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Abstract

Estrogen is known to stimulate the growth of breast cancer, but is also effective in treating the disease.
This is referred to as the ”estrogen paradox”. Furthermore, short-term treatment with estrogen can
successfully eliminate breast cancer, whereas long-term treatment can cause cancer recurrence. Studies
highlighted clinical correlations between estrogen and the protein p53 which plays a pivotal role in breast
cancer suppression. We sought to investigate how the interplay between estrogen and p53 impacts the
dynamics of breast cancer, and further explore if this could be a plausible explanation for the estrogen
paradox and the paradoxical tumor recurrence that results from prolonged treatment with estrogen.

For this, we propose a novel ODE based mathematical model that accounts for dormant and active
cancer cells, along with the estrogen hormone and the p53 protein. We analyze the model’s global stability
behavior using the Poincaré-Bendixson theorem and results from differential inequalities. We also perform
a bifurcation analysis and carry out numerical simulations that elucidate the roles of estrogen and p53
in the estrogen paradox and its long term estrogen paradoxical effect.

The mathematical and numerical analyses suggest that the apparent paradoxical role of estrogen could
be the result of an interplay between estrogen and p53, and provide explicit conditions under which the
paradoxical effect of long-term treatment may be prevented.

Keywords: Breast cancer, Estrogen, p53, Estrogen paradox, Mathematical model, Global stability,
Bifurcation.

1. Introduction

Cancer is initiated when healthy cells grow beyond control to form a mass known as a tumor. Breast
cancer, which affects both humans and other mammals, can take place in the inner lining of milk ducts
(ductal carcinomas), or the lobules of the breast (lobular carcinomas) [1]. The most prevalent type
of breast cancer is the hormone receptor-positive luminal breast cancer. Worldwide, breast cancer is
contracted by 2.1 million women annually, and it is the cause of most cancer-related deaths among
women. In 2018, it was appraised that 627000 women died from breast cancer, accounting for about 15
% of the total cancer deaths among women [1, 2].

While these tumors are commonly responsive to endocrine therapy, cellular heterogeneity and the
acquired ability of tumor cells to go through cell state switching make it challenging to target these
populations completely using conventional methods. This further makes their eradication challenging
[1, 2].

It is suggested that increasing levels of estrogen increase the risk of breast cancer development with
about 75% of all breast cancers expressing estrogen receptors (ER) and/or progesterone receptors [3],
signifying that inhibition of estrogen activity by endocrine treatments may be an effective therapy for
patients with breast cancer.
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Based on a pre-clinical experiment in [4], the authors attributed the estrogen-induced breast cancer to
estrogen receptor α, reporting at the same time that, paradoxically, estrogen induces apoptosis in breast
cancer cells among postmenopausal women. This finding led them to deduce that estrogen may be used
to treat selected postmenopausal breast cancer patients. The therapeutic benefits of estrogen in treating
breast cancer were further supported by autopsy studies and computer-based modeling in [5].

Estrogens have been used to effectively treat breast cancer since 1944, when Haddow et al. [6]
used diethylstilbestrol (DES) to treat fourteen patients with advanced breast cancer. In the same year,
Binnie [7] highlighted the benefits of estrogen in treating advanced breast cancer, especially when used
in combination with radiotherapy. This was followed by more research on the use of high-dose estrogen
(HDE) in breast cancer treatment [8–12].

Until the antiestrogen drug tamoxifen was introduced by Cole et al. [13] in 1971, HDE was the
preferred treatment for postmenopausal women with advanced breast cancer. The use of estrogens for
breast cancer treatment was reconsidered in the 1990s when it became evident that HDE has effectively
treated patients already exposed to multiple hormone therapies [14–20]. The use of HDE as treatment
in selected patients with metastatic breast cancer that have been initially exposed to endocrine was also
established [14]. Diverse clinical trials have been carried out using different types of estrogens such as
DES, Ethinyl estradiol (EE), estradiol (E2), with highly positive responses, predominantly in patients
that were resistant to hormone therapies [21, 22]. Even though the potential for toxicity is higher with
estrogen therapy than it is with tamoxifen, the tolerability in most patients with estrogen therapy is
better than with chemotherapy [14].

The apparent contradiction between the role of estrogen in the development of breast cancer and its
therapeutic benefits in treating this disease was first pointed out in the 1940s by Haddow et al. [6]; it
has been termed the ”estrogen paradox”. It should be stressed that another component of the estrogen
paradox was reported recently, whereby treatment with estrogen alone for a short term (5 to 9 years)
decreased the risk of breast cancer recurrence in [23, 24], while, paradoxically, a study in [25, 26] showed
that the risk increased for long-term treatments (more than 20 years).

Several studies have been dedicated to describing the possible mechanisms behind these two compo-
nents of the estrogen paradox [27–29]. The short-term reduction of estrogen-induced breast tumor was
attributed to cell apoptosis of breast cancer cells [27]. Numerous studies have provided insight into the
mechanism underlying estrogen-induced apoptosis, see [28, 29] and references therein. According to [29],
even after long term antiestrogen therapy, HDE can still restore estrogen signaling which is key for trig-
gering apoptotic tumor cell death. As mentioned in [27], it is generally acknowledged that the paradoxical
effect of estrogen can be attributed to: (a) the stimulation by estradiol of expression of breast cancer
proliferation genes, (b) estradiol-induced increase in the rate of breast cell divisions, and (c) estradiol
enhancement of cell mutations.

Regarding the paradoxical effect of long-term estrogen therapy on breast cancer, the authors in [27]
proposed that cancer recurrence can be due to the presence of a reservoir of pre-existing occult breast
cancers. This insight was supported by multiple studies using autopsy data, which confirmed the existence
of occult undiagnosed breast cancers in approximately 7 % of women dying from unrelated causes, see
[30] and references therein.

One of the important stages in tumor progression is tumor dormancy, a stage during which tumors
can remain occult and undetected for a long time. During this stage, microscopic metastases are not
noticeable before they progress to visible cancer cells over time. In breast cancer, metastases usually
manifest asynchronously with the primary tumor, and become clinically obvious over time [31]. It has
been reported that approximately 20% to 40% of breast cancers recur in distant organs, and are usually
not discovered until several years after the primary tumor has been diagnosed. Such occurrences are par-
ticularly prominent in estrogen receptor positive (ER+), which predominantly reappears in bone, mostly
several years after initial tumor diagnosis. This prolonged invisibility indicates that the metastasis pro-
gression is dormant, leading to cancer cells multiplying slowly or staying quiescent [31]. This observation
was supported by autopsy procedures, performed on adults who died from non-cancerous causes, which
provided tangible clinical evidence of tumor cells staying dormant throughout an individual’s life without
becoming active [32–34]. The work done in [32] identified dormant tumors in many organs, such as the
breast, prostate, and thyroid. This condition has been described as cancer without disease [34].
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Several explanations exist as to how cancer cells survive and remain dormant, and how they get
revitalized to exit their dormant status [35–38]. In particular, [39] suggested that estradiol metabolites
are directly genotoxic. Using in vitro studies, the authors showed that estradiol could be converted
to 4-OH-estradiol, which can transform estrogen receptor (ER)-negative benign breast epithelial cells
into carcinomas. Moreover, 4-OH-estradiol can also be oxidized to quinone metabolites, which cause
mutations by directly altering the DNA, ultimately forcing healthy epithelial cells to become malignant.
Estrogen also functions as a mitogen and can trigger cell division in breast tissue [40, 41].

