
RESEARCH ARTICLE

A method to predict overall food preferences

Vilis O. NamsID
1*, Matt W. Hayward2,3

1 Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University,

Truro, Nova Scotia, Canada, 2 School of Environmental and Life Sciences, University of Newcastle,

Callaghan, New South Wales, Australia, 3 Mammal Research Institute, University of Pretoria, Hatfield,

Pretoria, South Africa

* vilis.nams@dal.ca

Abstract

Most natural ecosystems contain animals feeding on many different types of food, but it is

difficult to predict what will be eaten when food availabilities change. We present a method

that estimates food preference over many study sites, even when number of food types vary

widely from site to site. Sampling variation is estimated using bootstrapping. We test the pre-

cision and accuracy of this method using computer simulations that show the effects of over-

all number of food types, number of sites, and proportion of missing prey items per site.

Accuracy is greater with fewer missing prey types, more prey types and more sites, and is

affected by the number of sites more than the number of prey types. We present a case

study using lion (Panthera leo) feeding data and show that preference vs prey size follows a

bell-curve. Using just two estimated parameters, this curve can be used as a general way to

describe predator feeding patterns. Our method can be used to: test hypotheses about what

factors affect prey selection, predict preferences in new sites, and estimate overall prey con-

sumed in new sites.

Introduction

Most natural ecosystems contain animals feeding on many different types of food, but it is dif-

ficult to predict what will be eaten when food availabilities change. Ecologists face this issue all

the time. For example, if we introduce a biocontrol agent then will it escape regulation by pred-

ators? Or if climate change shifts the range of a plant species then how will that affect feeding

on other plants eaten by a common herbivore? Or if an invasive species appears then how will

its predators respond? We need to be able to predict food preference for any combination of

food types.

At the moment, theories of predator behaviour explain processes in current study sites but

do not predict preference in new study sites. Such theories include optimal foraging [1–3] and

more specific theories on frequency-dependent predation [4, 5], prey-switching [6, 7], ideal-

free distributions [8, 9], and functional responses [10–12]. These theories were not developed

to predict preferences in new study sites.

There have also been some excellent studies looking at how dietary preference varies with

factors such as amounts of food [7, 13], seasonality [14, 15] or habitat [16, 17]. However, these
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studies have all been limited to narrow conditions. It has been difficult to predict on a large

scale how preference varies with density or habitat or season, because it is difficult to disentan-

gle effects of those factors vs the effects of other food types. One of us (MWH) has simply aver-

aged preferences over many sites, assuming that large sample sizes from diverse food

communities across large geographic areas will account for the challenges of comparing pref-

erences between diverse communities [18–20].

One main reason for this general paucity in predicting preferences is methodology. While

there is a mature field of study about ways to estimate prey preference in one study site [21–

25], there is no method to combine preference estimates from many study sites and then pre-

dict preference in a new study site that has a unique combination of prey types.

The difficulty in combining prey preferences over many sites arises from the fact that all

measures of preference are relative to the prey items present at individual sites. Just adding or

subtracting one prey type may completely change preferences for the other prey; thus, it is dif-

ficult to combine preferences among sites that have different types of prey.

For example, suppose a predator prefers 4 prey items in this order A>B>C>D. In a site

containing only prey items C & D, the predator would select for C. In a site containing prey

items A, B, C, the predator would select against C. It is not known how to combine data from

those 2 sites to predict selection when all prey are present. One would estimate that both C and

B have intermediate selection values but it is not known how to estimate overall preference for

B vs C. The problem is much more difficult when 20 prey species exist in 40 different sites.

Previous studies have calculated prey preference values for each prey type within each study

site, then averaged these individual preference values over all study sites for each prey type [26,

27]. The problem with this is that prey preference estimates within one study site are relative

to the prey types present and thus cannot be directly combined with other study sites. Johnson

[28] developed a method to combine preferences estimates, but rather than estimating a spe-

cific preference, the method estimated a rank for each prey item.

