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INTRODUCTION

In his remarkable two papers [1l] and [2], Manfred Breuer laid the
foundations of a generalized theory of compact and Fredholm opera-

tors relative to a von Neumann algebra A. Classical results as

(i) "The Fredholm alternatives” due to F. Riesz ([13] p 87),
which states that I - T is Fredholm of index zero if T

is compact (TeL(H) );

(ii) a well known decomposition theorem for compact operators

also proved by Riesz ([11], p 431 ); and

(i1ii) a theorem due to Atkinson ([{13], p 90) which states that
if A(H) = L(H)/C(H) (C(H) the two-sided ideal of all
compact operators on a Hilbert space H) is the Calkin
algebra; then the set of all Fredholm operators in L(H)
is exactly the 1inverse image of the group of all

invertable elemets in A(H) under the canonical quotient

mapping Z:L(H) — A(H) ,

is generalized to a von Neumann algebra 4 ({(ii) only to
a certain extent). The main goal of this study is to

prove these three theorems which are included in Chapter

4.

Since the projections of a von Neumann algebra form a fundamental
structure of the algebra, these generalizations depend heavily on
the study of the projection lattice existing in a von Neumann
algebra 4. Therefore, Chapter 1 contains a comprehensive amount
of standard material concerning the geometry of projections in a
von Neumann algebra which will be wused in the chapters that

follow. This Chapter may thus be considered as an Appendix.

Once we introduced the notion of a finite projection relative to 4
we proof in the concluding section of Chapter 1 one of the deepest
and most important theorems in the theory of von Neumann algebras.
It characterizes finite von Neumann algebras in terms of traces

defined on the algebra. We put this result in the first chapter
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since it will not include our final goal, but will only be used as

an important tool for the main results appearing in Chapter 4.

In Chapter 2 we use the equivalence classes of finite projections
in a von Neumann algebra, to construct a commutative monoid M. By
considering the Grothendieck group I of M, we canonically define
an order relation on I. This commutative ordered group plays an
important role in Fredholm theory since it contains the so called
indices of the Fredholm elements defined on a von Neumann algebra.
We conlude Chapter 2 by defining a dimension function on the set

of all finite projections in 4 with values in rI.

In Chapter 3 the concept of finite, compact and Fredholm elements
are introduced and the index defined. We show that the set of
compact elements is the smallest closed two-sided ideal containing

the finite projections relative to a von Neumann algebra 4.
For Te 4 to be Fredholm we shall require that
(i) the null-projection NT of T is finite relative to 4.

(ii) There exists a finite projection E € 4 such that the range of
I - E is contained in the range of T. By the use of proper-
ties (i) and (ii) an index mapping is defined on the set of
all Fredholm elements relative to 4, with values 1in the
Grothendieck group I'. These values are called the indices of

the Fredholm operators and the group I is referred to as the

index group of 4.

Chapter 4 is devoted to the generalizations of the three classical
theorems mentioned earlier. We conclude this chapter with a num-
ber of important corollaries obtained from the generalized
Atkinson theorem: For example we obtain, by composition, that
the set of all Fredholm elements in 4 is a self-adjoint monoid,

which is open in the norm topology on 4.
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We conclude this thesis with an Appendix where we mention several
basic results on some useful locally convex topologies defined on
A As far as the references are concerned, the main sources used
in this work are [1], [2], [5], [17] and [18]. More detailed
references are given throughout the chapters. The notations and
conventions used are also defined at the beginning of each sec—

tion.
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CHAPTER 1
COMPARISON OF PROJECTIONS 1IN A VON NEUMANN ALGEBRA 4

This chapter is devoted to a variety of background material. The
principal tool for the study of von Neumann algebras is the
technique of "comparison” of the projections in a von Neumann
algebra. In the first section, we shall define an equivalence
relation together with an order relation on the set of all
projections in a von Neumann algebra. We shall also define what
we mean by a finite projection in a von Neumann algebra. The
proofs of the main results appearing in Chapter 4 depend largely
on the notion of the finiteness of a projection relative to a von
Neumann algebra 4. Once we have defined what we mean by a finite
von Neumann algebra, we can give a useful characterization of

finite von Neumann algebras in terms of traces.

1.1 COMPARISON OF PROJECTIONS

Let H be a Hilbert space over the complex field c. By L(H) we

shall denote the C*—algebra of all bounded linear operators on H.
If M is a subset of L(H), we define its commutant M' as the set of
all TeL(H) such that TS = ST for all SeM. A von Neumann algebra
on H is a unital *-subalgebra 4 of L(H) such that 4 = 4*'. By the
fundamental theorem of operator algebras (the double commutation
theorem), due to J von Neumann ([17], 3.2), one can also define a

von Neumann algebra A as a *x-subalgebra of L(H) which is closed in

the weak operator topology on A.

In this section we make use of several locally convex topologies
defined on 4. For definitions and well-known results concerning
these topologies on A, see Appendix 5.1 where a few properties of

these topologies are stated.

The set of all projections of A is defined as the hermitian

operators in A which are idempotent. This set is denoted by ®(4).

It is easy to see that the order relation ¢, defined by E ¢ F if

and only if EF = E gives a partial order on ®(4).
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1.1.1 LEMMA

Let E, Fe 2?(A) be projections with closed range spaces E(H) and
F(H). The following conditions are equivalent

(i) E ¢ F

(ii) E(H) < F(H)
Proof :

Let E ¢ F. By definition this means EF = E. Taking adjoints on
both sides one has FE = E. Thus E(H) = FE(H) < F(H), which gives
the implication (i) implies (1ii).

Suppose E(H) ¢ F(H). Since F is the identity on F(H) and

E(H) ¢ F(H) it follows that F is the identity om E(H). This
implies FE = E which implies EF = E. Thus (ii) implies (i).

Together with this order relation we have the following lemma.

1.1.2 LEMMA (18], p. 290)

If A is a von Neumann algebra, then the set of all projections

P(A) is a complete lattice.

Proof

To see this we must show that if {Ei}ieI is a family of

projections in A4, the greatest lower bound inf E. and the least
iel

upper bound sup E., are elements of #(4).
iel
Let Eo be the projection of H onto the closed subspace n Ei(H) of
‘ iel
H. Clearly UEi = EiU for every unitary operator Ued' and i€l. By

definition a unitary operator is onto and so we have

UEi(H) = EiU(H) = Ei(H) for all iel. Thus every unitary in 4
leaves each Ei(H) invariant; it therefore leaves the intersection
N E.(H) invariant as well. Since U( N E.(H)) € N E,(H) we have
iel iel * T ojer ?t
UEo = EOUEO. If we repeat the process for U* = U_leA' we find
U*Eo = EOU*EO. By taking adjoints on both sides we get
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EoU = EOUEO. Thus, EoU = UEo for every Ued', unitary. Since
every element in A' 1is a 1linear combination of four wunitary
elements ([17], p 20), we have EoT = TEo for all Tea'. This
implies EOGA" = A (A is a von Neumann algebra). Thus Eo €P(A).

It is clear that Eo is a lower bound of {Ei}iel' Suppose E' ( Ei
for all ieI lemma 1.1.1 implies E'(H) < Ei(H) for all i€l which

implies that E'(H) <€ n Ei(H). Thus E' ( Eo by lemma 1.1.1, and
iel

consequently Eo is the greatest lower bound of {Ei}ieI‘ Since the
mapping E + I-E (EeP(4)) reverses the ordering of projections we
have inf (I—Ei) = I - sup Ei' Thus sup Ei = I - inf (I - Ei)'
i i i i
Since inf(I - Ei) €e?(A) by the above argument, we have that
i
sup Ei € P(A).
1 |
1.1.3 REMARKS

In the proof of lemma 1.1.2 we have seen that the range space of

inf Ei €eP(4) is N Ei(H). We have also seen that

i iel
sup Ei = I - inf (I - Ei). Hence the range space of sup Ei €er(4)
i i i

is (N E.(H)l)l = (U Ei(H) )ll = [ U Ei(H)] (the closed subspace
ieI iel iel

of H generated by U Ei(H)].
iel

1.1.4 DEFINITION ([1])

Two projections E and F in 4 are said to be equivalent (relative

to A) if and only if there exists a V € 4 such that E = V* V and

F = VV*. We write E ~ F, and say E ~ F by V.

An order relation { in #(4) 1is defined as follows : We say E ( F

if and only if there is an E*e®(4) such that E ~ E*' ¢ F.
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1.1.5 DEFINITION ([5], p.52)

A partial isometry VeA with initial projection E and final

projection F is an operator such that

nvxn = uxt (xe E(H))

Vy = 0 (ye (I-E)(H))
and F(H) = V(H)
1.1.6 LEMMA ([5], p. 52)

Let V, E, F € A. Then the following conditions are equivalent
(i) V is a partial isometry with initial projection E and

final projection F.

(ii) V* is a partial isometry with initial projection F and

final projection E

1
<3
<3

(iii) V'V = E is a projection and F

1]
<
»*
<l

(iv) VV* = F is a projection and E
Proof :

We first show that (iii) implies (iv)

Suppose E = V*V is a projection in 4. Then we have
[(V(I-E)]¥[V(I-E)] = (I-E)V¥V(I-E) = (I-E)E(I-E) = O. Thus
WY(I-E)n2 = u[V(I-E)][V(I-E)]¥W = 0. So V(I-E) = 0. This implies

that F - F2 = vv* — vv¥uv® = vir-v*v)v® = var-g)v* = 0. Conse-

quently F2 = F and F* = (VV*)* = VV* = F. This proves condition

(iv).

We now show (iii) implies (i)

If condition (iii) holds, then for every x€H we have

Nquz = (Vx,Vx) = (V*Vx,x) = (Ex,x) = uExuz.

Thus HVxH = #ixli for all xe€E(H); and Vy = 0 if ye (I-E)(H). This

shows that V is a partial isometry with initial projection E.
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We now show that V has F as final projection. Since F = VV* we

have F(H) = V(V*(H)) < V(H). Conversely we know V(I-E)x = 0 for

all xeH. Thus V = VE = Vv’V = FV, which implies V(H)<F(H).

Consequently V(H) = F(H).

(i) implies (iii)
If V is a partial isometry from E to F, it follows that
NVxit = NExit for all xe€E(H) and since Vy = 0, ye (I-E)(H) we have

quu2 = uExu2 (xeH).

This implies that (V* Vx,x) = (Ex,x) (xeH)

From the polarization identity
1 ) X X . . )
(x,y) = I{<x+y,x+y)—(x—y,x—y)+1(x+1y,x+1y)-1(x-1y,x-1y)} (x,yeH),

we conclude that (V*Vx,y) = (Ex,y) for all x,yeH.

Thus V*V = E; and E 1is a projection. According to the final

paragraph of the proof : (iii) implies (i), it is clear that VvV

is the projection onto V(H); and V(H) = F(H), so VV* = F.

The implications : (iv) implies (iii), (iv) implies (ii) and (ii)

implies (iv) follow easily by interchanging V and V*, and E and F

in the above.
| |

1.1.7 REMARKS ([5], p. 55)

(1) Due to lemma 1.1.6 two projections E and F in ®(4) are
equivalent if there exists a partial isometry in 4 with

initial projection E and final projection F.

(2) "~" is indeed an equivalence relation
Reflexive : E ~ E by partial isometry E
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(3)

Symmetric : Suppose E ~ F by partial isometry V, then E = V*V
x
and F = VV Thus F = (V) *v* and & = v*(v*)* which imply

F ~ E by partial isometry V*.

Transitive Suppose E ~ F by Vl and F ~ G by V2,
_ X . _ X - X _ X
then E = V1 Vl ; F = vlvl and F = VZVZ’ G = V2V2.
_ X - b 3 _ X b _ 2 3 _
Let V = V2V1° Then V V = V1 F V1 = V1 Vlvl Vl = V1V1 E.
Likewise VV* = G. Thus E ~ G by V.
u

We call two projections E,

Fe?(A) disjoint if EBF = 0.

1.1.8 LEMMA ([8], p. 111)

If E, Fe?(A) are commuting with corresponding range spaces E(H)
and F(H), then sup(E,F) = E + F - EF, inf(E,F) = EF. Moreover
EFer(4).

Proof

We first show that inf (E,F) = EF. Clearly EF is a projection in
A since (EF)* = FE = EF (E and F commutes)

and (EF)% = (EF)(EF) = E°F = EF. Since inf(E,F) ¢ E and

inf(E,F) ¢ F we have EFinf(E,F) = Einf(E,F) = inf(E,F). Thus
inf(E,F) ¢ EF. Conversely, let x € EF(H). Then EFx = x,

so Ex = E(EFx) = EFx = x and Fx = F(EFx) = F(FEx) = FEx = EFx = x.
Thus x € E(H) and xeF(H) which implies x € E(H) n F(H). We have
seen in the proof of lemma 1.1.1 that the range of inf(E,F) is
E(H) n F(H). Thus EF(H) < inf(E,F)(H), so lemma 1.1.1 implies
EF < inf(E,F). Thus EF = inf(E,F).

By applying the same result to the commuting projections I-E and

I-F,

Then
= T -

we have

inf(I-E, I-F) = (I-E)(I-F).
sup(E,F) = sup[I-(I-E), I-(I-F)] = I- inf(I-E,I-F)
(I-E)(I-F) = E+F - EF.
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1.1.9 COROLLARY ([8], p. 112)

Suppose that E,Fe®(A) are projections onto E(H} and F(H),
respectively. (1) If E and F are disjoint sup(E,F) = E+F (2) If
E ¢ F, then F-E is a projection in 4 onto F(H) n (I-E)(H).

Proof :

(1) follows directly from lemma 1.1.8. Since E ¢ F we have

EF = FE = E. Thus (I-E) and F commute. From lemma 1.1.8
inf(F,I-E) = F(I-E) (= F-E) is a projection in A onto
F(H)N{(I-E)(H). This shows (2).

1.1.10 LEMMA ([8], p. 112)

If {Ei} is an increasing (resp. decreasing) net of projections in

A, and if E = sup E. (resp. inf Ei), then Ex = 1lim Eix for each
iel 1t iel i

x€ H. The limit is taken in the norm topology on H.

Proof

Since {Ei(H)} is an increasing set of closed subspaces of H,
UiEi(H) is a linear subspace of H and has norm closure E(H) by
remark 1.1.3. Suppose x€ H and € > 0. Since Ex € E(H), we can
choose an element y in one of the subspaces Ei(H) so that HEx-ynu
{e
When i ¢ j, we have Ei < EJ
and thus

HWEx - EJ.XII

¢ E, yeE;(H ¢ E;(H) ¢ E(H),

1]

WE(Ex - y) - EJ(Ex -y

[Za

HE - EJH HEx - yit < €

Thus {EJ.}J.eI converges to E in the strong operator topology on 4.

The parts in brackets follow by applying the result just proved to

T -Eiljer-
[ ]
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1.1.11 LEMMA ([8], p 113)

If {Ei}ieJ is a disjoint family of projections in 4, E = sup E.1
i

and xe€ H, then Ex = EiEix; the sum converges in the norm topology

on H.

Proof :

If J is a finite set, it follows from corollary 1.1.9 (1),

together with a straightforward argument by induction on the

number of elements in J that E = }. E..
ieJ 1

When J is an infinite set, let R denote the class of all finite

subsets of J; for each S € R, define G_ = . E.. By the
S 1eS 1
preceding paragraph Gs = sup Ei’ so (GS,SeR,g) is an increasing
ieS

net of projections, and

sup GS = sup{supEi : S € R} = supEi = E
SeR ieS ieJ

By lemma 1.1.10, Ex is the limit, in norm, of the net (Gsx,SeR,S).

Thus since G_x = 2. E.x , E. E.x converges in norm to
ieS i ieJ 1

S
Ex (xe H).

1.1.12 PROPOSITION ([5], p 586)

(resp. {F.} ) be a pairwise disjoint family of

Let ({E.} itier

i‘iel
projections in 4. If Ei ~ Fi for all ie€I, then iEi ~ iFi where

this sum converges in the strong operator topology on 4.

Proof :

Since‘Ei ~ Fi for all ie€I, there exist partial isometries Vi € A

such that E. = Vv, and F. = v.v*. Then, for all
1 1 1 1 1 1
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x € H, V.x = F.V.E.x, since F.V.E.x = v.v  v.v*v.x = F?v.x = F.V.x
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

= Vix (Vi(H) Fi(H), thus Fi is the identity on Vi(H)).
Therefore (Vix, ij) = (Fi ViEix’ Fjvjij) = 0 (FiFj = 0 i#j).
Thus VixLVJx for all i#j.

([

. 2 _ _ * -
Together with uVixu = (Vix, Vix) = (ViVix,x) = (Eix,x)

= HE.xuz,
i

one has

IIE.V.XI(2 = z HV'.XII2 = } IIE.XII2 = IIE.E.XII2 s
11 11 i 71 i1

where the sum is taken over any finite subset of I. Thus }iEi is
strong operator convergent if and only if Eivi is strong operator
convergent on H. But, from lemma 1.1.11 }iEi is strong operator

convergent to E = supEie P(A). Thus Eivi is strong operator
i
convergent to V, say.

It is clear that V € A since A is strong operator closed. The

above equation gives NIVxi = u}iEixn.

Thus V is a partial isometry with initial projection E = }iEi (see

the argument in the last paragraph of lemma 1.1.6,(iii) implies

(i)).

Similarly,}ivz is strong operator convergent to a partial isometry

W € A with initial projection EiFi' Thus }ivi is weak operator
convergent to V (the strong operator topology is finer than the

weak operator topology on 4A) and since the X-operation is weak
. x . X
operator continuous on A4, Eivi is weak operator comnvergent to V ;

X
but ziv: is also weak operator convergent to W. Thus V = W. We
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_10._
have seen that W has EiFi as 1initial projection. Lemma 1.1.6
implies that V has final projection F = EiFi’ Therefore, lemma

1.1.6 implies that V*V = E and VV* = F. Thus E ~ F.

1.1.13 COROLLARY ([5], p 56)

) is a disjoint family of projections in

}

A such that E. ¢ F. for all ieI, then E.E. < S.F..
i~ "1 i7i ~ /iTd

If {E;}jer (resp. {Fi}; g

Proof

Since Ei < Fi for all i, there exist E; eP(A) such that

E. ~ Ef ¢ F.. Then {Ef}. is a disjoint family since Ef F. = E,
1 i i i 1el i i 1
and F. E. = E . imply E.E. = E.F.F.E. = 0
J J J 1) 171774

for all i#j (FiFj = 0). From lemma 1.1.12 we have that

.E. ~ }.Ef. Clearly .Ef < }.F. ; thus E.E. < L F.

i~i i1 i1 i i - i1 ~ /i7i

|

Notice E ~ F (E, F € #(4)) implies that E { F and F { E . We now
show the converse. Moreover we show that "{(" is a partial order

on the set of equivalence classes in 2(4).

1.1.14 LEMMA ([5], p 57)

Let 4 be a von Neumann algebra, then "{" is a partial order on the

equivalence classes of projections in 4.

Proof
Reflexive : E { E since E ~ E ¢ E ; E € P(A).
Transitive : Suppose E ~ E' ¢ F by partial isometry U € 4 and
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F~F' <GbyVed Then U'U=E, v’v = F, so (vu)* (VU) = E and

b 4

(vu) (vi)* = vE'v Also since VE'V® (H) < V(H) = F'(H), one has

E~VE'V' ¢ F* ¢ G. Thus E ¢ G.

Antisymmetric : Suppose E ¢ F and F < E. Choose partial
isometries U and V € 4 such that E = U*U, UU* = Fl ¢ F and
F=v', vww"=8" ¢&. (1.1)

Thus E g F1 ¢ F X E* ¢ E. Consider W = VU. Then, for all

projections, G ¢ E, (G € #(A4)) WG is a partial isometry from G to

waw ¥
If G ¢ E and W = VU, we have GE = G = EG; (WG)(WG)* = wa’w* = wow*
and
(we)*(wg) = ¢*w*we = eu* v* vue = au*rue = au*uc = eEc = 6% = g,
because FU = U. Thus WG is a partial isometry with initial

. . . . . X . .
projection G and final projection WGW (It is easy to verify that
WGW* is a projection).

Define a sequence (E }w_ as follows
n’n=o

E = E, E, = E* and E = WE W*. We now show by induction that
o) 1 n+2 n

n+l < En for all n. By (1l.1) E1 ¢ E. Also E2 < El’ since

tx3
t=3
1]

* = = = =
WEOW E1 = WEO uv El = WEO uv WEOW 9° Suppose

E_<E (r=1,...,n). Then E = WE W < WE LW =E , since

= W E u*ru E w* = wE t* uE w¥ = w&E w*¥ - E
n n- n n

En+1Bn -1

Let E = inf E . Clearly E € #(A) (lemma 1.1.2).
® neN © ®

Since En ¢ E for all n, WED is a partial isometry from En to

WE W*. Likewise, since E_- E < E for all n we have
n n n+l
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*— -—
En - En+1 ~ W(En - En+1) W = En+2 En+3 for all n. By

proposition 1.1.12 and lemma 1.1.10 we have

[o.] o]
B =E, =B+ z (Bogn = Egper) * } (Eon+1 ~ Fapnez)
n=o n=o
e Q0
~ Bt E (E2n+2 - E2n+3) * z (E2n+l B E2n+2)
n=o n=o
= E, ~ F. (Note that all the above series are strong

operator convergent).

1.1.15 DEFINITION ([18], p 291)

Let T € 4. The smallest projection E € #(4) such that ET = T is
called the left support of T and denoted by Se(T). The right
support Sr(T) is the smallest projection F € #(4A) with TF = T. We
define the support of T as the smallest projection E € ®(4A) such

that ET = TE = T and denote it by S(T).

It is clear that Se(T) and Sr(T) are well-defined elements of #(4)
(lemma 1.1.2) and if Se(T) = Sr(T), then S(T) = Se(T) = Sr(T).

’ 1.1.16 REMARK

We claim that Se(T) (resp. Sr(T) ) 1is the projection onto

T(H) (resp.T (H)).
Proof :

Since Se(T)T = T and Se(T) is continuous as element of L(H), we

have that Se(T)(T(H)) = T(H). Thus Se(T)(H) > T(H). Let [T(H)]

be the projection onto T(H). If we can show that [T(H)] € #(4) we
have Se(T) > [T(H)]. Since [T(H)]T = T, it follows by definition

of Se(T) that Se(T) = [T(H)]. Take note that TU = UT for all

unitary Ue 4°'.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



- 13 -

Since U(T(H)) < UT(H)

TU(H) = T(H) and [T(H)] is the identity

[T(H)]U[{T(H)]. This also holds for

on T(H) we have U[T(H)]

U* €A.

X X
Thus [T(H)]JU [T(H)] = U [T(H)]. By taking adjoints on both sides
one gets [T(H)]JU = [T(H)JU[T(H)] = U{T(H)]. This implies
[T(H)] € A" = 4. Using definition 1.1.15 it is clear that

Sr(T) = Se(T*). Then the above argument shows that Sr(T) is the

projection onto T (H)

1.1.17 LEMMA (([5], p 53)

Let T € A, and let T = VR be the polar decomposition of T. Then V

is a partial isometry with V*V = [T*(H)] = Sr(T) and VV* = [T(H)]
= Se(T). Moreover Sr(T) ~ Se(T).

Proof

It is clear by the existence proof of such a polar decomposition

of Tea, that R = (T*T)l/z. Also since a von Neumann algebra is a
C*-algebra R € A. R is called the positive square root of T.
Then, for all xeH,

nqu2 = (sz,x) = (T*Tx,x) = uTxnz, (1.2)

since R is hermitian.

We may therefore define an isometry

Vo: R(H) -» T(H) by Vo(Rx) = Tx (xeH).
Vo is well defined since if Rx = Ry them R (x - y) = 0. This
implies that T (x - y) = 0 by (1.2). Extend Vo by continuity to

an isometry V1 from R(H) onto T(H). Define V' = VIE’ where

E = [R(H)] €4 is the projection onto R(H) (that E € A4 can be seen

from remark 1.1.16 and the fact that R € 4). Since

V'Rx = VlERx = Vle = VoRx = Tx for all xe€H we have by the
uniqueness of this polar decomposition that V' = V. We now show
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that V is a partial isometry with initial projection {[R(H)] and

final projection [T(H)]. Let F = [T(H)]. If x = Ey € E(H) = R(H)

(yeH), then iix#t = WEyH# = uleyu = uVlEzyu = WVEy#W = uvVxn and

V(I-E) = VlE(I—E) = 0. Also

F(H) = [T(H)](H) = T(H) = Vl(R(H)) = VIE(H) = V(H).
Thus VV* = [T(H)] and V*V = [R(H)]. To conclude the proof we must

show that [R(H)] = [T*(H)]. To do this we show that

[T*T(H)] = [T*(H)]. It is clear that T*T(H) < T*(H). Thus
(T*T(H)] < [T*(H)]. Conversely, we have for all xe€H with
xL[T*T(H)](H) that (x, T*Ty) = 0 for all y € H. Thus (T*Tx,y) = 0
(yveH), which implies T*Tx = 0. From 0 = (T*Tx,x) = llTxIl2 we have
Tx = 0. Thus 0 = (Tx,y) = (x,T*y) for all y e H. Hence
xL[T*(H)](H). This  implies [T (H)]J(H) < [T T(H)](H).
Consequently, [T*(H)] = [T*T(H)].

Then [R(H)] = [R¥(H)] = [R¥R(E)] = [RP(®)] = [T¥T(m)] = [T¥(®)]

(R is hermitian).

|
1.1.18 COROLLARY (([5], p 55)
If T = VR is the polar decomposition of Tea4 then V, R € 4.
Proof :
. . _ x..1/2 . X .
Ted implies R = (T T) € A because 4 is a C —algebra (4 is a
a*-subalgebra of L(H) and Z"'" c A weak _ A, S0 A is norm closed).

To show that Ve 4, we show that VS = SV for every Se 4°‘. This
implies VeA"” = A. Since R € 4 and Se€ 4', SR = RS. So
SVRx = STx = TSx = VRSx (xeH). So VS = SV on R(H) and by

continuity, on R(H).
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. . X . . .
Now Se A' implies R S = SR*, which implies S*R = RS* (taking

adjoints).