The studies above presented some mechanisms that explain the paradoxical effect of estrogen in breast
cancer development and treatment. However, these studies did not account for another factor that plays
a key role in tumor suppression; that is the protein p53 which was identified by Arnold Levine in 1979.
This protein, referred to as ”the guardian of the genome”, regulates cell division by keeping cells from
growing and dividing too fast or in an uncontrolled way. There are three functions attached to this:
growth arrest, DNA repair, and apoptosis [42, 43]. The growth arrest stops the progression of the cell
cycle, preventing the reproduction of damaged DNA. The p53 may be activated by the transcription
of proteins involved in DNA repair during this function. Apoptosis is the last recourse to avoid the
multiplication of cells with abnormal DNA. Usually, the level of the p53 protein in normal cells is low,
but DNA damage and other stress signals can prompt its proliferation which induces mutations [44, 45].
Furthermore, mutant p53 aids the multiplication of abnormal cells, which leads to cancer, with about
half of all human tumors comprising p53 mutants. While p53 plays a central role in tumor suppression,
a high level of it may fast-track the aging process through excessive apoptosis. It is, thus, crucial that
the cellular concentration of p53 is strictly controlled.

Clinical correlations between estrogen and p53 have been reported [44, 46, 47]. In [44], the authors
highlighted that estrogen, through its estrogen receptor (ERα), inhibits the transcriptional regulation of
p53. Additionally, [46] hypothesized that p53 might regulate ER expression. However, [47] suggested
that the p53 and ERα are mutually regulated and pointed out the existence of ER-positive breast cancer
cases with mutant p53 tumor status, which would not be explained by this hypothesis.

The above studies highlight the ability of p53 to suppress breast cancer cells and the paradoxical role
of estrogen in inducing both cancer cells apoptosis and cancer development. Therefore, we sought to
investigate the interplay between estrogen, p53 and breast cancer. We are of the opinion that considering
p53 alongside estrogen may further help to understand the mechanisms behind the estrogen paradox
and its long-term component. Essentially, the competing mechanisms of estrogen and p53 suggest that,
depending on which effect might predominate, breast cancer cells may grow or decline. This could explain
some of the clinical observations that appeared to be paradoxical.

We propose an ODE based mathematical that accounts for dormant and active cancer cells, the
estrogen hormone and the p53 protein. Stemming from the discussions above, the proposed model
accounts for estrogen-induced apoptosis and dormant cancer cells’ activation and considers the pivotal
role that p53 plays in inhibiting the activation of dormant breast-cancer cells and suppressing active ones.
The model also takes into account the regulation of p53 by estrogens, but ignores any possible effect of
p53 on estrogen due to the lack of tangible clinical or epidemiological evidence [47].

To understand the interplay between the model’s variables, we carry out global stability and bifur-
cation analyses of the model and use them to simulate cancer occurrence, elimination and recurrence
scenarios.

The significance of mathematical models and their applications to research works on cancer cannot
be overemphasized [40]. Several mathematical studies, including [40, 48, 49] have investigated cancer
cells and treatment dynamics. Wei [48] worked on bifurcation analysis of a mathematical model of tumor
growth in MCF-7 breast cancer line. The author explored the interactions of tumor cells, estradiol,
natural killer (NK), Cytotoxic T lymphocytes (CTLs) cells, and white blood cells. The analysis revealed
the coexistence of three equilibrium points that resulted in cancer immunoediting and provided valuable
treatment strategies. While recognizing the effectiveness of these mathematical models, we note from
reviewed literature that most of the models concentrate on describing tumor-immune system interaction
that address cancers in general, and only a few looked into tumor dormancy and activation [34]. However,
to this date, no mathematical models have considered the interplay between estrogen and p53 or how
they shape the dynamics of breast cancer.
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The paper is organized as follow: In the following section we formulate the mathematical model and
discuss its underlying assumptions. In section 3 we investigate the model’s well-posedness and carry out
global stability and bifurcation analyses. Section 4 is dedicated to the model’s numerical analysis where
we simulate various scenarios relating to the estrogen paradox. The conclusion is presented in section 5.

2. Model formulation:

In this section, we formulate a mathematical model illustrating the relationship between dormant
cancer cells, active cancer cells, excess estrogen and p53 tumor suppressor protein.

In formulating our model, we make the following assumptions:

� Both dormant cancer cells, Td and active ones, Ta populations are assumed to grow logistically.

� Supported by [39–41], we assume that high estrogen levels stimulate dormant cells’ activation. Fur-
thermore, following [44, 45] we assume that p53 hinders the activation of such cells. Subsequently,
we assume that the activation rate α depends on (E,P ) and that the function α(E,P ) increases
with increasing values of E and decreasing P values.

� Based on [4, 5, 50], we assume that active cancer cells undergo an estrogen-induced apoptosis.
Moreover, from [42, 43] we assume that p53 also induces apoptosis in breast cancer cells. Accord-
ingly, we assume that the mortality rate µ depends on (E,P ) and is an increasing function of both
E and P .

� Estrogen and p53 levels are assumed to grow at a constant rate and decay at a constant per capita
rate.

� Finally, to account for the estrogen-induced regulation of p53 reported in [44], we include an
estrogen-dependent degradation rate, β (E).

� For the sake of the model’s biological feasibility, we assume that α, µ and β have positive values
and are continuously differentiable with respect to their arguments. This ensures that the system
is well-posed and enables us to carry out a global stability analysis of the system.

A schematic representation of the flows between the model’s compartments is given in Figure 2.1.

Figure 2.1: Model diagram. Solid arrows correspond to a change of state while the dashed ones represent positive contri-
butions in the corresponding rate of transfer. The dashed line with a diamond end represents a negative contribution to
the relevant rate of transfer.
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Subsequently, in mathematical terms, we propose the following model equations that capture signif-
icant features of the established roles of estrogen and p53 and reflects certain aspects of our proposed
hypothesis: 

dTd

dt
= rdTd

(
1− Td

Kd

)
︸ ︷︷ ︸
tumor proliferation

− α (E,P )Td︸ ︷︷ ︸
actiavtion of dormant cancer cells

dTa

dt
= α (E,P )Td︸ ︷︷ ︸

actiavtion of dormant cancer cells

+ raTa

(
1− Ta

Ka

)
︸ ︷︷ ︸
tumor proliferation

−µ(E,P )Ta︸ ︷︷ ︸
apoptosis

dE

dt
= λE︸︷︷︸

supply of estrogen

− µEE︸ ︷︷ ︸
degradation

dP

dt
= λP︸︷︷︸

growth of p53

− β (E)P︸ ︷︷ ︸
estrogen-induced degradation

− µPP︸︷︷︸
degradation

(2.1)

We note that the model does not include an explicit term for dormant cancer cells’ apoptosis. However,
the model can still be used to accommodate the commonly used linear apoptosis rate, because the balance
between the proliferation and apoptosis can be transformed through some simple algebraic manipulation
into a logistic term.
A description of the model’s variables and parameters is presented in Tables 2.1 and 2.2.