We present a method that estimates overall prey preference by combining data over many

study sites, even when not all sites contain all prey items. Our method adjusts for the relative

nature of preferences at individual study sites, allowing one to predict feeding preferences in

new study sites, or when prey items change. This method also produces estimates of sampling

variation, and thus, confidence intervals for preference estimates. We show how to increase

precision by weighting the estimates by both prey densities and sampling effort. We then illus-

trate the method with a simple numerical example and test the method’s accuracy and preci-

sion using simulations. Finally, we show an example application using data from lion

(Panthera leo) feeding.

The proposed method

The aim is to estimate overall feeding preference by one species of animal, based on data from

more than one study site. Since our method is based on iteration, we will call this the Iterative

Preference Averaging (IPA) method. Note that, following convention, we refer to foods as

“prey”, and the feeder as the “predator”. However, our method applies to all types of animals,

not just predators, and the selected items could be vegetation, or even non-food items, such as

types of habitat. All analyses were carried out using the Wolfram Language [29], and R code

for the final method is given in Nams & Garnett [30]. See Fig 1 for an overview.

Data input

At each site there is a list of prey items that the predator eats, and for each prey item we have

estimates of abundance and consumption. Abundance estimates can originate by any means
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(e.g. transect counts [31], capture-recapture [32], or track counting [33]), and do not have to

be absolute (i.e. one can use indices of abundance). Similarly, the measures of prey consump-

tion can originate by any means (e.g. DNA analysis of stomach contents [34], direct counts of

the number of kills [35], or hair identification from scat contents [36]). Prey abundance and

consumption estimates can be obtained by different methods at each site, as long as the same

methods are used at each site. Thus, IPA is a robust method that can be used for meta-analyses

combining results of many studies.

Details

Let m = number of sites,

n = overall number of prey items,

Fig 1. Overview of method.

https://doi.org/10.1371/journal.pone.0268520.g001
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dij = density of prey item j at site i

eij = amounts of prey item j consumed at site i.

Step (i). At each site we estimate within-site preferences for those prey that are available:

/ij ¼

eij
dij
P

j

eij
dij

ð1Þ

Note that the/ij all sum to 1 for each site, and j is summed over all prey types present in

site i, (not all prey are available at each site). This preference estimate is the Manly’s/ [22, 23].

We want to estimate:

pj = overall prey preference for prey item j. This is equivalent to an overall/j when all prey

types are present.

We explain the procedure with an example.

Suppose we have m = 4 sites and n = 6 prey types. The within-site preferences (/) are given

by the following matrix, where columns are prey types and rows are sites. The dashes show

when the prey type is not present at that site.

ð2Þ

Step (ii). We are estimating overall prey preferences iteratively. We start with some initial

values of overall prey preference (pi values), and then update these at each iteration k. For the

first iteration we choose equal values that sum to 1, and for the kth iteration, we use the aver-

ages summed over all sites.

Step (iii). The α values at each site initially sum to 1. These are then scaled to the values you

would expect if all prey were at that site—this step is the key to the whole method. This scaling is

done because preferences cannot be simply averaged over sites, because at each site they are rela-

tive to each other—i.e. they sum to 1, even though some prey are missing. Thus, in order to com-

bine them, we rescale the preferences so that they would sum to 1 if all prey items were present.

We calculate this scaling constant by the following. Since all prey items are not present, we

replace the missing prey items with the overall prey preference estimates. Then we choose the

constant so that the new preferences sum to one.

Let p̂�jk = the estimate of prey preference for prey type j, averaged over all sites (i.e. overall

preference), for the kth iteration of the estimation process,

p̂ijk = the estimate of prey preference for prey type j, at site i (i.e. within-site preference), for

the kth iteration of the estimation process,

P̂k = the matrix of all preference estimates for each prey type at each site, for the kth iteration

of the estimation process,

p̂k = the vector of overall estimates of prey preference, for the kth iteration of the estimation

process,

p̂ = the final vector of overall estimates of prey preference,

Ai = the set of prey items that are available in site i,

Mi = the set of prey items that are missing in site i,
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ci = the constant that rescales all preferences

These new preferences in each site all sum to 1—i.e.:

X

j2Ai

ci/ij þ
X

j2Mi

p̂�jk ¼ 1 ð3Þ

If we re-arrange Eq (3), noting that the/ij sum to one, and solve for ci, we get that the scal-

ing constant for each site is

ci ¼ 1 �
X

j2Mi

p̂�jk ð4Þ

For example, in site 1 prey types {1,2,4,5} are present, and thus all of the preference values

in site 1 are scaled by:

c1 ¼ 1 � ðp̂�1k þ p̂�2k þ p̂�4k þ p̂�5kÞ ð5Þ

ð6Þ

Step (iv). The missing values in matrix (6) are replaced by the current estimates pjk, giving:

ð7Þ

This matrix gives p̂ijk; the estimates for the kth iteration for within-site preferences for each

prey type at each site. Note that each row now sums to 1.

