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Abstract

Pulmonary tuberculosis is a worldwide epidemic et only be fought effectively with early and a@ta diagnosis
and proper disease management. The means of disgmad disease management should be easily adegssiist

effective and be readily available in the high teldosis burdened countries where it is most neeBedunately, the
fast development of computer science in recentsybas ensured that medical images can accuratetydatified.

Radiomics is one such tool that can be used totifuanedical images. This review article focusestba literature
currently available on the application of radiomesplicitly for the purpose of diagnosis, differiation from other
pulmonary diseases and disease management of paiynoiberculosis. Despite using a formal searctey, only five
articles could be found on the application of radis to pulmonary tuberculosis. In all five arteleviewed, radiomic
feature extraction was successfully used to quardifjital medical images for the purpose of compgrior

differentiating, pulmonary tuberculosis from otleedimonary diseases. This demonstrates that thefuseliomics for
the purpose of tuberculosis disease managementiagdosis remains a valuable data mining opportundt yet

realised.
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Introduction

Pulmonary tuberculosis (PTB) is an ongoing glohztlemic
and has been identified as a research priority hey World
Health Organization (WHO) and various countriestiomal
health departmentsEarly and accurate diagnosis and proper
disease management is key to fighting this epideriiic
diagnose and manage PTB clinicians generally use a
combination of biological methods (such as the Manxt
tuberculin skin test, tuberculosis (TB) blood test sputum
smear tests),demographic data and radiological methdtls.
Biological methods are used as PTB biomarkers, avsputum
smear culture conversion (smear-positive to smeggative
status) currently the most widely accepted biomatgredict

a relapse-free cure of PTBA meta-analysis study showed that
this is not a reliable biomarker with a sensitiviti only 40%
(95% CI 25-56) and specificity of 85% (95% CI 773%9dr
predicting relapseé. Researchers, therefore, still face the
challenge of identifying more sensitive and spediiiomarkers
that can be used to evaluate TB disease progresseresponse
to treatment quantitively? Another challenge in fighting this
global epidemic is the burden of multi-drug resistaB, where
India (27%), China (14%) and The Russian Federa(@¥)
carry the highest number of cases globAlljo ensure a

reduction in incidences and deaths, this epideraida to be
addressed universally.

The top 8 highest TB burdened countries, who atcéar
two-thirds of the global TB incidence, are all diepéng
countries, with 44% of all global cases in the Befast Asian
region? In these countries chest x-ray (CXR) remains tlostm
common radiological imaging modality for PTB scriegn as
access to more sophisticated three-dimensional ({B2ping
modalities are limite&® Even in countries where patients have
easier access to 3D modalities, it was shown tk& @&mains
the foundation for imaging certain radiological eegsions of
PTB, e.g. parenchymal dised8eBut CT is more sensitive in
detecting many other radiological expressions, e.g.
lymphadenopathy and early bronchogenic spread ist- po
primary TBI° Not only is CXR the most widely accessible
imaging modality* but radiation doses to the patients are kept
to a minimum by using projection imagiffgRadiation dose and
long term radiation effects become a considerirgofawhen
screening large cohorts or when multiple followinomages are
acquired. Research has showed that CXR is a véegtiee
diagnostic modality as it yields high sensitivi}. {8, 95% CI
0.73-0.82) and moderate to high specificity (75.24%)But to
utilise these properties expert readers are netalédterpret
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these images, and these experts are often scamesdnrce-
limited countries.

With the fast development of computer scienceaent years,
various research studies have been conducted owsteof
artificial intelligence (Al) applications (Machinesarning (ML)
and Deep Learning (DL)) to assist with, among ottiéngs,
medical image processing and interpretatiavL is a subset of
Al that uses statistical algorithms that enable mirees to
improve with experience, while DL is a subset of Mhd is
based on artificial neural networks that enableortigms to
train themselves. Lately, ML and DL have allowediotogical
image interpretation to evolve from subjective mpg to
objective sciencé, and from a primary diagnostic tool to a
central role player in personalised precision miedit*

PTB causes a wide variety of pathological chamg#se lungs
which lead to many different radiological manifaistas, and Al
systems that are developed must have the abiligépt to and
manage these distinct morphological pattétnBathological
changes visible on CXR include changes in the Bhrape, size,
and context (texture), which influence the lundefisymmetry®
When radiologists perform bi-lateral comparisongGXR, the
differences in corresponding regions between tfieated right
lung greatly assist in detecting these abnormali§i@his same
principle is mimicked when automatic TB detectigatems use
feature vectors of various sizes and combinat!idh¥, with
different classification algorithms to extract infeation from
radiological image$®