Variable Symbol

Dormant cancer cells Td(t)
Active cancer cells Ta(t)
Estrogen hormones E(t)
Tumor suppressor protein p53 P (t)

Table 2.1: Description of the model’s variables

Description of Parameters Symbol Value Source

Growth rate of dormant cancer cells rd 0.5140 per cell per day [38]
Growth rate of active cancer cells ra 0.5822 per cell per day [41]

Dormant cancer cells carrying capacity Kd 1011 cells Assumed

Active cancer cells carrying capacity Ka 1.47× 1012 cells [33]

Activation rate of dormant cancer cells to active cancer cells α Varies
Apoptosis rate of active tumor cells µ Varies
Natural death rate of estrogen hormones µE 0.97 per cell per day [41]

Natural death rate of p53 µP 0.02, 2.5× 10−4 per cell per day [38]

Source rate of estrogen λE 1.3× 104 per day Assumed

Source rate of p53 λP 0.01, 0.5 per day [41]

Table 2.2: Symbols, values and units of the parameters used in model (2.1).
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3. Model analysis:

3.1. Model well-posedness:

Before we proceed with the analysis of the proposed model (2.1), we first prove that it is well-posed
in a biologically feasible domain. In fact, by using the variation of constants formula to (2.1), we obtain

Td (t) = Td (0) e
∫ t
0
rd

(
1−Td(s)

Kd

)
−α(E(s),P (s))ds

Ta (s) = U (t, 0)Ta (0) +
∫ t

0
U (t, s)α (E (s) , P (s))Td (s) ds

E (t) = E (0) e−µEt +
λE(1−e−µEt)

µE

P (t) = V (t, 0)P (0) + λP

∫ t

0
V (t, s) ds,

where U (t, s) = exp
(∫ t

0

(
raTa (s)

(
1− Ta(s)

Ka

)
− µ(E (s) , P (s))

)
ds
)
and V (t, s) = exp

(∫ t

0
(β (E(s)) + µP ) ds

)
.

This clearly shows that if Td (0) , Ta (0) , E (0) and P (0) are positive, then so are Td (t) , Ta (t) , E (t) and
P (t).
The boundedness of the model’s solutions will follow from the global stability results that we will prove
in the next section. This ensures that solutions are defined for all time.
Hence, for any given positive initial condition, the corresponding solution is defined and positive for all
t ≥ 0.

3.2. Global stability:

In this section we use the Poincaré-Bendixson Theorem along with results from differential inequalities
to analyze the global stability behavior of system (2.1). Let

E0 = λE

µE
, P0 = λP

µP+β(E0)

αλP
(E0) = α

(
E0,

λP

µP+β(E0)

)
µλP

(E0) = µ
(
E0,

λP

µP+β(E0)

)
T ∗
d =

Kd(rd−αλP
(E0))

rd

T ∗
a = 1

2
Ka

ra

(
ra − µλP

(E0) +
√
(ra − µλP

(E0))
2
+ 4

raαλP
(E0)T∗

d

Ka

)
.

(3.1)

We have the following global stability results:

Theorem 1. 1. If αλP
(E0) ≥ rd and µλP

(E0) ≥ ra, then E0 = (0, 0, E0, P0) is globally asymptotically
stable.

2. If αλP
(E0) ≥ rd and µλP

(E0) ≤ ra, then E0 becomes unstable and E# =

(
0,

Ka(ra−µλP
(E0))

ra
, E0, P0

)
is globally asymptotically stable.

3. If αλP
(E0) < rd, then E∗ = (T ∗

d , T
∗
a , E0, P0) is globally asymptotically stable.

The proof of this theorem is given in the appendix.
Theorem 1 provides a relationship between λP and E0 that governs the model’s global stability

behavior. It states that all dormant cancer cells will get activated if the activation rate is high enough
(αλP

(E0) ≥ rd). The resulting activated cancer cells will persist if their mortality rate is low (µλP
(E0) ≤

ra), but will be eliminated otherwise. Alternatively, if the activation rate is low (αλP
(E0) ≤ rd), dormant

cancer cells will persist and serve as sustained reservoir for active cancer cells.
To put these results in the context of the estrogen paradox, we will explore in the next section, a

special case of the activation rate α.
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3.3. A special case: Estrogen paradox.

The studies in [39–41, 44, 45] suggest that the activation rate α(E,P ) increases with increasing values
of E and decreasing values of P . In this section, we hypothesize that the activation of dormant cancer
cells is a result of a shift in the balance between the levels of estrogen and p53. Due to the lack of details
on the activation rate, we assume for simplicity that: i. α is an increasing function of the ratio E

P , and

ii. activation is only triggered when the ratio E
P is above a threshold value. Subsequently, we replace

α (E,P ) by α
(
E
P

)
where the function α (χ) is a continuously differentiable function that satisfies the

following assumption:

(Aα) α (χ) = 0 if χ ≤ χc, for some positive threshold value χc and α (χ) is increasing for χ > χc.

As a consequence of the above assumption we deduce the following properties:

� The function α (χ) is invertible and increasing on (χc,+∞), which implies that α (χ) ≥ rd if and
only if χ ≥ χd := α−1 (rd) > χc.

� Using (3.1), we have αλP
(E0) = α

(
E0

P0

)
= α (γλP

(E0)) , where γλP
:= x → (µP+β(x))x

λP
.

Thus we have the following result:

Theorem 2. 1. If µλP
(E0) ≤ ra, then the model always has a globally asymptotically stable active-

tumor-endemic equilibrium. More precisely,

(a) If γλP
(E0) ≥ χd, then E# =

(
0,

Ka(ra−µλP
(E0))

ra
, E0, P0

)
is globally asymptotically stable.

(b) If γλP
(E0) < χd, then E∗ = (T ∗

d , T
∗
a , E0, P0) is globally asymptotically stable.

2. If µλP
(E0) ≥ ra, then the model has a globally asymptotically stable active-tumor-endemic equilib-

rium if and only if χc ≤ γλP
(E0) < χd. More precisely

(a) If γλP
(E0) ≥ χd, then E0 = (0, 0, E0, P0) is globally asymptotically stable.

(b) If χc ≤ γλP
(E0) < χd, then E0 becomes unstable and E∗ = (T ∗

d , T
∗
a , E0, P0) exists and is

globally asymptotically stable.

(c) If 0 ≤ γλP
(E0) < χc, then α

(
E0

P0

)
= 0 and E∗ reduces to E∗0 = (Kd, 0, E0, P0) which is

globally asymptotically stable.

Theorem 2 gives a full description of the global stability and bifurcation behavior of model system
(2.1) in terms of E0. In particular, it states that the active tumor persists if and only if the condition
µλP

(E0) ≤ ra is satisfied, or the conditions µλP
(E0) ≥ ra and χc ≤ γλP

(E0) < χd hold.
We note that the above conditions are implicit. Nonetheless, using monotonicity properties on the

function β, the conditions on E0 that are required for the global stability results can be derived explicitly.
We know from [44] that estrogen inhibits the transcriptional regulation of p53. We thus make the

following assumption:

(Aβ) The function E → β(E) is increasing.

We deduce from assumption (Aβ) that the functions E → γλP
(E) and E → αλP

(E) are increasing,
which implies that:

� αλP
(E0) ≥ rd if and only E0 ≥ E0d := γ−1

λP

(
α−1 (rd)

)
.

� α
(

E0

P0

)
= 0 if and only if E0

P0
= γλP

(E0) < χc, that is E0 < E0c := γ−1
λP

(χc) .

In this case, T ∗
a = 1

2
Ka

ra
(ra − µλP

(E0) + |µλP
(E0)− ra|) , which is equal to 0 if µλP

(E0) ≥ ra, and

is equal to
Ka(ra−µλP

(E0))
ra

if µλP
(E0) ≤ ra.