Step (v). The overall prey preferences for the next iteration are estimated by the means of

the columns in matrix (7). E.g. the overall preference for prey item 1, for the next iteration

would be:

p̂1�kþ1 ¼
1

m

Xm

j¼1

p̂1jk ¼
1

4
ðc1a11 þ p̂1k þ c3a31 þ p̂1kÞ ð8Þ

Step (vi). Compare the new estimate for overall preference to the one used in step (ii). If

there is a change in the estimates, then repeat steps (ii)–(v) with the same initial table of prefer-

ences but with the new vector of overall prey preferences. The result is a set of overall prefer-

ence estimates. These preferences range from 0 to 1 and sum to 1, and the important aspect is

their values relative to each other, not their absolute values.

Step (vii). Ecological estimates should always have a measure of their error [37]. This can

be estimated using bootstrapping [38], treating each site as an independent sample. Briefly,

this would involve taking a random number of m rows (sampled with replacement) from the
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matrix in Eq (2) and then estimating preferences using IPA. This would be repeated many

times (typically 1,000–10,000) [38], and the mean and standard deviation values calculated

from the random sample estimates. After each bootstrapping sample, the preferences should

be transformed by arcsine(2 x − 1) (since prey preferences represent a proportion, and propor-

tions are known to have variances that depend on the mean). Then means, variances, and con-

fidence intervals would be estimated. The means and confidence intervals should be back-

transformed. Note that bootstrapping is not a replacement for adequate sampling—i.e. since

the sampling units are sites, using very few sites will result in low precisions (wide confidence

intervals).

Preliminary simulations showed that using this transformation significantly increased accu-

racy of the estimates.

Weighting

These estimates can be improved by appropriate weighting, since variances among prey prefer-

ence estimates are not equal. Typically these variances are not known, however they are

decreased by sampling more predators and in areas of higher prey density. For example, the

preference estimate would be very variable for rare prey types. Thus we can use inverse-vari-

ance weighting [39] to minimize variation of the overall preference estimates, by weighting by

prey consumption effort and/or density. Note that this can only be done when prey consump-

tion and/or density are estimated by the same methods across all sites.

Prey consumption effort weighting is carried out as follows. For each prey type the preci-

sion of overall preference would be affected by the total number of feeding samples collected at

each site. Let:

fi = sample size used to estimate prey consumption—e.g. number of individuals eaten, number

of scats, etc.

Weighting Eq (8) by feeding sampling effort gives:

p̂1�kþ1 ¼

Xm

i¼1

f i p̂ijk

Xm

i¼1

f i

ð9Þ

Density weighting is carried out as follows. Let

Ai = the set of prey items that are available in site i, and

ni = number of prey types present at site i—thus, ni = |Ai|.

Since not all prey types are at each site, there are some missing values in the densities dij.

We handle them by imputation—i.e. by substituting the mean density of all other prey at that

site. Thus, if prey type s is not present at site i, then for it’s density we use:

dis ¼
1

nij

X

j2Ai

dij ð10Þ
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Weighting Eq (8) by relative prey densities gives an estimate for overall preference for prey

type 1 for the next iteration of:

p̂1�kþ1 ¼

Xm

i¼1

rij p̂ijk

Xm

i¼1

rij

ð11Þ

Weighting by both prey consumption effort and prey densities is carried out by weighting

Eq (8) as follows:

p̂1�kþ1 ¼

Xm

i¼1

f irij p̂ijk

Xm

i¼1

f irij

ð12Þ

A numerical example

In this toy example, there are 6 prey types at 4 sites.

Step (i). The values in each cell are within-site preferences—note that rows sum to 1 for

each site.

