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Specialized techniques are needed to solve global optimization problems, due to the existence 
of multiple local optima or numerical noise in the objective function. The complexity of the 
problem is aggravated when discontinuities and constraints are present, or when evaluation of 
the objective function is computationally expensive. The global (minimization) programming 
problem is defined as finding the variable set for which the objective function obtains not only 
a local minimum, but also the smallest value, the global minimum. From a mathematical 
point of view, the global programming problem is essentially unsolvable, due to a lack of 
mathematical conditions characterizing the global optimum. In this study, the unconstrained 
global programming problem is addressed using a number of novel heuristic approaches. 

Firstly, a probabilistic global stopping criterion is presented for multi-start algorithms. This 
rule, denoted the unified Bayesian stopping criterion, is based on the single mild assumption 
that the probability of convergence to the global minimum is comparable to the probability 
of convergence to any other local minimum. This rule was previously presented for use in 
combination with a specific global optimization algorithm, and is now shown to be effective 
when used in a general multi-start approach. The suitability of the unified Bayesian stopping 
criterion is demonstrated for a number of algorithms using standard test functions. 

Secondly, multi-start global optimization algorithms based on multiple local searches, com­
bined with the unified Bayesian stopping criterion, are presented. Numerical results reveal 
that these simple multi-start algorithms outperform a number of leading contenders. 

Thirdly, parallelization of the sequential multi-start algorithms is shown to effectively re­
duce the apparent computational time associated with solving expensive global programming 

11 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

problems. 

Fourthly, two algorithms simulating natural phenomena are implemented, namely the rel­
atively new particle swarm optimization method and the well known genetic algorithm. 
For the current implementations, numerical results indicate that the computational effort 
associated with these methods is comparable. 

Fifthly, the observation that no single global optimization algorithm can consistently out­
perform any other algorithm when a large set of problems is considered, leads to the de­
velopment of a parallel competing algorithm infrastructure. In this infrastructure different 
algorithms, ranging from deterministic to stochastic, compete simultaneously for a contri­
bution to the unified Bayesian global stopping criterion. This is an important step towards 
facilitating an infrastructure that is suitable for a range of problems in different classes. 

In the sixth place, the constrained global programming problems is addressed using con­
strained algorithms in the parallel competing algorithm infrastructure. 

The developed methods are extensively tested using standard test functions, for both serial 
and parallel implementations. An optimization procedure is also presented to solve the slope 
stability problem faced in civil engineering. This new procedure determines the factor of 
safety of slopes using a global optimization approach. 
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Gespesialiseerde tegnieke word benodig vir die oplos van globale programmeringsprobleme, 
vanwee die teenwoordigheid van lokale minima of numeriese geraas in die doelfunksie. Die 
probleem se kompleksiteit word vererger deur diskontuiniteite en begrensings in die doel­
funksie en wanneer die evaluering van die doelfunksie berekeningsgewys duur is. Die globale 
(minimerings) programmeringsprobleem impliseer die bepaling van die stel veranderlikes 
waar die doelfunksie nie net 'n lokale minimum bereik nie, maar ook die kleinste waarde, 
die globale minimum. Vanuit 'n wiskundige oogpunt is die globale programmeringsprobleem 
nie oplosbaar nie, vanwee die gebrek aan wiskundige voorwaardes wat die globale minimum 
beskryf. In hierdie studie word die globale optimeringsprobleem aangespreek deur 'n paar 
nuwe heuristiese benaderings. 

Eerstens word 'n globale termineringsreel vir multi-begin algoritmes voorgestel. Hierdie reel, 
genoem die universele Bayesiaanse termineringsreel, is gebaseer op die gematigde aanname 
dat die waarskynlikheid vir konvergensie na die globale minimum vergelykbaar is met die 
waarskynlikheid van konvergensie na enige antler lokale minimum. Hierdie reel was voorheen 
voorgestel vir die gebruik saam met 'n spesifieke globale optimerings algoritme, en word nou 
aangetoon as effektief vir 'n algemene multi-begin benadering. Die reel se toepaslikheid word 
vir 'n verskeidenheid van algoritmes met 'n stel standaard toetsfunksies aangetoon. 

Tweedens word multi-begin globale optimeringsalgoritmes voorgestel, wat gebaseer is op 
veelvuldige lokale soekprosedures, gekombineerd met die universele Bayesiaanse terminerings­
reel. Numeriese resultate toon dat hierdie eenvoudige benadering heelwat bekende algoritmes 
oortref. 
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Derdens word aangetoon <lat parallelisering van multi-begin algoritmes die berekeningstyd 
gepaardgaande met die oplossing van duur globale optimeringsprobleme effektief verminder. 

Vierdens is die relatiewe nuwe deeltjie swerm ('particle swarm') optimeringsalgoritme en 
'n genetiese algoritme geimplimenteer. Die twee algoritmes is gebaseer op natuurlike ver­
skynsels en numeriese resultate toon <lat die metodes vergelykbaar presteer vir die huidige 
implementerings. 