So ye H(H}l implies (Rx,y) = 0 (xeH).

1)

Therefore (Rx, Sy) (S*Rx,y)

(R(s¥x),y) = 0 (xeH).

1]

Hence Sy € H(H)‘L

Then clearly SVy = 0 = VSy (In the proof of lemma 1.1.17 we have
seen that V = VI[R(H)], so Vy = 0 for all y e R(H)l).

We have shown that V¥S = SV both on R(H) and on R(H)l, so VS = SV

for all S € A*.

=
1.1.19 PROPOSITION (Parallelogram law (18], p 292)
Let E, F € #(4), then E - inf (E, I-F) ~ F - inf(F, I-E).
Proof :
Consider FE € A. We are going to show that
S_(FE) = E - inf(E, I-F). Since (FE)*(H) = [Ker(FE)]' we have

from remark 1.1.16 that Sr(FE) is the projection onto Ker(FE)l.
If ¢ H and FEx = 0, we have Ex = (I-F)Ex € inf(E,I-F)(H)

(E(Ex) = Ex; (I-F)Ex = Ex). This implies that

x = (I-E)x + Ex € (I-E + inf(E,I-F))(H).

Thus Ker(FE) < (I-E + inf(E,I-F)) (H). Converseley if

x € (I-E + inf(E,I-F))(H) we can write x = y®z (I-E and

inf(E, I-F) are disjoint) with y=(I-E)y and z = Ez = (I-F)z. Then
FEx = FEy + FEz = FE(I-E)y + F(I-F)z = 0.

Thus (I-E) + inf(E,I-F) is the projection onto Ker(FE).

Since Sr(FE) is the projection onto
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Ker (FE)' = HO[((I-E)(H)e(E(H)N(I-F)(H))] = E(H)O(E(H)N(I-F)(H)),
we have that Sr(FE) = E - inf(E,I~F)
Likewise Se(FE) = Sr(EF) = F - inf(F,I-E). Since Sr(FE) ~ Se(FE),

we have E - inf(E,I-F) ~ F - inf(F,I-E) (lemma 1.1.17)
]

1.1.20 COROLLARY
If E, Fe #(4), we have sup(E,F) - F ~ E - inf(E,F)

Proof :

By replacing F with I-F in proposition 1.1.19 the result follows.

Observing that the centre of a von Neumann algebra is given by

Z = ANA' we define the following

1.1.21 DEFINITION ([5], p 587)

The central support C(T) of T € 4 is the smallest projection Q € Z
such that QT = T = TQ.

Note such an projection exists since ®(Z) is a complete lattice.

1.1.22 LEMMA ([5], p 56)

Let E, F € #(4), then if E { F we have PE { PF for each central

projection P € Q4. Moreover, E ~ F implies PE ~ PF for all

projections PeZ.

Proof :

v . VP .
Suppose E ~ E1 < F, then we first show that PE ~ PEl. This
follows since (VP)*(VP) = PV*VP = P2 V*V = PE and

(vPy(ve)¥ = vpZv* = p2yy* - PE,. Since (PE;)(PF) = P2E1F = PE,

one has that PE1 ¢ PF. This implies PE ~ ?El < PF, and so

PE ¢ PF.
n
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1.1.23 LEMMA ([5], p 58))

Let E,F € 2(A); then

(i) E < F implies C(E) ¢ C(F).

(ii) E ~ F implies C(E) = C(F).

Proof :

(i) Suppose E { F; then there exists a partial isometry V € 4

such that V*V = E and VV* = Fl ¢ F. Take any Q € Z. If

FF, = F,. Thus avv® = yv¥.
2

Then QE = QEZ = Qv¥vv*v = v¥(avv*)v = v*vv*y = 82 = B (qez)
In particular for Q = C(F) we have C(F)E = E, but C(E) is the

QF = F we have QFl = QFF1

smallest such central projection. Thus C(E) ¢ C(F).

(ii) If E ~ F, then E { F and F { E. the result follows from (i).
[ |

1.1.24 LEMMA (([5], p 58)

If T € A, we have that C(T) = [ATH] (the projection onto ATH where
ATH = {STx|Se4, xeH}).

Proof

Let [ATH] = Q. We first show that QeZ. If SedA we have

S(ATH) < ATH. Since S is continuous in norm

S(ATH) < S(ATH) < ATH. Thus SQ = QSQ. Since S* € A we can repeat

the above argument for S* to get S*Q = QS*Q. By taking adjoints
on both sides we conclude that SQ = QSQ = Q@S. Thus Qe4' which
implies S(ATH) = ATSH < ATH (Se€A') and as before we have SQ = @S.

Thus Qe A" = A, so Qe AnA' = Z.

Next we show that Q@ = C(T). Since Ie€eA we have TxeATH (xe€H), so
QTx = Tx(Q is the identity om ATH). By definition of C(T) we have
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Q > C(T). Conversely we have C(T)e 4*' and
C(T) STx = SC(T)Tx = STx (Sed, xe€H). This implies ATH < C(T)(H),

and since C(T)(H) is closed ATH < C(T)(H). Thus Q ¢ C(T).
]

Before we prove one of the most powerful tools in the study of the

projection lattice we need the following lemma.

1.1.25 LEMMA ([5], p 58 and p 59)

For the two projections E and F in 4, consider the following

statements

(i) C(E) C(F) # 0 ( C(E) and C(F) are not disjoint)

(ii) E4F # {0}

(iii) There exist non—zero projections E1 < E and Fl < F in 4
such that E, ~ F,.

1 1

Then we have (i) implies (ii) and (i) implies (iii).
Proof

(i) implies (ii)
We know that C(E) = [AEH] and C(F) = [AFH]. Since C(E)C(F) # O
there exist R,Se 4 and x,yeH such that (REx, SFy) # 0, so

(FS*REx,y)¢0 which implies FS*RE # 0. Consequently

(Fs* RE)* = ER*SF 2 0, so E 4 F # {0}.

(i) implies (iii)

Let Te EAF, T#0 (from (i) implies (ii)). Since T(H) = ESFH < E(H)
(for some Se€A), we have Se(T) = [{T(H)] ¢ E. Similarly
Sr(T) = [T*(H)] ¢ F, and from lemma 1.1.17 we have Se(T) ~ Sr(T)

(Se(T) and Sr(T) are non—-zero since T#0.)
||
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1.1.26 PROPOSITION (comparability, [5], p 59)

For all E, F € #(A) there exists a Q € #(Z) satisfying
QE S QF and (I-Q)E Z (I-Q)F

Proof :

If C(E)C(F) = 0, let Q C(F). Then we have
QE = C(F)E = C(F)C(E)E = 0 ¢ F. Thus QE ~ 0 ¢ QF(=F) and thus
QE ¢ QF. Also (I-Q)F = 0 ¢ E = (I-Q)E, so (I-Q)F ¢ (I-Q)E and the

result follows. From lemma 1.1.25, if C(F)C(E) # 0, there exists

a pair (El,Fl) of non—-zero projections in A such that El < E and

F1 ¢ F with El ~ Fl. Let X be the class of all families {(EA’

FA)}AeA of pairs of projections in 4 with the following properties

(1) 0 < EA < E for all Aeda
(2) {EA} is a disjoint family
(3) 0K« FA ¢ F for all Aesa

(4) {FA} is a disjoint family
(5) EA ~ FA for all Aed
Clearly x # ¢ since {(El, Fl)} ex. Then X is partial ordered by <

and Zorn’s lemma implies that a maximal such family in %, say

{(EA’FA)} exists.

Let Eo = AEA, F0 = AFA' Then Eo ~ Fo by proposition 1.1.12.

Let E2 = E - Eo’ F2 = F - Fo. Then C(Ez) C(Fz) = 0 since if

C(EZ)C(FZ) # 0 there exist projections E3, F3 € A with
~ F3 (see lemma 1.1.25). We know

0 <« E3 < Ez; 0 < F3 < FZ and E3
that 0 < E, ( E. = E-E_ < E,
3 = 72 o
so EgE, = EjE,B = E; (E-E_) E, = EE E, - Eg (}yEﬂ)EA = 0 for all
A € A,

Similarly F3FA = 0 for all A. Thus

{(EZ’FZ);(EA’FA)} € X which contradicts the maximality of

A €A
{(EA’FA)} in Xx.
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Let Q@ = C(Fz), then we have that

QE
QE

2

QC(EZ) E2 = C(EZ) C<F2)E2 = 0. But E2 = E—Eo, so

QEZ + QE = QE ~ QF ¢ QF (lemma 1.1.22), so QE < QF.
o [o] [e] ~

Similarly, (I—Q)F2 = (I—C(Fz)) C(FZ)F2 = 0.

Thus (I-Q)F = (I-Q)Fo ~ (I-—Q)Eo < (I-Q)E; which means
(I-Q)F  (I-Q)E.

1.1.27 REMARKS ([5], p 59)

(1)

(2)

We define a factor as a von Neumann algebra with trivial

centre, that means Z = AnA' = CI.

If 4 is a factor the order relation "<" on #(4) is a total
order. To see this we take any two projections E, F € #(4).
By proposition 1.1.26 there exists a Q € Z such that QE < QF
and (I-Q)E 2 {I-Q)F; but since 4 is a factor Q can either be

0 or I (these are the only projections in the centre). Thus

ECFor F<E.

FINITE AND INFINITE PROJECTIONS

In L(H) we say an operator T is finite (resp. infinite) if T(H) 1is

finite (resp. infinite) dimensional in the usual sense. So a

projection E € L(H) is finite if and only if dim(E(H)) < o, We

now want to generalize this idea of a finite (resp. infinite)

projection to a general von Neumann algebra 4.

DEFINITION ([5], p 61)

A projection E € ®(4) 1is said to be finite if there 1is no

projection El in A4 with E ~ E1 < E. A projection is infinite if

it

is not finite.
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1.2.2 NOTE

In L(H) a projection E is finite in the sense of definition 1.2.1
if and only if E(H) is finite dimensional. In fact if E(H) is
finite dimensional, then for all E1 < E EI(H) S E(H) and so
dimEl(H) < dimE(H). Suppose E ~ E1 < E. Then there exists a
partial isometry V € L{(H) from E to El. From NIVyll = Uiyt (y € E(H))
we have that V is one—-to—one and since V(H) = El(H), V is onto
El(H), so V is a isomorphism from E(H) onto El(H). Thus

dimE(H) = dimEl(H), but we have seen dimEl(H) < dimE(H) which
contains a contradiction. Converseley, let E be finite in the
sense of definition 1.2.1 and suppose E(H) is infinite
dimensional. Then E(H) is isomorphic to a closed subspace

K g E(H). Let El be the projection in L(H) onto K. Then

E(H) = EI(H) and there exists an isomorphism V from E(H) onto
El(H). Define V = 0 on (I-E)(H). Then V is a partial isometry
from E to El’ so E ~ El and E1 < E (El(H) g E(H)), so E ~ El < E
which contradicts the finiteness of E in the sense of definition
1.2.1. In a general von Neumann algebra this result is not always

true. In a general von Neumann algebra A the projection E1 with

range K ¢ E(H) (see proof above) need not be in #(4).
| |

1.2.3 DEFINITION (([5], p 61)

(1) If E € #(A) is infinite and PE is either 0 or infinite for

each central projection P € #(4), E 1is said to be properly

infinite.

(2) A von Neumann algebra 4 1is said to be finite, infinite,
properly infinite according to the property of the identity

projection I € 4.

1.2.4 LEMMA (([5], p 61))

If E is a finite projection in A4, then each subprojection of E is

finite; 0 € A is finite and if E ~ F with F finite then E is

finite.
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Proof

Let Eo € P(A) with Eo < E. Suppose Eo is infinite. Then there

exists a Fl € #(A) such that E ~ F, < E . Since E_ and E - E
o) 1 o o o

(resp Fl and E - Eo) are disjoint it follows from proposition

1.1.12 that E = (E - Eo) + Eo ~ (E - Eo) + Fl and since Fl < Eo we
have (E - Eo) + Fl < (E - Eo) + Eo = E, so E ~ (E - Eo) + Fl < E
which contradicts the fact that E 1is finite. Since 0 has no
proper subprojection it is finite. Let E ~ F. Suppose E is

infinite, then there exists a El € P(A) with E ~ El < E. Let

V € 4 be a partial isometry such that E = V*V and F = VV*. We
show that if Fl is the projection onto VEI(H) then E1 ~ Fl by VEl'
Since El(H) g E(H) and uVyn = nyn for all y € E(H) we have
uVEl(Elx)u = nVElxu = uElxn and uVEl(I—El)xn = 0 (xe H)

Thus VEly = 0 (y € (I—El)(H)). By definition of Fl’

VEl(H) = FI(H)’ so E1 ~ Fl' Also, since El ¢ E, we have

Fl(H) = VEl(H) < VE(H) < V(H) = F(H). Moreover F1 { F, for if not
it will follow that E1 = E. Consequently F ~ E ~ El ~ Fl < F

which implies F is infinite, so F finite implies E finite.
| |

1.2.5 LEMMA (Halving (9] p 412)

If E is a properly infinite projection in 4, then there is a

projection F € #(A) with F ¢ E and F ~ E-F ~ E.

Proof :

Since E is infinite there exists an E1 € 2(A4) with E ~ E1 < E.

X
Let V € 4 be a partial isometry such that E = V*V and E1 = VV .

Then E, = VE, V' < E; in fact, since VE V' (H) < V(H) = E (H) we
* X . X _ _ guX

have VEIV < El, also VE1V # El’ for if VElV = El = VV , one
X

gets v*vglv* = v¥vv* which implies E, v = EElv* = gv*. Thus VE, =

X
VE which gives V*VEl = V*VE, so by noticing that V V = E we have
E1 = EE1 = E2 = E - a contradiction. It follows from
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= oXou¥y _ oKoooXoXo _ oK ok ok
E - E) = VVVV - VWV V'V = V(E,-VE, V)V = V (E;-E,)V (E; ¢ E),

. . b
that E El ~ El - E2 by the partial isometry V (El—Ez).

. . . . x _ _ -
Continuing in this way (VEZV = E3 < EZ and E1 EZ EZ E3), we

construct a countable infinite family {En - En+1} of equivalent
non—-zero subprojections of E. We show that this family 1is
disjoint : Let En - En+1 and Em - Em+l be two elements iin this
family with n # m. We may assume that n < m.
Then
(En - En+l)(Em - Em+l) = EnEm - EnEm+1 - En+lEm * En+1Em+1
= Em - Em+1 N Em * Em+1
=0

By Zorn this family is contained in a maximal such family {Fi}iel'

We cannot have that Fi < E - EiFi (= Eo) for some i € I, for then
there exists a Fo eP(A) with

F. ~F < E_ and since F F, = F E F, = F (E - }.F.)F.=F (F.-F.)= 0
i o o o i oo i o A S R R N |

(Fi < E), we have that {Fi,FO}ieI is a disjoint family of
equivalent non-zero subprojection of E. This contradicts the
From proposition 1.1.26 there

maximality of the family {Fi}ieI’
is for any fixed i€l a non—zero central projection Pi with

P.E < P.F.. Let P = inf P.. Then PE < PF, i€l by 1lemma
io ~ i i i i o ~ i
1.1.22.

Since I is an infinite set, there is a subset Io of I such that if
i, € Io’ then I\Io(=Il); I0 and Io\{lo}(= Iz) can each be put
into one—-to—one correspondence with I (if card(I) = «. Then it is
known from set theory that az = « where az = card(IxI), since I is
an infinite set. This means that there exists a bijection

f:IxI —— I. Define Ié = Ix{i} for a fixed i € I and Ii = IxI\Ié.
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Then since Ix{i'} < Ii < IxI ~ I (i'#i), one has

card(I) ¢ card(Ii) ¢ card(I). Thus if we let Io = f(Ié) and
I. That I Io follows

14
R

I1 = f(Ii) one has that Io = Il

similarly).

From lemma 1.1.22, we have PFi ~ PFJ where 1i,jel, and from

proposition 1.1.12 and its corollary one has
PE = zieIPFi + PE_ < }iel PF + PF,
2 o
}iel PF; ~ zieI PF; ¢ }ieI PF; * PE, < PE
o 1 1
. PF., < G < PE where G = ). PF. + PE ; so
1eIo i~ ~ 1eIl i o

PE ~ G ~ }. PF. (lemma 1.1.14).
1eIo 1

Thus PE

A

Since . PF. = . PF. + PE - . PF., - PE = PE - G (where
1eIo i iel "1 o 1eI1 i o
the sums are taken in the strong operator topology on A4), one has

PE ~ G ~ PE - G.

Up to this point, we have proved that if E is a properly infinite
projection in 4, there is a non—zero central projection P in 4
such that PE can be "halved” - that is there is a subprojection G
of PE in A with G ~ PE-G ~ PE # 0. Also, as seen in the first
part of the proof Fi ¢ E (iel); P ¢ P. (P = inf Pi) where Pi € Z

i .

i1el
was chosen so that Pi < C(Fi) holds for each iel. From lemma
1.1.23 one has C(Fi) < C(E). Hence P ¢ C(E). Using Zorn, there
exists a maximal family {Qa}aeA of non-zero, disjoint central

subprojections of C(E) such that each QaE can be halved.

Thus, let Ga be a subprojection of QaE in A such that

G ~ QEFE - G_ ~ Q_E. We want to show that C(E) = Q_. If
a a a a a a

C(E) - }aoa # 0 then it follows that (C(E) - }aoa)E is properly

infinite, since for every non-zero central projection P, either

P(C(E) - Q )JE is infinite or zero (if P is a central projection
a a
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P(C(E) - }aQa) is also one, and E is properly infinite).

Since (C(E) - zaqa YE is properly infinite the first part of our

proof states that there exists a non—-zero central subprojection Qo

of C((C(E) - y a_ JE) (= (C(E) - ana )C(E) = C(E) - }aoa), such

that QO(C(E) - Q )E QOE can be halved. Let Q = C(E) - Q

a a

Now the first equality in brackets holds since C(QE) = QC(E)
(QE ¢ Q, so C(QE) < C(Q) = Q by 1.1.23). Thus C(QE) ¢ Q = QC(E).

Converseley, QC(E)QE = QZC(E)E = QE, so C(QE) ¢ QC(E) (1.1.23).

Hence C(QE) = QC(E). Since @ Q = Q (C(E) - E Q )Q = 0 for each
o a o a a’"a

aeA we have that {Qa,Qo : a € A} is a disjoint family of non-zero
central subprojections of C(E) such that each QaE and QoE can be

halved. This contradicts the maximality of {Qa}. Consequently

C(E) = }aoa' Letting F = }aGa’ proposition 1.1.12 implies that.

F o~ z (QE -G ) =E - F ~ z QE = E
a a a a a

1.2.6 LEMMA ([S], p 414)

If {Pi}i I is a family of central projections in A4, and E € ®(4)
is such that PiE is finite for each i€I, then PE is finite, where
P = sup Pi'

i

Proof

Suppose PE is infinite, then an F € #(4) exists such that

PE ~ F < PE. Then 0 # PE - F ¢ PE ¢ P. If (PE - F)P, = 0 for
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each i, (PE - F)Pi(H) = {0} for each i; so (PE - F)[UPi(H)] = {0}
where [UPi(H)] is the closed subspace of H generated by UPi(H).
Thus 0 = (PE - F)P = PE - FP = PE - F which is a contradiction.

Thus (PE - F)Pi # 0 for some io’ so Pi PE = Pi E (Pi < P). From
o o o) o

lemma 1.1.22 one has Pi F ~ Pi PE = Pi E (F ~ PE). Hence Pi E is
o o o o

infinite in 4 - contrary to the hypothesis.

Thus PE is finite.

||
1.2.7 LEMMA ([S9], p 414)
Suppose E is an infinite element in 2(4), then a central
projection P in A exists with P ¢ C(E); PE is properly infinite,

and (I - P)E finite. If E is properly infinite and F ~ E, then

F is properly infinite.

Proof :

Let {Qi}ieI be a maximal disjoint family of central projections in

A such that QiE is finite for each i ({0} is such family, so the

result follows by Zorn). From 1.2.6 QE is finite where Q = Eiqi

(= sup Qi in the strong operator topology on A, by lemma 1.1.11).

i
Moreover, PE is properly infinite (P = I - Q) for if not, there

exists by definition a central projection Qo with 0 < QO < I - Q
and QO(I - Q)E = QOE be finite (QOQ = Qo(I - Q)Q = 0). Thus, by
adjoining Qo to {Qi} the maximality of {Qi} will be contradicted.

If E is properly infinite, F ~ E, and P is a central projection
with PF # 0 we want to prove that PF is infinite. From lemma
1.1.22 PF ~ PE # 0. Since E is properly infinite, PE is infinite
(by definition), so lemma 1.2.4 implies that PF is infinite. Thus

F properly infinite.
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1.2.8 PROPOSITION (([9], p 414)

If E, F are finite element of ®(A), then sup(E,F) is a finite

element of ®(4).

Proof

By corollary 1.1.20 sup(E,F) - F ~ E - inf(E,F). Since E 1is
finite and E - inf(E,F) ¢ E we have from lemma 1.2.4 that
E - inf(E,F) is finite, and again lemma 1.2.4 implies that
sup(E,F) - F is finite. As sup(E,F) = F + (sup(E,F) - F); F and
sup(E,F) — F are disjoint, it suffices to show that the sum of two

disjoint finite projections in 4 is finite.

We assume thus that EF = 0. Suppose E + F 1is infinite. Then
lemma 1.2.7 states that a central projection P in 4 exists, such
that P(E + F) 1is properly infinite. Since E and F are finite
lemma 1.2.4 1implies PE and PF are finite (PE ¢ E, PF ¢ F).
Clearly, PE and PF are disjoint. Thus if we have proved the
proposition for PE + PF, then E + F must be finite; otherwise if

E + F is infinite, P(E + F) is properly infinite and thus

infinite. We may assume, thus, that E + F is properly infinite.

Lemma 1.2.5 shows that there is a subprojection G of E + F such
that G ~ E + F -G (= G') ~E + F. From proposition 1.1.26 there
is a central projection Q such that Qinf(G,E) < Qinf(G*',F) and

(I - Qinf(G',F) ¢ (I - Q)inf(G,E). Since E + F # 0 it follows
that either Q(E + F) or (I - Q)(E + F), or both are not equal to

zero. If, say, Q(E + F) # 0 then Q(E + F) is infinite by
definition of properly infinite; while QE and QF are finite and
disjoint (lemma 1.2.4). Moreover QG ~ QG* ~ Q(E + F); also by

lemma 1.2.4. Since Q and G (resp. Q and inf(G,E)) commutes;

lemma 1.1.8 together with Qinf(G,E) < Qinf(G*',F) implies that

inf(Q,inf(G,E))
inf(QG',QF)

inf(inf(Q,G),inf(Q,E))
Qinf(G,E) £ Qinf(G',F)

inf{(QG,QE)
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Since QE and QF are disjoint and finite and Q(E + F) is infinite
it follows that if we have proved the proposition for Q(E + F), it

will also hold for E + F, otherwise if E + F is properly infinite,

then Q(E + F) # 0 is infinite.

We may assume, thus, that inf(G,E) £ inf(G',F).

If (I - Q)(E + F) # 0 and Q(E + F) 0, we have that
(I - Q)(E + F) is infinite, while (I - Q)E and (I - Q)F are finite
and disjoint. By reversing the roles of E and F (resp. G and G')

we may, by using the same argument as above, assume that

inf(G,E) £ inf(G*,F).

Since G - inf(G,E) ~ sup(E,G) - E; inf(G,E) < inf(G',F) and the
pairs (G-inf(G,E), inf(G,E))(resp. (sup(E,G) - E, inf(G',F)) are

disjoint we have from corollary 1.1.13 that
G =G - inf(G,E) + inf(G,E) < sup(G,E)-E + inf(G*,F) ¢ F.

We show that sup(E,G)-E and inf(G',F) are disjoint subprojections
of F. Then F » sup(sup(E,G)-E,inf(G',F)) = sup(E,G)-E + inf(G',F)
(the equality holds by corollary 1.1.9).

Take any vector z in the range of inf(G',F). Then z = G*z and

z = Fz. Hence for all yeH we have that (G'z,Gy) = (GG'z,y)

= (G(E + F - G)z,y) = ((G - G)z,y) = 0 and (Fz,Ey) = (EFz,y) = 0.
Thus, every element in the range of inf(G', F) is orthogonal to
both the range of G and of E — hence, to the range of sup(E,G).
Observing that G ¢ E + F and E ¢ E + F, we have sup(E,G) ¢ E + F,

so sup(E,G)-E ¢ F.

We have seen that G { F. Hence G is finite by lemma 1.2.4. But

G ~E + F and E + F was assumed to be infinite - contrary to lemma

1.2.4, so E + F is finite.
]
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1.3 INDUCED AND REDUCED VON NEUMANN ALGEBRAS

We shall use reduced algebras to set up a correspondence between

of the

Thus if P is a property of projections,

properties algebras and properties of projections in

algebra. we say that an
algebra A4 has the property P if and only if I € 4 has P. If Q is
we say that a projection E € #(4)
has Q.

a property of algebras, has

property Q if and only if the reduced algebra AE
1.3.1 DEFINITION ([5], p 62)

Then EAE is called the
We

Let E € #(4) (A4 as von Neumann algebra).
reduced algebra of A4, and A'E is called an induced algebra.
shall write TE for the restriction of ETE to E(H) (Te4), AE
the restriction of the algebra EAE to E(H).

for

1.3.2 PROPOSITION ([5], p 62)

Let E € 2(4). Then EAE and A'E are von Neumann algebras on E(H)

and A'E = (EA4E)*

Proof :

It is clear that AE and (A')E = EA'E = A'E are x*x—-subalgebras of

L(E(H)). If we show (i) (A')E = (AE)' and (ii) Ap = ((A')E)',
then it will follow that AE and (J.')E are von Neumann algebras on
E(H). This follows because (a) (AE)" = ((AE)')' = ((4')E)' = Ag
(by (i) and (ii)) and (b) ((4*)p)" = ((a'p)*)* = (4g)' = (4),.
Also (EAE)' = (4E)*' = (,4.')E = EA'E = A'E (by (i) and the fact
that T € A' commutes with E).
Two of the inclusions are easy, namely
i(a) (4')p < (45) and  ii(a) 4p < ((4")g)?
i(a) The equation ETET'E = T'ETE2 = T'EEZTE = T'EETE

(T* € A', T € 4 and E € #(4)), implies
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ETE ET*'E = ETET'E = T'E ETE = T‘E2 ETE = ET'E ETE. Thus

ET'E € (AE)' and (A')E < (AE)'

ii(a) The above equation also implies

ETE ET'E = ETET'E = T'EETE = T'EZETE = ET*'E ETE, so

ETE € ((A')E)'. Consequently AE < ((A')E)'

The converse of ii(a) : Suppose Soe ((A')E)', then So € L(E(H))
and we define S € L(H) by Sx = SoEx (x€H). Since Soe ((A')E)', So
commutes with all ET'E (T'ed'), and in particular with

E = Ez = EIE (Iea'). Thus if y = Ex € E(H),

- - - 2 _ 3, _ -
SEy = ESE(Ex) = ESEx = ESOE X = SOE X = Soy. Thus S0 = SE'

Now Se€A, since for all Tr'ed', xeH,

ST'x = SOET'x = SOT'EX = SOT'EEx = T'ESOEX = T'ESOEX = T'Sx; so
SeA"” = 4. Thus So = SEe AE which implies ((A')E)' < AE

The converse of i(a) : We want to show that (AE)' < (A')E. Since
Ag is a x%-subalgebra of L(E(H)), (AE)' is a *-subalgebra of
L(E(H)) and (AE)"' = (AE)', so (AE)' is a von Neumann algebra,
and since any von Neumann algebra is norm-closed in L(E(H)),(AE)'

is a *-subalgebra which is norm-closed in L{(E(H)).