ð13Þ

Step (ii). We start with initial estimates of equal values of overall preference for the first

iteration:

p̂1 ¼ ½0:167 0:167 0:167 0:167 0:167 0:167� ð14Þ

Step (iii). We rescale the/ij values by multiplying (for each site) by Eq (4):

c ¼ ½0:667; 0:833; 1; 0:833� ð15Þ

to get:

ð16Þ
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Step (iv). We replace the missing values by the overall preferences from Eq (14):

ð17Þ

Step (v). We estimate new overall values of overall preference by the mean of the values at

each site. Thus overall preferences for all prey types at iteration #2 are:

p̂2 ¼ ½0:197 0:138 0:216 0:057 0:186 0:206� ð18Þ

For example, the overall preference for prey type 1 (0.197) is the mean of the values in col-

umn 1 in matrix (17).

Repeating steps (ii)–(iv)\

ð19Þ

Step (v).

p̂3 ¼ ½0:197 0:132 0:221 0:055 0:184 0:211� ð20Þ

Repeating steps (ii)–(iv)

ð21Þ

Step (v).

p̂4 ¼ ½0:196 0:131 0:222 0:055 0:184 0:212� ð22Þ

The overall preferences estimates show little changes between the 3rd and 4th iteration (Eqs

(20) vs (22). Thus, the final estimate for overall preferences for each prey type is given by Eq

(22).

Simulation tests

Methods

We tested the accuracy and precision of IPA using simulations. We varied the number of prey

types, number of sites and the proportions of prey types missing per site. For each simulation,

overall preferences (pi) were generated using a uniform distribution. Then mean prey density
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for each site was generated using a normal distribution with a mean of 100 and a coefficient of

variation of 0.5, truncated to a minimum value of 5. Then the density of each prey type within

each site was generated using a normal distribution with a mean of the site prey density and a

coefficient of variation of 0.5. “Preference” was treated as the probability of choosing a prey

item each time it was encountered. Thus the number of prey consumed for each prey type

within each site was generated using a binomial distribution with a mean of pi and an n of

prey density. Finally, sites with incomplete collections of prey were simulated by using a bino-

mial random number generator to randomly drop prey types from each site.

We ran simulations for all combinations of # of sites = 5, 10, 20, # of prey types = 4, 6, 10,

20, 50, and the proportion of missing prey types at each site = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, .7,

0.8. We ran 100 replications for each combination of parameters. For each replication, we gen-

erated estimates of prey preference.

We then used bootstrapping to estimate confidence intervals with 100 bootstrapping sam-

ples. Confidence intervals were estimated using the bias-adjusted Studentized bootstrap [40].

We compared the IPA estimates to simply averaging preferences over all study sites (we will

call this “Averaged Preference”). We calculated those indices for prey types at each site, and

then calculated the mean for each prey type over all sites (while ignoring the missing prey

types at each site).

Results

IPA gave more accurate and precise estimates of overall prey preference compared to the aver-

aged preference. For example, Fig 2 shows the results of a simulation with 100 sites, 6 prey

types, 50% of prey types present (varying from 10–90%) at each site, and 100 replicates. The

averaged preference overestimates preference when preference is low and underestimates

when preference is high. The lower precision and accuracy of the averaged estimates show the

difficulty of estimating overall preference without considering missing prey types at each site.

The IPA estimates are more precise when they are weighted by both prey densities and

number of feeding samples for most combinations of parameters (Fig 3). Confidence intervals

for weighted estimates are about 75% narrower than those for unweighted estimates. Weight-

ing is more effective with a large number of sites. The proportion of missing prey types, the

number of prey types and number of sites interact to affect precision. Precision is greater with

fewer missing prey types, more prey types and more sites.

Accuracy of bootstrapped estimates of confidence intervals varies with prey characteristics.

The proportion of missing prey types, and the number of prey types and sites, all interact to

affect accuracy. Generally, accuracy is greater with fewer missing prey types, more prey types,

and more sites, for most combinations of parameters (Fig 4). There is little effect of weighting

on accuracy. When there are more than 20 prey types, then bootstrapped confidence intervals

are slightly too narrow—e.g. when there are less then 0.3 of prey types missing in each site, esti-

mated 95% confidence intervals are actually like 90%.