With this, the results in Theorem 2 read as follows:
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Proposition 3. 1. If µλP
(E0) ≤ ra, then the model always has a globally asymptotically stable active-

tumor-endemic equilibrium. More precisely,

(a) If E0 ≥ E0d, then E# =

(
0,

Ka(ra−µλP
(E0))

ra
, E0, P0

)
is globally asymptotically stable.

(b) If E0 < E0d, then E∗ = (T ∗
d , T

∗
a , E0, P0) is globally asymptotically stable.

2. If µλP
(E0) ≥ ra, then the model has a globally asymptotically stable active-tumor-endemic equilib-

rium if and only if E0c ≤ E0 < E0d. More precisely
(a) If E0 ≥ E0d, then E0 = (0, 0, E0, P0) is globally asymptotically stable.
(b) If E0c ≤ E0 < E0d, then E0 becomes unstable and E∗ = (T ∗

d , T
∗
a , E0, P0) exists and is globally

asymptotically stable.

(c) If 0 ≤ E0 < E0c, then α
(

E0

P0

)
= 0 and E∗ reduces to E∗0 = (Kd, 0, E0, P0) which is globally

asymptotically stable.

Proposition 3 gives a full description of the global stability and bifurcation behavior of model system
(2.1) in terms of E0, or, equivalently, in terms of λE . It suggests that within the domain {E0 : µλP

(E0) ≥ ra},
we have three possible outcomes:

1. If the estrogen level is maintained at a reasonably low level (E0 < E0c), then the activation rate α
is equal to zero and no dormant tumor gets activated.

2. However, if estrogen levels rise, either by increased endogenous hormone production or hormone
therapy, and enter the range E0c ≤ E0 < E0d, then dormant tumor cells get activated and some of
the resulting active tumor cells will persist. This is because the activation rate α is high enough to
activate dormant tumor cells, while the apoptosis rate µ remains too small to eliminate the resulting
active tumor cells.

3. In this case, antiestrogen drugs such as tamoxifen can be prescribed to decrease estrogen levels
below Ec. Alternatively, if breast cancer cells become resistant to antiestrogen therapy, treatment
with HDE can be used to increase estrogen levels beyond the value E0d leading to active tumor
elimination (as long as µλP

(E0) ≥ ra).

We note that the domains generated by the curves γλP
and µλP

(E0) are not clearly depicted at this
stage due to their unknown forms or expressions. Further details/assumptions are required to explore
the interplay between these curves.

With this regard, we assume that

(Aµ) The function P → µ(E,P ) is increasing.

With this assumption, we are now able to express explicitly the bifurcation conditions presented
in theorem 2 in terms of λP . We first note that E0

P0
< χx, x = c, d if and only if λP > λPx (λE) :=

(µP+β(E0))E0

χx
. Moreover, assumption (Aµ) implies that the function µλE

: λP → µ

(
λE

µE
, λP

µP+β
(

λE
µE

))
is increasing and thus invertible. Hence, the condition µλP

(E0) ≤ ra is satisfied if and only if λP ≤
µ−1
λE

(ra) := λPµ
(λE) .

Thus, Theorem 2 can be written as follows:

Proposition 4. 1. If λP ≤ λPµ
(λE) , then the model always has a globally asymptotically stable

active-tumor-endemic equilibrium. More precisely,

(a) If λP ≤ λPd
(λE) , then E# =

(
0,

Ka(ra−µλP
(E0))

ra
, E0, P0

)
is globally asymptotically stable.

(b) If λP > λPd
(λE) , then E∗ = (T ∗

d , T
∗
a , E0, P0) is globally asymptotically stable.

2. If λP ≥ λPµ
(λE) , then the model has a globally asymptotically stable active-tumor-endemic equi-

librium if and only if χc ≤ E0

P0
< χd. More precisely

(a) If λP ≤ λPd
(λE) , then E0 = (0, 0, E0, P0) is globally asymptotically stable.

(b) If λPd
(λE) < λP ≤ λPc

(λE) , then E0 becomes unstable and E∗ = (T ∗
d , T

∗
a , E0, P0) exists and

is globally asymptotically stable.

(c) If λPc (λE) < λP , then α
(

E0

P0

)
= 0 and E∗ reduces to E∗0 = (Kd, 0, E0, P0) which is globally

asymptotically stable.
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3.4. Bifurcation analysis and the estrogen paradox:

In this section, we illustrate the bifurcation diagram of system (2.1) that emerges from the results in
Proposition 4. The diagram is constructed by plotting the graphs of the functions λPµ (λE) , λPc (λE)
and λPd

(λE) in a domain of the positive quadrant (λE , λP ). The aim is to portray the areas where the
active-tumor persists and where it is eliminated. For this purpose, we opt to use the following functions:

� The activation rate is given by

α(χ) =

{
0 if χ < χc

α1

(
1− ek(χc−x)

)
if χ ≥ χc.

By using this function, we suggest that: (a) the activation of dormant cells takes place only when
the ratio between estrogen and p53 levels is larger than some threshold value χc, and (b) as this
ratio increases, the activation rate of dormant cells grows smoothly to reach a maximum activation
rate α1. We note that the proposed function, whose graph is presented in Figure 3.1, is smooth
enough to ensure the well-posedness of model (2.1).
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Figure 3.1: Profile of the activation rate as a function of the ratio of estrogen to p53 for α1 = 0.5, k = 0.1 and χc = 5.

� To account for the estrogen-induced inhibition of p53 that is reported in [44], we propose that the
function β (E) is increasing and choose to use, for simplicity, the linear form

β (E) = ωE.

In this case, the functions λPx
(λE) :=

(µP+β(E0))E0

χx
, x = c, d read as

λPx
(λE) =

1

χx

(
µP + ω

λE

µE

)
λE

µE
.

Clearly, λPx (λE) is an increasing function in λE , with 0 being the only positive root.

� Finally, we want the function µ(E,P ) to increase with respect to E and P to reflect the biological
fact that both estrogen and p53 induce cancer cell apoptosis [4, 5, 42, 43, 50]. We choose the simple
linear function

µ(E,P ) = ζ + ηE + υP.
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In this case, the function µλE
is given by µλE

(λP ) = ζ+ ηλE

µE
+ υλP

µP+
ωλE
µE

. Clearly, µλE
is increasing,

which implies that it is invertible, and the condition µλE
(λP ) ≤ ra is equivalent to λP ≤ µ−1

λE
(ra) =

1
υ

(
µP + ω λE

µE

)(
ra − ζ − ηλE

µE

)
.

To depict the bifurcation diagram of system (2.1), we explore the relative positions of the curves
λPc (λE) , λPd

(λE) and

λPµ
(λE) :=

1

υ

(
µP + ω

λE

µE

)(
ra − ζ − ηλE

µE

)
It is easy to see that if ra ≤ ζ, then λPµ

(λE) ≤ 0, implying that λPµ
(λE) ≤ λPx

(λE), x = c, d. Moreover,

if ra > ζ, then we obtain from λPµ
(λE) − λPx

(λE) =
1

υ

(
µP +

ω

µE
λE

)(
ra − ζ − υ + ηχx

µEχx
λE

)
that

λPx
(λE) ≤ λPµ

(λE) if and only if 0 ≤ λE ≤ λEx
:=

χxµE (ra − ζ)

υ + ηχx
.

We note that the quadratic function λPµ
(λE) is an open-down parabola that reaches its maximum λPµm

:=

(ω(ra − ζ) + ηµP )
2

4υηω
> 0 at λEm

=
(ω(ra − ζ)− ηµP )µE

2ωη
, which is positive if and only if ra > ζ +

ηµP

ω
.