Vyfdens lei die waarneming <lat geen globale optimeringsalgoritme deurentyd beter as an­
tler algoritmes kan presteer nie, tot die ontwikkeling van die parallele kompeterende algo­
ritme infrastruktuur. Verskillende algoritmes, van deterministiese tot stogastiese metodes, 
kompeteer gelyktydig vir 'n bydrae tot die universele Bayesiaanse termineringsreel in die 
infrastruktuur. Hierdie is 'n belangrike stap in die fasilitering van 'n infrastruktuur wat 
toepaslik is vir 'n wye spektrum van probleme vanuit verskillende klasse. 

In die sesde plek word die begrensde globale optimeringsprobleem aangespreek deur die im­
plementering van begrense algoritmes in die parallele kompeterende algoritme infrastruktuur. 

Die ontwikkelde metodes is breedvoerig met behulp van 'n stel standaard toetsfunksies 
getoets, vir serie sowel as parallele implementerings. 'n Optimerings prosedure is ook ontwik­
kel vir die hellingstabiliteitsprobleem in siviele ingenieurswese. Hierdie nuwe prosedure bepaal 
die veiligheidsfaktor vir grondhellings deur middel van 'n globale optimerings benadering. 
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Chapter 1 

Introduction 

1.1 Motivation 

Numerical techniques are frequently used in science, economics and engineering to compute 
globally optimal solutions to practical optimization problems. Global optimization problems 
are extraordinarily diverse and specialized techniques are needed to solve these problems due 
to: 

• the existence of multiple local optima, 

• numerical noise, 

• the presence of discontinuities, 

• the presence of constraint functions, 

• computationally expensive functions, and 

• a large number of design variables. 

The aim of global optimization is to find the solution in a design space D for which the 
objective function f ( x) obtains not only a local minimum, but its smallest value, the global 
minimum. More formally, the unconstrained minimization problem is expressed as follows: 
Consider the unconstrained ( or bounds constrained) mathematical programming problem 
represented by the following: Given a real valued objective function f ( x) defined on the set 
x E D in IRn, find the point x* and the corresponding function value f* such that 

f* = f(x*) = min {f(x)lx ED} (1.1) 

if x* exists and is unique. Alternatively, find a low approximation J to f*. If the objective 
function and/or the feasible domain Dare non-convex, then there may be many local minima 
which are not optimal. From a mathematical point of view, Problem (1.1) is essentially 
unsolvable due to a lack of mathematical conditions characterizing the global optimum, as 
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opposed to the attainment of the local minima which is characterized by the Karush-Kuhn­
Tucker conditions. 

Global optimization problems fall into the class of NP-hard problems when considering the 
complexity of the problem. This means that the computational time required to solve the 
problem increases exponentially when the number of variables are increased [I]. 

1.1.1 Global optimization methods 

Optimization algorithms aimed at solving Problem (1. 1) are divided in two classes, namely 
deterministic and stochastic. The first class being those algorithms which implicitly search 
all of the function domain and thus are guaranteed to find the global optimum. In gen­
eral, the algorithms within this class are forced to deal with restricted classes of functions 
( e.g. Lipschitz continuous functions with known Lipschitz constants). Even with these re­
strictions it is often computationally infeasible to apply deterministic algorithms to search 
for the guaranteed global optimum as the number of computations required increases expo­
nentially with the dimension of the feasible space. To overcome the inherent difficulties of 
the guaranteed-accuracy algorithms, much research effort has been devoted to algorithms 
in which a stochastic element is introduced, this way the deterministic guarantee is relaxed 
into a confidence measure. A number of successful algorithms belong to the latter class. 

A general stochastic algorithm for global optimization consists of three major steps [2]: a 
sampling step, an optimization step, and a check of some global stopping criterion. 

The selection of a suitable global stopping criterion is probably the most important step in 
formulating global optimization algorithms. It is also the most problematic, due to the very 
fact that characterization of the global optimum is in general not possible. In order to solve 
the problem heuristics may be introduced. One would expect a successful global optimization 
algorithm to be neither purely heuristic nor purely mathematical, but a combination of 
both. Hence global algorithms should not be judged on rigorous mathematics only. Instead, 
algorithms and their associated global stopping criteria should ultimately be judged on 
performance. 

1.2 Objectives 

This study is focused on the development of methods which address the unconstrained 
global programming problem and to a lesser extend, the constrained global programming 
problem. In practice, it is desired to present new algorithms and stopping criteria. These 
methodologies should be 

• cost efficient in terms of the number of function evaluations, and 

• robust in providing a high probability of finding the global minimum. 