Case study

We illustrate the IPA method with lion feeding data [41] that includes 56 sites and 42 prey spe-

cies. The high proportion of absent species at each site (0.7) should decrease accuracy and pre-

cision of the estimators, but the high number of sites and species should increase precision

(Fig 3), and the high number of sites should increase accuracy (Fig 4). We estimated the overall

preference of each prey type using both weighted and non-weighted estimators. To display the

results, we ranked them according to prey weight and then fitted the general bell-shaped
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Fig 2. IPA is more accurate and precise than averaging. Simulation results comparing IPA to averaging. The list of

prey types (x-axis) comprises 6 prey types x 100 replicates = 600 prey types, sorted by preference. (A) The averaged

preference is simply averaging preferences over all study sites. (B) IPA is the method presented in this paper.

https://doi.org/10.1371/journal.pone.0268520.g002
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function:

pref ¼ k3e
�
ðwt� k1Þ

2

k2
2 ð23Þ

where k1, k2, k3 = fitted parameters

pref = overall prey preference estimated by IPA

wt = log(prey weight).

Since the preferences are relative to each other, we scaled them so that the maximum func-

tion value would be 1—i.e. the preferences are all scaled relative to the maximum. We did not

estimate the weighted IPA estimates because prey density and consumption surveys were not

carried out in the same manner among sites.

Analysing overall preference by prey weights in this way yields several biological insights.

First, we can describe feeding preferences by just using two parameters, representing the mean

(k1) and standard deviation of the feeding curve (k2) (NB: not k3, since this is the same for all

values of preference). k1 is a measure of average size of prey eaten, and k2 is a measure of feed-

ing specialization (the width of the curve). If other predators fit similar curves, we can use

those parameters to compare different predators and to estimate competition among predators

living in the same system.

Second, we can estimate prey consumption by predators in systems with many prey types.

Typically, potential prey consumption has been measured by classifying potential prey as

either preferred vs non-preferred [42]–this assumes that the only preference choices are

completely for or against. We can use this fitted curve to scale densities of each prey type

according to preference, in order to get realistic estimates of prey consumption.

Fig 3. Weighting can increase precision of IPA estimates. Precision of weighted bootstrapped estimates of IPA are compared to unweighted estimates for

simulated data. Smaller values mean a greater precision. Confidence intervals were estimated by bootstrapping 100 replications of each combination of

parameters. Confidence interval width for the weighted estimate is divided by that for the unweighted—thus, values< 1 mean that precision of weighted is

greater than the unweighted.

https://doi.org/10.1371/journal.pone.0268520.g003
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Fig 4. IPA gives accurate estimates when there are fewer prey types, smaller proportions of missing types per site, and more sites. Accuracy of weighted

and unweighted bootstrapped estimates of IPA are estimated for simulated data. Confidence intervals were estimated by bootstrapping 100 replications of

each combination of parameters. The Y axis is the proportion of results that are within 95% confidence intervals—thus, higher values are better. The gray

region shows the proportion of results inside each 95% confidence interval—i.e. these are accurate estimates. There was no difference in accuracy between

weighted and unweighted estimates.

https://doi.org/10.1371/journal.pone.0268520.g004
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Finally, we can identify prey types that merit more research. If overall preference for some

prey type significantly deviates from the preference vs size curve, this means that the predator

selects for that prey using other properties than just prey size. For example, lions prefer wilde-

beest (Connochaetes sp) more than any other prey species (Fig 5), and the confidence intervals

for preference are outside of the preference vs size curve, showing that wildebeest are preyed

upon more often than expected simply due to their size. This is supported by results showing

that that wildebeest selection is also affected by rainfall [43].

Discussion

Sampling issues

There is some flexibility in how input data are gathered. The data input to IPA are prey abun-

dances and consumption. But, because the method uses relative preferences, these data do not

have to be estimated in the same way among sites—just the same within each site. Thus, one

could estimate relative consumption based on scat analysis at one site and stomach contents at

another site.

However, using the weighting when estimating sampling variation does somewhat limit

application. IPA can use two kinds of weighting: based on prey densities and the total number

of feeding samples in a site. Both types of sampling have to be carried out in the same way for

all sites.

