run over 50,000 iterations, and the training results are as follows.

Figure 4.6 shows the test errors of the SGD as a function of the number of epochs. This is shown using

the average MSE per training epoch, and it indicates the good performance of the algorithm in all the

three aspects, that is, training, testing, and validation. In the implementation of the SGD, the speed

of convergence was enhanced by initializing the weights using heuristics, and by using Nesterov’s

momentum and dropout [237]. It is also apparent that the algorithm performs well as the distance

between the testing and validation curves is minimal.
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Figure 4.6. Training, testing, and validation loss using the mean squared error.

Figure 4.7 shows the average accuracy as a function of the number of epochs, for both the training and

the testing. These results indicate a good performance of the algorithm in terms of learning from the

data set, as the training accuracy immediately peaks at ≥ 90%, while the testing accuracy reaches 90%

accuracy after two epochs. Both these plots are a little noisy, giving the impression that the training

algorithm is not making steady progress, however there is an indication that good results will be

obtained when the real network data is used to train the system. On overall, these results indicate that

the performance loss in terms of training and testing is already low after five training epochs, which

suggests that the MLP can be adopted for in the IAB problem under consideration.

4.6.4 Evaluation of Route Choices Using Choice Aversion

In this subsection, the performance of scheduling and the backhaul route selection is evaluated using

route prediction probabilities. To improve the understanding of the relationship between two variables

against each other, a traffic trace obtained from a 5G standalone testbed at the National Chiao Tung

University, China was used. The results in this subsection show how two dependant variables on two

different axes vary with a common independent variable. The time-series evaluation of the resource

demand and capacity is shown in Fig. 4.8.
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Figure 4.7. Training and testing accuracy.

Figure 4.8. Resource demand and capacity vs time.

In Fig. 4.8, it can be seen that in most instances the resource demand is more than the available

capacity, which means that the packet arrival rate is more than the departure rate, thus putting the

system under pressure. The instability of the system is shown by the lack of proper correlation between

the resource demand and the capacity. The time-series evaluation of the number of entities in the node

queue and the total delay is shown in Fig. 4.9. As shown in Fig. 4.9, the number of entities in the
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Figure 4.9. Variation of entities in a queue and total delay entities with time.

queue increases almost linearly with time, while the total delay increases exponentially with time.

This behaviour is expected since the Poisson arrival rate is modeled as an exponential function. This

Poisson-exponential behaviour adequately describes the first order auto-regressive model in a manner

that is independent of the average level of the queue. When considered from a classical statistics point

of view, each observation would be assumed as a sample of a given random variable, which would

usually be i.i.d., thus neglecting the correlation of the evolutionary process.

The route prediction probabilities generated by the RL-RDCM were evaluated as a function of an

increasing value of the choice aversion penalization, η as shown in Fig. 4.10. The figure shows that as

the value of η increases, the probability of packets being routed on route 1 increases. This means that

the choice aversion model assigns more packets to route 1 because it has no alternative comparison

in terms of minimum cost. This justifies the basic premise of prospect theory in environments with

model uncertainty that the agents tend to explore the route with minimum cost when they are reminded

about the incremental cost of their actions.

The cumulative reward, that is, the throughput, of the backhaul traffic was observed in terms of the

learning rate, αt , and the discount factor, γ t . Firstly, the effect of changing the value of γ t is evaluated on

route 1, that is, the route with the highest choice probability. The performance of route establishment is

evaluated using the Q-learning algorithm and the DNN architecture with the learning rate kept constant,
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Figure 4.10. Route choice probabilities using the choice aversion model vs the penalization factor.

that is, αt = 0.6, while the value of the discount factor is increased. The diagnostic performance on

route 1 is shown in Table 4.2. The results shown in Table 4.2 were run over 1000 iterations, and the

role of the discount factor was to determine how much the learning agent cares about the rewards in

the distant future relative to those in the immediate future. A higher value of the reward was obtained

for γ t = 0.75 than when γ t is increased. It was observed that when γ t ≥ 0.85, the sums do not converge

for the policy, that is, it sums up to infinity. This means that at higher discount rates, the proposed

algorithm becomes impulsive in choice behaviour and does not show impulsive responses at lower

discount factors. This raises an important aspect that has always been ignored when AI strategies are

applied in routing problems, which motivates a more interesting performance-complexity trade-off for

the IAB networks design.