Thus, depending on the location of λEm
with respect to 0, λEx

, x = c, d, and that of λPµ
(0) with respect

of λPµ(λEx), x = c, d, system (2.1) exhibits one of the bifurcation diagrams presented in Figures 3.2 and
3.3.

(a) ra > ζ +
ηµP
ω , λEm < λEc ,

λPµ (λEc ) ≤ λPµ (0)
(b) ra > ζ +

ηµP
ω , λEm < λEc ,

λPµ (λEd
) ≤ λPµ (0) ≤ λPµ (λEc )

(c) ra > ζ +
ηµP
ω , λEm < λEc ,

λPµ (0) ≤ λPµ (λEd
)

(d) ra > ζ +
ηµP
ω , λEm > λEd

Figure 3.2: Bifurcation diagrams of model system (2.1). The green and red areas emerge from Proposition 4. Active-tumor
cells are eliminated in the green areas and persist in the red ones. The figure shows the estrogen paradox and its paradoxical
long-term effect
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(a) ra > ζ +
ηµP
ω , λEc ≤ λEm ≤ λEd (b) ζ < ra ≤ ζ +

ηµP
ω . (c) ra ≤ ζ

Figure 3.3: Bifurcation diagrams of model system (2.1). The green and red areas emerge from Proposition 4. Active-tumor
cells are eliminated in the green areas and persist in the red ones. The figure shows the estrogen paradox without its
paradoxical long-term effect

Using Figures 3.2 and 3.3, we put forward plausible biological explanations of the estrogen paradox
and the paradoxical tumor recurrence that results from prolonged HDE treatment.
In fact, if we start with a pair (λE , λP ) in any of the green domains located on the left of these bifurcation
diagrams and gradually increase λE , then one of the following scenarios will take place:

1. In Figures 3.2(a) - 3.2(d) we observe that:

i. If λP ∈ (λPµ1
, λPµm

), then as λE increases, the pair (λE , λP ) crosses first from the green domain
into the red one, then it crosses into the subsequent green domain, after which it enters the red
one (either by increasing λE or decreasing λP ). Lastly, the pair crosses into the green domain and
stays in it for larger values of λE .
It is worth noting that for realistic parameter values the last crossing to the green domain may not
occur, suggesting that the paradoxical role of estrogen in the occurrence, elimination and recur-
rence of breast cancer may be attributed to the trade-offs between estrogen and p53 represented
by the bifurcation curves λPµ (λE) and λPx (λE) , x = c, d.

ii. If λP /∈ (λPµ1
, λPµm

), then as λE increases, the pair (λE , λP ) crosses first from the green domain
into the red one, then it crosses into the subsequent green domain and remains in it for large
values of λE .
This suggests that under certain conditions, the estrogen paradox may occur without its para-
doxical long term effect, whereby treatment with HDE may succeed in eliminating breast cancer
without the risk of cancer recurring after a prolonged treatment period.

2. In Figures 3.3(a) - 3.3(c) we notice that the behavior described in 1.ii. holds for all λP > 0.

Essentially, the results above attribute the paradoxical role of estrogen in the occurrence, elimination
and recurrence of breast cancer to some trade-offs between estrogen and p53 which are described by the
bifurcation curves in Figures 3.2 and 3.3. Additionally, and more importantly, these results suggest that
the paradoxical cancer recurrence that emerges from prolonged HDE treatment may be prevented if (a)
λP /∈ (λPµ1

, λPµm
) and the conditions stated in Figures 3.2(a) - 3.2(d) hold, or (b) the conditions in

Figures 3.3(a) - 3.3(c) are satisfied. We note that these conditions can be expressed explicitly in terms
of the parameters of α, µ and β, by replacing λEm

< λEx
and λPµ

(0) < λPµ
(λEx

) respectively with the
conditions ω (υ − ηχx) (ra − ζ) < ηµP (υ + ηχx) and ηµP (υ + ηχx) < ωυ(ra − ζ).

4. Numerical analysis:

In this section, we run some numerical simulations to monitor the impact of the estrogen supply
rate on the model’s behavior, and corroborate the results presented in Proposition 4. For the sake of
our numerical investigation, we chose to use χc = 5, α1 = 0.5, k = 0.1, ω = 0.002, ζ = 0.3, η = 0.002
and υ = 0.004. We first construct the bifurcation diagram of model (2.1) corresponding to these values.
Then, building upon the resulting diagram, we run some numerical simulations to monitor the impact of
the estrogen supply rate on the model’s behavior and confirm scenarios presented in Proposition 4.
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In Figure 4.1, we present the bifurcation diagram of (2.1) which is constructed in Matlab by plotting
the curves λPµ (λE) and λPx (λE) , x = c, d, using the above parameter values and the values given in
Table 2.2.

Figure 4.1: Bifurcation diagram of model system (2.1) in a positive domain of the (λE , λP ) plan. The green and red areas
emerge from Proposition 4. Active-tumor cells are eliminated in the green area and persist in the red part.

Figure 4.1 shows that when λP ∈ (4.5, 5.7), the estrogen paradox occurs alongside the paradoxical
tumor recurrence that results from prolonged HDE treatment, while when λP > 5.7 or 1.4 < λP < 4.5,
the estrogen paradox can occur without its long term paradoxical effect.
We must point out that the biological feasibility of these ranges depends on the parameters of α, µ and
β. Hence, it is crucial to accurately estimate the functions α, µ and β in order to determine the interplay
between estrogen and p53 that is behind the estrogen paradox and its paradoxical long term effect.
However, due to the lack of clinical and experimental data, difficulties arise in obtaining biologically
backed expressions for these functions.

4.1. Constant supply rates:

To further elucidate the bifurcation results in Figure 4.1 and their relation to the estrogen paradox, we
perform numerical simulations of model (2.1) that emulate scenarios 1. and 2. presented in Proposition
4. Particularly, we aim to explore the prospects of cancer occurrence, elimination caused by antiestrogen
treatment, elimination due to treatment with HDE, recurrence caused by prolonged HDE treatment, and
recurrence generated by a drop in p53 levels. To set ourselves within the framework of simulating the
scenarios mentioned above, we use the parameter values given in Table 2.2 and allow λE and λP to vary
in a domain that accommodates all these scenarios.

We start by choosing λP = 5. Noting that the condition µλE
(λP ) = 0 holds if and only if λE = 38 or

λE = 89, and that the condition µPc (λP ) = 0 is satisfied if and only if λE = 104, we choose λE to be equal
to 30, 60, 94, 115 and 132. Finally, for each of these values of λE , we allow λP to drop from 5 down to
values that accommodate the aforementioned scenarios. We use the Matlab solver ode45, to numerically
solve system (2.1) over a large enough period to reflect the long-term evolution of the system towards its
equilibrium states. The initial conditions are chosen so that at time t = 0, the dormant tumor cells are at
25% of the maximum carrying capacity, and the estrogen and p53 levels are assumed to be at 25% of their
values at equilibrium. The initial condition for active tumor cells is chosen to be equal to 0, or 103 if the
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activation rate α is equal to zero, that is when
E0

P0
≤ χc, where E0 =

λE

µE
, P0 = λP

µP+β(E0)
. Accordingly, the

initial conditions for all the simulations are given by: Td (0) =
1
4Kd, E (0) = 1

4E0, P (0) = 1
4P0, Ta (0) = 0

if
E0

P0
> χc and 103 otherwise.