Thus (AE)' is a C*—algebra. It is sufficient to show that if So

is a unitary element in (AE)' then Soe (A')E (every element in a

C*—algebra is a linear combination of four unitary elements). So
if So is a unitary element of (AE)', then So commutes with every

ETElE(H) (TeA). We wish to find T'e€4' such that T'Ex = SoEx(er).
3

Then for y = Ex e€E(H), Soy = SoEx = T'Ex = T'E°x = ET'Ey = (T')Ey,
so Soe(A') . For such a T' we should have

E
n

n n
S, TEx.) =S, .T.T'Ex, = 5. .T.S Ex.
T (}leTJ x.) EJ:ITJT X §Q=1 JER 'Y

for all Tl,...TneA X1 ...xneH. This defines what T' has to be on

the subspace AE(H) of H. We shall now show that it is possible to
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define a continuous operator T' inm this way on AE(H). We then

extend T* to AE(H) by continuity, and on the whole of H by

T': = T'C(E) (we have seen from lemma 1.1.24 that C(E) = ([4EH]).
Now
n
"2“ T.S Ex.n>
J=l1"j 0 "J
n
= }i,j=1(TiSoEXi , TS Ex;)

n
Ei,j=1(TiEsoExi , T,ES_Ex;) (since S (H) < E(H))

n
X
Di,5=1(ET; TiS Bx; , S Ex;)
" x
= )i, o1 (SETT Ex; , S Bx)) (S e(4g)*)

n
_ X . . b 3 -
= Ei,j=l(ETjTiEXi s Exj) (So is unitary, so So So = I)
n
= Ei’jzl(TiExi , TEx;)

n
2 .
"§j=lTJEXJ" for Tl,...TneA, xl,...xneH.

Thus we can define T' on AE(H) by the equation
n n
T . ,T.Ex.) = . _ ,T.S Ex..
(§J=l %) §J=1 i%0" %

By the above argument T' so defined is an isometry and thus

continuous. Thus we can define T' on H as described above (For
T* = T*'C(E) on H, we have T'(Ex) = T'C(E) Ex = T'Ex = SOE(x) on
E(H)).

To prove that T*' € A4', it suffices to show for all R e 4,

T'Rx = RT'x (x€H). Now for x = TEy (TeA, ye€H) we have

RT' (TEy) = RTSoEy (by definition of T' on AE(H)) = T'RTEy (by
definition of T', n=1 and T1 = RT) Thus RT* = T'R on AE(H).

If xe (AE(H))L, RT'x = RT'C(E)x = 0 = T'RC(E)x (C(E) = [AE(H)] and

X € (AE(H))l). So we have found a T'e€4' such that Sy = TiE'E(H)'

Hence Soe A'E = EA'E = (A')E. This completes the proof.
|
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1.3.3 NOTATION
We write E { F for E { F and E ~ F.
1.3.4 PROPOSITION ([15], p 90)

Let 4 be a finite von Neumann algebra, and let E,El; F,F1 be
projections in A4 satisfying the following conditions

E, < E, F, ¢ F, E, ~ F. and E ~ F. Then E - El ~ F - Fl.

1 1 1 1

Proof :

By the comparability proposition (1.1.26), a central projection Q
in 4 exists such that (E - El)Q < (F - Fl)Q and

(E - El)(I-Q) 2 (F - Fl)(I - Q). Suppose (E - El)Q < (F - Fl)Q;
then a F' € #(4) exists with (E - El)Q ~ F* < (F - Fl)Q. Since

E1 ~ F1 lemma 1.1.22 implies QE1 ~ QF1 and since ElQ and (E - El)Q
(resp F*' and FlQ) are disjoint, proposition 1.1.12 and its
corollary imply that

EQ = (E - El)Q + EIQ ~ F' + FlQ < (F - Fl)Q + FlQ = FQ;

Again, from lemma 1.1.22 EQ ~ FQ (E ~ F).

Thus FQ ~ EQ ~ F' + FlQ < FQ, which contradicts the fact that
FQ ¢ F is finite (4 is finite and F ¢ I). Hence

(E El)Q ~ (F - Fl)Q. Similarly (E - El)(I-Q) ~ (F - Fl)(I - Q).
By applying proposition 1.1.12 on the disjoint pairs ((E - El)Q;
(E - El) (I - Q)) and ((F - Fl)Q; (F - Fl)(I - Q)) we have

E - El ~ F - Fl.

]
1.3.5 PROPOSITION ([4], p 261)
Let E, F be finite elements of ®(4). Then
(i) E ~ F if and only if there is a unitary element U of 4 such

that UEU* = F.
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(ii) If E ~ F and if G » sup(E,F), then a unitary element of U of

A exists such that U*EU = F and U*GU = G.

Proof

(i) Let Gl = sup(E,F). Then Gl is finite by proposition 1.2.8.
F ¢ Gl

Now E ¢ Gl’
G, - E~ G, - F (Consider 4 if A4 is not finite).

1 1 G1

and E ~ F, thus proposition 1.3.4 implies

Let V and W be partial isometries of A4 with V*V = E, VvV = F

- E, wi¥ =g, - F.

and W*W = G 1

1

Define U to be the operator which agrees with V on E(H), with
W on (G1 - E)(H) and with I on (I - Gl)(H).

We show that Ue4. If xeE(H), T'e€A' we have from Ex = x that
T'Ux = T'Vx = VI'x = VT'Ex = VET'x = UET'x = UT*Ex = UT'x.

If xe (Gl - E) (H) or x € (I - Gl)(H) it follows similarly
that T*'U = UT* (T*ed'), and since

H = E(H) o (Gl - E)(H) » (I - Gl(H)) we have that T'Ux = UT'x
for all xeH. This implies Ued" = 4.

It 1is also clear that #Ux#t = uxit for all xe€eH and U 1is

surjective (U(H) = F(H) @ (Gl - F)(H) (I - Gl)(H) = H).

So, U is a unitary element of A4.

If x € E(H) one has UEx = VEx = VV Vx = FVx = FUx.
If xe (G1 - E)(H) : UEx = 0 = FWx = FUx. If xe (I - Gl)(H)’
then UEx = 0 = FIx = FUx.

Thus UE = FU or UEU* =F (U =10 7)

Conversely, if a unitary element U € A exists such that

UEU* = F we want to show that E ~ F. We have that
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() ¥(ue) = BUXUE = EIE = E; and (UE)(UE)® = uEU® = F. Thus
E ~ F by partial isometry UE (see lemma 1.1.6).

(ii) Suppose G G1 = sup(E,F). Since E ~ F a unitary element U
of A, as constructed in (i), exists such that UEU* = F. We
use the same notation as in (i) to show that UG = GU.

If xe E(H), UGx = UGEx = UEx = FUx = FVx
= GFVx (G > F)
= GVx (F(H) = V(H), so FV = V)
= GUx

If xe (G1 - E)(H), UGx U(G1 - E)x = Ux = Wx
Since Wxe (G1 - F)(H) we have (G1 - F)Wx Wx;
so GWx = G(Gl - F)Wx = (G1 - F)Wx Wx = UGx.
Thus GUx = UGx. If xe (I - Gl)(H), UGx = U(G - Gl)x

3]

= I(G-G)x = (G- G)x = GIx = GUx. So veu* = q.

]
1.3.6 COROLLARY ([1])
If E, F are finite elements of ®#(4), then E ~ F implies
I -E~T1I1-~-F
Proof :
Since E ~ F, there exists a unitary UedA with UEU* = F. Then

U (I - B)u* = uu* - ugu® = 1 - F. since

[U(T - E)](UCI - )1F = u(r - 8)u* = 1T - F and
(UCI - E)]¥ [U(I - E)] = (I -E)I(I -E) =1 -E, I -E~TI-F by

partial isometry U(I - E).
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1.3.7 COROLLARY ([S], p 448)

If E, F € #(A) are finite and El, F1 are subprojections of E, F

with E, ~ F

1 1; then E {F implies E - E1 { F - Fl.

Proof :

Since E, ~ Fl there exists by proposition 1.3.5 a unitary operator

1
U € 4 with E, = UF U*
wi 1 - U
Since E { F we can choose an E' € ®#(A4) with E ~ E' ¢ F. We claim
that Fl < E'. This follows from Fl ~ El < E~ E'. Thus

F S E S E*, which implies Fl 5 Er. This means that there exists

an F' such that F, ~ F' ¢ E*. From El UFlU* ~ Fl ~ F* and

1
E ~ E' proposition 1.3.4 implies that
E - E1 ~ E' - F'" ¢ F - F" ~F - Fl (E'* - F' ¢ F -F*' since
(E* - F*)(F - F') = E*'F - E*F* - F'F + F* = E' - F')

Hence E - E1 S F - Fl.
| |

The following proposition is of great importance in the next

chapter where we will construct the so-called index group of a von

Neumann algebra 4.
1.3.8 PROPOSITION (Cancellation law, [1])

Let (El, Ez); (Fl, FZ) be two pairs of finite projections of 4,

and let EIEZ = Fle = 0. Then El ~ Fl and E1 + E2 ~ Fl + Fz imply

EZ ~ FZ.

Proof :

Since E1 + E2 = sup(El,Ez) and Fl + F2 = sup(Fl,Fz) (Corollary

1.1.9), proposition 1.2.8 implies that E1 + E2 and

Fl + Fz are finite.
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Part (i) of proposition 1.3.5 implies that there is a unitary
. * _
element U of 4 with U (El + EZ)U = Fl + Fz (E1 + EZ ~ Fl + Fz).
. X _ X X _ X
Since (ElU) (ElU) = U ElU and (ElU)(ElU) = ElUU E1 = El, we have
that U*El U ~ El by the partial isometry ElU € A. From El ~ Fl we

have U*E U ~ F, and by part (ii) of 1.3.5 there exists a unitary

1 1
element V € 4 with V'F.v = UYE.U, and V(F, + F.O)V = F, + F
1 1Y» 1 2 1 2

(choose F1 + F2 to be G in 1.3.5 (ii)).

Recalling that U*(E1 + EZ)U = Fl + FZ’ we have
U*(E1 + Ey)U = v*(F1 + F,)V, which implies that U*EZU = viF,v.

Using part (i) of proposition 1.3.5 on this relation, one gets

EZ ~ FZ.
u

1.4 CHARACTERIZATION OF A__FINITE VON NEUMANN ALGEBRA 1IN
TERMS OF TRACES

As defined before, a von Neumann algebra A is called finite if its
unit element is a finite projection of A. After we have defined
what we mean by a finite normal trace on A, we will show that a
finite von Neumann algebra can also be defined in terms of traces
on A. It is well known that a von Neumann algebra 4 can be
considered as the dual space of a Banach space A*. For the
benefit of the reader, an appendix, in which a few basic
properties of several useful locally convex topologies defined on
A are summarized, is included. (Chapter 5, 5.1). These results

will be used without additional reference.

The concept of a trace on a von Neumann algebra 4 and in
particular the existence of a finite normal trace in a finite von
Neumann algebra A4 is developed by F.J. Murray and J. von Neumann.

The recent proof, due to Yeadon, can be found in [18].

We begin with the following definitions
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1.4.1 DEFINITION ([8], p 338)

Let A be a von Neumann algebra. Then A is called countably
decomposable if every family of pairwise disjoint projections in 4

is countable.

1.4.2 DEFINITION (([18], p 309)

+
Let 4 = {S*S; SeA} be the positive part of a von Neumann algebra

A.

. . + . .
A trace on A is a function ¢ defined on 4 , taking non—-negative,

extended real values, possessing the following properties

(i) If Sea’ and Tea™, we have ¢(S+T) = ¢(S) + ¢(T)

(ii) If SeA+ and A a non—negative real number we have
¢(AS) = A¢(S) (with the usual convention that
0(+e) = 0).

(iii) If Tes we have $(T'T) = $(TT")

+
We say that ¢ is faithful if the conditions Se4a , ¢(S) = 0 imply
that S8 = 0; finite if ¢(I) { + » , semifinite if for every
non—-zero TeA+, there exists a non—-zero element S in A+ with

$(S) < + » and S5 ¢ T.

We say that ¢ is normal if ¢ (sgp Ti) = s?p ¢(Ti) for every

uniformly bounded increasing net {Ti}ieI in A
1.4.3 PROPOSITION (Monotone convergence, {8], p 307)

If {Ti}ieI is a monotone increasing net of self-adjoint operators
in 4 and Ti ¢ kI for all i€l and k a constant, then {Ti} is strong
operator convergent to a self-adjoint operator T, thus Ted and T

is the least upper bound of {Ti}.
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Proof

Since the convergence of {T.} and that of {Ti, i > io} are

i'iel =
equivalent we may assume that {Ti} is bounded below (by Ti ) as
o
well as above. Thus —IITi HI < Ti < kI, and so {Ti} is a bounded
o
set of operators. Since a closed ball S in L(H) is weak—-operator

compact (Banalch Aloaglu, [6]), and A4 is weak-operator closed one

has ANS 1is weak—-operator closed in S and thus weak—-operator

compact. If {Ti} <€ ANS a subnet which we again denote by {Ti}
exist which is weak operator convergent to a T in L(H). Since 4
is weak-operator closed, Te4. As {Ti} is monotone increasing

(Tex,x) > (me,x) when ¢ > m and xe€H. Since

(Tx,x) = lime(Tex,x) > (me,x) for all xeH we have that T » Te for
all ¢ (the order relation is to be interpreted in the operator
sense). If i > ¢ then 0 ¢ T - Ti < T - Te, and

0 ¢ ((T - Tox,x) = (T - 1) % ? ¢ ((1 - 1,)%,%).

Hence {(T - Ti)l/z} is strong operator convergent to zero. The
strong operator continuity of multiplication on bounded sets of
operators allows us to conclude that {T - Ti} is strong operator

convergent to 0. We have noted that T is an upper bound for {Ti}.

If s > Ti for all i, then (Sx,x) (Tix,x) 3 (Tx,x). Hence
(Sx,x) » (Tx,x) for all xeH so S > T. Therefore T is the least

upper bound of {Ti}.

1.4.4 COROLLARY

If {Ti} is a monotone increasing net of self-adjoint operators in

A which is uniformly bounded and T is the least upper bound of

{Ti}. Then S*TS is the least upperbound for {S*TiS} (Seq)

Proof :

Since {Ti} is a monotone increasing net of self-adjoint operators

in 4 which is uniformly bounded, {S*Tis} is a monotone increasing,

self-adjoint, uniformly bounded net of operators in 4. By

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



- 39 -

c L. X
proposition 1.4.3 {S TiS} has a least upper bound, say P € 4. In
the proof of 1.4.3 {S* TiS} is weak-operator convergent to P.

From (S*(Ti - T)Sx,x) = ((T.1 - T)Sx,Sx) -+ 0 (x€H), we have that

{S* TiS} converges weakly to S*TS. Hence P = S*TS.
n
1.4.5 DEFINITION ([5], p 36 and p 42)
1. A positive linear functional ¢ on a von Neumann algebra 4 is
said to be normal if it satisfies ¢ (sup Ta) = sup ¢(Ta) for
« a

every uniformly bounded increasing directed set {Ta} of

positive elements in 4.

2. Let {Ea} be any family of mutually disjoint projections in 4.

If ¢ is a norm-continuous linear functional on 4, then ¢ is
said to be completely additive if ¢ (E;Ea) = §;¢(Ea) where

EGEG converges in the strong—operator topology on 4.

1.4.6 REMARK

It is well known that the o-weakly continuous functionals on A4 are
precisely those which are completely additive; and for a state (a
positive linear functional with norm 1) o-weak continuity,
normality and complete additivity are equivalent. (This is proved
in chapter 5 paragraph 5.2). An important consequence of this
fact is the characterization of the o-weakly relative compact
subsets of the predual A* of a von Neumann algebra 4.

1.4.7 LEMMA ([17], p 117)

Consider a von Neumann algebra A with predual A* and let F < A* be

a norm bounded subset. The following assertions are equivalent :

(1) F is a(4,,4)-relatively compact (i.e. F, taken in the
o(A*,A) topology, is o(A*,A) compact).
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(ii) For any countable family {En} of mutually disjoint
projections in 4, one has that ¢(En) -+ 0 uniformly for ¢eF

(i.e. for every € > 0 an n exists such that |¢(En)|<e for

every n » n and ¢eF).
Proof

We show that (ii) implies (i)
Since F is a bounded subset of 4, < A*, it follows that F < B,

B a norm—-closed ball in .A* which is weak*—compact by Banach-

Aloaglu. So F < Br (the <closure is taken in the c(A*,A)

topology). Hence F is a o(A*,A)-closed subset of the
a(A*,A)—compact ball and is therefore o(A*,A)—compact. If we can

show that F S Ay it will follow that F is o(A*,A)—compact since

the o(A*,A) topology on A* is simply the restriction of the

X
o(A ,A4) topology to Ay

Therefore, let @ef, then a net {¢k}keK ¢ F which is o(A*,A)

convergent to ¢ exists.

Let {Ei}ieI be a family of mutually disjoint projections in 4 and

_ : PR S X .
let E = }ieIEi' Since ¢k - ¢ in the ' oc(4 ,4)-topology on 4 if and

only if ¢k(T) - ¢(T) for every Ted it follows that

¢(E) = lim ¢k(E)
keK

and

¢(Ei) = lim ¢k(Ei) for any iel
keK

Since each ¢keF < A* is o-weakly continuous it 1is completely

additive by remark 1.4.6. Thus ¢k(E) = }iel¢k(Ei) uniformly for

keK. In fact we have ¥(E) = }ieI?(Ei) uniformly for veF. If this

is not true, a & > 0 exists such that for any finite subset

J ¢ I we can find a YJeF such that
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l}I\J?J(Ei)! = |§IYJ(E1) - EJYJ(Ei)|225. Since for every ¥YeF
}I\J?(Ei) converges, there exists a finite subset HcI\J such that

I}I\(JUH)?J(Ei)'55° Hence

26 SIEI\J?J(Ei)' = IEH?J(Ei) * EI\(JUH)?J(Ei)I ¢ I}HYJ(Ei), t s

So |§H9J(Ei) |26

Consider the 8 > 0 as above : We have seen that there exists a
finite subset chI and a ?1GF with !EJIYI(Ei)' > 8. By

considering I\Jl instead of I we can similarly find a finite

subset J, < I\Jl and a YzeF such that lzgz?z(Ei)IZG. Thus,

2
proceeding in this way, one can construct, for the given 6 > 0, a
sequence {?n} < F and a sequence (Jn) of finite mutually disjoint

subsets JncI such that for every n we have

l}ieJn?n(Ei)'Za'

Define F_ = }. E.. Since the subsets J_ are mutually disjoint
n 1eJn 1 n

we have that {Fn} is a countable family of mutually disjoint

projections in 4, and for every n we have

IYD(Fn)I = IEieJn?n(Ei)lza. Thus for the sequence {Fn}n a 50
exists such that for every n we can find a ?neF with ]?n(Fn)|26;
which, in view of (ii), is a contradiction.

Thus ¢k(E) = Eiel¢k(gi) uniformly for keK, which implies that for
every €>0 a finite subset JcI exists, such that for every finite

subset H>J of I, |¢k(E) - §i€H¢k(Ei)| { € for every keK. It

therefore follows that |¢k(§ieI\HEi)' < € for every finite subset
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HoJ and keK. Since ¢ = lim ¢k in the c(A*,A)—topology if and only
k
if ¢(T) = lim ¢k(T) (Ted), it follows that
k

e > l¢(§ieI\HEi)| = |$(E) - }ieH¢(Ei)l for every finite subset

H>J of I. Hence $(E) = }ielcp(b:i).

This shows that ¢ is completely additive and therefore remark

1.4.6 implies that ¢ is o-weakly continuous, thus ¢GA*.

We now prove the converse. If condition (ii) holds, one has for
any countable family {En} of mutually disjoint projections in 4
and for any € > 0, that a No,exists such that for every ¢eF and

n > No ]¢(En)’ < €. The proof is by contradiction : If condition
(ii) is not true, a & > o and a sequence {En} of mutually disjoint

projections in 4 exist, such that for every neN one can choose a

¢neF with |¢n(En){ > 48.

Since F is o (A*,A)—relatively compact in Ays the sequence {¢n}
has a convergent subsequence with limit ¢6A* (see appendix 5.1,
the Eberlein-Smulain theorem (5.1.1). We denote this subsequence
again by {¢n} and the corresponding subsequence of (En) by (En).
(This convergence takes place in the o(A*,A) topology on A*). If

e <]
we define P = __E, we have E_ ¢ P_ for all n. Clearly (P_) is
n k=n"k n n n
-1
a decreasing sequence of projections and since E = Pn + §2=IER we

have, by taking limits in the strong-operator topology, that (Pn)
converges to zero. Since En < Pn for all n, En -+ 0 strongly,
hence weakly (the strong-operator topology is finer than the weak-
operator topology on 4). Since the weak-operator topology and the
o-weak operator topology are the same on bounded parts of 4, one
has that En + 0 o-weakly. Since ¢eA*, it is o-weakly continuous
and we have that ¢(En) - 0. Observing that |¢(En)| < 8 for every
n, except for a finite number, we may assume that ]¢(En)l < &8 for

every n. The sequence of forms Fo= ¢n-¢ €4, is o(A*,A)-conver—

. _ n
gent to 0 since for every TeA Pn(T) = ¢n(T) - ¢(T) = 0.
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From this it follows that l?n(En), l¢n(En) - ¢(En)]

> |$ (E D] - [$(E )]
> 46 - &6 = 36 (1.3)
We shall now construct an increasing sequence {n(l); n(2); e}

of natural numbers with the following properties.

-1
| j=1 ?n(k)(En(j))'<6 for any k = 2,3,4,... (1.4)
§j=n(k+1)'7n(k)(EJ)l < & for any k = 1,2,3,... (1.5)

In order to do this, let us first observe that for any Ped, we

0
have §n=1]?(En)|< + o (1.6)
To see this, let |¥¢(E )[ = A ¥Y(E_) where A is a scalar with
n n n n
0
absolute value one. We claim that §n=1An En is o-weakly
convergent.
For any x€ H, consider
® 2
"§n=lAn Enxu (xeH)
(- -3 - -]
= (§n=lAnEnx’ }kzl‘kgkx)
oo
= §n=1(AnEnx,AnEnx) (E_E, = 0 for all k#n)

[ -3

§n=1|An'2 (E_%,x)

oo 0 2

Enzl(Enx,x) = "En:lEnx"
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o0
Since §n=1 En is strong-operator convergent by lemma 1.1.11, it

<
follows that n=lAnEn converges strongly, hence weakly and since
the convergence take place on bounded parts of 4, o-weakly. Thus
for every PGA* we get
n o
lim POee1 k) = T Qum Bl €

[ - -] - -]
Hence }kzlhk?(Ek) = Y(}kzlAkEk) { o. So, §k=l|?(Ek)l< + o

We begin the construction of the relations (1.4) and (1.5) by
taking n(l) = 1 and we assume that n(l), ..., n(p-1) have already

been constructed, such that condition (1.4) be satisfied for

k =2, ..., p-1l; whereas condition (1.5) be satisfied for
k =1, (p-2).
We now show that relation (1.4) is satisfied for k = p whereas

relation (1.5) is satisfied for k = p-1. Since {?n} is o(A*,A)—
o0
convergent to 0 and since §3=1|?n(p-1)(EJ)| { + o by (l1.6) we
have, for a sufficiently great n_, the following inequalities:
-1
1 2i=1%a_En(i)’ 1 <@

and

%
ZJ'=no|¥’n(p—l)(EJ)l <8

(remember ?n -+ 0 in the c(A*,A) topology implies

-1

#0(Qi=18n(5)) 3 O

Hence, by choosing o = n(p) > n(p-1) to be sufficiently great,

relation (1.4) is satisfied for k = p, whereas (1.5) is satisfied

for k = p - 1.

The required construction is thus possible by induction. From

relation (1.5) it follows that

Dimke1|Pagi) (Bpg)) | € 8 k= 12,3 (1.7)
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a disjoint sequence of projections and each Yn(k)
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-]

. w 3
J=1En(j) eP(A). Since (En(j))j=1 is
is completely

additive we have

From relations (1.3),

?n(k)(F)

o

= Di=1%aci) Ba(y)) K =

(1.4) and (1.7) we get

1,2,...

|?n(k)(F)[

1D5=1%a00) Eaciy) |

-1
125=1%00x) Eacg)) * Tnex) Eaqr)? *

Yike1%n (i) Eacgy) |

_1 - -
2 <1517 00 Faci)) | 1%a00 Bago) * Dike1%aci) Bas)) |
- -]

> =8 2 Baae) | sk Ba(sy) |

> -8 +38 -8 =6; k=1,2,3...
This contradicts the fact that the sequence {?n} is c(A*,A)—
convergent to 0.