To date Al applications are mainly used for thagdiosis of
TB, but a few other studies have been done, fomgka on the
automatic differentiation of drug-sensitive TB froadrug-
resistant TB from CXR? This study tested various classifiers
by using them in combination with a set of shapé txture
features. It achieved the best performance, witlar@a under
the receiver operating characteristic curve (AUf%&%0, when
using a traditional artificial network (ANNY. Many studies
have also been done on differentiating PTB fromenth
pulmonary diseases, often lung cancer, using b&tR é&nd CT
scans. The reason for this is that PTB mimics wariother
pulmonary diseases, and diagnostic imaging of PdmBains
challenging®

Automatic PTB screening systems are extremely ulisef
efficient and can be a low-cost mass screeningtt@dlcan be
well utilised in resource-constrained countdefL methods
for some diseases do not yet perform to the sarmeracy as
radiologists, but it has been demonstrated thainaatic PTB
detection from CXR has reached radiologist level
performancé! However, research into automated radiological
image analysis for disease management and progressens
limited.?* For quantitative disease management, the automatic
algorithms need to produce measurable outputs. Suuh
method to quantify medical images is by using radéiofeature
extraction. Although recently developed DL netwohiesre led
to more robust models for radiomics, and this Hesvad the
high-throughput extraction of quantitative featurésm
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radiological images, this has not been widely sgii as
guantitative outputs need to be extracted frormtitevorks and
are generally hidden within the layers of the Dliwwk or
within the last layer of the algorithA.

Radiomics is based on the hypothesis that theecbrr
combination of these features, together with theicadl data,
can identify significant tissue properties useful the
management of a disea@eRadiomics differs from traditional
Computer-aided-detection (CAD) systems in the setihsd
CAD systems were designed only to diagnose or tetec
disease* Radiomic feature extraction can also be used to
qguantify disease characteristics and progressiom fmedical
images, as it makes use of statistically based imgagnalysis
algorithms to act as quantitative biomarkers ferittentification
of radiological feature¥:>® These can be used to quantify
change and categorisation and not only identify eategorise
predicted outcomes or disease stakass feature extraction tool
allows medical images to be converted into minatlelti-
dimensional statistical data sets which charaderthe
relationship between the high dimensional datdefilmage$?
Radiomics is a complex, multi-step field of stutigttincludes
the following identifiable steps: image acquisitioimage
segmentation, feature extraction and qualificatamglysis and
database developmefit. Database development includes
developing a radiomics signature or nomogram. Aoracts
signature is a computational model built to meettijz clinical
needs® whereas a radiomics nomogram integrates a radsomic
signature with the clinical data to evaluate patamsesuch as
prognosis or disease managentéiito develop accurate, robust
and reproducible radiomics signatures, the knovdeaitd skills
of qualified and experienced researchers are drudiay need
to understand the influence of exposure parametaeege pre-
and post-processing, image segmentation and madklling.
Experienced researchers also play a vital rolepitinosation
and standardisation of image acquisition protocwisdelling,
developing algorithms and the statistical analysfs high
dimensional data.

Extracted features can be sub-categorised insi-dider
statistical features, shape-based features (mavgivall 2D and
3D), textural features (or second-order statistieatures) and
higher-order statistical featur&s.Higher-order statistics are
obtained by applying filters or mathematical tramsfs to the
image before applying statistical algorithfAd€£ach one of the
steps in radiomics poses its own set of challeng&zo et al.
explained it well in a narrative review article; d&omics: the
facts and the challenges of image analy&is".

Radiomics had its origin in the medical field afcology?*
and numerous articles have been published on tee ofis
radiomics in tumours, but very few on the applicatin non-
neoplastic diseases such as ?fBhe purpose of this review
article is to determine what research has already ldone on
the application of radiomics explicitly for the diosis and
management of PTB or the differentiation of PTBnirother
pulmonary diseases. This will also reveal areayeaddressed
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in the available literature and the potential opyaities for
future research. Even though this is a narrativeeve a formal
systematic research strategy was followed to enthat all
published journal articles on this topic were imgd.

Methods

Review sear ch strategy

A comprehensive search for relevant literature e@ase by two
independent information specialists at two separaieersities.
The following databases were included in the sedPcibMed
(US National Library of Medicine), OVID Medline, 8pus,
OVID Embase, CINAHL and IEEE Xplore.