Figures 4.2 - 4.8 describe the evolution of dormant and active cancer cells during 104 days for the
chosen values of λE and λP . We observe that the population of cancer cells stabilizes at equilibrium points
that are equal to the ones derived in Proposition 4. More specifically, we have the following results:

(i) If λP = 5 and the level of estrogen supply is kept bellow 38, then system (2.1) stabilizes at an
active-tumor free equilibrium point as shown in Figure 4.2. This is because the activation rate is
too small to sustain the activation of dormant tumor cells.
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Figure 4.2: Plots indicating the temporal evolution of dormant and active cancer cells for λE = 30 and λP = 5. In this
case, we have λPµ = 4.51, λPc = 0.506, implying that λP ≥ λPµ and λP ≥ λPc . The plots show that the system converges
to a dormant-tumor endemic and active-tumor free equilibrium, confirming the result in item 2.c of Proposition 4.

(ii) However, if λP is kept at the same value, but λE increases to enter the range (38, 89) - by hormonal
therapy or overproduction, or due to lifestyle changes - then, as in Figure 4.3, system (2.1) stabilizes
at a dormant-tumor endemic and active-tumor endemic equilibrium point. This is because the
activation rate α is high enough to activate dormant tumor cells, while the mortality rate µ is still
too small to eliminate the resulting active tumor cells.
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Figure 4.3: Simulations depicting the temporal evolution of dormant and active cancer cells for λE = 60 and λP = 5. In this
case, we have λPµ = 5.69, λPd

= 1.23 implying that λP ≤ λPµ and λP ≥ λPd
. The plots indicate that the system converges

to a dormant-tumor endemic and active-tumor endemic equilibrium, confirming the result in item 1.b of Proposition 4.

(iii) In case (ii) above, antiestrogen drugs such as tamoxifen can be prescribed to decrease estrogen supply
levels below 38 which would result in the elimination of active-tumor cells, as shown in Figure 4.2.
If breast cancer cells are resistant to antiestrogen therapy, then treatment with HDE can be used to
increase λE to the moderately high range (89, 104) where the active-tumor is eliminated, see Figure
4.4. This is inline with the results in [6–12] which states that treatment with HDE causes regression
of hormone-dependent breast cancers.
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Figure 4.4: Simulations illustrating the temporal evolution of dormant and active cancer cells for λE = 94 and λP = 5. In
this case, we have λPµ = 4.72, λPc = 4.14 implying that λP ≥ λPµ and λP ≥ λPc . We observe that the system converges
to a dormant-tumor endemic and active-tumor free equilibrium, confirming the result in item 2.c of Proposition 4.

(iv) By contrast, Figure 4.5 shows that the tumor relapses again when λE is further increased beyond
the value 104 (while λP = 5). This occurrence could be due to the fact that although estrogen
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increases the rates of both dormant-tumor cells’ activation and active-tumor cells’ apoptosis, the
balance between these two increases favors active-tumor cells’ growth.

10
0

10
1

10
2

10
3

10
4

10
5

Days

0

5

T
a

10
10

 T
a
 = 4.82e+10

E
 = 115, 

P
 = 5; 

P
   

P
 = 2.9, 

P
d

 = 4.22   
P
   

P
c

 = 6.1

0

1

3

T
d

10
10

T
d
 = 4.81e+10

Figure 4.5: Simulations showing the temporal evolution of dormant and active cancer cells for λE = 115 and λP = 5. In
this case, we have λPµ = 2.9, λPd

= 4.22 and λPc = 6.1 implying that λP ≥ λPµ and λPd
≤ λP ≤ λPc . The plots reveal

that the system converges to a dormant-tumor endemic and active-tumor endemic equilibrium, confirming the result in
item 2.b of Proposition 4.

(v) Alternatively to (ii) (respectively (iv)), the supply rate of estrogen could remain equal to λE = 30
(respectively 94), while that of p53 declines until (λE , λP ) falls in the red area of Figure 4.1. In this
case, system (2.1) stabilizes at an active-tumor endemic equilibrium point as shown in Figure 4.6
(respectively Figure 4.7). This scenario happens because the drop in λP , although reduces tumor
cells’ apoptosis, it increases the activation rate to such extent that the balance between estrogen
and p53 levels shifts in favor of the growth of active-tumor cells.
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(a) λP = 0.175;. λP ≤ λPµ and λP ≤ λPd
.
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(b) λP = 0.428. λP ≤ λPµ and λP ≥ λPd

Figure 4.6: Simulation illustrating the temporal evolution of dormant and active cancer cells for λE = 30. In this case,
we have λPµ = 4.51 and λPd

= 0.35. We observe that the system (2.1) converges to a dormant-tumor free and active-
tumor endemic equilibrium (Figure 4.6(a) ) and to a dormant-tumor endemic and active-tumor endemic equilibrium (Figure
4.6(b)). This confirms the result in item 1. of Proposition 4.
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(b) λP = 3.5;λP ≤ λPµ and λP ≥ λPd

Figure 4.7: Simulation depicting the temporal evolution of dormant and active cancer cells for λE = 94. In this case, we
have λPµ = 4.72 and λPd

= 2.87. The plots show that the system (2.1) converges to a dormant-tumor free and active-
tumor endemic equilibrium (Figure 4.7(a) ) and to a dormant-tumor endemic and active-tumor endemic equilibrium (Figure
4.7(b)). This confirms the result in item 1. of Proposition 4.

(vi) The tumor will again be eliminated if the estrogen supply rate increases beyond 126 ( Figure 4.8).
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Figure 4.8: Simulation of the temporal evolution of dormant and active cancer cells for λE = 132 and λP = 3.12. In this
case, we have λPµ = 0.733, λPc = 5.5, implying that λP ≥ λPµ and λP ≤ λPd

. We observe that the system converges to a
dormant-tumor free and active-tumor free equilibrium, confirming the result in item 2.a of Proposition 4.

The simulations above concern the case where the supply rates of estrogen and p53, λE and λP , are
constant. However, in reality these rates do change with time, it is thus of practical importance to further
extend the above simulations to time-dependent supply rates.

4.2. Time-dependent supply rates:

Building upon the bifurcation analysis above, we perform numerical simulation of model (2.1) using
time-depend supply rates. Our aim is to investigate the effects of temporal changes in the supply rates
of estrogen and p53, on the dynamics of active-tumor cells. The main focus is to explore the following
scenarios:

i. tumor development caused by a moderate rise in estrogen levels,
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ii. successful tumor elimination caused by a moderately high rise in estrogen levels,

iii. tumor elimination followed by a recurrence that is caused by a very high rise in estrogen levels,

iv. tumor elimination followed by tumor recurrence that is caused by a drop in p53 levels.

For this purpose, we propose the following hyperbolic tangent type function

ξ(A,B, τ, t) = A+
B −A

1 + e−q(t−τ)
.

This function is infinitely continuously differentiable and has two particular properties; (a) it tends to A
(respectively B) for small (respectively large) values of t, and (b) it move from A to B around the time
t = τ , with a gradient that is controlled by q. We refer to τ as the jump (respectively drop) point if
B > A (respectively B < A).
Using this function, we are now able to construct supply rates λE(t) and λP (t) that behave like ”smoothened”
step functions. We chose q = 0.02 to ascertain an almost instantaneous, but smooth, jump (or drop)
from one value to another at the given jump (or drop) points.
We thus propose the following supply rates:

� λP (t) = ξ(λP1, λP2, τP , t). This function starts and stays at the value λP1 until time t = τP where
it moves to λP2 and remains there for all t > τP .