[ ]

Consider the
of 4. The
that

exists where

states

the projection

Let T be a hermitian element
([(11], p 505) then

commuting with T

von Neumann algebra 4.

spectral decomposition theorem

a family {EA}AER

each EA is defined as

of projections

*]1/2 - (T-AI)) and NT+

A

= (T-aD)" = Z([(T-AT) (T-AT) is

+
onto the null space of TA). This family has the

following properties

(i) If

A< A E, ¢ E
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(ii) EA =0 if A < m = inf{A|AeSp(T)} and EA = I if

A >M = sup{Ar|reSp(T)}, where Sp(T) denotes the spectrum

of the operator T.

(iii) p =+ A+0 then EHX - EAx (x€H). Hence (i) implies that
E = inf E _,.
A A'DA A
(iv) For each a, TEA < AEA and A(I-EA) < T(I - EA)
M
(v) T = f AdEA where the integral is to be understood in
m-o
the sense of uniform operator convergence. Since each

EA commutes with every S commuting with T we have

EAS = SEA for all Sea‘. Thus EAEA" = A for each A. If
T eA+, NT+ = NT = Eo. So (iii) and remark 1.1.16 imply
o

that S(T) = S (T) = S (T) = I-N_, = sup (I-E. ). So we
14 r T A+ >0 At

can choose an increasing sequence (Eé) c 2(A) with

— [] 1 1 ] 1 = —
S(T) = szp En and TEng 5 En (Let En =1 El/n)'

Let ¢ be a normal positive (¢(T) > 0 if T » 0) linear functional

on A then ¢6A: by remark 1.4.6. Since [E(H)UF(H)] = (E+F)(H)
where [K] is the closed subspace of H generated by KcH, one has
S(E+F) = sup(E,F) (see also remark 1.1.3). If T > 0 and ¢(T) =0
we claim that ¢(S(T)) = 0. Indeed, as we have seen from the
above, an increasing sequence {En} c P(A4) exists with

sup E_ = S(T) and TE_ » i E for any n. Since T-TE_ = T(I-E_ ) > O
n n n n n n n

(T and I—En commutes), one has ¢(é En) < ¢(TEn) < ¢(T) = 0. So
¢(En) = 0 for all n. Thus ¢(S(T)) = 0 (¢ is normal). Observing
that S(E+F) = sup(E,F) it follows that ¢(sup(E,F)) = 0, 1if
$(E) and $(F) are zero, since then $(E+F) = 0, hence

¢(S(E+F)) = 0. Consequently, the family {Ee®(4); $(E) = 0} is
increasingly directed and, therefore, by denoting by I - S(¢) the
supremum of this family we have ¢(I - S(¢)) = 0 (¢ is normal).
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(i)

(ii) One says that ¢ is faithful if S(@)

(1)

(ii)

(iii) If r is a finite normal trace on 4,

.8

.9

- 47 -

p 119)

DEFINITION ([17],

The projection S(¢)er(4) is called the support of ¢.

([17], p 119)

REMARKS

I.

Using the Schwarz inequality for positive linear functionals

obtain

$(T

Similarly ¢(T - S(¢)T)

we

0. Thus

If T e 4" and $(T)
thus S(T) ¢ I

S(4)

before),

S($)TS($) = S($)(I - S(T))TS($)
$(T) 0.
(T > 0) we have that ¢(I - S(¢))
definition of the ’faithfulness’

to correspond with definition 1.4.

0 implies T

One says that a family {¢k}keK of

TS($)) < ¢(TT

0, one has ¢(S(T))
which

(see definition of I - S(¢) above).

Conversely if ¢(T)

R RIAIYe: s(¢)) = 0.

$(T) = $(TS(d)) = $(S($)T).

0 (as we have seen
I-S(T) > s(¢)
0
I we have

0

Qur

implies
Hence ¢(T)
So, if S(¢)
0 implies T
0 implies S(¢) I.
of ¢ can therefore be seen

2.

implies

0.

positive normal functionals

on A is sufficient if for any TeA+, T#0, a keK exists such

that ¢k(T) 2 0. As in (i) we can

of normal positive linmear functionals

only if supS(@k) I.

keK

central projection in 4

To this end we first show that the left kernel Nr

r(r¥T) =
T, S € Nr’ then since (T + S)*(T

F(T + )5 o+ 8)) ¢ 2r¢T¥T) + 2r(s¥s) = 0.

T + S € NT. Clearly aTeNT (ax
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show that a family {¢,},

is sufficient if and

we claim that S(r) is a

{TeAq;
Suppose

+8) + (T - H)¥(r - s)

ZT*T + 2 S*S we have (T + S)*(T + S) ¢ ZT*T + ZS*S and so

Hence

a scalar and TeNT), since
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(aT)*(aT) = |a]2T*T. Let S € A4 and Te Nr’ then from

X 2

(ST)*(ST) =T S*ST < nsi T*T we have STe Nr’ We also have

T*eN if TeN , since
T T
b 4
%% = rerr*) = £(r¥1T) = 0 (7 is tracial i.e.

T(T*T) = T(TT*)). Then, if Te Nr and Se A we have

TS = (S*T*)*e Nr' So N, is a two—-sided %*—-ideal in 4. Since

A+ spans A linearly (T = T1 + iTz, Tl and T2 hermitian and

T. = TT - T. (i = 1,2) where
i i i

+

- 1 - _ 1 B _
Ti = f(lTiI + Ti). Ti = Z(ITil Ti)’ ITiI = (Ti )

makes sense via the methods of functiomal calculus), a

2,1/2

finite trace is extended wuniquely to a positive 1linear
functional in 4, denoted by 7r'. Then if 7 is normal we know
that r' is o-weakly continuous. We now claim that Nr is
o-weakly closed. Suppose {Ta} is a net in Nr with Taa T

o-weakly. Since the *-operation and multiplication on 4 are
o~-weakly continuous, it follows that T:Ta_* T*T oc-weakly.
Hence 7(T T ) = r+(TT ) — 7°(T¥T) = #(T*T), and since

aa a a ’

r(T:Ta) = 0 for all a one has that r(T*T) = 0. Hence Nr is
o-weakly closed. By the Banach Alaoglu theoren, Nrn S is
o-weakly compact (S the unit ball in 4), and has an extremal

point by the Krein-Milman theorem ([8], p 32). From a

well-known theorem in the theory of C*-algebras, Nr has an
identity, say E. ([(18], theorem 10.2 Chapter 1). Since E
is the greatest projectiom in Nr’ E = I - S(r) (I - 8{(r) is
the greatest projection F in 4 with

r(F) = 0). Since Nr is a two sided *-ideal we have

(1 - S(r))TeNr (Teda). Hence

(I - S(7))T = (I = S(r))T(I - S(r)). We also have

T(I - S(r)) € Nr’ so

(I - S(r))T(I-S(r)) = T(I - S(r)) (Tea). Thus

T(I - S(r)) = (I - S(r))T for all Ted so I - S(r) is a

central projection. Thus S(7r) is central.
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As stated earlier, our aim is to characterize finite von Neumann

algebras in terms of traces. Before we can give this characteri-

zation we need the following two lemmas

1.4.10 LEMMA (([18], p 310)

Let {En} be an increasing sequence of finite projections im 4. If

Fer(A4) with En { F for every n, then E = sup En { F.
neN

Proof
Let Pn En+1 En’ n=1,2,... and Po = El. Then clearly {Pn}:=l
is a disjoint sequence of projections and since E = lim En in the
N
(- -
strong—operator topology, we have E = lim En = §;=0Pn (see lemma
n

1.1.10 and 1.1.11). We shall construct a disjoint sequence

{Qn} < P(A) with Qn ~ Pn; n=0,1,2... and Qn < F. By assumption
Po = El < F. Hence a projection Qo in A exists with Qo ¢ F and

Qo ~ Po' Suppose {Qo"'°’Qn—l} have been defined. It follows

from proposition 1.11.12 that

E =P, + P + ... +P ;| ~ Q, +Q + ... +Q 4 = Fn < F
Since En+1 { F there exists a F5+1 € »(A) with F5+1 ¢ F and
En+1 ~ F6+l' Since En < En+l it follows that
Fn ~ En < En+l ~ Fﬁ+l which implies that Fn < F£+1. In other

words, there exists a Fé < Fﬁ+1 with Fn ~ Fé. Since En is finite,
lemma 1.2.4 implies that Fn is finite too (En ~ Fn). By

proposition 1.3.4 we have F - Fn ~ F - Fé > Fﬁ+1 - Fﬁ. So

F! - F

* ¢( F - F which means that there exists a projection
n+1l n ~ n
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Qn < F - Fn with Qn ~ F6+l - Fﬁ ~ En+l - En = Pn (by proposition

1.3.4). Since Q < F - F_, Q_Q = 0 for every k = 1,...n-1.
n n n k

Hence we can construct {Qn}:=1 by induction and

o0 o

E = §n=0 P~ §n=0 Q < F by proposition 1.1.12.

1.4.11 LEMMA ([18], p 310)
If {En} is a disjoint sequence of projections in a finite von

Neumann algebra A4, then any sequence {Fn} of projections in A4 with

En ~ Fn’ n =1,2,... converges to zero o-strongly.

Proof :
For any Pl’ P2 and Ql’QZ projections in A with
Pl S Ql’ P2 < QZ and Qle = 0 we have sup(Pl,Pz) < Q1 + Q2 because
sup(Pl,Pz) - P2 ~ Pl - inf(Pl,Pz) < Ql (Pl < Ql) (corollary
1.1.20), and corollary 1.1.13 implies

sup(Pl,Pz) = (sup(Pl,P2)~P2) + P2 S Q1 + QZ'
We therefore find by induction, that for any m ¢ n

-]
sup F, CE +E  + ...+B_ ¢ §k=mEk
m<k¢{n

Q0
If we define Pm = sup Fm , lemma 1.4.10 implies Pm < §k=mEk'

k>m
o0 L]
Then P ~ @' ¢ W _ B, @'e(4), and so I-P ~ T - Q' > I - Dk=ak
(see corollary 1.3.6). This shows that
-4 ©
I-P,2 I~ % B =B, +E % ... +E ) where B =T - Sk=1Fk-

Clearly Pm is a decreasing sequence of projections inm 4, and by

putting P = inf Pm, we have I - P » I - Pm 2 Eo + E1 + ... + Em—l’

me N
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Using lemma 1.4.10 again, we find that

-] o0

I -P> . E. =1 E =1 - ), E.).

~ §J=0 J (E, §J=1 J)
Thus I ~ Q" ¢ I - P ¢ I (Q"ex»(4)). Since 4 is a finite von
Neumann algebra we have I = I - P which implies that P = 0. Since
Pm > Pm+1 2 Fm+1 we have 0 = P = lim Pm > lim Fn in the strong-

M0 N

operator topology on 4. Thus {Fn} converges to zero strongly,

hence o-strongly (the two topologies coincide on bounded parts of

A).
||
Let Ay be the predual of a von Neumann Algebra A. For any unitary
U € A we define TU:A* — A, such that for any ¥ € A*
(TU?)(T) = ?(U*TU*). We show that TU? € A* : Since multiplication

in the o—-weak topology is separately continuous i.e. Ted — STed
and T — TSeA are o-weakly continuous, one has that T — U*TU is

. . 2 .
o-weakly continuous (Ue4, unitary). Hence Ted4 — ¥Y(U TU) is
o—-weakly continuous. Let @ € A* and consider the set LdP = {TU¢ H
U € A4 unitary}. Then L¢ c A*. Let K¢ be the norm closed convex
hull of L, in A*. Since the predual A* of A is norm closed in A*,
one has that K¢ < A

x
In the following proposition we will use the so—-called Ryll-
Nardzewski fixed point theorem (a result in the theory of locally
convex spaces; see [17], p 351). It states, if X is a locally
convex Haussdorff space, KcX, a non-empty, weakly compact, convex
subset and J a non-contracting semi-group of weakly continuous
affine mappings of K into K, then an xoe K exists such that

Txo = X (TeJ). (J is a non-contracting on K if for any x,yek,

Xx#y, a continuous seminorm p on X exists with inf p(Tx-Ty) > O,
TeJ

and
T:K - K. (K convex, KcX) is called affine if for any xl,xzeK and

any Aa€[0,1], T(Axl + (l—A)xz) = AT(xl) + (l—A)T(xz)).
1.4.12 PROPOSITION ([18], p 311)
Let A be a von Neumann algebra, then the following conditions are

equivalent
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(i) A4 is finite

(ii) A admits sufficiently many finite normal traces.

Proof

Suppose {ri}ieI is a family of sufficiently many finite traces.

To show that A is finite we must show if I ~ E (¢ I (I the identity
E. Since I ~ E there exists a

element of 4 and Ee»(4), then I

UU*. Hence,

partial isometry UeA such that I = U*U and E
ri(I - E + E) = ri(I - E) + ri(E) implies

ri(I - E) = ri(I) - ri(E) = ri(U*U) - ri(UU*) = 0 for all iel (see
(iii) of definition 1.4.2). Since the family {Ti}ieI is
sufficient, remark 1.4.9(ii) implies that E = I. So A is finite.

This proves condition (1i).

Conversely, suppose A is finite. Since the positive normal linear

functionals on 4 are precisely the elements 1in A+, a positive
normal linear functional on 4 exists. Let ¢ be a positive normal
linear functional on 4. Consider L, < Ay and K, the convex norm-
closure of L$ in Ay We claim that K¢ is a(A*,A)—compact. Since

for every TU € L¢ we have that

nTU¢u = sup_ |¢(U*TU)| < sup HeuuTn = ugn (nTu=1),
nTi=1 nTn=1

it follows that L, is a norm-bounded subset of Ay Hence K, is a
norm-bounded subset of Ay - Thus, to show that K, is c(A*,A?—com—
pact we may use lemma 1.4.7. By this lemma it suffices to show
that for any sequence {En} of disjoint projections in 4, {Y(En)}

converges to zero uniformly for ?eK¢. Since the convex hull of L¢

we have only to show that lim ¢(UEnU*)=0

n—%

uniformly for Uea, unitary. Suppose this is not true. Then a

& > 0, a subsequence {Fn} of {En} and a sequence {Un} of unitary

is norm dense 1in K¢,

elements in 4 exist such that ¢(UnFnU:) > 6§ n = 1,2,... By

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



- 53 -

?

proposition 1.3.5(i) we know that U F U* F and {F_ } 1is a
nnn n n

disjoint sequence ({En} is one). Hence lemma 1.4.11 implies that

UnFnU: converges to zero o-strongly, thus o-weakly (the o-strong
topology on 4 is fimer than the o-weak topology). Since ¢ is

o-weakly continuous one has that ¢(UnFnU:) g 0, contradicting the

choice of {Un}, {Fn}, and 6. Thus K, is o(A*,A)—compact by lemma
1.4.7 (notice that since 4 is the dual of the Banach space A*, K

norm closed and convex, we have that K¢ is o(A*,A)-closed. This

follows since K, is the same in all the locally convex topologies

on 4 which is compatable with the dual pair (A*,A); see [13],

*’
proposition 8, p 34). Consider J = {TU : Ued, unitary}. We claim

that J is a group of isometries on Ay For any TU’ TV’ we have

X _ )
TUTV¢(T) = ¢((UV) TUV) = TUV $(T) (Tea). Hence TUTV = TUVE J since
UVea, unitary. Also TIe J is the identity element and for each

TU, TU*e J is the inverse element of TU in J. Clearly uTU¢H

= sup 1¢(U*TU)| < u¢u, and since T_x%x = TU—l we have HTU*(TU¢)H

U
nTu=
< HTU¢H (TU* is also bounded). Hence NTU¢H = u¢u for every ¢eA*.

This shows that J is a group of isometries from A* onto A*.

We now have the following particular case for the Ryll-Nardzewski

fixed points theorem

(i) A in the norm topology is a separated locally convex

vector space, whose dual is 4.
(ii) K¢ is a o(A*,A)-compact, convex non—empty subset of Ag+

(iii) Let V be any unitary operator in A. Since TV(TU¢)
TVU¢ € L, for every UeA unitary, TVL c¢ L, for every
TV € J. Thus TV K, « K, for every TV € J. Hence J is a
group of isometries from K, into K¢. Each mapping TU is
o(A*,A)— continuous since 1if LAV 0 in the G(A*,A)—

topology on A*, one has that ?a(T) + 0 for every Tea.
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Hence in particular ?a(U*TU) -+ 0 which implies that
T . ¥ is 0(4*,4)—continuous. Since each TU is linear on

U
A, it is an affine mapping on K¢. It is clear that J is

X
non— contracting since TU is an isometry for all Ue4,
unitary. So the Ryll-Nardzewski fixed point theorem
states that a r e K¢ exists which is a fixed point under

J (i.e. T.r, = r, for every Ued, unitary).
U4 ¢ ’

By definition, any fixed point 7 under J in A* is a normal finite

trace because r(UTU*) = r(T), for every Ted, implies

F(UCTU)UY) = 7(TU) (TUed for every Teda). Hence r(UT) = r(TU) for

every TedA and Ue4, unitary. Since every element in A4 is a linear
combination of four unitary elements we have that 7r(ST) = r(TS)
for every T, Se4. In particular r(T*T) = r(TT*) for every Ted4.

+ . . .
From remark 1.4.6 we have that reA* implies r normal (notice that

A: is the set of all positive elements in A*). The properties (i)

and (ii) in definition 1.4.2 follow (the proofs are trivial) since

r is linear. This shows the existence of a finite normal trace on

A.

Thus, for any normal finite trace r on 4, it follows from remark

1.4.9 (iii) that the support of r is a central projection in 4.

. +
Now if ¢ if a positive element in Ay (i.e. ¢eA*), we have

¢(T) = ¢(UTU*) for every central element T of A(Ue4, unitary).

Hence TU¢I = ¢I for every Ued, unitary (Z = ANnA' is the center
VA Z

of A4). Since 7 is the norm limit of a sequence of convex

combinations of TU ¢, we conclude that r¢(T) = ¢(T) for every TeZ.

As seen above, the support of r is central and since ¢ and r¢

coincide on Z we have that S(q)l ) = S(r¢).
VA
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+
Hence sup {S(r.); ¢ea _} = sup {S($; ); ¢eA+}. We now show that
¢ * |2 x
+ . ..
{¢’ ; ¢eA*} is a sufficient set : Let T > 0 an element of Z+.
Z

Then TeA+, so there exists a ¢eA* such that ¢(T)#0 ((A*,A) is a
dual pair). For every ¢eA*, ¢ = ¢1 + i ¢2 where ¢1 and ¢2 are

L . . X _ X 1 X
hermitian functionals, i.e. ¢i (T) = ¢1(T ) (¢1 = Z(¢ + ¢) and
¢2 = éi(¢ - ¢*)). Let ¢i = ¢: - ¢; be the Jordan decomposition
+ - L.
(see [18], p 140) for ¢1 and ¢2 (¢i and ¢i are positive
functionals (i = 1,2,)). So A: spans 4, linearly. Therefore a
positive functional ¢EA* exists with ¢(T) > 0. Hence {¢Iz, ¢GA;}

is sufficient and by remark 1.4.9 (ii) we have

sup {S(r,); ¢GA+} = sup {S(¢ )3 ¢e A+} = I. Hence remark 1.4.9
¢ * |7 *

(ii) implies that {r¢, ¢eA;} is a sufficient family of finite
normal traces.
n

This proposition above characterizes finite von Neumann algebras
in terms of finite normal traces. As defined before, a von
Neumann algebra 4 1is countably decomposable if every family of

pairwise disjoint projections inm A4 1is <countable we have the

following characterizations.
1.4.13 PROPOSITION ([4], p 111, proposition 9)

Let 4 be a von Neumann algebra. Then the following conditions are

equivalent

(i) There exists a faithful finite normal trace-on 4

(ii) A is finite and countably decomposable

(iii) A is finite and the center Z is countably decomposable.
Proof :

Suppose that condition (i) holds. Let <p be a faithful finite
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normal trace on A. We show that 4 is finite and countably
decomposable. Since {¢} is a sufficient family of finite normal
traces on 4, it follows that 4 is finite by proposition 1.4.12.
Let {Ei}ieI be a family of disjoint projections in 4. Let

0

In = {ieI|¢(Ei) > 1/n}. It is clear that U In < I. Conversely,
n=1

since ¢ is faithful for all ieI, ¢(Ei)#0, therefore there exists,

for each i € I, an n with

<0
Thus I = U I _ . Since }. E. ¢ I we have
n=1 B 1eIn i

o(I) - ¢(§ieI Ei) = ¢(I - EieI Ei) > 0. Normality of ¢ implies
n n

that

=]

$(E) 2

) 1
$CI) 2 ¢(§ieInEi) = zie1n¢(gi) 2 g card I,

Since ¢ is finite one has that card In is finite. Thus I 1is
e -]
countable (I = u I )
n
n=1
This proves condition (ii). Suppose (ii) holds. Since the center

Z < 4 (iii), follows trivially.

We now suppose that condition (iii) holds and prove condition (i).
Since 4 is finite proposition 1.4.12 implies that a finite normal
trace ¢ on A exists. As seen in remark 1.4.9 (iii) the central
support of this trace is a central projection. Let {4)1}ieI be a
maximal family of non—-zero finite normal traces on 4, whose
supports Ei’ which are non-—-zero projections in Z, are pairwise

disjoint (this family exists by Zorn’s lemma).

Let E = zieIEi' We show that E = I; if E # I then I - E > 0 and
by proposition 1.4.12 a finite normal trace ¢ on A exists such
that ¢(I-E) # 0 (4 is finite). Consider the trace ¥#:Tea’ _,
$(T(I-E)). Then since ¥(I) = ¢(I—E) # 0 we have that ¢ is
non-zero. It is obvious that the requirements in definition 1.4.2
are met since ¢ is a trace on 4. Clearly ¢ is finite, since

P(I) = ¢(I-E) ¢ ¢(I) < + « (¢ is finite). Also ¥ is normal on
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If {Ta}aeJ is an uniformly bounded increasing net in A+,

{Ta(I—E)} = {(I—E)*TQ(I—E)} is also one in A+ (each Eie?(z) thus

E €2(Z) so I-E commutes with every Ta' so

T_(1-E) = (I-E)*T_(I-E)). Thus #(sup T) = $((sup 1) (I-E))

= $((1-E) sup T_ (I-E))

o4

(sup((I-E*)T_(I-E)) = sup ¢ (T_(I-E))
=3 [o8 [

sup ?(Ta). (corollary 1.4.4).

[o4

Thus ¢ is normal. Since ¢(E) = ¢(E(I-E)) = O one has I - S(¢) > E

which implies that S(¥) ¢ I-E. Thus {S(?);Ei} is a mutually
disjoint family of projections in Z, and they are the supports of
{*, ¢i}ieI' This contradicts the maximality of {¢. iel” Thus

E

I. Since Z is countably decomposable, the family ({(E. }161 is

o

_ . _ ® _-n
countable, say I = §;=1En (En 2 0). Define r = }nzlz ¢n /¢n(I)

It is clear that each ¢n is faithful on the reduced algebra AE

n

because E is the identity element of 4 and S(¢ ) = E _(see
n En n n

definition 1.4.8). Hence ¢D(En) # 0 by remark 1.4.9(i). Since
I > En’ ¢n(I)¢0. Thus 7 is well-defined. It is clear that since

r(I - S(r)) = 0 implies

o-1

2 ¢ (I - S(r))/¢ (I) = 0, we have ¢n(I~S(T) = 0 for all

1, .. Thus I - S(¢n) > I - S(r) for all n, which implies
k

S(¢n) < S(r) for all n. Thus, by defining Pk = §n=1 S(¢n), {Pk}

is

an increasing sequence of projections in 4 with Pk < S(r)

(k=1,2,...)(Notice that S(¢n)s(¢m) = 0 for all l¢n,m<k). Lemma

-]

1.1.10 implies that I = §n=ls<¢n) < S(r). Since S(r) ¢ I (trivial)

we have S(r) = I. So r is faithful. That 7 is finite follows

-

- -] .
from r(I) = §n=12—n 6, (1)/¢_(I) = }nzlz'" ¢ ®. The fact that r is
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a trace follows directly since each ¢n is one. Finally, we show

that r is normal.

+
Let {Ta} be an increasing uniformly bounded set of elements in 4 .

Then r(sup Ta) = E

« -n
u =12 ¢n(s:p T,0/¢,(I)

-]

= Enzlz'“ s;p ¢n(Ta)/¢n(I) (each ¢n is normal)

(- -]
-n C .
s;p n=12 ¢n(Ta)/¢n(I) (all terms are positive)

i

sup r(Ta)
a

Thus r is normal. So v is a faithful finite normal trace on 4.

This concludes the proof.

1.4.14 PROPOSITION (([1])

Let A be a finite von Neumann algebra and consider E, Fe #(4).

Then the following conditions hold.
(i) If E { F, then ¢(E) < ¢(F) for every trace ¢ of 4.

(ii) If ¢(E) 4 ¢(F) for every finite normal trace ¢ on 4, then
E < F.

Proof

(i) Let E'e #(A) such that E ~ E* ¢ F. A partial isometry Ue4d

exists, such that E = U*U and E* = UU*. Thus

¢(E) = ¢(U*U) = ¢(UU*) = ¢(E') (¢ is tracial). Since

E* ¢ F, F - E' € #(4) and ¢(F - E' + E*') = ¢(F - E') + ¢(E')
Thus ¢(F) - ¢(E') = ¢(F - E*) > 0 which implies ¢(F) 2 $(E").
Since ¢(E) = ¢(E'), we have ¢(F) 2 ¢(E). This holds for any

trace ¢ on 4.
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(ii) Since 4 is finite, proposition 1.4.12 implies a finite

normal trace ¢ on A exists. Thus by using Zorn’s lemma a

maximal family {¢i}ieI of non-zero finite normal traces on A4
exists, whose supports HieZ are mutually disjoint. We claim

that I = iHi = H. This follows exactly as in the proof of

proposition 1.4.13, (iii) implies (i). It is clear that for

each 1 e I ¢ is finite on the reduced algebra

Ai = AH.’ since it is finite on 4. Since each Hi is the
i

identity element of Ai = AHi and S(¢i) = Hi for each i€l

(Hiez) one has that the support of each ¢i restricted to AH s
i
equals the identity of AH . So definition 1.4.8 implies that
i

each ¢i restricted to Ai is a faithful finite normal trace on
Ai. Thus 1.4.13 implies that each Ai is finite and countably
decomposable. Consider EHi and FHi; elements of Ai’ for
each iel. According to proposition 1.1.26 a Gi (iel) exists
in the centre of Ai such that

EG. > FG. and E(H. - G.) < F(H, - G.) (H,G. = G, since H, 1is

i~ i i i’ ~ i i i’i i i

the identity in Ai).