The search strategy that was applied to text-woats be
summarised as follows: ((radiomics OR radiomic*) OR
('imaging biomarker* OR ‘radiological biomarke®R 'texture
feature* OR 'texture analysis')) AND (tuberculo®R TB). The
year limit that was used was 2000 to May 2021 (wBekhen
the search was concluded. The term ‘radiomics' firas
introduced in medicine in 2082,and the year 2000 was an
arbitrarily selected date prior to 2012.

m PRISMA Flow Diagram

Study selection criteria

All journal articles were considered, but only sasdthat met
the following inclusion criteria were included: Driginal
studies with full-text articles published in Englis?) Studies
with a human study population who were diagnoseth wi
pulmonary tuberculosis. 3) Articles that includecedical
images (from any imaging modality: CT, MRI, PET/@md x-
rays) as datasets. 4) Studies that used radionmidexture
feature extraction methods. 5) Articles with the@o develop
imaging- or radiological biomarkers for PTB.

Exclusion criteria: 1) Articles that did not exttajuantitative
information from medical images. 2) Non-peer-reaew
academic journal articles, including conferencecpealings.

Search results and data extraction

The search strategies returned a total of 66 jountizles (n =

18 in the PubMed database, n = 16 in the OVID Medli
database, n = 5 in Scopus database, n = 6 in OWiiba&e, n =

5 in CINAHL and n 16 IEEE Xplore database). After
duplicates were removed, n = 49 remained. Singssi@matic
review search strategy was followed, the searchltsesvere
recorded and summarised accordingly in the PRISMA
(Preferred Reporting Items for Systematic Reviend Kleta-
Analysis) flow diagramFKigure 1).%
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram for journal article screening and

selection
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Results

Despite the thorough search strategy that wasaelioto ensure
complete inclusion of all available published dataly 5 articles
could be found that met all the inclusion critega the
application of radiomics to PTB. The relevant ddtai each of
the studies, such as radiomics libraries, moddimrithms,
dimensionality reduction methods, clinical featyegs. used, is
summarised imable 1.

Sudy A: In the first article by Bei et al. [2019] radiomic
features extracted from CT images were used toteraa
radiomics signature capable of distinguishing prima
progressive PTB from community-acquired pneumomnia i
children? Manual segmentation was performed by a radiologist
with more than 10 years of experience and verifigé second
radiologist® The radiologist delineated the margins of
pulmonary consolidation as the first region-of-iet (ROI)
and the mediastinal lymph nodes as the second?Ri@Ithis
study, they developed two radiomics signatures,foora each
ROI, and constructed a radiomics model by combittiege two
signatures? Finally, they used the least shrinkage and selecti
operator (LASSO) algorithm to build a predictivenmmgram by
combining the radiomics model with the clinical ai#t The
predictive nomogram's classification outperformbd senior
radiologist's clinical judgement (AUC = 0.971, 958 0.912-

1 vs. AUC =0.832, 95% ClI: 0.677-0.987).

Sudy B: In the second article Shi et al. [2019], usedaatic
features to assist with the identification of ogpaoistic
pulmonary infections (OPIs) misdiagnosed as lungcees in
patients with human immunodeficiency virus (HE?)In this
study 76.2% of the OPI cohort had PTB and 23.8%eroth
pulmonary infection§? Semi-automatic segmentation of the
lesion was done using in-house softw&r@he ROI borders
were then manually adjusted by a radiologist tauemnshat the
lesion boundary was entirely included and thattttenchi and
vessels were excludédl. The morphological CT features,
clinical data and radiomic features were statiificeompared
between the two disease groups. They concludedatamics
might assist with the identification of OPIs mimicg lung
cancers for central-type lesions. Four radiomituiess in these
lesions were significantly different (large depemck high gray
level emphasis (LDHGLE) (P = 0.008), skewness (P0417),
inverse difference normalised (IDN) (P = 0.017) daadtosis
(P =0.017)? But they found that radiomics features of the
peripheral-type lesions might not be useful fofedi#ntiating the
disease®’

Sudy C: In the third article Feng et al. [2020] used radiio
features to differentiate between lung tuberculoraad
adenocarcinoma presenting as solitary pulmonaryid sol
nodules® They used a U-net-based volume-of-interest (VOI)
segmentation method to automatically delineate l&sgons'
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boundary® A radiomics signature consisting of 6 features was
identified and combined with clinical data to buddoredictive
radiomics nomogram using LASSO logistic regresstofihe
signature showed improved diagnostic accuracy coedpto
any single model (AUC = 0.9064, 95% CI: 0.9390-GDg°