� λE(t) = ξ(λE1, λE2, τE1, t)+ ξ(0, λE3−λE2, τE2, t). This function starts and stays at the value λE1

until time t = τE1 where it moves to λE2 and remains at this value until t = τE2 where it moves to
λE3.

We chose τP = 365 ∗ 25, τE1 = 365 ∗ 5, and τE2 = 365 ∗ 12.

Regarding the values of λE1, · · · , λE3 and λP1, λP2, we vary them in a way that accommodates the
aforementioned scenarios i. - iv.. The resulting temporal evolution of λE(t), λP (t) and Ta(t) is presented
in Figures 4.9 - 4.12. More precisely, we simulate the following cases:

i. λE1 = 30, λE2 = λE3 = 60 and λP1 = λP2 = 5. In this case, λP (t) is kept constant, while λE(t)
jumps from 30 to 60 around the 5th year. Figure 4.9 system (2.1) stabilizes at an active-tumor
endemic equilibrium. The observed cancer occurrence is attributed to the jump in λE(t) from 30 to
60.
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Figure 4.9: Simulation depicting the temporal evolution of active-tumor cells in the case of time-dependent estrogen and
p53 supply rates. The graphs show the development of an active-tumor due to a rise in estrogen supply rate.
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ii. λE1 = 60, λE2 = 94, λE3 = 94 and λP1 = λP2 = 5, then λE(t) jumps from 60 to 94 around the 5th

year, while λP (t) = 5 for all t ≥ 0. Figure 4.10 shows that the active-tumor is successfully eliminated
soon after the higher rise in estrogen level.
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Figure 4.10: Temporal evolution of active-tumor cells in the case of time-dependent estrogen and p53 supply rates. The
graph indicates the development of an active-tumor caused by a higher rise in estrogen supply rate.

iii. λE1 = 60, λE2 = 94, λE3 = 115 and λP1 = λP2 = 5. In this case, λP (t) = 5 for all t ≥ 0, while λE(t)
jumps from the moderate value of 60 to the moderately high value of 94 around the 5th year and the
very high value of 115 around the year 12. We observe in Figure 4.11 an active-tumor elimination
that starts approximately in year 5 and lasts for 7 years, after which we observe a cancer recurrence.
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Figure 4.11: Simulation illustrating the temporal evolution of active-tumor cells in the case of time-dependent estrogen and
p53 supply rates. The graphs indicate a tumor elimination, caused by a rise in estrogen supply, followed a tumor recurrence
caused by higher rise in estrogen supply rate.

iv. λE1 = 60, λE2 = 94, λE3 = 94 and λP1 = 5, λP2 = 3.5. In this case, λE(t) jumps from 60 to 94 at
the 5th year, while λP (t) drops from 5 to 3.5 around the 25th year. Figure 4.12 shows that the tumor
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is eliminated shortly after the estrogen supply rate increases to high values. This elimination lasts
until year 25, when the supply rate of p53 drops.
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Figure 4.12: Simulation of temporal evolution of active-tumor cells with time-dependent estrogen supply. The graphs show
elimination of active-tumor caused by a very high estrogen supply rate. This elimination lasts until the p53 supply rates
drops (20 years later).

From the scenarios presented above, we see that for a fixed p53 level, tumor occurrence can happen
if the estrogen level is increased from low to moderate values. Further increasing estrogen level to
moderately high values can lead to a successful tumor elimination, which will last as long as estrogen and
p53 are kept at these levels. Otherwise, if the estrogen level is further increased to higher values, or the
p53 supply is decreased, then the active-tumor will recur.

Based on the above, we hypothesize that the interplay between estrogen and p53 levels provides a
plausible biological mechanism that could explain the estrogen paradox and its paradoxical long term
effect.

5. Conclusion:

In this work we proposed a plausible biological mechanism that explains the estrogen paradox in
breast cancer treatment whereby (a) estrogen is one of the risk factors that can cause breast cancer and
tumor regression and (b) short-term treatment with estrogen can successfully eliminate breast cancer
whereas long-term treatment can cause cancer recurrence. We put forward four important factors that
may elucidate the estrogen paradox. These are as follows:

� As in [27, 30], we proposed that there is a reservoir of dormant/occult breast cancers that get
activated and become active-tumor cells.

� Motivated by the work in [4, 5, 39–45, 50], we accounted for the important role that estrogen and
the protein p53 play in dormant cancer cells activation and active-tumor cells apoptosis.

� More importantly, we hypothesized that the activation of dormant cells only kicks in when the ratio
between estrogen and p53 levels becomes sufficiently high.

� Finally, we incorporated the interaction between estrogen and the protein p53 reported in [44].

We developed a novel ODE-based mathematical describing the interaction dynamics between dormant
breast cancer cells, active cancer cells, estrogen and p53. The model accounts for the relationship between
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estrogen and p53, and their roles in the activation of dormant breast cancer cells and the apoptosis
of active tumor cells. We performed a global stability analysis of the model by using the Poincaré-
Bendixson theorem and differential inequalities. Further, by building upon the stability results, we
constructed a bifurcation diagram in terms of the supply rates of estrogen and p53, λE and λP . This
diagram depicted the areas in the (λE , λP ) positive quadrant where breast cancer can (a) occur, (b) be
successfully eliminated, or (c) recur. These findings were further supported by numerical simulations of
the model with constant and time-dependent supply rates.

The results of our global stability analysis and bifurcation have provided invaluable insights into the
apparent paradoxical role of estrogen in breast cancer treatment. The model suggests that the estrogen
paradox and its long-term component could be explained by an interplay (given by the bifurcation curves)
between estrogen and p53. In particular, the following points are worthy of note:

� Breast cancer occurrence may result from a rise in estrogen level or a drop in p53 level.

� Successful elimination of breast cancer may be achieved by antiestrogen drugs or by using high dose
estrogen (HDE).

� Breast cancer recurrence could be caused by a further rise in estrogen level or by a drop in p53
level, with the recurrence time depending on the levels of estrogen and p53.

� Finally, we provide explicit conditions under which the paradoxical cancer recurrence, that emerges
from prolonged HDE treatment, may be prevented.

However, the following important drawbacks prompt further investigation:

� The model ignores the key role that the immune system plays in cancer development and treatment.
An extension of this model would be to include an anti-tumoral immune response.

� The model suffers from a lack of clinical and experimental data that are needed for (a) obtain-
ing biologically backed expressions of the activation and death rates, and, more importantly, (b)
validating the model.

Nonetheless, we believe that our work opens new possibilities for understanding the biological mech-
anisms behind the estrogen paradox, and that the theoretical work carried out in this paper provides
sufficient grounds for further data collection on the interactions between estrogen, p53 and breast cancer.
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6. Appendix

6.1. Proof of Theorem 1

Let us first consider the system formed by the last two equations of (2.1). That is,{
dE
dt = λE − µEE
dP
dt = λP − β (E)P − µPP

(6.1)
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One can see that this system has only one equilibrium point given by
(
E0,

λP

µP+β(E0)

)
. Moreover, we have

that
∂ (λE − µEE)

∂E
+

∂ (λP − βEP − µPP )

∂P
= −µE − β (E)− µP < 0.

Then, by Bendixson’s criterion, system (6.1) has no periodic orbits in R2
+. Thus, by the Poincaré-

Bendixson Theorem,
(
E0,

λP

µP+β(E0)

)
is globally asymptotically stable.