For each ie€I, define ?i(T) = ¢i(TGi)(TeA+). Clearly ?i is

well-defined since TG. € 4, (G. = G.H.). We show that ¥. is
i Hi 1 i1 i
finite and normal on 4. Since ¢i is finite on Ai we have
¢i(Hi) < + ®, so Yi(I) = ¢i(Gi) < @i(Hi) < + » (the inequa-
lity follows by part (i)). Hence ?i is finite for each iel.

We can prove that ?i is normal for each iel in exactly the

same way that we proved that ?:T6A+ - ¢(T(I—H)) is normal in

proposition 1.4.13, (iii) implies (i).

Part (i) of this proposition and EGi 2 FGi imply

?i(E) > ?i(F). On the other hand ?i(E) < ?i(F) by
hypothesis. Hence ¢i(EGi) = ¢i(FGi). Since FGi < EGi an

F.e?(4.) exists for each ieI, with FG. ~ F. ¢ EG,.
i i i i i
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Then cpi(EGi - Fi) = ¢i(EGi) - ¢i(Fi) = 0 (by part (i), since
FGi ~ Fi implies FGi < Fi and Fi < FGi). Since ¢i is

faithful on Ai we have EGi = Fi for all ieIl. Thus

Since EH. - EG., < FH. - FG.; EG, ~ FG. and the pair
i i~ i i i i

(EHi - EGi; EGi) (resp. (FHi - FGi; FGi)) is disjoint,
corollary 1.1.13 implies that EHi < FHi for all ie€H.

Using corollary 1.1.13 again, one gets

E = }.H.E < NH.F = F.
1 1 ~ 1 1

1.4.15 PROPOSITION ([1])

Let El < E2 [¢ E3 ¢ ... be a non-decreasing sequence in ?(4). If

the supremum E°° of this sequence is finite, then

inf(Ew, F) = sup(inf(En, F)) for all Fer(4)
n

Proof :
Proposition 1.1.19 implies
F - 1nf(F,I—En) ~ En - 1nf(En,I—F)

and
F - inf(F,I—Ew) ~ E°° - inf(Ew,I-F)

The fact that E_ €P(A) follows since ®?(A4) is a complete lattice.

Since E_. ¢ E_one has I - E_ > I - E , thus
n - © n o
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F - inf(F,I—En) { F —inf(F,I—Ew)

Hence En - inf(En,I-F) ~ F - inf(F,I—En) < F - inf(F,I—Ew)
So E - inf(E ,I-F) < E_ - inf(E ,I-F)
n n ~ ] oo

Clearly En < E°° implies E°° > inf(Ew,I-F) > inf(En,I—F). From this
and lemma 1.2.4 one has for all Fe®(4) that inf (Ew,I—F) and

inf(En,I—F) are finite projections in the reduced algebra ‘AE ,
o0

which is a finite von Neumann algebra.

Since inf(EQ,I—F) > inf(En,I-F) one has for every finite normal

trace ¢ on 4 that 0 ¢ ¢(inf(Ew,I—F) - inf(En,I-F)). From

E
Q0
En - inf(En,I—F) $ E, - inf(Ew,I-F) together with proposition
1.4.14 one has ¢(En - inf(En,I-F) < ¢|(E°° - inf(E“,I—F))
for every finite normal trace ¢ on AE . Using the trace
o0

properties one gets

$(E ) = ¢(E_ - inf(E_,I-F)) + ¢(inf (E ,I-F)) and

¢$(E_) = ¢(E_ - inf(E_,I-F)) + ¢(inf(E_,I-F). So

¢(E_ - En) - ¢(inf(E_,I-F) - inf(En,I—F))
= ¢(E°° - inf(Ew,I-F)) - ¢(En - inf(En,I-F)) > 0. Thus
$(E_ - E) > ¢(inf(E_,I-F) - inf(E_,I-F)) 3 0

Observing that (En) is an increasing sequence of projections, it
follows that {¢(En)} is an increasing sequence of positive real
numbers that is bounded above by ¢(Ew). Since ¢ is normal,

¢(Ew) = lim ¢(En). This implies
Lin §(E, - E,) = lin [§(5,) - §(E)] = §(E,) - §(E,) = 0.

Hence lim ¢(inf(Ew,I—F)) - inf(En,I—F)) = 0. Consequently

-0

¢(inf(Ew,I—F)) = 1lim ¢(inf(En,I—F)) for any finite normal trace ¢

o -4
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on AE . Clearly inf(El,I-F) < inf(Ez,I—F) { ..., so

e -]
{¢(inf(En,I—F))} is an increasing sequence of real numbers which

. . . 3
is bounded above by ¢(1nf(Em,I—F)), thus {¢(1nf(En,I-F)}n=1

converges towards its supremum.

Hence ¢(inf(E“,I—F)) = lim ¢(inf(En,I-F)) = sup ¢(inf(En,I—F))

N oo n

= ¢(sup inf(En,I—F)) for every finite normal trace ¢ on AE

n -]

It is clear that inf(Em,I—F), inf(En,I—F) e?(AE ) for all

- -]

n € N; Fep(4).

Since ?(AE ) is a complete lattice sup inf(En,I—F) € ?(AE ) and

- -] n -
¢(inf(Em,I—F) - sgp inf(En,I—F)) =0
for every finite normal trace on AE . Part (ii) of proposition
-
1.4.14 implies that inf(Ew,I—F) - sup inf(En,I—F) ~ 0 which holds
n

only if
inf(Ew,I—F)—s;p inf(En,I—F) =0

for any F €2(4).
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CHAPTER 2
THE INDEX GROUP OF A VON NEUMANN ALGEBRA 4

In this chapter we shall consider a von Neumann algebra A4 with its
commutant A' and shall construct, by using representation theory
of a x*-algebra in some L(H), a certain abelian monoid M(4,4').
This construction depends largely on some of the results in the
first chapter. The Grothendieck group r(4,4') of M(A,A') can
canonically be equiped with an order relation < such that
(r(A,A'), <) is an ordered commutative group. This group r{4,4')
will be called the index group of the operator algebra 4 because

it contains the indices of the Fredholm elements of 4, which will

be defined in the next chapter.

We conclude this chapter by defining a dimension function on the
set of all finite projections of 4. This function will be used to

define the indices of the Fredholm elements of 4 in the next

chapter.

2.1 THE INDEX GROUP OF A VON NEUMANN ALGEBRA

Let B be an involutive algebra and let K be a complex Hilbert

space. A representation of B in K is a *-homomorphism p of B into
L(K). K is called the representation space of p and is denoted by
H . Two representations p and o are said to be wunitarily

P
equivalent or just equivalent, and we write p = o, if an isometry

U of H_  onto Ho exists such that the following diagram commutes

for all xeB.
4]

H H

o) fo ]
p(x) l l o(x)

H H

P U o

i

L 2

This means, Up(x) o(x)U for all xeB.

2.1.1 LEMMA

The relation =~ is an equivalence relation on the set of all

representations of B.
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Proof
onto
Reflexive : p = p since the identity I : Hp —_— Hp is an isometry
with Ip(x) = p(x)I for all xeB.
onto
Symmetric : if p x o an isometry U : H — Hc exists such that

P
U—l

Up(x) = o(x)U for all xeB. Then U* = maps Ho isometric onto

Hp and U*o(x) = p(x)U* (xeB). Thus o = p.

Transitive : If p ~ 0 and ¢ ~ u, then unitary operators
onto onto
U:H N Ho and V:Ho —_— Hp exists with Up(x) = o(x)U and
Vo(x) = u(x)V for all xeB. Consider the unitary operator VU from

Hp onto HP. Then for all xe€B VUp(x) = Vo(x)U = u(x)VU; SO0 p =~ u

by VU.
|

This lemma shows that the set of all representations of B divides
into so called equivalence <classes modulo =. We denote the

equivalence class which contains the representation p by [p].

Consider two representations o and p of B in Ho and HP. Let H be
the direct sum Hilbert space HOQ Hp' For each vector z = zoe zpeH

and xeB put

p(x)z = o(x)zo @ p(x)zp

Since uc(x)zan < "Za" and Hp(x)zpu < uzpu (by [18], p 21) we have

Hu(x)zn := (no(x)zou2 + u,m(x)zpuz)l/2
< (nz "2 + liz u2)1/2:=uzu
9 P
Thus w(x) is a bounded operator on H. It is clear that u is

linear; ju(xy) = p(x)u(y) x,y€B, and

o(x*)zoe p(x*)z

X
p(x )z o

c*(x) z @ p*(x)zp
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X
u (x) (zae zp)

y*(X)z

The penultimate equality follows, since for every z_ ® Zp and

z' @ z' in H one has that
o ol

: X
(u (x) z ) zp y 2 @ z'p)

(zo ® zp . y(x)z'a ® z'P)

(zc , o(X)Z'o) + (zp ’ p(X)Z'p)

(F(x)zy 4 20 ) + (pT(x)z, L 2,

(o*(x)za @ p*(x)zp I zp.)

Since it holds for every za‘ ] zp‘ €H one has

p*(x) z = o*(x)za ® p*(x)zp (xe€B). Thus u is a *-homomorphism
from B in H. The representation u is called the direct sum of o<

and p and we write u = o @ p.

onto
Suppose Py = o, and Py = Oy and let U : le — H°1 and
onto
VvV : H — H be isomorphisms such that Up,(x) = o,(x)U and
Py 9, 1 1
sz(x) = oz(x)V for all xeB. Consider
Ue V : H e H - H ® H s (x_ , x_ ) + (Ux_ , Vx_ ).
P1 P2 o1 %2 P1 P2 P1 P2
Clearly U ® V is an isometric ismorphism from HP ] Hp onto
1 2
H02 ® sz and (U & V)(pl ® pz)(x) = (ol ® oz)(x)(U ® V) for each

x€B ; so p; ® p, = o 8 O,. Thus if we define an addition
operation, " on the set of all equivalence classes of
representations of B by [pl] + [pzj 1= [pl ® pz], the above
argument shows that "+" is well-defined (i.e. if ale[pl] and

oze[pzl then
[oy] + [05] = [0 @ 0,1 = [py @ pyl).
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2.1.2 DEFINITION ([12], p 5)
Let M be a set. Consider the mapping M x M 4 M that associates
with each pair (x,y) € M x M an element x + vy € M (the sum of x

and y). Then M is called a monoid if;

(i) there exists such a mapping on M x M which is associative

(i.e. x + (y + z) = (x + y) + z for all x, y, z € M)

x for all xeM.

(ii) there exists a 0eM with 0 + x = x + 0
M is called abelian if x + yv = y + x for all x, y € M.

2.1.3 LEMMA ([1])

The set M(B) of all equivalence classes of representation of B,

equiped with + , is an abelian monoid.

Proof
If [p;], [py] € M(B), then [p;] + [p,] = [p; ® p,], which is a
well-defined element of M(B). Consider the zero representation 9.

This is a *-homomorphism of B in the trivial Hilbert space {0}.
If p is any representation of B in Hp’ it follows directly that

x ® 9; for U : H o {0 H X 0 X 1is trivially an
p = p o {0} - o ( o’ ) — o y

isomorphism with U(p ® 8)(x) = p(x)U for all xeB. Thus

{p]l = [p] + [08]. Similarly (e8] + ([p] = [p]. Hence [8] 1is the

zero element of M(B). Let Pi+ Pgs Pg be representation of B in
U

H , H H . Since H ® H ® H H ] H ® H

P’ Py P3 o) Py’ py = oy ® Uy Py’

canonically, and U(pl ® pz)eps(x) = py @ (p2 ® p3)(x)U for all
x€B, one has
(lpy] + [pgD) + [pgl = [(py ® py) @ pgl
[Py @ (py @ pg)]
ley] + (lpgl + [pPgD)

Likewise [pl] + [p2] = [pz] + [p1] for all [PI]’ [Pz] eM(B)
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Consider a von Neumann algebra 4 of continuous linear operators of
the complex Hilbert space H. Let Ee?(4) and let HE be the range

of E. Consider the restriction map

I, : A' — L(HE) T o TiHE

It is clear if TeA* then #_ T €L(H_ ), in fact umx_Tin = uT ¢ utTn,
E E E ;™

so HET is bounded. Linearity follows directly from that of T.

Thus EE is well defined.

2.1.4 LEMMA ([1])

The mapping KE is a representation of A4' (the commutant of 4) in
HE'

Proof
Choose T, Se€A', «e€C arbitary, then

EE(aT+S) = (aT+S)IHE = aTIHE + S'HE = aﬂE(T) + HE(S).
Similarly HE (ST) = HE(S)HE(T). Since for all x,yeHE
X X
(Tyg ¥»¥) = (Tx,y) = (x,Ty) = (%x,(T") y y) we have
’ E I E
(T )* = T* . Thus Z_. is a *-homomorphism from A4* into L(H_)
|Hg [Hg E E

and therefore a representation of 4°‘.

2.1.5 PROPOSITION (([1])

Let E,F € #{(4). Then E ~ F if and only if HE ~ HF'

Proof
Suppose that E ~ F. Then a partial isometry Ued exists with

E = U*U and F = UU*. By the definition of a partial isometry with

initial projection E and final projection F; U is an isometry on

HE and U(H) = HF' Since U(HI_E)= 0 one has U = UE, so U(HE) =

U(H) = HF' Hence U is an isomorphism from HE onto HF. Observing

that UE = UU*U = FU, we have UTE = TUE = TFU for all Te4', and

since TE = TlH it follows that
E
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U for all Tea®
F

uT =T

|Hg

|H

Hence ”E = EF. Conversely, suppose ”E > ”F' Then there is an
isomorphism U' of HE onto HF such that U'(EET) = (HFT)U‘ for all

Tea'.
Define U on H by U*' on HE and zero on HI-E’ Then nUxit = uxn for
all erE. U = 0 on HI—E and U(H) = U'(HE) = HF. Thus U is a

partial isometry with initial projection E and final projection F

such that
U(I-E) = 0 and (I-F)U = 0

The first relation follows by definition of U and the second since

U(H) = HF’ so (I-F)U(H) = (I—F)(HF) = {0}. Let Tea'. Then
U(HET) = (EFT)U implies UTE = TFU. By using the two relations
above one gets UT = UET = UTE = TFU = TU (TeA'). Hence UeA” = 4

and so E ~ F.
| |

As we shall see later the construction of the index group depends

largely on the following proposition.

2.1.6 PROPOSITION (cancellation law, [1])
Let El’ EZ’ Fl’ F2 be finite projections in 4. Then nEl ~ HFl and
I ® I ~ I e I imply 7 ~ I, .
By Ey Fy Fa B, T Fy
Proof :

It is not difficult to show that L (H @ H) = MZ(L(H)) where
MZ(L(H)) is the *-algebra of all (2x2) matrices with entries,

elements of L(H). Thus we can write

T,, T
L(H @ H) = {(Tll e 2 Ty e L)
[f21 22
(T, T
Let 8 = { Tll le ITi' € A}
[ F21 ‘22 J
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Let T = [g g] We show that ®°' = {T|TeA'} Let ¢ ={T|TGA'}.
S11 S12

Clearly ¢« <« 8'. In fact if TeA' and if (S..) = is any
- 1J Sa1 S22

element of ®, we have Tsij = SijT (Tea' and SijeA). This implies

1)

T (sij) (Sij) T

Hence T em'. Conversely let T (Tij) e B'. For any (Sij)ew we

have (Tij)(sij) = (Sij)<Tij) which holds if and only if

(1) Tyy897 * Typ837 = 813711 * 812Tp
(2) Ty9812 * T19835 = 51112 + S12Ta0
(3) Ty1Tyy * TaaSp1 7 Sp1Tip * 82270
(4) TZISIZ + TZZSZZ = SZlle + 822’1‘22

for all S. .e4.
1J

Consider the following cases

(a) Choose S12 = 821 = 0:

From (1) Tllsll = SllTll for all SlleA. Hence TlleA'
By considering (4) one has TzzeA'

(b) Choose S12 = I and 822 =0 = Sll

From (2) Tll = T22 and (4) implies T21 = le

(c¢) Choose S11 = I and 821 =0 = 322

From (3) T21 = le =0
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Thus 8' < ¢ and we have 38' = ¢ = {(T)lTeA'}. Then
(1) = {(sij)|(sij)f = T(sij) for all Ted}
= {(sij)]sij T =T Sij for all Tea'}
= {(sij)|sije4" = A} = B
Thus 8 = 3" and since 3 is a *-subalgebra of L(H @ H) (4 1is a

*-subalgebra of L(H)) with identity [é g] we have that ® is a von

Neumann algebra of bounded linear operators on H & H.
For any Ge?(4) define

~ _ [G O _ [0 0

= [0o) ®= (o]

Since G and € are both self-adjoint and idempotent we have that E,

g e?(®8). Moreover G 8% = o.

Let a : (H ® H) - H ® H be the canonical isomorphism
~ % E E
E.+E 1 2
1 72
- - % Elx
defined by a (E, + E_ (") = . (x,yeH). Clearly a is an
1 27y Ezy

isometry, in fact

= X
na (B, + ﬁz)(y)n

E,x
u[ 1 ] = (uElxu2 + uEzyuz)l/2

-~ X
(g, + ﬁz)(y)u

That « is linear follows by a straightforward calculation. Since

a is an isometry it is one—to-one. For every

Elx
E € HE ) HE we have that
2Y 1 2
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X E1x
+ Ez)(y) € (H® Hg B,y

. Thus «
1

+ gz and a(ﬁl + ?2)(;) = [

an 1isometric isomorphism from (H H)~ N onto HE ] HE

E1+E2 1 2

Likewise g : (H ® H)x F o~ H ® H is a canonical isomorphism.

We show that Kﬁl . §2 [0 T

a (Tea')

defined above Kﬁ + B is the restriction map from %' into
1 2

L((H ® H)§1 . gz)

TO

Thus KE + gz [O T] e L((H ® H)E + § ). Take any element

1 2

(il + §2)<§> < (He Hg , g , then

1 2

-1[TE 0 ~ & X
a [ o1 TEz] s (B, + B0

2y
-1 [TElx]
TEzy
_ X
= (TE1 + TEZ)(y)
(TE 0
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T 0 -1[%p,T O
Similarly we have Ef + ?2[0 T] = B 1 B for every Te4d'.

Since I e I ~ II ® I an unitary operator
U:H ® H -+ H ® H exists, satisfying

U(IIEl ® HEZ)(T) = (lFl ® EFZ)(T)U for every Tea:'.

-1 onto .
Then we have that V = 8 "Ua : (H & H)§1+E2 —— (H @ H)§1+F2 is an

isomorphism (p_l, U and « are isomorphisms).

For every TeA' one has [g g] € 8* and

r., T 0

Since U By « (El + ﬁz)(x)
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n
(o]
Py
N
®
)
Nt
~~
-3
Nt
e
5]
pd
b
—

i
]

"
”~~
S
rzy
-
®
[S]
oy
[\V]
N
r————
—

(r., T 0 ,
- Fl le
0 Fzy'

., T E,y
h FZ 2
(7., T 0 < <
= 1 U a(El + Fz)(y) (y)e H @ H,
HF T
2
., T 0
one has VHE + § [g g} =B 1 Fl Ux
1 2 0 I, T
2
TO
s
Fl+ ?2 0T
Hence Hﬁ + F 0= HF + F o Proposition 2.1.5 implies
1 1 2
E; + EZ ~ k¥ Fz. Since KEI ~ Hsze have E; ~ F; (proposition
2.1.5). Therefore, a partial isometry Ue4 with U*U = El and
UU* = F1 exists.
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b 4
~ ~ X U’y o
Then U € 3, U = { 0 0]
_ {E, 0} _ =
= [ol o} =B
and UUY = F., thus B F
1’ us &, 1

We claim that if E is a finite projection in A, then E is finite

in 3. In fact, if

F,,F
B oo ope < F.opr o= F11F12
2122
F11F12] (g oy _ ([F11F12] . ..
then F_F 0ol = |F..F implies
21 22 " 2122

implies F21 = 0 and Fll < E. Thus E ~ Fll < E. Let
Uu,.Uu
W = 11712 e® be a partial isometry with E = W*W and F = WW*
U,,U 11
21722
X X
x _ [Y11 Y21
where W =
vt u¥
12 "22

. - - _ _ b 4
An easy calculation shows that U12 = 021 = U22 = 0 and E = UllUll’

_ X
Fll = UllUll (UlleA) thus E ~ Fll < E

?ll’ which shows that E

Since E is finite, E = Fll' Therefore E

is a finite projection in %.

Since (El, ﬁz) and (?l, ?2) are disjoint pairs of finite

projections in ®(®) ; El + EZ ~ Fl + ?2 and E1 ~ Fl' Proposition
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5 U1 Y12
1.3.8 then implies that E, ~ F,. Choose a W = €® with
2 2 U21 U22

X _ X _
W W = ?2 and WW'K = ?2.

. _ X _ X
It follows easily that E2 = U22 U22 and F2 = U22 U22

Hence E, ~ F, and proposition 2.1.5 implies I ~ T
2 2 E F,.
Let M(A') be the abelian monoid consisting of all equivalence

classes of representations of 4'.

Consider the submonoid M(4,A4') of M(A') generated by the set of
all [HE], where Ee®(A) is finite relative to 4. We now show the
construction of the Grothendieck group r(4,4') from the abelian
monoid M(A4,A'). Since this construction is standard we will do it

for a general abelian monoid.

Let (M,+) be a abelian monoid which has the cancellation property,

that is if m + n = m + n* m,n,n'eM, then n = n'.

Consider the product MxM = {(m,n)[m,neM}. We define an
equivalence relation on MxM as follows

(mlanl) ~ (mzinz)
if and only if m, + n, = m, + ny

2.1.7 LEMMA ([13])

"~" is an equivalence relation.

Proof

" "

Since m + n = m + n one has (m,n) ~ (m,n). Thus "~" is reflexive.

Suppose (ml,nl) ~ (mz,nz) then m,y + n, = m, + n;. This implies
m,, + n, = my + n,, so (mz,nz) ~ (ml,nl) which shows that "~" is

symmetric.
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If (ml,nl) ~ (mz,nz); (mz,nz) ~ (m3,n3) it follows that
m1 + n2 = m2 + n1 and m2 + n3 = m3 + nz. Hence

+ n, + m, + n = m +nl+m3+n2

m 2 2 3 2

1

Since M is commutative and the cancellation property holds in M,
we have my + na, = mg + n, and consequently (ml,nl) ~ (m3,03)
This proves that "~" is transitive and thus an equivalence

relation.
| |

This equivalence relation gives rise to a partition of M x M into
so called equivalence classes. We now define the Grothendieck
group as K(M) = MxM/~ = {[(m,n)]l(m,n)e M x M}, where

((myn)] = {(m',n*)e MxM | (m',n') ~ (m,n)}.

To show that this is a group we first have to define an operation
+K in K(M) and show that K(M) is a group under this operation.

2.1.8 LEMMA ([13])

Let [(ml,nl)] and [(mz,nz)] be two arbitrary elements in K(M).

Then the equation

[((my,n)] +¢ [(my,n,)] = [(my + my, ny + n,)]
give a well-defined operation of addition on K(M).

Proof :
Note first that 1if [(ml,nl)] and [(mz,nz)] are in K(M), then
(ml,nl) and (mz,nz) are in M x M. Since M is a monoid
(m1 + my, Dy + nz) e M x M, so [(m1 + m,, n; + nz)] € K(M). This
shows that the right-hand side of the defining equation is at
least in K(M). We now have to show that this operation of
addition 1is well defined. We must show that if different
representatives in MxM are chosen, the same element of K(M), will
result. To this end, suppose that (mi,ni) € [(ml,nl)] and
(mé, né) e [(mz,nz)]. We must show that

(mi + mé, ni + né) € [(ml + my, 0y + nz)].
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Since (mi,ni) € [(ml,nl)] we have that (mi,ni) ~ (ml,nl). This
means mi + o, = my + ni. Similarly, (mé,né) € [(mz,nz)] implies
+

that m{ + n, = m2 né

2 2

By adding the above equations and using the fact that M is a
commutative monoid, we obtain

(mj + my) + (ny + ny) = (my + my) + (n] + nj)
Hence (mi + mé, ni + né) ~ (m1 + m,, 0y + nz)

Thus (mi + mé, ni + né) € [(ml + m,, 0, + nz)], which completes

the proof.
|

It remains to show that K(M) is a commutative group with addition
+K. It follows trivially by observing that [(0,0)] 1is the
identity where 0 is the identity of M and for every [(m,n)] € K(M)

the inverse is given by -[(m,n)] = [(n,m)] € K(M).

Consider the canonical monoid homomorphism
Y:M 5 K(M) : m » [(m,0)]

That v is a monoid homomorphism follows from the relation
[(m+n,0)] = [(m,0)] +,[(n,0)]
v(n)

v (m+n)

y(m) +K

Since the cancellation law holds in M we have the following
v(m) = 7(n)

if and only if [(m,0)] = [(n,0)]

if and only if (m,0) ~ (n,0)

if and only if m+ 0 =n+ 0

if and only if m = n
Hence ¥ is one to one and thus a monomorphism.
2.1.9 PROPOSITION ([1])

Let r(4,A*') be the Grothendieck group of the commutative monoid
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M(A4,4'). Then the canonical monoid homomorphism

7:M(A4,A*) - T'(A,A') is a monomorphism.

Proof :
Proposition 2.1.6 says exactly that the cancellation law holds in

M(4,4'), so ¥ is a monomorphism.