Table 4.2. The effect of the discount factor on the reward.

Discount factor, γ t Overall reward, r̂ Most efficient path

0.75 99.99994034 0, 1, 3, 9, 10

0.80 99.99651029 0, 1, 3, 9, 10

0.85 99.98082485 0, 1, 3, 9, 10
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An additional analysis on the effect of the learning rate was conducted, and the relationship between the

cumulative throughput and the number of iterations is shown in Fig. 4.11. The cumulative throughput

shown in Fig. 4.11 above is for different learning algorithms, all using the same transmission budget.

The transmission budget was set and the cumulative throughput was evaluated for all the algorithms

and the results show an increasing throughput trend for all the algorithms as the number of iterations

increase. The proposed DRL-RDCM outperforms the conventional DRL and the GMBL by benefiting

from the choice model that is used in its design. It should be noted that all the algorithms have a

similar neural training, but they differ in the RL agents they use. To test this relationship even further,

the learning rate, αt , is varied under the same behaviour of the discount factor. The performance for

αt = 0.4 is shown in Fig. 4.12.

Figure 4.11. Cumulative throughput vs number of iterations with αt = 0.6 and γ t = 0.75.

The results shown in Fig. 4.12 above show that the oscillations caused by a large learning rate are

reduced. The learning rate was further reduced to 0.2 and the performance is shown in Fig. 4.13. The

simulation results suggest that reducing the learning rate helps the algorithm to learn better and prevent

the agent from being myopic and only learn actions that would produce immediate rewards. However,

this was achieved at the cost of an increased time complexity. The action selection of the DRL strategy

was shown to have similar complexity to the GMBL, the only difference being that the GMBL follows

a procedure under which each link is sampled a given number of times to determine its statistics to a
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Figure 4.12. Cumulative throughput vs number of iterations with αt = 0.4 and γ t = 0.75.

desired level of accuracy. The resulting model is then used as an input to the CMDP framework and

how much the prediction error affects this adjustment also depends on the learning rate.

Figure 4.13. Cumulative throughput vs. number of iterations with αt = 0.2 and γ t = 0.75.
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4.6.5 Evaluating System Stability by Incorporating Delay and Constraints

Up to this point, the system evaluation has exclusively focused on optimizing the network utilities

based on the transmission rates. The performance evaluation was extended to incorporate the delay

since it is an important performance metric. Both the average throughput and the transmission delay

were evaluated as the number of deployed IAB nodes between the traffic source and the donor node

was increased. The end-to-end throughput was evaluated against the number of IAB nodes with a

source rate of R = 25 Mbps and the result is shown in Fig. 4.14.

Figure 4.14. Average throughput vs. number of IAB nodes at R = 25 Mbps.

In Fig. 4.14, the throughput performance for the three algorithms is evaluated and an increasing trend

is observed as the number of IAB nodes increases. The proposed DRL-RDCM strategy is observed

to first lag the conventional DRL strategy, but as more spectrum becomes available in the network,

it outperforms both baselines. This is because in as much as the RL strategy that is used in DRL is

model-free, the use of the RDCM makes it behave more like a model-based strategy. This justifies the

fact that the QoE improves as one moves away from the cell edge towards the center as the capacity

becomes more guaranteed. The throughput performance is further evaluated with a source rate of

R = 50 Mbps, and the results are shown in Fig. 4.15.
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Figure 4.15. Average throughput vs. number of IAB nodes at R = 50 Mbps.

Compared to the case of Fig. 4.14, in Fig. 4.15, a congested scenario was created by doubling the

source rate and an overall improved performance of the three algorithms is observed, with the proposed

DRL-RDCM performing much better than both baselines. The result shows that with a high source

rate, the performance of the proposed algorithm progressively improves as the number of IAB nodes

increases, which indicates that the proposed algorithm benefits more from coverage enhancement than

the other two baselines. This indicates the strength of the proposed solution in terms of maximizing

the backhaul link throughput without compromising the access QoS.