Thus lim
t→∞

E (t) = E0 and lim
t→∞

P (t) = P0. By the continuity property of α and µ, we deduce that

lim
t→∞

µ(E,P ) = µλP
(E0) = µ0 and lim

t→∞
α (E (t) , P (t)) = αλP

(E0) = α0. Hence for all ε > 0, there exists

Tε > 0 such that for all t > Tε, we have |µ(E (t) , P (t))− µ0| < ε and |α (E (t) , P (t))− α0| < ε.
Thus, from (2.1)1, we obtain

Td

(
rd − α0 − ε− rd

Kd
Td

)
<

dTd

dt
< Td

(
rd − α0 + ε− rd

Kd
Td

)
(6.2)

Applying standard results from differential inequalities to the first differential inequality of (6.2), we
obtain

Kd (rd − α0 − ε)

rd
(
1− Ce−t(rd−α0−ε)

) < Td (t) <
Kd (rd − α0 + ε)

rd
(
1− Ce−t(rd−α0+ε)

) for t > Tε. (6.3)

Thus, we have the following cases:

1. If α0 ≥ rd, we show that limt→∞ Td (t) = 0.

(a) In fact, if α0 = rd, then

−Kdε

rd (1− Cetε)
< Td (t) <

Kdε

rd (1− Ce−tε)
for t > Tε.

which by taking the limit as t → ∞ leads to

0 ≤ lim
t→∞

Td (t) ≤
Kdε

rd
.

Thus by taking the limit as ε tends to 0, we obtain limt→∞ Td (t) = 0.
(b) If α0 > rd, then we choose, for any arbitrary ξ in (0, 1) , ε = (α0 − rd) ξ in (6.3). Thus, there

exists Tξ > 0 such that for all t > Tξ , we have

Kd (−ξ − 1) (α0 − rd)

rd
(
1− Ce−t(ξ−1)(α0−rd)

) < Td (t) <
Kd (ξ − 1) (α0 − rd)

rd
(
1− Ce−t(ξ−1)(α0−rd)

) ,
which by taking the limit as t → ∞ leads to limt→∞ Td (t) = 0.
Thus, we have lim

t→∞
α (E (t) , P (t))Td (t) = 0, which by lim

t→∞
µ(E,P ) = µ0, implies that

C− + Ta

(
B− − ra

Ka
Ta

)
<

dTa

dt
< AT 2

a +B+Ta + C+ (6.4)

where A = − ra
Ka

< 0, B± = ra − µ0 ± (α0 − rd) ξ and C± = ± (α0 − rd) ξ.

Since for ξ small enough, we have B2
± − 4C±A > 0, then, by Lemma 5, the general solution of

x′ = Ax2 +B±x+ C± (6.5)

is given by

x± (t) =
2B± +

(√
B2

± − 4C±A−B±

)(
Me−t

√
B2

±−4C±A + 1
)

2A
(
Me−t

√
B2

±−4C±A − 1
) . (6.6)
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Thus, by using results from differential inequalities [51], we deduce from (6.4), (6.5) and (6.6)
that

x− (t) ≤ Ta (t) ≤ x+ (t) ,

which by taking the t → ∞, leads to

2B− +
(√

B2
− − 4AC− −B−

)
2A

≤ lim
t→∞

Ta (t) ≤
2B+ +

(√
B2

+ − 4AC+ −B+

)
2A

.

By taking the limit as ξ → 0, we obtain

lim
t→∞

Ta (t) =
Ka

2ra
((ra − µ0) + |ra − µ0|) .

Hence

i. If ra ≤ µ0, then lim
t→∞

Ta (t) = 0 implying that lim
t→∞

(Td (t) , Ta (t) , E (t) , P (t)) = (0, 0, E0, P0) =

E0.
ii. If ra ≥ µ0, then lim

t→∞
Ta (t) =

Ka(ra−µ0)
ra

implying that lim
t→∞

(Td (t) , Ta (t) , E (t) , P (t)) =(
0, Ka(ra−µ0)

ra
, E0, P0

)
= E#.

2. If rd > α0, then we choose, for any arbitrary ξ in (0, 1) , ε = (rd − α0) ξ in (6.3). Thus, there exists
Tξ > 0 such that for all for t > Tξ, we have

Kd (1− ξ) (rd − α0)

rd
(
1− Ce−t(1−ξ)(rd−α0)

) < Td (t) <
Kd (1 + ξ) (rd − α0)

rd
(
1− Ce−t(1+ξ)(rd−α0)

) .
Taking the limit as t → ∞, we obtain

Kd (1− ξ) (rd − α0)

rd
< lim

t→∞
Td (t) <

Kd (1 + ξ) (rd − α0)

rd
.

Hence, by taking the limit as ξ → 0, we obtain

lim
t→∞

Td (t) =
Kd (rd − α0)

rd
.

This further implies that lim
t→∞

α (E (t) , P (t))Td (t) =
α0Kd (rd − α0)

rd
, which by lim

t→∞
µ(E,P ) = µ0,

implies that

AT 2
a +B−Ta + C− <

dTa

dt
< AT 2

a +B+Ta + C+ (6.7)

where A = − ra
Ka

< 0, B± = ra − µ0 ± (rd − α0) ξ and C± =
α0Kd (rd − α0)

rd
± (rd − α0) ξ.

Since for ξ small enough, we have, C± > 0 implying that B2
± − 4C±A > 0, then by using the same

argument as above, we obtain
x− (t) ≤ Ta (t) ≤ x+ (t) .

where

x± (t) =
2B± +

(√
B2

± − 4AC± −B±

)(
Me−t

√
B2

±−4AC± + 1
)

2A
(
Me−t

√
B2

±−4AC± − 1
) .

Taking the limit as t → ∞ leads to

2B+ +
(√

B2
+ − 4AC+ −B+

)
2A

≤ lim
t→∞

Ta (t) ≤
2B− +

(√
B2

− − 4AC− −B−

)
2A

,
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which, by further taking the limit as ξ → 0, we obtain

lim
t→∞

Ta (t) =

Ka

(
ra − µ0 +

√
(ra − µ0)

2
+ 4Kd(rd−α0)α0

rd
ra
Ka

)
2ra

= T ∗
a .

Thus (Td (t) , Ta (t) , E (t) , P (t)) converge to E∗ = (T ∗
d , T

∗
a , E0, P0) .

6.2. Lemma 5 and proof:

Lemma 5. Using partial fractions we can show that if B2 − 4AC > 0, then the general solution of
equation

x′ = Ax2 +Bx+ C (6.8)

is given by

x (t) =
2B +

(√
B2 − 4AC −B

) (
Me−t

√
B2−4AC + 1

)
2A

(
Me−t

√
B2−4AC − 1

) ,

where M is an arbitrary constant.

Proof. If B2 − 4AC > 0, then equation (6.8) can be written as

dx

dt
= A (x− x1) (x− x2) .

where x1 = −B−
√
B2−4AC
2A and x2 = −B+

√
B2−4AC
2A .

Using the method of separation of variables in conjunction with partial fractions decomposition, we find
that the general solution of this equation is

x =
x1 − x2Me(x1−x2)At

1−Me(x1−x2)At
.

Hence

x (t) =
2B +

(
−B +

√
B2 − 4AC

) (
1 +Me−t

√
B2−4AC

)
2A

(
Me−t

√
B2−4AC − 1

) . (6.9)
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