As we said earlier, this group r{(4,4') plays an important role in
the theory of Fredholm elements in a von Neumann algebra 4. For
any finite projection E € L(H) we define the dimension of E as the
dimension of HE in the usual sense. We want to generalize this
concept of dimension of a finite projection to a general von

Neumann algebra 4.
]

2.1.10 DEFINITION (([1])

The dimension DimE of a finite projection E of 4 is defined by the

formula
Dim E = v[nE] € T(A,A")

Our aim now is to define a certain order relation in r(4,4') so
that we can compare finite projections in A4 by means of their

dimensions.

Consider again the general case where we have a commutative monoid

(M, +). We claim that if M has a partial ordering "<" with the

following property P:
m < n if and only if for all ¢€M one has

m+ & < n+ ¢&;
then the Grothendieck group K(M) can canonically be equipped with

an order relation "¢(" such that P holds.

2.1.11 LEMMA

The relation "¢" in K(M) defined by (ml,nl) < (mz,nz) if and only

if my + n, < m, + n, in M, gives a partial order on K(M) with

property P.
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Proof

Reflexive : (m,n) ¢ (m,n) since m + n {( m + n in M.

Antisymmetric : If (ml,nl) < (mz,nz) and (mz,nz) < (ml,nl) we have

m, + o0, ¢ m, + 0y and m, + ny < m, + n, in M, so
m, + n, = m, * n; in M

Hence (ml,nl) = (mz,ﬂz)

Transitive : If (ml,nl) < (mz,nz) and (mz,nz) < (m3,n3) one has
m, + n, < m, + n, and m, + n, < m, +‘n2. Since the property P
holds in M we have m, + n, + ns, ¢ m, + n, + ng and

1
n, + n, which implies
n

m2+n3

+
+ + n, in M.

Ty
m; ¥ By * ng 3 2 1

Hence m, + ng < m, + oy by property P again, thus
(ml,nl) < (m3, n3). Let (mg,na) € K(M). Then

(my;,ny) ¢ (m,,n,)
iff m, + n, < m, + n, in M
iff m, + m, + n, + ng < m, + m, + n, + ng (P holds in M)
iff (ml + ms, 0y + n3)'g (m2 + ms, 0, + n3)
iff (ml,nl) +K(m3,n3) < (mz,nz) +x (m3,n3).

Consider the abelian monoid M(4,A'). We define an order relation
"<" on M(A4,A') by [HE] < [HF] if and only if E { F. Since { is a
partial order on #(A4) by lemma 1.1.14 "¢" is a partial order on

M(4,4'). We now show that property P holds in M(4,4').

Let [EG] € M(A4,4') and suppose [HE] < [HF]i We want to show that
(zg] + (2] ¢ (m,] + (mg]

By considering the representation HE ) HG we assume that E and G
are disjoint. Thus sup(E,G) = E + G is a finite projection in 4
and [EE+G]e M(A,A'). Moreover, since
HE+G = (E® G)(H) = E(H) # G(H) one has that [”E+G] = [EE ® HG],
and since E + G { F + G by corollary 1.1.13, [HE+G] < [”F+G]'

Hence [HE] + [EG] < [”F] + [”G]
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Conversely, if [HE] + [HG] < [HF] + [KG] one has
[EE+G] < [HF+G],wh1ch implies E + G { F + G and by corollary 1.3.7
we have E ¢ F. Thus {EE] < [HF]

Therefore lemma 2.1.11 shows that r(4,4') <can be equipped
canonically with an order relation ¢ such that (r{(4,4'), <) is an
ordered commutative group and that Dim E ¢ Dim F if and only if

E < F for any pair E,F of finite projections in 4. We call

r(A,A') the index group of the operator algebra 4.
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CHAPTER 3
DEFINITION OF FINITE, COMPACT AND FREDHOLM ELEMENTS
RELATIVE TO 4

In this chapter we generalize the theory of compact and Fredholm
operators on a complex Hilbert. space to von Neumann algebras.
This generalization depends to a large extent on the notion of the

finiteness of a projection relative to 4.

In the first section we introduce the ideal of finite elements in
A and define the compact elements relative to 4 as the norm
closure of the set of all finite elements in A. After that, the

concept of a Fredholm element relative to A is introduced and the

index defined.

3.1 FINITE AND COMPACT ELEMENTS RELATIVE TO A VON NEUMANN
ALGEBRA

We begin this section by defining the null projection and the

range projection of an element in 4.

Once we have defined what we mean by a compact element in 4, we
will show that the set of all compact elements relative to 4 is a
norm-closed two-sided *-ideal in A. Moreover, we will show that

this set is the smallest closed two—sided ideal containing the

finite projections of 4.
3.1.1 DEFINITION ((1])

Let Ted. Then NT = sup{EeP(4)|TE = 0} is called the null

projection of T, and RT = inf{Ee?(A)[ET = T} is called the range

projection of T.

3.1.2 REMARKS

(i) It is clear that NT and RT exist since TO = 0 and
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IT = T, where 0 (resp. I) is the zero projection (resp.
identity projection) in A. That NT and HT are elements

of A follows since #(A4) is a complete lattice.

(ii) By definition 1.1.15 we have that RT = Se(T) (the left
support of TeA). Hence remark 1.1.16 shows that RT is

the projection onto T(H). So RT maps T(H) onto T(H),

which implies RTT = T.

By definition 3.1.1 R ¥ = inf({Eer(4) |ET" = T}

= inf{Ee®(4)|TE = T}

=5 (1) (see def 1.1.15)
Hence RT ~ RT* by lemma 1.1.17.

(iii) We claim that NT is the projection onto the closed

subspace {xeH|Tx = 0} of H.

If NT(H) 2 {eriTx = 0} there exists a xe NT(H) with Tx # 0.

Since xe NT(H) one has x = NTx. Hence TNTx¢0 and by def 3.1.1 an
Ee® exists such that TEx # O-contrary to the fact that TE = 0 for
every Eex (& = {Ee?(A)|TE = 0}). If NT(H) g {xeH|Tx = 0} then the
projection E' that corresponds to the closed subspace

{er[Tx = 0} is such that TE*' = 0 and E' > NT by lemma 1.1.1. If
E' €2(A) we have a contradiction with definition 3.1.1. Thus
NT(H) = {er]Tx = 0}. We show that E‘eA. Since every Ted' is a
linear combination of four unitary elements it is sufficient to
show that UE' = E'U for all unitary elements in A'. Since

UT = TU, one has TUE'x = UTE'x = 0 for all xeH. Hence UE'x<E'(H),

which implies E'UE'x = UE'x (x€H). So E'UE* = UE'. The same

holds for the unitary element U*. Thus E'U*E' = U*E'. By taking
adjoints on both sides one has E*UE* = E'U. Thus E'U = UE'. This

holds for every unitary element UeA’'. So E' € 4" = 4.

Since NT(H) = {xeH|Tx = 0} one has TNT = 0.
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3.1.3 LEMMA ([8], p 118)

If TeA we have NT = I-RT* and NT* = I—RT
Proof

Since

{er]Tx = 0} = {erl(Tx,y) = 0 for all yeH} = {erI(x,T*y) = 0 for

i

all yeH} = T*(H)l = T (H), it follows that NT = I—RT* (by remark

3.1.2 we have R % = Sr(T) = [T*(H)]) If we replace T by T* we

T
obtain NT* = I—RT
[ |

3.1.4 NOTE

We could prove 3.1.3 directly from definition 3.1.1 and the fact

that the mapping E - I-E reverses the ordering of projections 1in

A.
3.1.5 DEFINITION ([1])

The element Ted is called finite (or of finite rank) relative to

A, if RT is finite.

Let Mo be the set of all finite elements of 4. Then we have the

following lemma.
3.1.6 LEMMA ([9], p 442)

The set Mo is a two—sided *—-ideal of 4.

Proof

Let Sed4 and TeMo arbitrary. Since RTS(H) = TS(H) < T(H) = RT(H)
lemma 1.1.1 implies that RTS < RT and since RT is finite relative

to A lemma 1.2.4 implies that RTS is finite. Hence TSeMo. Thus

M =M 4.
o 0
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Suppose TeMo and SeMo. Then RT+S(H) = T+S(H) = T(H) + S(H)

c [T(H) U S(H)] < [T(H) U S(H)] = sup(RT, RS)(H) by remark 1.1.3.

Hence RT+S < sup(RT,RS). Since sup(RT,RS) is finite by proposi-
tion 3.3.1, lemma 1.2.4 implies that RT+S is finite. Hence
T+S e M _.

o

If a#0 is a scalar we have RaT(H) = aT(H) = T(H) = RT(H). Thus

R = R,. So Ra is finite, which implies aTeMo. By remark

aT T T

.. X .
3.1.2(11i) RT ~ HT*, so T eMo if TeMo (lemma 1.2.4). As

sT = (T*s*)* and T*s*eM for all TeM , Se4 one has R.. ~ R_*_¥ and
o o ST T S

STGMO. Thus Mo is a two-sided *-ideal of 4.
[ |

3.1.7 DEFINITION (([1])

Let M be the norm—closure of Mo. The elements of M are called
compact (relative to 4). Clearly M € 4, since A is norm-closed

and M < 4.
o =

3.1.8 LEMMA ([1])
M is the smallest norm—-closed two—-sided *-ideal of 4 containing

the finite projections of 4.

Proof

Note that since M = ﬁo and Mo is a two-sided *—-ideal in A4 we have
that M is a closed two sided *-ideal of 4. Since RE = E for every
projection E in 4 one has EeMo for every finite projection E in 4.

Hence M is a closed two-sided %*x-ideal of 4 containing the finite

projections of A.

We now show that M is the smallest such ideal. Let I be the set
of all finite projections of 4 and let M*' be the two-sided *-ideal
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in 4 generated by I. We want to show that Mo = M*. Then clearly
M will be the smallest two—-sided *-ideal in A4 that contains the
finite projections of 4. If TeMo we have HTeI. From T = RTT we
have TeM'. Thus Mo < M'. Conversely, since I ¢ Mo we have

M* < M . Hence M' =M . Thus M is the smallest closed two-sided

*-ideal in A containing I. If Mo < M1 < M and M1 is a closed

two-sided *-ideal in A then ﬁo < Ml‘ Thus M < Ml which implies

M=M1.
=

3.2 FREDHOILM ELEMENTS RELATIVE TO A VON NEUMANN ALGEBRA 4

Our aim in this section is to define a Fredholm element relative

to 4 and the index of a Fredholm element in 4. We will also show
that if finiteness of a projection E€d4 implies finite dimensiona-
lity of E(H), then the following definition implies the classical

definition for a bounded linear operator on H to be Fredholm.

3.2.1 DEFINITION (([1])

The element TedA is called Fredholm (relative to 4), if the
following two conditions hold

(i) NT is finite

(ii) There is a finite projection Ee®(4) such that

(I-E)(H) < T(H).
We denote the set of all Fredholm elements in 4 by ¥(4).
3.2.2 LEMMA (([6], p 128)

If M is a closed subspace of the Hilbert space H, an N is a

finite—-dimensional subspace of H. Then the direct sum M @ N is a

closed subspace of H.

Proof : Let aeM @ N, then there exists a sequence {xn + yn}:=l in

n

M ® N such that x + y_ o a.
n n o
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We now show that {yn}::1 is bounded. If it were not, there would
exist a subsequence {yn }:_1 and a unit vector z in N such that
k=
lim uyn Il = o and lim Yn /uyn H =z

(since N is finite dimensional its unit ball is compact).

However, since the sequence {(l/llyn ) (x + Y, )}:_1 converges to
k "k k

0, we have lim x /lIyn W = —-z. This would imply that z is in

koo nk k

both M and N - contrary to the fact that z # 0. Since the

sequence {y }“_ is bounded we may extract a subsequence {y }w_
n'n=1 n, k=1
such that lim Ya = y for some yeN. Therefore, since
k-°° k

{x + y }w_ converges, it is a Cauchy sequence and we obtain
o, o, k=1
from

Hx - x_ I = H(x + v ) - (x + v ) - (y -y )
nk m nk nk m m n

< H(xn +y ) - (x + y_ )+ uyn - ¥, n

that (x ) is a Cauchy sequence in M and hence converges to a

k
vector xeM. Therefore a = x+ye M @ N which implies that M & N is

closed.

3.2.3 REMARKS

It is well known that a Fredholm operator in L(H) is defined as an

operator for which T(H) is closed, dim (Ker T) is finite and

dim(Ker T*) is finite in the usual sense.
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We claim that if the finiteness of a projection relative to 4
implies finite dimensionality of its range space in the usual
sense (The Note 1.2.2 shows that this is the case when 4 = L(H)),
definition 3.2.1 implies the above definition for TedA to be
Fredholm. Since NT(H) = KerT by remark 3.1.2 (iii), condition (i)
in 3.2.1 implies that dim (KerT) <. If condition (ii) in 3.2.1
holds, a finite projection E€?(4) with (I-E)(H) < T(H) exists. We

also have (I-RT)(H) = T(H)l. Since H = E(H)  (I-E)(H) we have

'l‘(H)'L < E(H). Hence I-R, ¢ E and since E is finite, I—RT is

T
finite. Thus NT* = I—RT is finite. So Dim(Ker T*) <o , Finally
we show that condition (ii) in definition 3.2.1 implies that

T(H) is closed

Since T is Fredholm a finite projection E of 4 exists with
(I-E)(H) < T(H). By hypothesis E(H) is finite dimensional, so
E(H) n T(H) is finite dimensional. It is clear that

T(H) = (I-E)(H)® E(H) n T(H). Since E is a projection we have
that (I-E)(H) is closed. Hence T(H) is closed by lemma 3.2.2.

We have seen in the previous remark that condition (ii) of
defintion 3.2.1 implies that NT* is finite, if T is Fredholm.

This allows us to define the following

3.2.4 DEFINITION ([1l])

Let T be a Fredholm element of A. We define the index of T as an
element of the index group I(4,4') by the formula

Index(T) = DimNT - DimNT*
where DimNT was defined in chapter 2.
3.2.5 PROPOSITION (([11}])

in.

IN

For every Ted there is a non—-decreasing sequence F1 < Fz

?2(A) satisfying the following two conditions
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(i) PFor k = 1,2,... the range of Fk is contained in the range of
T.

(ii) RT is the supremum of the sequence (Fk)k=l,2,...

Proof

Let TeA. Suppose T = WIT[ is the polar decomposition of T. Then

W, |T| €4 by Corollary 1.1.18 and RT = WW*, RT* = w*w by lemma

1.1.17. Suppose the proposition holds for |T|. Then a

non-decreasing sequence (Ek):=l of projections in 4 exists such

. . . - X . G = x X
that (i) and (ii) hold. Let Ek = WEkW . Since EkEe = WEkW WEeW

- *—
= WEkRT*EeW = WEkRITi

of lemma 1..1.17).

Eew*<RT* = [T*(H)] = [[T[(H)] by the proof

X
Hence EkEe = WEkRIT'EeW

WE Eew* (R

K = supEk > Ek)

k
W* (for all k ¢ ¢)

|7

I}
x
=3

Thus (Eé) is non—-decreasing. Clearly Eﬁ* = Eé and

2 X X x x _ o
Ek = HEkW WEkW = WEk RITIEkw = WEkW Ek for all k. We also

have E.(H) = WE, W' (H) c WE, (H) € W|T|(H) = T(H) for all k. Thus

if E ¢ F E,Fer(A) we have for all xeH, that (Ex,x) = nExu2

= uEFtz < quuz = (Fx,x). So E ¢ F in the operator sense. Hence
sup E' = sup WE W* = WR W* = WR *W* = WW* = R, (apply corollary
K k K k [T[ T T

1.4.4 ).

Thus it suffices to show the theorem for T a positive element of
A. So let T be given by its spectral decomposition T = I: A dEA -

where {EA}AeR is the spectral family of projections of T. As seen
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in Chapter 1; section 1.4 where we stated the spectral

decomposition theorem, each EAGA. We have also seen that EA is

defined by EA N(T—AI)+ (see notes just after lemma 1.4.7), and
EA = inf EA' (the upper continuity property).
A'DA

Hence Eo = N+ = N, (T is positive), and RT = I—NT* = I-NT = I—Eo.

T T
Since Eo = inf EA. we have
A0
R, = I-E_ = I - inf E,, = sup(I-E, ).
T o Ar>0 A A
Consider any e>0. Since each Ee commutes with T and each EA we
have
T(E_(H)) = E_(T(H)) < E_(H)
and

T(I—Ee)(H) = (I—Ee)T(H) < (I—Ee)(H).

Hence the pair (Ee(H),(I—Ee)(H) of subspaces of H reduces T.
Similarly we can show that the pair (Ee(H),(I~Ee)(H)) of subspaces
of H reduces each EA’ (AeR). Denote the restrictions of T and EA
to the space (I—Ee)(H) by Te and EA e” Consider the reduced

3 ’ : — ( — -
Then Tee A i.e. Te (I Ee)‘H) - (I Ee)(H) is a

algebra 4

I—Ee’ l-Ee’

positive operator which is bounded. Consider {E } . Then

A,e’ AER

clearly

(1) EA’S < Ep,e for every A ¢ u (since EA(I—Ee)(H)
< B, (I-E_) (H))

(ii) EA,e (I—Ee)(H) = EA(I—Ee)(H) = 0 if A ¢ e, so EA’e =0
for all A < e.

(iii) If u -+ A+0 we have ny - EAx for all xeH. So

EH(I—Ee)x - EA(I—Ee)x for every (I-Ee)x € (I—Ee)(H).

Thus E x - E x if u - A+0.
U, e Ase
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o o

Since T = [ AdEA = f AdEA we have for every 6 > 0 that there exist

—co °
Al,...AneSp(T)C[O,HTH] (say 0 ¢ Ay < Ay < venn < Ay § #TNH) and
projections EA ""’EA € #(A) such that
1 n
n
T - §j=1AJ(EA. - EA. Ji < 8 {clearly n depends on &)
J J-1
This holds if and only if
n
sup U(T - z._ AL(E - E Y)xn < 8
Hxngl J=10J Aj Aj—l
xeH
n

Thus sup n(T - z.:l/\.(EA - EA ))xW < 6 , which implies

nxn¢l JEL I A j-1

xe€(I-E)(H)

n
uT - }._ A.(E - E Y < 8. Hence
€ Ji=1 " j Aj,e Aj—l’e

[ ] - -]

Te = {wAdEA,e = feAdEA,e (Notice from (ii) above that dEA, =0

for every A < e)

From

that

f

[ -]

the representation Te = f AdEA , 0 e Sp(Ta), which means
€ ,

Te is regular (i.e. Té has an inverse in AI—E ). Since

€

[e, ©] - R:AS A-l is a continuous function on Sp(Te) one has

<

= f(a) dE, e([11], theorem $.10-1). Hence
€ 2

B | o . .

= Te Te = I Ee the identity of AI—E . Thus

€

= -l.i- -
(I-E_)(H) = T T "(I-E_)(H) ¢ T_(I-E_)(H) ¢ T(H)
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Now let ¢ = 1l/k k =1,2,3,... . If we define Fk = I—El/k we
sup(I-E_) that R (I-El/k)(H)

have from R suka and Fk(H)

T &0 T ken
< T(H) for all k = 1,2,3,... Clearly Fl < FZ < F3 < F4
Thus the sequence {El/k} is non—increasing. This completes the

proposition.

3.2.6 COROLLARY ([1])

For every Fredholm element T of A there is a non—decreasing
sequence El < E2 ¢ ... in ®(A4) such that conditions (i) and (ii)

of proposition 3.2.5 are satisfied and I—Ek is finite, relative to

4 (k=1,,2,...).

Proof :
Since TeA is Fredholm there is an E€ #(4) such that E(H) < T(H)

and I-E is finite. From E(H) < T(H) < T(H) we have E ¢ RT. Thus
F = RT - E is a projection in A. Consider FTed. From
proposition 3.2.5 a sequence Ei < Eé < ... of projections in 4

exists with Ek‘(H) < RFT(H) and SEP Ek' = RFT

oo . .
Let Ek = E + Ek . We show that {Ek}k=1 is a non-decreasing
sequence of projections in 4 such that the conditions of the
corollary are satisfied

Since Ek'(H) < FT(H) < F(H) and FE = 0 one has Ek' E = Ek'FE = 0

for all k. Thus Ek = E + Ek' is a projection in 4 for all k by

. 1 - 3
corollary 1.1.39. Also El < E2 ¢ ... since {Ek }k=1 is a
non—-decreasing sequence of projections in 4. Moreover,

E, (H) = (E + E ') (H) ¢ ECH) + FT(H)

< T(H) + (RT—E)T(H)
< T(H)
because R,, is the identity on T(H) and E(T(H)) < T(H).

T
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Since sup Ek' = RFT one has s;p Ek = s;p (E + Ek') = E + sip Ek‘
= E + RFT’ By definition 3.1.1 RFT = inf{Ge?(A)lGFT = FT}. Since

F(T(H)l) = {0} and F(T(H) < T(H), GFT FT if and only if GF = F.

Hence RFT = inf{GE?(A)IGF = F} = RF = F. So

sEp Ek = E + RFT = E + F = RT. We also have that

I—Ek = I-(E + Ek‘) ¢ I - E and since I - E is finite lemma 1.2.4
implies that I - Ek is finite relative to 4.
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CHAPTER 4

GENERALIZATION OF THEOREMS 1IN FREDHOLM THEORY
TO A VON NEUMANN ALGEBRA 4

We conclude this study with the generalization of several
classical theorems on Fredholm operators to Fredholm elements in a
von Neumann algebra. The main differences in the proofs of these

classical theorems and the generalized ones are

1. compact elements relative to 4 are not necessarily compact

operators in the usual sense, and

2. the range of a Fredholm element in A4 is not necessarily

closed.

The first theorem, due to F Riesz ([13], p 87), which will be
generalized (the generalized Fredholm alternatives) says that I-T
is Fredholm of index =zero (relative to 4) if T 1is compact
(relative to 4). This theorem will be used in the remaining two
theorems : a decomposition theorem of F Riesz for compact
operators and a theorem which characterizes the relative Fredholm
elements modulo the relative compact elements, due to Atkinson
({13], p 90). The Theorem states that the Fredholm elements in 4
are exactly the inverse image of the group G(4/M) of regular
elements of the quotient algebra 4/M (M the compact elements)
under the canonical quotient mapping T:A4 -+ A/M. From this theorem
a number of important corollaries can be deduced, for example, the
set of all Fredholm elements denoted by F(4) is open in the norm

topology on 4, and F(4) is an involutive monoid with respect to

multiplication in 4 etc.

4.1 GENERALIZATION OF THEOREMS IN FREDHOLM THEORY TO A
VON NEUMANN ALGEBRA 4

We begin this section with the following theorem
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4.1 THEOREM (Generalized Fredholm altermnatives, [1])
Consider the von Neumann algebra A. If TeAa is compact relative to
A, I-T is Fredholm relative to A with index zero.

Proof

The theorem is proved in two steps

(1)

Suppose T is finite relative to 4. Then RT is finite, and
since RT ~ RT* from remark 3.1.2(ii), lemma 1.2.4 implies

that HT* is finite. Hence E

proposition 1.2.8.

"

sup (RT,RT*) is finite by

Clearly I - E =1 - sup(RT,RT*) inf(I—RT,I—RT*) and
(I-E)(I-T) = (I-E) - (I-E)T = I-E - (T-ET)
Remark 1.1.3 implies that E is the identity on

[;?55 U T (H)], thus also on T(H). Hence ET = T, so
(I-E)(I-T) I1-E

Similarly

(1-E) (I-T*) = I-E.
By taking adjoints left and right of the two equations we

have (I-TX)(I-E) = I-E and (I-T)(I-E) = I-E

Since (I—T*)(H) > (I—T*)(I—E)(H) one has

Rr o* 2 Bop o%y(1-g) © Bi-g

Hence lemma 3.1.3 implies that

Ni_p = I=Rp ¥ < I-(I-E) = E. Similarly N; ¥ < E
Hence NI-T’ NI—T* are finite projections in 4 (lemma 1.2.4)

Since RS ~ Rs* for every Se€A4, one has RE—T ~ RE—T*' By using

lemma 3.1.3 we show that

Rg_p = E -~ N % , R % =E-N
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We prove the first relation. The second one follows by

interchanging the roles of T and T*. By definition 3.1.1 we

have
E - N,_% = E - sup{Fer(4) |(I-T*)F = 0}
= inf(E - F er(4)|(I-TF)F = 0}
Note that E - F is a projection for every Fe?(4A) for which
(I—T*)F = 0 since F ¢ NI—T* < E. Thus
E - Ny_ % = inf{Ge?(4) [(I-T")(E-G) = 0} (G = E-F)

Since T(H) < E(H) we have ET = T, hence

(1-1%)(E-6) = E-G - (ET)¥ + ™6 = E-¢ - 7° + 1%¢

X

= E-EG - TF + t%¢ = (E-7%)(1-¢) (@&¢E)

Therefore, E - N__ % = inf {Ger(4)|(E-T")(I-G) = 0}
= inf (I-F'e?(4) [(E-T*)F* = 0}
= I - sup {F'e(4) [(E-T)F* = 0}
= I - Np_p¥
= Bgp
Then since E is finite and Rp_p ¢ E and Rp g% ¢ E we have
that R, ., and R % are finite (lemma 1.2.4) with
RE—T RE_T*. By considering the reduced algebra AE with

identity element E we have NI—T*’ NI—TGAE' Hence Rp s Bp_o¥

€ AE (AE a finite von Neumann algebra)

By proposition 1.3.4 E - RE—T ~ E - RE—T* Together with
= E

Rp o = B - N % and RE—T* = Np_p¥ we have that
Ni_ ¥ ~ Ni_o Since N, . 1is finite and E is a finite
projection in 4 with (I-E)(H) = (I-T)(I-E)(H) < (I-T)(H) and
Index (I-T) = dim NI—T - dim NI—T*

=0 (Np_p* ~ Np_p)s
we have from definition 3.2.1 that I-T is a Fredholm operator

with index zero.
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(ii) Suppose T is a compact operator relative to A. Since M = Mo
a T eM exists with
o o

T - T n <1
(o}

Thus uI-(I—(T—TO))u <1l. Let § = I—(T—To), then S is regular
(This well known fact can be found in [11], p 398).