The end-to-end latency for the configuration in Fig. 4.15 is shown in Fig. 4.16. As expected, the

average end-to-end latency decreases as the number of IAB nodes increases, as shown in Fig. 4.16.

This is because as the number of IAB nodes increases, it provides more transmission routes, which

decreases the average end-to-end delay of the system.

From Fig. 4.16, it can be seen that the proposed DRL-RDCM provides significantly better end-to-end

delay performance compared to the two baselines. This is particularly so for a small number of IAB

nodes, and as the number of IAB nodes increases, the performance of the conventional DRL approach

improves to closely follow that of the proposed scheme. On the other hand, the average latency for

the GMBL approach remains constant at 70 ms as the number of IAB nodes increases to more than 3.
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Figure 4.16. End-to-end latency vs. number of nodes for R = 50 Mbps.

This shows that the proposed algorithm adheres to reliable communication better than the other two

baselines by better imposing the probabilistic delay constraint in (4.16). As expected, high throughput

and lower transmission delays are achieved at the cost of high energy consumption and as such, the

cost analysis of the proposed algorithm is considered in the following subsection.

4.6.6 Evaluation of the Cost Function

The evaluation of the power-delay trade-off as a function of the number of packets arriving at a

node/link is the basic and underlying objective of wireless networks, and it cannot be overstated in the

IAB networks. In this work, this trade-off was evaluated in terms of: (i) the time delay of the learning

process, (ii) the variation of mean delay and overflow costs with packet arrival rate, (iii) packet holding

costs and power points as functions of packet arrivals.

4.6.6.1 Time delay

The time complexity results in terms of populating the useful attributes for the cost function are shown

in Table 4.3. From the table, it can be seen that populating the known attributes has higher time

complexities than populating the unknown ones. This is because with the transition s→ s̃ the initial

policy is not yet tuned to the specific traffic and channel conditions. The transition from s̃→ s(t +1)

means the policy has already been tuned, hence less transition time is required.
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Table 4.3. Time delay evaluation of complexity.

Populated attribute Attribute description Elapsed time

Power cost 0.261440

Known transition probability function From s→ s̃ 0.573529

Buffer cost 0.447494

Unknown transition probability function From s̃→ s(t +1) 0.013129

Unknown cost From s̃→ s(t +1) 0.003936

4.6.6.2 Mean delay and overflow costs

In this subsection, the cost function is evaluated using the post-decision state learning scheme. The

overflow cost is actually the cost of delay, which is crucial in agile network prioritization as it makes

it possible for decision makers to consider the cost of keeping packets in the buffer beyond a single

time slot. The performance of the system in terms of the mean delay and the mean overflow cost were

evaluated as a function of increasing packet arrival rate and the results are shown in Fig. 4.17.

Figure 4.17. Mean delay points and mean buffer overflow costs vs packet arrival rates.
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As shown in Fig. 4.17, both the mean delay and the mean buffer overflow cost increase linearly in a

similar pattern as the packet arrival rate increases. In addition, the linear rate of increase of the two

quantities is the same, which is about 1.25 per unit increase in the packet arrival rate. The increase in the

delay points push the Lagrange multiplier to its maximum, which results in the cost function weighting

the delays more and the power consumption less. This leads to an increase in the buffer overflow cost

as the system begins penalizing every packet held in the buffer more than necessary.

4.6.6.3 Packet holding costs and mean power points

As the increasing delay forces the system to penalize any packet that is held in the buffer beyond a

single time slot, the system should increase the transmission power to increase the transmission rate.

This is expected to cause a decrease in the packet holding costs, however, at the cost of an increase in

the power consumption. This kind of behaviour is verified in Fig. 4.18.

Figure 4.18. Packet holding cost points and mean power points vs packet arrival rate.

In Fig. 4.18, the system performance is evaluated in terms of the packet holding costs and power

consumption as a function of an increasing packet arrival rates. It can be observed that as the packet

arrival rate increases, the packet holding cost points decrease while the power consumption points

increase. This is in line with the hypothesis that was made above, but there is a slight decrease in the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

151

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4 DRL-BASED BACKHAUL ADAPTATION IN IAB NETWORKS

packet holding cost points when the packet arrival rate increases from 4 to 6, which is followed by a

sudden dip in the power consumption. However, the power consumption suddenly increases when the

packet arrival rate increases above 6 packets/slot. As the delay increases, the Lagrange multiplier is

driven to its predefined maximum value, thereby leading to an increase in the power consumption,

which then drives the packet holding costs down. This relationship indicates that in a system where the

packet losses are penalized, the transmission delays result in a non-Markovian system behaviour.