Sudy D: In this article, Cui et al. [2020] developed a
radiomics nomogram model, using LASSO algorithms to
differentiate TB from lung cancer from preoperatluag CT
data®* They have also evaluated different radial dilation
distances outside the lesion to determine thegezfbrmance?
The nomogram showed good discriminative performaince
distinguishing TB from lung cancer (AUC =0.914,
sensitivity = 0.788, specificity = 0.909). This quantitative
study again shows improved detection and discritiina
performance of medical images when using the rad®m
nomogram compared to decisions made by radiologiste®

Sudy E: In the final article, Du et al. [2021] developed ,CT
PET and PET/CT radiomics signatures. These sigesitwere
combined with semantic features to develop radiemic
nomograms to differentiate between active pulmoria@yand
lung cancef® Nine CT-based semantic features (maximal tumor
diameter, tumor location, cavitation, vacuole, sf@tion, vessel
convergence, lobulation, pleural indentation andr ai
bronchogram) and two PET-based semantic features
(radionecrosis and metabolic activity greater that adjacent
mediastinal blood pool) were includ&dThey showed that the
performance of the CT signature was superior tbdhthe PET
signature (AUC =0.86 vs. 0.79, p =0.1585), andt tthe
PET/CT signature improved diagnostic performancenev
further compared to CT alone (AUC=0.91 vs. 0.86,
p =0.0247%° They concluded that PET and CT radiomic
features could offer complementary diagnostic vathen used
in combination with the semantic features defineg b
radiologists®

Discussion

In this review study, only five articles could t#entified that
met the inclusion criteria. In all 5 articles, radfic feature
extraction was successfully used to quantify imagesmpare
or differentiate pulmonary tuberculosis from otlpeimonary
diseases (pneumodia lung cance®*%® and adeno-
carcinoma®). All imaging modalities (CT, MRI, Molecular
imaging and Planar imaging) were included in tharce but
only CT and PET/CT (study E only) scans were usedefature
extraction. It is also interesting to note thatfizié studies were
carried out in China. This might be because Chinté third
highest TB burdened country (accounting for 8.4%lbfjlobal
instances}, they are technologically very advanced and most
patients have access to 3D imaging resources.
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Table 1. Summary table that includes compar ative, relevant information for the three studiesreviewed in thisarticle.

Study A B C D E
Author Bel et al. Shi et al. Feng et al. Cui et al. Du et al.

Year of publication 2019 2019 2020 2020 2021

Imaging modality CT CT CT CT PET & CT & PET/CT

Institution where
data setswere

Beijing Childrens Hospital,

Shanghai Public

Health Clinical 2 Unknown Centres

Liaoning Cancer Hospital

1 Unknown Hospital

acquired Beijing, China Centeé,hﬁ]r;anghau in China in China in China
gg‘:;g:éa stswere Jan 2011 - Jan 2018 Jun 2013 - Feb 2018 Jan ADad 2018 Jan 2012 - Oct 2018 Jan 2013 - March 2019
. 73 (24 OPI & 478 174
Sample size 115 (53 TB, 62 CAP) 42 LungCA) 426 (244 TB £234 LungCA  (77TB & 97 LungCA
Primary cohort 86 24 (19<3TFI33 5 other 123 319 122
Validation cohort 29 49 803 (121 - Internal & 159 52
182- External
Age, Smoking, Gender, Age, Lesion size,
Significant clinical HAART duration,  Location, Lesion margin, No clinical features 9 CT based & 2 PET based

features used

Duration of fever

CD4' T cell count,
CD4'/CDg" ratic

Lobulated sharp,
Spiculation sig

included

semantic features

Segmentation
method

Manual segmentation
by radiologist (>10yrs

experience). Second
radiologist verificatior

Semi-automatic

inhouse software. U-net based Deep Learning

(Manual adjustment model (Python)

by 2 radiologists

Manual segmentation

by 2 radiologist (12yrs

& 14yrs experience)

Manual segmentation by
nuclear physician (>3yrs
experience). Second

physician verificatior

Feature extraction
software

Matlab

PyRadiomcs Matlab

PyRadiomics

Matlab (SERAveare)