By definition 3.1.1 Ny = sup(Eer(4)|ESF = 0}. Since § '

exists SFx = 0 if and only if S-I(SFx) = 0 if and only if

Fx = 0 (xeH,Fer(4)). Hence NSF is the projection onto
{er[Fx = 0} = NF(H). Consequently NSF = NF = I—RF = I-F for
every Fer(4). Together with lemma 3.1.3 and remark 3.1.2(i)
this implies RSF ~ RFS* = I—NSF = I-(I-F) = F for every
Fer(4).

We want to prove the following equivalences

Le -0, (4a.1)

o -l . P
(S-T_)F = 0 iff (I-T S ")SF = 0 iff (I-T S -

and

-1 _ . _ -1 -1, _ . _ _ -
(I—TOS JF = 0 iff (I TOS )SS "F = 0 iff (S TO)RS lF = 0.
(4.2)

The first equivalences in the two relations (4.1 and 4.2)

follow directly since (S—TO)F = (I—TOS—I)SF and

1 1 -1 1

(I-TOS_ )F = (I-T_S ")SS "F (SS = I)

We show the second equivalence in relation 4.1 (the second

equivalence in relation 4.2 follows similarly)

(I—Tos'l)SF(H) = {0}

1

if and only if (I—TOS_ JRgp(H) = {0} (Rgp(H) = SF(H), and

(I—Tos—l)(SF(H)) < (I—Tos“l)SF(H), since I-Tos"1 is

continuous).
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Substitute F by Ns_To (resp. NI_TOS—I) in relation 4.1 (resp.
relation 4.2). We have seen that RSF ~ F for all Fe?(4);
thus from F = NS—T , we obtain
o
R ~ N
SNS_To ST,

=0, relation 4.1 above implies that

Observing that (S—TO)NS__To

1

(I—TOS JR =0

SNS_T
o

Hence from definition 3.1.1 one has that Ron < NI—TOS—I'

So N ~ R < N -1,
o

or equivalently

Similarly, the second relation above, together with the fact

that R ~ F for all Fer(A4) imply that

SF
Nior s71 £ Ngop (F = Ny g g7D)
o] (o] (o]
Thus Ng_p ~ Ni_p g~1 by lemma 1.1.14
(o] [o]
-1,.x
1r (s* - 7 %)x = 0 (xeH), then (s%) Ls*-1¥)x = 0 where
x -1 _ -1.% _
(s) = (8 7) and xeH. Thus NS*_T:(H) < NI—(S*) 1T:(H) so

lemma 1.1.1 implies that NS*—T: < NI—(S*)-IT:

. : - X ~-1_% = X X
Likewise NI—(S*) IT: < NS*(I—(S ) lTo) Ng -1}

Thus NS*—T: - NI—(S*)_IT:
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So, the relation NS*_ X ~ NI—(S*)—lT* is trivial. Since

T
o o
T eM , and M is a two—-sided x%-ideal, T S—leM which means
o o o o o
that 'I'OS-1 and (S*)-lT: are finite.
Part (i) of this theorem implies that NI-T s—l and
o
NI—(S*)—lT: are finite projections in 4. From
NI—T = NS_To ~ NI_TOS—I; NI—T* = NS*—T: ~ NI_(S*)—IT: and
lemma 1.2.4 we conclude that NI—T and NI—T* are finite. Part
. . . 1 . € — . .
(i) also implies that NI-TOS 1 NI—(S ) IT:’ which gives
N g~ Np_o¥
. _ _ _ _ -1
Define F = sup(RTOS 1, R(S*) IT: ) and FS = S “FS
Then F is finite by proposition 1.2.8 and
IR R I B _ _ _ _
I-FS = S (I-F)S = S inf(I RT S 1, I R(S*) lT* )S
o o
Since I-T = S-—To we have by using lemma 3.1.3 that
(I-T) (I-Fg)s '
_ _ -1 . 3 _
= (8 TO)S inf (NT S 1, N(S*) lT* )
o o
. _ _ _ -1 . _ _
= 1nf(NT S 1’N(S*) lT* ) TOS 1nf(NT s l’N(S*) lT* )
o o o o
= 1nf(NT s—l, N(S*)-lT* ) = I-F
o o
- _ 3 -1 -1 =
(TOS 1nf(NTos—l, N(S*)_IT:) = 0 since TOS NTos 1 = 0 and
1nf(NT s—l, N(S*)—IT*) < NT S-l )
o o o
Hence (I-F)(H) = (I-T)(I-F)S '(H) ¢ (I-T)(H) and F is a
finite projection in 4. Together with Ni_p ~ Np_o¥ and N;_ o
finite, we conclude that I-T is Fredholm with index zero.
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4.1.2 COROLLARY

If Teda is compact relative to 4 then (I—T)n is Fredholm with index

zero for every n = 1,2,3,...

Proof :

Consider (I-T)n, TeA compact. Then I—(I-—T)n = Tp(T) where p{(T) is

a polinomial in T of degree (n-1). Since T is compact and M is a
closed two-sided ideal in 4 one has Tp(T)eM. Thus I—(I—T)n is
compact relative to Q4. From theorem 4.1.1 one has (I—T)n is

Fredholm relative to A with index =zero.
n

4.1.3 DEFINITION

Let A, B and C be vector spaces. Consider the maps a«:A -+ B and

J a B v
B:B o C. The sequence 0 - A - B 4 C 4 0 is called a short exact

sequence if it is exact at A, B and C, i.e. Imf j = Ker «a,

Imf « = Ker g and Imf 8 = Ker 7.

Clearly exactness at A is equivalent to a« being injective

({0} = Imf j and Ker a = a—l({O}) ), while exactness at C 1is

equivalent to B8 being surjective (Ker ¥ = C).

Before we <can proof the remaining two theorems we need the

following lemma

4.1.4 LEMMA ([2])

Let S,T be elements of F(4) (the Fredholm elements relative to 4).

Then NST - NT ~ 1nf(RT,NS)

Proof

We claim that the sequence
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i T
0 - Ker T - Ker ST -» range T N Ker S - 0 is exact

It is exact at Ker T since i 1is the inclusion mapping which 1is
injective. Since i(Ker T) = Ker T the sequence is exact at

Ker ST. To show exactness at range T N Ker S one has only to show
that T is onto range T n Ker S. Take ye range T n Ker S. Then

v = Tx for some x€H and Sy = 0. Thus STx = 0 which implies

x€ Ker ST and Tx = vy. Thus T is onto.

It is well known that every short exact sequence splits i.e.

T(Ngp~Ngp)

0 -« Ker ST O Ker T @ —0—0 Fr—r—— range T N Ker S &5 0

is exact or equivalently

T(NST—NT)
Ker (ST) O Ker T = range T n Ker S
We now show that R(N - N )T* = NST - NT
ST T
Lemma 3.1.3 implies R _ X = I - N _ and from
(NST NT)T T(NsT NT)

remark 3.1.2(iii) we have

NT(NST_NT)(H) = {erIT(NST-NT)x = 0}

But T(NST - NT) x = 0 if and only if (NST - NT) xe Ker (T) = NT(H)
Since NT(NST - NT) = 0 we also have NT(H)n(NST-NT)(H) = {0}. Thus
ST NT)xe(NST - NT)(H), we have T(NST - NT)x = 0 if and
only if (NsT - NT)xe NT(H) n (NST - NT)(H) ={0}

since (N

So NT(NST— NT) is the projection onto

(xeH|(Ng, - No)x = 0} = Ny _ o (H)
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Hence N _ = I -R _ = I - (N_.—- N.,.), and consequently
NST NT (NST NT) ST T
R _ x =1 - N _ =I-(-N,, -N) =N,, -N
(NST NT)T T(NsT NT) ST T ST T
Since R _ (H) = T(N., - N,)(H) < T(H), R _ < R..
T(NST NT) ST T T(NST NT) T

If ye T(NST - NT)(H) then xeH exists with y = T(NST - NT)x and
Sy = ST(NST - NT)x = 0. Thus T(NST - NT)(H) < NS(H) which implies

{ N

T(NST - NT)(H) < NS(H) (NS(H) is closed). Thus RT(NST _ NT) ¢ Ng
by lemma 1.1.1. Together with RT(N - N < RT we get
ST T
R _ : (4.3)
T(NST NT) < 1nf(RT, NS)
Choose a sequence El < E2 ¢ ... of projections in 4 according to

corollary 3.2.6 such that En(H) < T(H); sup En = RT and I—En is
n

finite for each n = 1,2,...

From the exactness of the sequence

T(Ngp~Ny)
0 —— Ker ST O Ker T » range T N Ker S —— 0 one has
1nf(En,Ns)(H) = En(H)nNS(H) < T(H)nNs(H) T(NST - NT)(H)

i

S T(Ngp = Np) (H)

Thus inf(En,NS) < R for every n (lemma 1.1.1). (4.4)

T(NST - NT)
Define Eo = 1nf(E1,I—NS). Then I - EO = I - 1nf(E1,I—NS)
= sup(I—El,Ns) which is finite since I—E1 and NS are finite
(Seg(A)).
NS(I-NS) = 0 and E1 < En imply EONS = EO(I—NS)NS = 0 and
EO < E; ¢ En' Since
(En - Eo)(H) n NS(H) = En(H) n (I—Eo)(H) N NS(H)
from corollary 1.1.9 we have
(B, = E)(H) n Ng(B) = E_(H) n Ng(H) (Ng(E) ¢ (I-E_)(H).

1
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Together with RT > Eo we have that
1nf(En,NS) = 1nf(En - Eo’NS)’

and

1nf(RT,NS) = 1nf(RT - EO,NS) (EONS = 0) (4.5)
Then El - E_ < E2 - Eo < E3 - Eo < and En - Eo €P(A4) with
sup(En - Eo) = RT - Eo < I - E Hence lemma 1.2.4 implies that
n
RT - Eo is a finite projection in A.

From proposition 1.4.15 one has

1nf(RT - EO,NS) = sup{lnf(En - EO,NS)}.

n
Thus by (4.5) inf(RT,NS) = sup {inf(En,NS)} (4.6)
n
The relation (4.4) and (4.6) imply that 1nf(RT,Ns) < HT(NST_ NT)
Together with (4.3) we have inf(RT,NS) = RT(N - N)
ST T
Since R x = N - N and R X ~ R
(NST— NT)T ST T (NST— NT)T T(NST- NT)
(remark 3.1.2(ii)), it follows that RT(N -Ny " NST - NT'
ST T
The result follows since RT(N - N 1nf(RT,NS)
ST T -
4.1.5 THEOREM (decomposition theorem, [1])
Let TedA be a compact element relative to 4. Let N°° be the

supremum of the non-decreasing sequence

Npp € Nopopy2 € Nep g8 ¢ ae.

and let R_ be the infimum of the non—increasing sequence
RI—T > R(I—T)z > R(I—T)3 > ..

Then

(i) N ~ I-R
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(ii) N.TN = TN , R TR = TR
- -] (- -3 [~ -] - -] (- -] - -3
(iii) If T is finite, then N, is finite.
(iv) If N, is finite, then inf(Nw, Hw) = 0, sup(NQ,Rw) = I.
Proof

Define Nn = N(I-T)n’ Rn = R(I-T)n

(i) Corollary 4.1.2 implies that (I—T)n is Fredholm with
index zero. Thus N(I—T)n ~ N(I-T)n* = I_R(I-T)n
(lemma 3.1.3). So Nn ~ I—Rn. Since (I—T)n € F(a) for

all n, Nn is a finite projection in 4 for each

n=1,2,... . From the relations Nn ~ I - Rn and
qu’_1 ~.I_Rn+1’ and proposition 1.3.4 one has
Nn+l - Nn ~ (I—Rn+l) - (I_Rn) - Rn - Rn+1

. W 3 - 3 3 .
Since {Nn}n_l is an increasing sequence of projections

in A lemma 1.1.10 and 1.1.11 imply that

- ]

N, = lim N_ = N, + §Q=1 (N .1 - N,

where the limit and sum are taken in the strong operator

topology on A. Similarly

<o

I - Rw = I—Rl * §n=1 (Rn - Rn+1)'

Taking note of the fact that the sequence

0 R 0

{Nl’Nn+1 - Nn}n=l (resp. {I - R1’ Rn - n+1}n=1 ) is

mutually disjoint, proposition 1.1.12 together with the

relation

Nn+1 - Nn ~ Rn - Rn+1 (neN) imply that
o0 0
N, = N, §n=l(Nn+1 -N) ~ T - R+ §Q=1(Rn - R_,,)
= I -R
o0
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(ii) From remark 3.1.2(iii) it follows that

n -
(I - T) (I - T)Nn+l =0

n

— — n —

Therefore (I T) R(I_T)Nn+l(H) = (I T) (I T)Nn+1(H)
n —
< (I-T) (I’T)Nn+l(H) = {0}
. n B

Thus, from the relation (I T) R(I-T)Nn+1 = 0 and
definition 3.1.1 we obtain R(I—T)N < N(I—T)n = N

n+1
Hence Nn is the identity omn (I - T)Nn+l(H), which
implies that Nn(I - T)Nn+1 = (I - T)Nn+1 or
(1 - Nn)(I - T)Nn+l = 0. In view of lemma 1.1.10 it

follows that (I - Nm)(I ~ T)N°° = 0 (the limits are taken

in the strong operator topology on A4).

Thus ((I - Nm) - (I - Noo)T)N°° = 0, which implies that
(I - N )TN = 0, or equivalently TN = N TN . This
<o [ -] 0 - < -

proves the first relation (ii). Consider the relation

R (I -T)%=¢(1 -17)"

n
or
(1 - R (I -T(1-D" " =0
Then
(I -~ R)(I - T)R _,(H)

= (I - Rn)( I - T)(I - T)n—l(H)

< I -RJ(I - T)(I- ) (H) = {0}
Thus

(I-R)(I-TR _; =0

Taking the limits in the strong operator topology on 4

one gets

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



- 105 -
(I - Rw)(I - T)R°° =0

Hence (I - R )R - (I - R )TR = 0, which implies
- Co o0 0

TR = R TR . This proves the second relationm (ii).
L ] W ™

(iii) Suppose that T is finite. Let E = sup(RT,RT* ). Then E
is finite from proposition 1.2.8. We have seen in part

(i) of theorem 4.1.1 that (I - E)(I - T) = I - E. Then

((I - E)(I - T)](I - T)
(I - E)(I -T) =1-E

(I - E)(I - T)°

By induction we get (I - E)(I - 'I')n = (I - E) for all

n=1,2,...
Hence Nn < E for all n = 1,2,...(see part (i) of theorem
4.1.1). This implies that N, < E (N°° = supNn < E).

n
Since E is a finite projection in 4 lemma 1.2.4 implies

that N°° is finite.

(iv) We have seen in the proof of Corollary 4.1.2 that

I - (I - T)% €M for all k = 1,2,... Let

k _ _ k
T(k) I (I T) . Then I T(k) = (I T) e #(4)
from corollary 4.1.2. We have that N, = N, . and
(k)
B = Brop

Define Rn(k) = inf(R We apply lemma 4.1.4

nk, Vi)
= - = - n = -
Let S = I T(k) and T (I T(k)) I T(nk)
Then by lemma 4.1.4 if S,T € ¥(4), then
NST - NT ~ 1nf(RT,NS)

In the above notation we have that

. _ (k)
- N ~ inf (Rnk,Nk) = Rn

N(n+1)k nk
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Since N°° is finite by hypothesis, the reduced algebra

AN is finite. For every finite normal trace ¢ on AN we
00 Q0
have

Lim §(N 1y = Ny
N

= lim (PN ey — ¢ (N

400

= lim (N | gy) - iiﬁ $(N )

D

$(N_) - ¢(N_) = 0 (¢4 is normal)

(k)

Since Rn N(n+1)k Nnk proposition 1.4.14 implies
that ¢(Rn(k)) = ¢(N(n+l)k - Nnk) for every finite normal
trace ¢ on Ax

0
Thus

Lim ¢(R, ) = lim v - N =0
N N
or

¢(Rm(k)) =0 (¢ is normal)

Hence proposition 1.4.14 implies that Rw(k) = @, and

consequently inf(Rw,Nk) = Rm(k) = 0 for all k.

The finiteness of the projection N°° and proposition

1.4.15 imply that

inf(R_,N_) = s;p{inf(Rw,Nk)} =0

From corollary 1.1.20 one has that
sup(Rw,N“) - R°° ~N_ - inf(Rm,Nm);
but inf(R”,Nw) = 0, so
sup(R“,N“) - R, ~ N_
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Since I - R°° ~ N°° (by (i)), we have
I -R, ~N_~ sup(Rw,Nw) - R
Also observe that I - R_ > sup(R_, N ) - R . Thus
0o 0 -] oo

I - Rw ~ sup(Rw, Nw) - R°° < I - R°°
Taking note of the fact that N ~ I - R and N is
D 0 Q0
finite, lemma 1.2.4 implies that I - l-'to° is finite.
Hence, I - R = sup(R ,N ) - R (definition '1.2.1).
<0 e OO oo

Therefore, sup (Rw,Nw) = I
]

In the proof of the 1last theorem we will use the

following notation : As before, M denotes the two-sided
¥-ideal of compact elements of 4. The quotient algebra
A/M is denoted by 4; T : A +» A : T -« T +M is the

canonical homomorphism and G(4) (resp. G(4) ) denotes

the group of regular elements of 4 (resp. a).

4.1.6 THEOREM ([2])

(i) If 4 is a finite von Neumann algebra, then M = 4 and F(4) = 4

(ii) If 4 is not of finite type, then M # 4 and #(4) = H-l G(A4)

Proof

(i) Let T € A then RT
only if I € A is finite; and RT < I). Thus T e Mo c M.
Hence 4 < M. It is clear that M ¢ 4. So we concluded that
M = A. To show that #(4) = 4, let T € 4. Then T - I = -S € 4
(s: =1 - T). Thus T = I - S is Fredholm, since S € 4 = M
(Theorem 4.1.1). This shows that 4 < ¥(4). Clearly
¥(A4) € 4. Thus 4 = #(4).

is a finite projection (A is finite if and
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(ii) We claim that M contains no infinite projections.

Let E € #{(A) be an infinite projection with E € M. Then

I - E 1is Fredholm by theorem 4.1.1, and so definition
3.2.1(i) implies that NI—E = I - RI—E = I - (I-E) = E 1is
finite. This contradicts the fact that E was chosen to be

infinite. Hence M contains no infinite projections. So if 4

is infinite I ¢ M. Therefore M # 4. Let T e E-l (G(A)).

Then Z(T) € G(I). Therefore there exists an S € A such that
a(T)r(s) = m(S)r(Tt) = #(I) ( mB(I) is the identity element in

A). Since 7 is a homomorphism, z(T)r(S) = m(TS). Hence

I(TS) = m@(ST) = mE(I). This implies that Z(TS - I) = 0 and

(ST - I) = 0 where 0 ( = M) is the identity element of A.
Thus ST - I € M and TS - I € M. Let - C and - D be elements
in M with ST - I = -C and TS - I = -D.
So

ST =1I-C and TS = I - D. (4.7)

Since NT < NST ( Tx = 0 implies STx = 0 xeH, and so

NT(H) < NST(H)), the first relation above implies that

NT < NI—C' Theorem 4.1.1 clearly implies that I - C is
Fredholm relative to 4. Therefore NI—C is a finite
projection in 4. Observing that NT is a subprojection of
Ni_¢ Wwe conclude by lemma 1.2.4 that N, is finite. This

proves the first axiom for T to be Fredholm.
The second equality in (4.7) implies that
range (I-D) = range(TS) < range(T).
Since I-D is Fredholm (theorem 4.1.1), there exists a finite
projection E of A satisfying

range (I - E) < range (I - D).

Thus range (I - E) < range (I - D) < range(T).
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This proves the second and last axiom for T to be Fredholm.

Hence H_l (G(I)) < F(4A). Since E is a finite projection and
thus an element of M, < M we have that I - E is Fredholm. So

by applying lemma 4.1.4 to I - E, Te ¥(A4), one gets

N, ~ inf(RT, N

N(I—E)T - Nt I-g)

1}

Since N sup{Fe?(A)]F(I - E) = 0}
sup{Fe?(4) |F = FE}

sup{Fe?(4) |F ¢ E} = E,

I-E

we conclude that

N(I—E)T - Np ~ 1nf(RT, E) ¢ E, and so N(I—E)T - Np is a
finite projection (E is finite, see lemma 1.2.4). Recalling
that NT is finite (T is Fredholm), we have that

(N(I—E)T - NT) + Ny = N(I—E)T is finite (N(I—E)T - Np and N,
are disjoint finite projections, so their sum is finite by

corollary 1.1.9(i) and proposition 1.2.8). Let F:= N(I—E)T

We claim that the sequence

0 ——— range (I-F) (I‘E)T(I'FZ range (I[-E) —— O

is exact. To show this it 1is sufficient to show that
(I-E)T(I-F) is a bijection from ranmge (I - F) onto

range (I - E). Suppose (I - E)T(I -~ F)x = 0, xe(I - F)(H).
Since (I - F)x = x we have that (I - E)Tx = 0 which implies
X€ N(I-E)T(H)' By hypothesis xe(I - F)(H) = (I - N(I_E)T)(H).

Thus x = 0 (N(I—E)T and I - N(I—E)T are disjoint). This

proves that (I — E)T(I — F) is one to one. Take any

ye€ range (I - E). Since range (I - E) <€ range T an
x€ H exists with y = Tx. Then (I - E)y = (I - E)Tx = Tx = y.
Let x' = (I - F)xe range (I - F). Then
(I - E)T(I - F)x* = (I - E)T(I - F)x
= (I - E)T(I - N(I—E)T)X = (I - E)Tx = Tx = y.
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This proves that (I - E)T(I - F) is onto ramnge (I - E). The
fact that (I - E)T(I - F) is onto range (I - E) implies that

X . .
(I - F)T (I — E) is a one to one mapping from
range (I - E) into range (I - F) and since (I - E)T(I - F)
has a bounded inverse (by the open mapping theorem) we have

that

(I - F)TY(I - E) is onto range (I - F).

'Y
- BT (I - E) range (I - F) - 0

Hence 0 - range (I - E) (I

is exact. It follows that (I - E)T(I - F)(I - F)T*(I - E) is
a bijection from range (I - E) onto range (I — E) and

X
(I - F)T (I - E)T(I - F) s a bijection from range (I - F)
onto range (I - F). Thus if we consider the reduced algebras

Ar_g and AI-F( the element in Ar_g resp. 4; o are operators
on range (I - E) resp. range(I - F}),

(I - E)T(I - F)T'(I - E) and (I - F)T'(I - E)T(I - F)
are regular elements of A1 _g and A _pe Hence there are

. "o
elements T* and T" in A1_g and 4; o such that
(I - E)T(L - F)T"(I - B)T'=I - E,

T"(I - F)TY(I - E)T(I - F) = I - F

From the first relation one has

T(T* T*') + p(T,E,F,T*,T') = I - E where p contains in each
term an E or an F. Since E and F are finite projections in 4

and thus elements of Mo (the two—-sided *-ideal generated by

the finite projections in A) one has that —p(T,E,F,T*,T') and

~E are elements of M ( Mo € M ) . Hence

T(T*T1) - I eM

Similarly, the second relation implies

(T"T*)T - T eM
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Consequently T is regular modulo M.
|

A consequence of this theorem is that the ideal of compact
elements in A4 is a proper subset of 4 if and only if 4 1is an

infinite von Neumann algebra. We now prove a number of important

corollaries. The first one is only a reformulation of the
theorem
4.1.7 COROLLARY

Let T € A, A not of finite type. Then T e ¥(A) if and only if
there exist compact elements C and D in 4 and an operator S € 4

with TS = I - C and ST = I - D.

Since G(4) is an open set in 4([11l], p 399) and the canonical

quotient mapping Z : A - A is continuous ( nz(T)n ¢ WTw ) for all

T € A we have

4.1.8 COROLLARY ([2])

¥(A) is open in the norm topology on 4.
4.1.9 COROLLARY ([2])

#(A) is an involutive monoid, i.e.

(i) Ie ¥(4)

(ii) S, Te¥(A) implies STe¥(4)
(iii) Se¥(A) implies S*e?(A)
Proof :

Condition

(i) follows since Z(I) is the identity element of A which is

clearly regular, so H(I)eG(Z). Thus Ien_lG(I) = #(A)
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(ii) If S,Tes(4) we have m(S), m(T)eG(4) and since G(4) is a
group with respect to the multiplication in A one has

7(S)x(T) = m(ST) € G(4). Thus ST e 1 G(A) = ¥(4)

(iii) If Se ¥(4), Z(S) € G(A). Thus 7¥(s) e 6(A) ([z¥¢s)]™}

= (z(s))"1®). since z¥(s) = (s + M¥ = s¥ + M = 2(s™)

(M is a %*-ideal in 4), S* e ¥(A4).
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CHAPTER 5

APPENDIX

5.1 LOCALLY CONVEX TOPOLOGIES ON A VON NEUMANN ALGEBRA

Let 4 be a von Neumann algebra i.e. 4 is a *-subalgebra of L(H),
containing an identity Ied such that 4 = 4". As stated in Chapter
1, this is the equivalent of saying that 4 is a *-subalgebra of
L(H) which is closed in the weak-operator topology on L(H) (the
double commutation theorem). The weak—-operator topology on 4 is

the topology generated by the family of seminorms
Te 4 — |(Tx,y) | x,yeH.

If 4_ is the linear hull of the set of all weak operator
continuous functionals on 4, then this weak operator topology is
nothing but the a(A,A~)—topology. The strong operator topology on
A is the 1locally convex topology determined by the family of

seminorms

T € A — UTxlu xeH.