4.7 CONCLUDING REMARKS

This chapter presented a backhaul adaptation scheme for the IAB networks using DRL with RDCM

to address the challenges of backhaul availability and backhaul scalability. The proposed scheme is

controlled by the load on the access side of the network as well as the number of traffic flows being

routed to the MBS. The problem is formulated as a CMDP and solved using a dual decomposition

approach due to the existence of explicit and implicit constraints. A DRL strategy that takes advantage

of a RDCM was then proposed. The advantage of the RDCM for this problem is that it incorporates

choice aversion from prospect theory and the reward is not the only factor affecting the learning rates,

but also the punishment.

Optimal flow allocations in the network topology and the degree of aversion were derived using graph

theory and RL. The Lagrange equivalent of the CMDP with respect to the policy and the punishment,

and a cost function was also derived from the goodput distribution, and post-decision state learning

was used to evaluate the power-delay cost trade-offs. The proposed algorithm was compared with

the conventional DRL, that is, without the RDCM and the GMBL algorithms, where it showed better

performance over the two baselines. The near optimal delay performance of the system is achieved

before the optimal power consumption since the power consumption can only be learned after satisfying

the packet holding cost constraint.

In routing problems it is beneficial to incorporate the concept of prospect theory concept that describes

how decision makers choose between different prospects and how they estimate the perceived likelihood

of each of these options. This is RL with foresight. In this work, the optimization objective was defined

and the valuation function that was used was induced by an acceptance level through the RDCM for

value functions that were specified in the prospect of route choices. These route choices have associated

costs which are aimed at assisting in conflating observations in terms of alternatives leading to different
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choices, as well as rewards resulting from different choices of value function parameters from the

characteristics of the CMDP. However, computational complexity is the main obstacle observed in

the application of the proposed algorithm. It should be noted that the complexity of the family of

RL strategies comes with the repeated learning updates towards reaching the reward. The proposed

DRL-RDCM differs from the conventional DRL in terms of task complexity measures.
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CHAPTER 5 CONCLUSION

5.1 CONCLUDING REMARKS

This research work aimed to solve some of the challenges in IAB networks by providing flexible

solutions with relatively lower complexity and that adhere to the 3GPP specifications. Consequently, it

was proposed to look into providing solutions that combine traditional optimization techniques with

machine learning strategies.

The literature review in chapter 2 highlighted the need for including machine learning strategies, in

particular RL, in IAB network models. It was concluded that the dynamic resource management

and backhaul routing problems in IAB networks had not been thoroughly investigated in literature.

The research work then aimed to provide an end-to-end solution by first developing a context-aware

user association and access resource management scheme, and then developing a DRL-based

context-switching backhaul route establishment technique for multi-hop IAB networks.

5.2 RESULTS ACHIEVED

Chapter 3 presented a DRL-based model for context-aware resource management in mm-wave IAB

networks. A DRL-based solution for the formulated optimization problem was developed and presented.

The solution combined aspects of the RL strategy and the DL technique, where an SBS is taken as the

DRL agent, to provide a reward maximization algorithm for determining the best possible association

whilst satisfying the QoS requirements of associated UEs. The DRL algorithm was proposed for both

individual learning and nearest neighbour cooperative learning. The proposed algorithms were shown

to have less computational complexity for action-selection compared to the baseline algorithm. The

individual learning scheme also had less complexity for the learning update, whereas the cooperative

learning scheme had the same complexity as the baseline algorithm.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 CONCLUSION

Simulation results showed that the congestion performance of both the individual learning and cooper-

ative learning schemes was the same as that of the baseline algorithm, albeit the proposed schemes

having reduced complexity. For the throughput performance and the QoE performance, the proposed

learning schemes provided significantly better performance compared to the baseline for all considered

cases of varying learning rate and number of associated UEs. However, it was seen that the cooperative

algorithm is more sensitive to an increase in the learning rate and an increasing number of UEs

compared to the individual learning scheme.