Fig 5. Lion prey preferences show a sigmoidal relationship based on prey weight. Prey preference is estimated for lion prey items from a series of study

sites. Each dot represents one prey type and bars represent 95% confidence intervals. The solid red line represents a best-fit curve for a symmetrical curve of

estimated relative overall preference vs log(prey weight) and the shaded areas represent 95% mean prediction bands.

https://doi.org/10.1371/journal.pone.0268520.g005
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IPA overall preferences may need to be scaled appropriately, depending on how they are

used. Overall preferences are relative to each other and sum to one. But if one wants to predict

preferences in a new site with a more limited set of prey types, then those preferences no lon-

ger sum to one. Thus overall preferences need to be scaled according to the prey types available

at that site, as follows:

If A = the set of prey items that are available in the new site, then the predicted preferences

for prey type j in that study site are:

p̂jX

j2A

p̂j

ð24Þ

For example, suppose that there are 10 species, and overall preferences are estimated to be:

½0:15; 0:05; 0:2; 0:05; 0:24; 0:2; 0:03; 0:03; 0:01; 0:04�; ð25Þ

and the new site has prey species {1,3,4,7,8} present. Then we would scale preferences for those

species by 0.15+0.2+0.05+0.03+0.03, and get predicted preferences in the new site as:

½0:326; ; 0:435; 0:109; ; ; 0:065; 0:065; ; � ð26Þ

The preferences need to be scaled differently for consumption estimation. In order to esti-

mate overall prey consumption, consumption = preference × density, and thus the maximum

possible preference would be 1. If you assume that the most preferred prey in that site is effec-

tively always chosen, then you would scale all the preferences by dividing by the maximum

value. Using the above example, we would divide the values for those species from (25), by the

maximum, 0.2, and get predicted preferences in the new site as:

½0:749; ; 1; 0:251; ; ; 0:149; 0:149; ; � ð27Þ

To estimate prey consumption, one would multiply the values in (27) by prey densities.

Preference indices

IPA uses Manly’s α for the index of prey preference. Many other studies have used the Jacobs’

index (e.g. [18, 41, 44]). See S1 Appendix for how IPA can incorporate the Jacobs’ index. These

indices differ in many ways [37]:

1. Manly’s/ ranges from (0,1) and Jacobs’ index from (-1, 1).

2. “No preference" for Manly’s/ is 1/(# of prey types), while for Jacobs’ index it is 0. Conse-

quently, for Manly’s/ the range of prey preferences for avoidance is smaller than for selec-

tion whereas for Jacobs’ the range of prey preferences for avoidance vs selection is the same.

3. Jacob’s index is affected by relative prey densities when there are more then two prey types

[24, 45]–thus, one can only compare preferences in different situations if prey densities are

the same. Manly’s/ is independent of prey densities.

4. The total of Manly’s/ for all prey types is 1 but there is no constant total for Jacobs’ index.

5. All preference indices are relative. If preferences are estimated for a large suite of prey

items, then one cannot just apply those values directly in a different situation with fewer

prey. However Manly’s/ can be re-normalized to take into account the dropping of prey

items

PLOS ONE Predicting overall food preferences

PLOS ONE | https://doi.org/10.1371/journal.pone.0268520 June 3, 2022 14 / 19

https://doi.org/10.1371/journal.pone.0268520


IPA uses Manly’s α because IPA hinges on scaling the preference measures to those you

would expect if all prey types were present in each site (Step 1). The scaling requires that prey

preferences range from 0 to 1, and sum to 1 in each site—and Manly’s α is the only published

index that does this.

However, Manly’s α has a weakness in that it is sensitive to variations in densities of rare

prey. IPA minimizes this problem in two ways: first, mean preference (Step 3) is weighted by

prey density, and second, when estimating sampling error during bootstrapping, the prefer-

ences are transformed by arcsine(2 x − 1).

On the other hand, Manly’s/ is useful when predicting total biomass of prey consumed—

one simply multiplies Manly’s/ by prey density and body mass. In addition, Manly’s/ is bio-

logically relevant in that it represents the relative probability of eating a prey once it is encoun-

tered [23].