Number of features
extracted

970

99 3556

1967

487

Type/Category
of features extracted

Gray intensity (First order
statistics), Shape & Size,
Texture, Wavele

First order statistics, First order statistics, Shape First order statistics,

Shape, Texture

& Size, Texture, Wavelet

Shape and Texture

First order, Morphological,
Intensity based,
Higher order statistit

Dimensionality

Pearson correlation analysis

reduction method LASSO n/a LASSO LASSO & LASSO
Classifier used Multivariable Logistic N -
to build predictive Linear SVM n/a Not specified Regression analysis M;g'vrigzgﬁ ;gg;sgé
nanogram ('rms' package in | 9 Y
:\l;ﬂ]oﬁc(;;amres 11 4 6 8 PET: 3, CT: 5, PET/CT: 9
D
2 stat_p10
5 morph_asphericity
,(f cm_info_corrl
] N _2D_avg
Ibp_2D_firstorder
_Entropy szm_sze_3D
X7_fos_maximum Ibp_3D_k_firstorder g ngl_lde_3D
X0_GLCM_maximum ZSV_GLSZM _10Percentile = .
_probability 0.5_0.67_Equal_8 og sigma 3 omm 5  Com-ransP
X6_GLCM_IMC1 Kurtosis_Global "3D_glem_Idn 2 c"“orph—a
1 15 Equal 8 ] = _dens_mvee
X1 GLRLM_LRLGLE LDHGLE 1.5 Equal_; log_sigma 5 0 mm ©O cm clust shade
Features selected X1 GLRLM LRE Inverse difference complexity_ NGTDM _3D_RunLength- D ﬁrg
to build radiomics - . } 1 1.2 lLloyd_16 NonUniformity ===
Max3D normalised (IDN) PET_cm_info_corrl
nomogram or . Skewness HGZE_GLSZM squareroot_gldm “op mrg_
signature Sph_dis _ _1.0.67_Lloyd_8 _Dependence- =
Compactnessl Kurtosis SZHGE GLSZM NonUniformity PET_cm_info_corr2
Surface_to_volume 1 .0.67_Lloyd_8 wavelet_HLH g —2D_mrg
_ratio SRHGE_GLRLM _glCm_ldn § PET_Stat_plo N
X2_fos_minimum _1.5_0.67_Lloyd_64 wavelet HLL 2 PET_morhp_asphericity
X0_GLRLM_LRHGLE _glcm_ldn it CT_szm_sze_3D
wavelet_LLL 2 CT_ngllde_3D
—glem_ldmn oy CT_morph_a
_dens_mvee
CT_cm_clust

_shade_2D_mrg
CT_dzm_zdnu_3D

Abbreviations: TB = Tuberculosis, CAP = Community Acquired Pneumonia, OPI = Opportunistic Pulmonary Infections, LungCA = Lung Cancer, HAART = Highly
Active Antiretroviral Therapy, LASSO = Least absolute shrinkage and selection operator, SYM = Support Vector Machine, GLCM = Gray Level Cooccurrence Matrix,
GLSZM = Gray Level Sze Zone Matrix, GLRLM = Gray Level Run Length Matrix, GLDM = Gray Level Dependence Matrix, NGTDM = Neighboring Gray Tone
Difference Matrix, LDHGLE = Large dependence high gray level emphasis
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Table 2. Summary of radiomic featuresused in each reviewed study.

Study A B C D E*
Bei et al. Shietal. Fenget al. Cui et al. Duet al.
Ibp_2D_firstorder
X7_fos_maximum Skewness i Entro
flst order —10s_Max ' Kurtosis_Global _ .Py PET stat_p10
eatures X2_fos_minimum Kurtosis 115 Equal_8 Ibp_3D_k_firstorder
_10Percentile
Max3D log_sigma_3_0_mm
Sph_dis ~3D_glem_ldn PET_morhp_asphericity
Shape Compactnessl log_sigma_5_0_mm CT_morph_a_dens_mvee
P _3D_RunLength- ~morph_a_| -
Surface_to_volume_ratio NonUniformity
wavelet HLH CT_cm_clust
_glecm_ldn _shade_2D_mrg
X0_GLCM ) .
GLCM _maximum_probability Inverse_ difference wavelet_ HLL PET_cm_info
normalized (IDN) _glecm_ldn _corrl_2D_mrg
X6_GLCM_IMC1 -
- - wavelet_LLL PET_cm_info
_glecm_ldmn _corr2_2D_mrg
X1_GLRLM_LRE
SRHGE_GLRLM
GLRLM X0_GLRLM_LRHGLE 15 067 Lloyd 64
X1_GLRLM_LRLGLE
® squareroot_gldm
5 GLDM LDHGLE _Dependence-
% NonUniformity
'_
HGZE_GLSZM
_1 0.67_Lloyd_8
SZHGE_GLSZM
GLSZM "1.067 Lloyd 8 CT_szm_sze_3D
ZSV_GLSZM
_0.5_0.67_Equal_8
GLDzZM CT_dzm_zdnu_3D
complexity_NGTDM
NGTDM 1 1.2 lloyd_16
NGLDM CT_ngl_lde_3D