In chapter 4, another DRL-based model for mm-wave IAB networks was presented, where investigation

of optimal backhaul routes was carried out. The optimization problem was formulated as a CMDP for

which the DRL-RDCM solution method was proposed. In this proposed scheme, the mechanism for

adjusting the reward value is flexible and it is thus well-suited for next generation wireless network

routing applications. In addition to the DRL-RDCM scheme, cost analysis of the backhaul routing is

performed by applying a post-decision state-based dynamic programming technique to compute the

cost function.

For performance evaluation, the DRL-RDCM scheme was compared with conventional DRL and the

GMBL technique. The simulation results showed that the proposed DRL-RDCM outperforms the

conventional DRL and the GMBL approaches in terms of cumulative throughput performance, for all

considered cases of various learning rates. The results also showed that for the proposed DRL-RDCM

scheme, the oscillations caused by a large learning rate are reduced when the value of the learning rate

also reduces. However, this was achieved at the cost of an increased time complexity. The performance

evaluation was extended to evaluate how the average end-to-end throughput varies with increasing

number of IAB nodes for different source rates. For the case of lower source rate, the proposed

DRL-RDCM strategy was observed to be outperformed by the conventional DRL strategy when there

are very few IAB nodes, but as more nodes became available, the proposed strategy outperformed both

baselines. As the source rate was increased, the performance of the proposed strategy was shown to

match that of DRL for few number of IAB nodes, and when the nodes increased, the proposed strategy

again outperformed both baselines.

The cost function was evaluated to provide an insight into the power-delay trade-off depending on the

number of packets arriving at a node/link. From the time-delay analysis of the learning process, it was

seen that populating the known attributes has larger time complexities compared to populating the
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unknown ones. It was also seen that both the mean delay and the mean buffer overflow cost increase

linearly at the same rate as the packet arrival rate increases. Evaluation of packet holding costs and

power consumption as a function of increasing packet arrival rates showed that the packet holding cost

points decrease, while the power consumption points increase, as the packet arrival rate increases. This

was as expected since increasing the delay forces the system to penalize any packet held in the buffer

beyond a single time slot. Thus, the system responds by increasing the transmission power in order to

increase the transmission rate and reduce the delay.

5.3 RECOMMENDATIONS FOR FUTURE WORK

Based on the work presented in chapter 3, future research work can look into improving (i) the

reliability of the access network, (ii) the computation capability at the wireless network edge, and

(iii) traffic prioritization. This is based on the assumption that with the proliferation of critical IoT

applications, latency-sensitive traffic would be processed at the network edge. As such, computation

offloading strategies for IAB-enabled MEC networks should be investigated in order to understand

the interaction between MEC and mm-wave IAB networks. This MEC-IAB paradigm should be well

equipped with edge computing capabilities in order to deal with the envisaged tantalizing amounts of

real-time traffic in future networks.

Considering the work of chapter 4, whether the system learns better by reward or by punishment, as

well as to what extent does the reward and/or the punishment influence the learning rate of the system

have not been considered in RL-based IAB research solutions. However, it can be postulated, as an

assumption, that the influence of the reward and punishment on the learning rate is subject to various

complex mechanisms of the actions. For instance, the reward and punishment appear to be processed

in different ways and the risk/loss aversion could also have an influence on the reward and punishment

as well as algorithmic sensitivity to both the reward and punishment. It has been noted that few studies

have investigated the influence of reward and punishment on learning rates, although this question has

been addressed since the beginning of psychological research and is still unresolved in many aspects.

Further research is not only required in the context of long-term effects (retention) of reward and

punishment, but also whether reward or punishment lead to a higher learning rates and if at all and

under what conditions reward and punishment lead to higher learning rates.

Overally, there is need for development of a scalable wireless backhaul strategy that is capable of

dynamically re-configuring itself in the event of an outage. The scalable IAB network should not only
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be limited to 5G mm-wave operation but it should also allow a straightforward and incremental upgrade

pathway to improving capacity over time. This is would enable integration with future-generation

wireless networks.
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