Availability biases

When organism densities are estimated, several availability biases can occur, and these can

potentially affect preference estimates. False absences occur when individuals are present but

undetected, and false presences occur when individuals are not present but are wrongfully

identified to be present [46]. If such biases underestimate prey availability, then preferences

are overestimated. However, IPA is only affected indirectly by such biases, since it uses esti-

mates of prey availability, but does not specify how those estimates should be obtained. Thus,

prey availability estimates can be made using one of the many density estimation methods that

minimize such biases [37].

Ecological differences among sites

If important ecological differences exist among sites, then this might affect the accuracy of

overall estimates of prey preference, and thus of conservation interventions. There are two

ways of dealing with this. First, find out if preferences do differ among sites, by comparing

standardized preferences within each site (i.e. step (iv)) to overall preferences. Currently this

would be done visually, and thus work is needed to develop statistical tests for this. Sites that

are different would then be treated separately. Second, instead of analyzing preference based

on prey species, one could use prey weights. Many predators select prey mostly based on size,

not prey species [27]. The lion example discussed above illustrates this.

Applications

IPA can be generalized. In the description of IPA, we use the term “prey types”; prey can be

categorized in many ways. For example, Lungdoh et al. [44] classified prey using broader taxo-

nomic units than species. Or one might use some features of the prey, such as size or micro-

habitat use. These features could be revealed using IPA. Then, one could classify prey

according to that feature and then use IPA to generate final estimates of overall preference. We

can also generalize the resource; IPA can be used for any type of resource, such as habitats or

nest sites.

In studies of predator-prey relationships, IPA can also be used to estimate overall prey con-

sumption. Many of the key studies of predator-prey relationships have focused on systems

with a limited number of main prey types (for example, the snowshoe hare (Lepus ameri-
canus)–lynx (Lynx canadensis) system [47] and the wolf (Canis lupus) -moose (Alces alces) sys-

tem [48]), because it is difficult to estimate overall prey consumption when there are many

prey types. When researchers have studied systems with many prey types, they have had to

make simplifying assumptions. For example, Lindsey et al. [49] compared cheetah (Acinonyx
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jubatus) prey requirements in 12 South African game reserves in order to manage re-introduc-

tions of cheetah. To combine data from many sites, the researchers had to focus on only the

two most important prey types. Using IPA, we can estimate relative prey preferences for all

prey types and thus combine them into one overall measure of prey consumption. Also, if we

include prey weight, we can estimate overall biomass of prey consumed. This flexibility will

make it easier to build predator-prey models with many varied prey types.

One can use IPA to test hypotheses about factors that affect prey preference. The type of

test depends on whether the factors are inherent properties of the prey types or ones that can

vary among sites. For example, some properties that are inherent are handling time, risk of

injury during capture, taste and size of the prey [41]. Some properties that vary among sites

are types of habitats, and prey abundance and diversity [41]. Using IPA, we can test for the

inherent properties by comparing overall estimated preferences among different prey types. A

strength of using IPA to do this is that estimating preferences over many sites ensures that

effects of the varying properties should average out. Thus, the more, and different, sites, the

better.

We can test for the varying properties by analyzing the differences between estimated and

observed preferences for each prey type and site. IPA preferences are estimated under the

assumption of constant preferences among sites, and thus can be viewed as a null hypothesis.

Models can be tested predicting the differences between estimated and observed preferences as

a function of prey density, prey diversity, or various habitat features. This allows us to test

hypotheses that had previously been limited to a narrow range of study sites. For example,

Prugh [7] showed that coyotes (Canis latrans) change prey preference in response to changes

in snowshoe hare (Lepus americanus) density. Such comparisons were possible because Prugh

worked within one study site over several years, with a relatively constant number of prey

types. Such an analysis can now be carried out using IPA over a wide range of study sites that

differ in prey types. As of July 2019, there are at least 109 studies of coyote feeding habits that

could be used in such a comparison.

Application of IPA allows us to: test hypotheses about what factors affect prey selection,

predict preferences in new sites, and estimate overall prey consumption in new sites. The

method’s robust flexibility could lead to a general theory of feeding preference that will allow

us to understand and predict food choice.

Supporting information

S1 Appendix. Using IPA to estimate the Jacob’s preference index.
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