The o-weak-operator topology on 4 is the locally convex topology

determined by the family of seminorms

0

* 2 ® 2
TedA — §n=1(Txn’ yn) where §n=1"xn" < + o and §n=l"yn“ < + o,

Let A* be the set of all o-weak continuous linear functionals on

A. it can be shown that every feA* is of the form

0

£f(T) = §n=l(Txn’yn) for some sequences (xn), (yn) c H with

o0 e -]
2 2 _ _
§n=1"xn" { + o and nzluynu < + o and that the o-weak-operator
topology on A4 is exactly the o(A,A*) topology on 4. The locally

convex topology determined by the family of seminorms
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TeA — (znjluTxnuz)l/z, znjluxnuz < + o
where (xn) is a sequence in H, is called the o-strong operator
topology on 4. The topology given by the norm IITIl is called the
norm topology on A. If "<{" means the left-hand side is finer than
the right-hand side, the relation between these various topologies
defined on 4 is as follows
norm < o-strong < o-weak

~ ”~

strong < weak

It can be shown that the o-strong and strong (resp. o-weak and
weak)operator topologies coincide on bounded parts of 4. Consider
A* and A_ as defined above. Then, by using the general duality
theory of Banach spaces it can be shown that A* is a closed
subspace of the conjugate space A* of A and A_ is dense in A* with
respect to the norm topology. Furthermore, A4 1is isometrically

isomorphic to the conmjugate space of the Banach space A* under the

~

natural correspondence Ted —— ; e(A*)* where T(w) = w(T) for
every we4d,. We call Ay the predual of 4. If 4 is a *-subalgebra
of L(H), then A4 has the same closure in each of the topologies
weak, strong, o-strong and o-weak ([5], corollary 3.6.2). Hence
since a von Neumann algebra 4 is weakly-closed, it is closed in
all these locally convex topologies on 4. For the proofs of all

these statements we refer to [5] pl8 to 31.

One merit of all the locally convex topologies defined above, is
that multiplication is separately continuous. This means that the
mappings TeA4 — TSed, TedA —— STed are continuous for every Sed.
We show this for the weak-operator topology on 4 (the proofs for
the others are similar). If Ta —— 0 weakly, one has that

|(Tax,y)[ — 4+ 0 for every x,ye€H ({Ta} a net in 4). Thus

‘(TGX'S*Y)I———* 0 for every x,S*yeH. Hence ,(Sde,y)'a 0 for

every x,y€H. This proves that STQ —— 0 weakly. The same
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procedure is used to show that Te4 —— TSed 1is weak operator

continuous. Another merit of the weak and o-weak topology on 4 is

that the mapping Ted —— T* €4 is continuous. The proof of this
proceeds as above. This is not true in the strong and o-strong
operator topologies. The following result was also needed
Multiplication is jointly continuous on bounded parts in the
strong operator topology on 4. Moreover if TA _ T, SA —_— S
and "SA" ¢ k for all A then the relation

u(SATA - ST)xH ¢ k u(TA—T)xn + u(sA-S)Txu implies that

(T,S) € AxAb ——+ TSe€A 1is continuous where Ab is a uniformly

bounded subset of 4.

We conclude this section by stating the so called Eberlein—-Smulian

theorem which is used in Chapter 1.

5.1.1 THEOREM ([7], p 430)

Let F be a subset of a Banach space X. Consider the weak topology

on X (i.e. the o(X,X*) topology, where X* is the conjugate space

of X). Then the following statements are equivalent

(1) F is relatively weakly sequentially compact - i.e. every

sequence in F has a subsequence which converges weakly

to an element of X;

(ii) every countably infinite subset of F has a weak limit
point in X - 1i.e. a point such that every weak

neighborhood contains an element in the infinite set;

(iii) the closure of F in the weak topology on X (the smallest

topology on X- that makes each feX* continuous) is weak-
compact. (Remember that a weak neighborhood of an xoeX

is of the form V(xo,X,e) = {xeX| |(f(x) - f(xo)| < e,

feA}, where ¢ > 0 and A is a finite subset of X*)
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5.2 COMPLETE ADDITIVITY AND o-WEAK CONTINUITY OF FUNCTIONALS
ON A VON NEUMANN ALGEBRA 4

Let A4 be a von Neumann algebra with predual A*. Consider the
o(A,A*)—topology on A (i.e. the o-weak topology on A4). Our aim in
this section is to show that the o-weak continuous linear
functionals on A4 (the elements of A*) are precisely the completely
additive ones, (see Chapter 1, 1.4.5, for the definition of a

completely additive linear functional on 4).

5.2.1 LEMMA ([5], p 41)

Let f be a norm—-continuous hermitian (i.e. f(T ) = f(T), Te4)
functional on 4. Let A€eR.

(i) TeA’ (the positive part of the unit ball of 4), and £(T) > A

1
implies f(E) > A for some Eep(A) (Note, since f is hermitian

f(T) is real for every T a hermitian element of 4).

(ii) If |f(E)| ¢ A for all Ee»(4), ome has ufu ¢ 4 a.

Proof :
(1) TGAI implies that the spectrum Sp(T) < [O0,u#Tnj}, #TH ¢ 1.
Hence Sp(T) < [0,1]. From the spectral decomposition theorem
1
dEA = 0 if A & Sp(T), so T = foAdEA. If we put
€ = ufu—l(f(T) - A), then € > 0 and there exist by the

spectral theorem projections Ej with uT - } kjEj" { e,
kje[O,l] and j = 1,...n. Hence He_l(T - } kjEj)" < 1. So

|f(e‘1(T - z k:E.))| < sup lf(S)[ = fu. This implies that
JJ nsigl

£(T) = 5k F(E) < [£(D) = J k(B[ < e nfu = £(1) = A
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Thus E kjf(Ej) > A. Since Ej is hermitian, f(Ej) is real for

each j. By rearranging the Ej’ we may suppose that f(Ej) > 0
(1 ¢ jJ ¢ m) and f(Ej) ¢ 0 (m < j ¢ n)y. Let E = El + ... + Em.
Then

m m n
£(B) = i) F(E)) 2 Doy £(E)) 2 3o kj £(B;) > 4.

(ii) If [f(E)' < A for all E e»(4), then, by applying (i) to f
(the contrapositive) f(E) ¢ A for all E e»(4) implies

f(T) ¢ A for all TEAI. Applying (i) to -f, similarly, gives
~f(E) ¢ A for all E €?(4A), which implies —-f(T) ¢ A for all

TeAI. Hence

[f(T)| ¢ A for all TeAT (5.1)

For any TeAl we get that T = H+ i K (H, K € A?, i.e. the

hermitian elements in Al), where H = é (T + T*) and

K = éT(T - T)*. Let A{H,I} be the commutative C *—subalgebra
of A containing H and 1I. Then the Gelfard Naimark theorem
states that A{H,I} = C(X), X compact and Haussdorf and C(X)
all real-valued continuous functions on X. If
r ¢ A(H,I) o C(X) is the Gelfard mapping, then r(H) is a real
valued function on X and can thus be written as

r(H) = r(H)+ - r(H) where r(H)+ and r(H) are positive

elements in C(X). Thus H can be written as H = H+ - H in 4

where H+, H e AI. Similarly, for KGA?. Hence
T=H+iK=H -H +iK - ik . So
[£CT)| < [£CH )| + [£CH )| + £](K')| + [£f(K )| < 4r by (5.1).

So

iHfn = sup [f(T)| < 4a.
TeA.1
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5.2.2 LEMMA ([5], p 42)

Let f be a norm—-continuous linear functional on 4. Then f is

positive (i.e. f(T) > 0 for all T € A+) if and only if f(E) > O
for all E € #(4).

Proof
Supposé f is positive. Since EeA+ we have f(E) > 0 for all
E epP(4A). Conversely, if TeA+ we have Sp(T) < [0,o) and T can be

approximated by a positive linear combination of projections (by

the spectral decomposition theorem). Since f is norm—-continuous

and T is contained in the norm closure 2, where £ is the set of

all positive linear combinations of projections we have

£f(Z) < f(z) « R = R . Hence f(T) > O.

5.2.3 LEMMA ([5], p 42)

Let f be a non-zero norm—-continuous, hermitian, completely
additive functional on 4 and Ee?(4). Then a projection Fed, F ¢ E

exists, such that f(F) > f(E) and flA is a positive functional on
F

the reduced algebra AF.

Proof

Since f is hermitian f(T) is real for every T eAI. Let T eAI with
-f(T) > 0. Since f is non-zero such a T exists, for if f(T) = 0
for all T eAI it follows that f£f(T) = 0 for all T e4. Then by
lemma 5.2.1 an E'eP(4) with -f(E*) > 0 exists. So f(E') < 0 for
some Eter(A4). Let F* = inf(E*',E). Then f(F*) < 0 and F*' ¢ E.

Let {EA} be a maximal family of disjoint projectionms in 4, with

EA ¢ E such that f(EA) < 0 for all A (use Zorn).

Let F = E - } E.. If G ¢ F, then £(G) ) 0, otherwise if £(G) < 0,

then {EA,G} is a disjoint family of subprojections of E with
f(EA) < 0 and f(G) < 0. This contradicts the maximality of the

family {EA}'
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So, f(G) > 0 for all projections Ge Ap- Lemma 5.2.2 implies that

fl‘p > 0 and
£(F) = f(E) - f(} E,)
= f(E) - z f(EA) (f is completely additive)
> f(E)
| |
5.2.4 LEMMA ([5], p 43)

If £f is a completely additive norm—-continuous, positive functional
on A4, and E 1is a non—-zero projection of 4, then a non-zero
projection F ¢ E in 4 and a vector xeH exist such that

[£(T) ] ¢ uTxn (Te AF).

Proof :

Since E # 0 an y' €H exists with Ey* # 0. Hence lIEy'll2 > 0. If
f£(E) = 0, then uEy'u? > £(E). 1If f(E) # 0, let y = (f£(E)/e) /%y
where IlEy'll2 > € > 0. Then

uEyu2 = f(E)/e uEy'u2 > f(E) e/e¢ = f(E).

Hence
- = 2 _
(wy’ f)(E) HEyi f(E) > O (5.2)

where E) = (Ey, . We now apply lemma 5.2.3 to w - f:
r wy’y( ) (Ey,vy) pply v,y

- 2
'“y,y(T)l = |(Ty,y)| ¢ nTunyn=,
so wy v is norm—continuous. Since f is positive it is hermitian.
b
X X .
= = T = T Ted). Hence w 1s
Also wy’y(T) (Ty,vy) (T'y,vy) wy’y( ) ( ) v,y
hermitian. f is completely additive and <clearly wy v is
?
completely additive. So w - f is a norm—continuous, hermitian
»
and completely additive functional on 4. Hence lemma 5.2.3

implies that a projection F ¢ E exists with

(wy gy £f)(F) > (wy,y - f)(E) > 0 by (5.2) and (wy’y - f)lAF > 0.
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Whence F# 0. If Te AF we have T*Te AF = FAF (Te AF implies
T*e FA, so T*Te FAF = AF).
So
0 ¢ (w. _ - £)(T¥T) = utyn? - £(r¥m),
Y,Y
and

|f(T)|2 < (1) f(T*T) (Cauchy—~Schwarz)

£f(I) HTyﬂ2

N

Therefore, if we take x = (f(I))l/zy, one has that
[£(T)| < uTxu (Te AF)

5.2.5 LEMMA ([5], p 42)

If f is a completely additive, positive functional on A4, then f is

oc-weakly continuous.

Proof

Let E = I. Using lemma 5.2.4, let F ¢ E be a non—-zero projection
and x € H be an vector such that [f(T)[ < WTxn (Te AF). By Zorn
we can extend {F} to a maximal disjoint family {Fi}iGI of

projections in A such that for each i€l there is a vector xieH

with

[£(T)| < WTx 0 (Te AFi) (5.3)
If }ieIFi # I (the identity in 4), we could apply lemma 5.2.4 to

I - Ei Fi and get a non-zero subprojection F of I - }i Fi which,

when added to {Fi}, would contradict the maximality of {Fi}.

2. F. = I.
1 1

Therefore,
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By complete additivity of f, }ieIf(Fi) = £(I) ¢ ufu. So, given

2 1

e > 0, a finite set K ¢ I exists such that f(), F.) < e° ufn_
< ieI\K 1

(this 1is direct, since the family of reals (f(Fi))ieI is

summable).
Let E = } I\KFi' Then I = } KFl + E, and so

f(T)

} (E(TE) + £(TE) (T-I = T)

fl(T) + fz(T) (Tea), where

£,(T):= E ¢« T(TF.) and £,(T):=f(TE).

Since TFi € AFi, relation (5.3) gives |f(TFi)| < "TFixi" (i€kK) and

|fl(T)| < } K"TFixi"' Hence fl is strong operator continuous on 4

(if Ta -+ 0 strongly i.e. HTaxn + 0 for all xe H, hence

WT _(F;x;)0 -+ 0 which implies that lfl(Ta)| - 0).

Since the strong operator topology is finer than the weak-operator
topology on 4 we have that fl is weak-operator continuous. Hence

feA~, where A_ is the set of all weak continuous functionals on 4.

Since
2 2
[£,(T) |7 = | £(TE) |
X %
= 1£(eT*)*E) |
< f(ET*TE) f(E) (Cauchy—-Schwarz)
< ufun uTu2 f(E)
< e umn? (£(m) < &2 uen™h
So
nE,n < e
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Since f(T) = fl(T) + fZ(T) (Ted), and ufzn < e, fz € A_ we have
that f can be approximated, in norm, by elements of A_, so

fe I~ = A*. Thus f is o—-weak continuous.

5.2.6 TECHNICAL LEMMA (([5], p 44 )

Suppose a,b,c, € R such that a,b,ab—c2 > 0. Further let E,TeL(H),

E a projection and HuTu¢l. Then

aE + b(I-E) + c[ET(I-E) + (I-E)TYE] 3 0

Proof :
For xeH (ET(I-E)x,x) = (T(I-E)x,Ex) and

((I-E)T¥Ex,x) = (Ex,T(I-E)x) = (T(I-E)x,Ex)
Thus

a(Ex,x) + b(I-E)x,x) + c(ET(I-E)x,x) + c((I-E)T*Ex,x)

= auExu2 + bu(I—E)xu2 + 2 ¢ Re(T(I-E)x,Ex)

> alExn® + bu(I-E)x#% - 2|c|[(T(I-E)x,Ex) |
> auExu2 + bu(I—E)xn2 = Z|c|n(I-E)xn uExu (uTuw ¢ 1)
If we set s = UExi and t = U(I-E)xut. Then as2 + bt2 - 2|c|st is a

quadratic form and we associate with it, the matrix

. [-lzl —‘:'}

2

Since a » 0, b » 0 and det(C) = ab - ¢ > 0 omne has that the
quadratic form is positive semi-definite which implies that as2
+ bt2 - 2]c|st > 0 for all s, t e R+ (a result in Linear Algebra).
Hence

(af + b(I-E) + c[ET(I-E) + (I-E)T'E]x,x) > 0 for all xe H.

[ |

5.2.7 THEOREM ([5], p 42)
Let f be a norm-continuous linear functional on 4. Then f 1is

completely additive if and only if it is o-weakly continuous.
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Proof :

Let {EA} be a disjoint family of projections in 4. The sum E EA

converges in the strong operator topology by lemma 1.1.11. Since
the strong operator topology 1is finer than the weak operator
topology on A4, and the weak operator topology equals the o-weak
operator topology on bounded parts of 4 one has that the sum

converges in the o-weak operator topology on A. Therefore if f is

o-weak continuous, then f(z EA) = } f(EA). Thus f is completely

additive.

Conversely, suppose f is completely additive. We must show that

feA*. Since for every feA* one has f = fl + ifz where f1 and fz

c L. _ 1 X 1 ok
are hermitian (f1 = 2-(f+f ) and fz = Zi(f f ), where

f*(T) = f(T*) ), we may assume that f is hermitian. We may also

assume that ufn ¢ 1.

Let u = sup{f(T); T=T*GA,0gTSI}. So 0 ¢ u ¢ ufu ¢ 1.

Since Z~ = Ay, it is sufficient to show that there are elements of

. . . X .
A_ arbitrarily close to f in 4 . Thus, suppose we are given

e > 0, and for, convenience, assume ¢ ¢ 3/4. By definition of pu

an E1 = E; € A4 exists, 0 ¢ El < I, such that f(El) > 4 - e¢e. Lemma

5.2.1(i) allows us to assume that E1 is a projection and from

lemma 5.2.3 we may assume that flA is positive.
E

1

Therefore flA is a positive, completely additive functional and
E;
lemma 5.2.5 implies that flA is o-weakly continuous. Since
By
Ted — ElTEleAE is o-weakly continuous (multiplication in the
1
o-weak topology on A4 is separately continuous), and since f|A is
Ey

o-weak continuous we have that Ted4d — f(ElTEl) is o-weak
continuous. Let E2 = I - El' Then
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ElTE1 + ElTE2 + EZTEI + EZTEZ = ElT(El + (I—El) + EZT(E1+(I—E1))
= (E1 + EZ) T = T.
So,
f(T) = f(ElTEl) + f(ElTEZ) + f(EZTEl) + f(EzTEz)
= fll(T) + le(T) + f21(T) + fzz(T)
We have already seen that flle A*. We now show that f12 and f21
are of small norm.
For TeAl we define
- _ r2,. 1/2 X
S = (1 e)El + eEz + e (l-¢) (ElTE2 + EZT El)’
Let a = (1-e), b = ¢ and ¢ = ¢/%(1-¢)/%. Then a 3 0, b » 0 and
ab - c2 = 0.
- = - _ .2, \1/2 X
Also, I S = eEl + (1 e)E2 e (1l-e) (EITE2 + EZT El)
The above equation follows since I = E1 + E2 and
El + E2 - (l—e)E1 - eEZ = eEl + (l—e)Ez. Putting
a; = e, bl = 1 - ¢ and ¢, = -(e)l/z(l - e)l/z we have that a; > 0,
2 _
b > 0 and albl e 0.
Thus lemma 5.2.6 shows that S > 0 and I - S » 0. Therefore,
0 ¢S <I, S¥ =5 which implies that
- _ 172,,_.\1/2 X
u > f(s) = (1 e)f(El) + ef(Ez) + e (l-¢) f(E’lTE2 + EZT El).
. . - X - X, _
Since f is hermitian one has f(EzT El) = f((ElTEz) ) = f(ElTEz).
Observing that f(El) > p-e and HEZH < 1 implies that
If(Ez)I < ufu ¢ 1 which implies that f(Ez) > - 1, we get

poy (l-e)(ume) - ¢ + 2 /2 (1-¢)1/% Re[£(B TE,)]
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Thus
Re(flz(T)) = Re[f(ElTEz)]

< ; [e(l—e)]-l/2 [+ e —u + e + eu - ez]

=2 lu+2-e] /& (1-e) /2

¢z (1+2) /£2 (0ucl; 0 < e ¢ 3/4)

= 3 Je (5.4)
Applying this for Tl = 'le(T)|-[f12(T)]-lT, in place of T we have
uTlu = uTn ¢ 1, so TeAl and

-1

Thus

]flz(T)| < 3 Je
which implies that

nf,,11 = sup f.,(T)| ¢ 3 Je.
12 u’ruslI 12 !

Similarly, we can show that

nf,, 1 ¢ 3 Je. We must show that f is near some f €4, where
21 22 o X%

fZZ(T) = f(EzTEz). If Fe ?(AEZ), then El + F € #(4), so

0 ¢ El + F ¢ I. Thus u > f(El + F) = f(El) + f(F) > u - e + f(F)
This implies that

f(F) < e. (5.5)
Now, let g = —fIA . Then g 1s a completely additive,

Ey
norm—continuous, hermitian functional on AE (f is one onm A) with
2
g < 1, and since f(F) < ¢ for all Fe ?(AE ) we have g(F) > -e
2
for all Fe ?(AE ). As before, we can find projections
2
F,, F, € (A, ) with sum E_, (the identity of A_ ) such that if we
1 2 E2 2 E2

define

LA (T) = g(FiTFJ) (i, = 1,2), then g = g;; + g, + g5 * &5, and
gll is o-weak continuous. Also uglzu < 3J/€, ug21u < 3Je¢ and
g(F) < ¢ for every projection Fe AF . Thus

2
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-e < g(F) < e (g(F) > -e follows since AF < AE ).

2 2
Thus lg(F)l < ¢ for every Fe AF . Hence lemma 5.2.1(ii) implies
2
that
"g|AF n < de.
2
Therefore, |g22(S)| = |g(FZSF2)| < 4eHFZSF2H < 4e NSH (Sea).
Hence
gy, it < 4e .
Let fo(T) HE —gll(EzTEz) (Ted).
Then
](f22 - fo)(T)I = | f(EZTEz) + €11 (EZTEZ)l
I(gll - g)(EZTEZ)I
< ugll - g IIEZTEZII
< (4e + 6 Je) nTH (gll - €= ~€1, ~ 897 ~ gzz)'
Thus ufzz - fou < 4e + 6. and fo € A,. This proves the theorem.
5.2.8 COROLLARY ([(5], p 44)

For a state on A (i.e. a positive linear functional with norm

one), one has that o-weak continuity, normality and complete

additivity are equivalent.

Proof :
Suppose f is normal (see definition 1.4.5(1)). Let {Ei}ieI be a

family of disjoint projections in A. Take any finite subset

J e I. Then Ej = EieJE € #(4). If H is a finite subset of I with

H < J, we have EH < EJ. Let ® be the class of all finite subsets

of I. Then the net (EJ, Je ®, <) is increasing, uniformly bounded

and for each Je =%, EJ > 0. Hence

f(}ieIEi) - f(;:; E)) = I}m £(E;) = 1§m }ieJ £(E,) = }iel £(E,).
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Thus f is completely additive.

If f 1is completely additive, 1lemma 5.2.5 implies that f 1is

g-weakly continuous. Suppose f is o-weakly continuous on 4. Let

{TA} be a increasing net of elements in A+ (with supremum T),
which 1is uniformly bounded. Then the monotone convergence
proposition 1.4.3 states that TA —— T in the strong—-operator
topology on 4. Since the strong topology on A is finer than the
weak—-operator topology, and the weak-operator topology equals the
o-weak topology on bounded parts, TA — T o-weakly. The o-weak
continuity of f implies that f(TA) — f(T). Clearly

TA < TP (A ¢ p) implies f(TA) < f(Tp) (f is positive). Hence

srp f(TA) = f(T) = f(srp TA), which means that f is normal.
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SUMMARY

The main goal of this study is to generalize the theory of compact
and of Fredholm operators defined on a complex Hilbert space H to
von Neumann algebras. Since this generalization depend heavily on
the study of the projection lattice existing on a von Neumann
algebra, the first chapter contains a comprehensive amount of
standard material concerning the geometry of projections in a von

Neumann algebra 4.

If we consider the commutant A4' of a von Neumann algebra and a

projection E in A then the restriction of each element of 4*' to

E(H) defines a representation ”E of A' into the C*—algebra of all
bounded linear operators on E(H) (E(H) is the range space of the
projection E). In Chapter 2 we consider all these representations
of A4' into E(H) (where E is assumed to be finite relative to 4),
to construct a commutative monoid M. The Grothendieck group r of
M can canonically be equipped with an order relation. This group
is important in the Chapters that follow, since it contains the so

called indices of the Fredholm elements defined on a von Neumann

algebra 4.

In Chapter 3 the concept of finite, compact and Fredholm elements
are introduced. On the set of all Fredholm elements relative to 4
an index mapping is defined with values in the Grothendieck group

r. These values are called the indices of the Fredholm elements

relative to 4.
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The main theorems of this study are obtained in Chapter 4. These

results generalize theorems, obtained by F. Riesz and Atkinson

(i) "The generalized Fredholm alternatives say that I - T is
Fredholm with index zero (relative to 4) if T is compact

(relative to 4).

(ii) In the second theorem we study properties that hold for

the 1increasing sequence of null projections of the

elements (I - T)n, n=1,2,..., where T is compact.

(iii) If 4 is the Calkin algebra of 4. Then the set of all

Fredholm elements relative to 4, is exactly the inverse

image of the group of all invertable elements in 4 under

the canonical quotient mapping Z : A — A.

--= o00o ---
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FREDHOLM-TEORIE IN VON NEUMANN ALGEBRAS

deur

"
ANTON STRoH

Leier : Professor J Swart
Departement : Wiskunde en Toegepaste Wiskunde
Graad ¢ MSc

OPSOMMING

Die doel van hierdie verhandeling is om die teorie van kompakte en
Fredholm-operatore, wat gedefinieer is op ’'n komplekse Hilbert-
ruimte H, na von Neumann—-algebras te veralgemeen. Aangesien
hierdie verhandeling berus op die studie van die projeksierooster
wat op ’n von Neumann—algebra bestaan, gee ons in die eerste
hoofstuk die nodige agtergrond omtrent die geometrie van

projeksies in von Neumann—algebras.

"

In hoofstuk 2 konstrueer ons ’n sekere kommutatiewe monoied M deur

. . . X
te gaan kyk na alle representasies ”E vanaf A4' in die C -algebra

bestaande uit alle kontinue line;re operatore op E(H) (E(H) is die
beeldruimte van die projeksie E ), waar A' die kommutant van 4 1is
en ”E die afbeelding wat elke element van A' beperk tot E(H). Ons
definieer verder ’n natuurlike ordening op die Grothendieck-groep
- van M. Die feit dat hierdie groep die sogenaamde indekse van

die Fredholm-elemente relatief tot 'n von Neumann—algebra 4 bevat,

11

is van essensiele belang in die daaropvolgende hoofstukke.

In hoofstuk 3 definieer ons die begrippe eindige, kompakte en

Fredholm-elemente, relatief tot ’'n von Neumann-algebra 4. Ons
definieer ook die indeksafbeelding op die versameling van alle
Fredholm-elemente met waardes in die groep r. Hierdie waardes

word die indekse van Fredholm—-elemente relatief tot A4 genocem.
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Die hoofresultate in hierdie verhandeling word in hoofstuk 4
bewys. Drie stellings bewys deur F Riesz en Atkinson is
veralgemeen na von Neumann-algebras. Die veralgemeende stellings

behels die volgende

(i) As T kompak relatief tot 4 is, dan is I - T Fredholm

relatief tot 4 met indeks nul.

(ii) In die tweede stelling word sekere eienskappe ondersoek

wat geld vir die stygehde ry van nul projeksies van die

elemente (I -~ T)n, n = 1,2,..., waar T kompak relatief
tot A4 is.

(iii) Laat 4 die Calkin algebra van 4 wees en gestel
Z : A —u A is die kanoniese kwosientafbeelding. Dan

is die versameling van alle Fredholm—elemente relatief

tot A presies die inverse beeld van die groep van alle

inverteerbare elemente in 4 onder die afbeelding I.

~—— o000 ——-
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