Abbreviations: GLCM = Gray Level Cooccurrence Matrix, GLRLM = Gray Level Run Length Matrix, GLDM = Gray Level Dependence Matrix, GLSZM = Gray Level
Sze Zone Matrix, GLDZM = Gray Level Distance Zone Matrix, NGTDM = Neighboring Gray Tone Difference Matrix, NGLDM = Neighboring Grey Level

Dependence Matrix

*Snce the PET/CT signature is simply a combination of the CT and PET signatures, only the PET/CT features are listed to avoid duplication.

Four of the reviewed studi@$*% built radiomics nomograms,
while one stud$? only developed a radiomics signatufeble 2
is a summary of the significant radiomic featuregaoised
according to the feature groups. There was a mirdoraelation
between the features selected as significant irffitleestudies.
The only two features that were identified by méran one
study to be significant were Kurto%i€® and 1@' Percentilé&*3.
Kurtosis is a measure of the sharpness of the péathe
distribution of the values in the region of intaf&sand 1@
percentile of the Kvoxel in the ROI is a first-order statistical
feature®® Not one study identified any higher-order statisti
features as significant.

There were some weaknesses noticed in the an&lesved.
The training and validation cohorts of most studes except
for study C which had both an internal and extexradidation
cohort) were from the same centers. However tégerable to
have external validation cohorts when DL methodsiesed to
reveal the possible overfitting of the training alatets. All
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studies were also retrospective studies, whichéonhly way to
obtain a reasonable sample size in a new fielduafys But the
downside to this is that the researchers had ntralaver the
acquisition parameters and the management of thee sids.
Unfortunately, acquisition and post-processing fdayital role
in high throughput quantitative image analysis.

The studies identified between 4 and 11 (meant72%4)

radiomics features as significant from 99 to 35%@4n 1415.8
+1239.3) features extracté®f>* Small data sets are generally
a limitation of radiomic studies. Thousands of cawlic features
are available for extraction, but datasets arenadtealler than
the number of possible features to mine. This viss the case
in the reviewed articles where the primary coharhple sizes
ranged from 24 to 319 (mean 134.8 + 98.9) patienitle the
number of features extracted ranged from 99 to BB&an
1415.8 *+ 1239.3%34% The number of features extracted is
almost ten times more than the number of patiénpsospective
multicenter study with larger cohorts is necessamgonfirm the
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results and improve the reliability of all studighis suggestion
was also acknowledged by most authors from theevead
studies. From the limited number of studies avélabo
preliminary conclusions can be made regarding wkeelures
or feature groups are likely to produce robust aelifible
guantitative image information from PTB radiolodisaages.

Radiomics is intrinsically a complex multi-stepess, but to
further complicate this is a lack of standardisedlglines and
definitions. A lack of consensus on general defing makes
study intercomparison difficult. Since reprodudtlil and
robustness are vital in radiomics studies, all impgocessing
and feature extraction details should be clearbomed and
disclosed. The Image Biomarker Standardizationialtive
(IBSI) was published in 2019 and hopes to addves®us
issues that will improve the validation and reprability of
radiomics studie¥. All five of the reviewed articles did well to
comply with these guidelines, with the most re#estinforming
the best.

The low number of studies included in this reviavticle
might seem like unconvincing evidence to addresspiirpose
of this study, but this does indicate two thingsstly, high-
throughput quantitative image analysis, especiatly non-
neoplastic deceases, is a new but rapidly growiel fof
study?” This is evident from the publication dates of the
articles that qualified to be included in this wistudy (2019
to 2021). Secondly, it shows that the possibilitly using
radiomics for quantitative image analysis for thegmse of PTB
disease management and differentiation from otbémpnary
diseases is still an under-investigated field oflgt
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Conclusions

Six data bases were searched and only five artmesd be
found detailing the application of radiomics to mpohary
tuberculosis. In all five articles reviewed, radionfeature
extractions from CT or PET/CT images were usedcéffely to
guantify digital medical images for the purposeafparing or
differentiating tuberculosis from another pulmondisease.

The outcome of this study evidently raises two tjaas.
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