Calculating the factor of safety of slopes is important in a number of civil engineering appli­
cations. These include natural slopes, earth works construction, embankments, earth dams, 
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etc. In recent years finite element methods have been developed for slope stability analyses 
[3, 4], but limiting equilibrium methods are still widely used. Limiting equilibrium methods 
combined with global optimization algorithms, can be used for determining the geometry of 
the critical failure plain and corresponding factor of safety. The study also aims at developing 
a global optimization procedure for determining the factor of safety of soil slopes. 

1.2.1 Testing of the developed algorithms 

The performance of the optimization methods must be evaluated in some way for comparison 
purposes. In this study, the test functions tabulated in Table 1.1 are used to evaluate the 
algorithms developed, implemented and/ or tested. The set represents an extended Dixon­
Szego test set, and the test problems are explicitly given in Appendix A. 

No. Acronym Name 

1 Gl Griewank Gl 
2 G2 Griewank G2 
3 GP Goldstein-Price 
4 C6 Six-hump camel back 
5 SH Shubert, Levi No. 4 
6 RA Rastrigin 
7 BR Branin 
8 H3 Hartman 3 
9 H6 Hartman 6 
10 S5 Shekel 5 
11 S7 Shekel 7 
12 SlO Shekel 10 

Table 1.1: The extended Dixon-Szego test set. 

When comparing different algorithms no a priori known information about the objective 
function should be used. For example, the termination of algorithms once they reach the 
known global optimum within a prescribed tolerance is unrealistic, since the global minimum 
of problems encountered in practice would not be known. This makes the comparison of 
different algorithms very difficult. 

1.3 Thesis overview 

This thesis is constructed as follows: 

• A global stopping criterion suitable for general multi-start procedures is proposed in 
Chapter 2. 

3 
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• Simple heuristic local search algorithms are presented as efficient global optimization 
solvers in Chapter 3. 

• The fundamentals and computer implementation of a simple genetic algorithm are 
discussed in Chapter 4. 

• In Chapter 5 the recently new particle swarm optimization algorithm is discussed. 

• In Chapter 6, parallelization of multi-start algorithms is shown to be effective in re­
ducing the time for solving expensive global programming problems. 

• The parallel competing algorithm infrastructure is motivated and implemented in 
Chapter 7, in which different algorithms compete for a contribution to the stopping 
criterion presented in Chapter 2. 

• The implementation of four constrained algorithms in the parallel competing algorithm 
infrastructure for solving constrained global programming problems is described in 
Chapter 8. 

• In Chapter 9 a global programming approach is presented for determining the factor 
of safety of slopes. 

• Conclusions and recommendations regarding the developed methods are presented in 
Chapter 10. 

The Appendices include the following: 

• Appendix A presents the extended Dixon-Szego unconstrained test set. 

• Appendix B presents the constrained test set. 

• Appendix C presents the derivation of the unified Bayesian global stopping criterion. 

• Appendix D presents the soil slope geometries of the examples used for testing the slope 
stability procedure. The figures of the critical failure planes found are also included. 

• Appendix E presents the critical failure plane coordinates calculated with the proposed 
slope stability optimization procedure. 

• Appendix F reflects fragments of the FORTRAN code developed during this study, 
namely 

- the genetic algorithm, 

- the particle swarm optimization algorithm, and 

- the parallel competing optimization algorithm. 

4 
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Chapter 2 

On Global Stopping Criteria 

2.1 Introduction 

As mentioned in Section 1.1.1, a general stochastic global optimization algorithm consists of 
a number of steps, one of which is the evaluation of a suitable stopping criterion. Stopping 
criteria may be divided into two classes, namely passive stopping conditions, in which no 
information obtained during the optimization process is used, and sequential stopping rules, 
which make use of information obtained during the optimization process [5]. In this chapter 
a stopping criterion suitable for algorithms in a general multi-start procedure is considered. 

In any multi-start procedure it is required to determine f, i.e. 

J = min {P, over all j to date } (2.1) 
as the approximation to the global minimum value f*, when j searches have been performed 
from j starting points. A stopping criterion should be used to prevent over-sampling. In 
addition, it is desirable to have an indication of the probability of convergence to the global 
minimum f*. A Bayesian argument seems the proper framework for the formulation of such 
a criterion. Previously two such criteria have been presented, respectively by Boender and 
Rinnooy Kan [6], and Snyman and Fatti [7]. 
In the following sections, these two Bayesian global stopping criteria are briefly outlined. 

2.1.1 A criterion due to Boender and Rinnooy Kan 

This criterion, denoted the optimal sequential Bayesian stopping rule, is based on a Bayesian 
estimate of the number of local minima and the relative size of each region of attraction Rk 
in D. 

Let W be the number of minimizers found after ii different sampling points have been 
sampled. Boender et al. [6] showed that the least number of random starts to find the global 
mm1mum in a probabilistically sense is the smallest ii value that satisfies the following 
equation: 

integer part of [ W(ii - l) + !] = W 
ii-W-2 2 

5 
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While apparently effective, computational expense prohibits using this rule for functions 
with a large number of local minima in D, because this rule is effectively only satisfied when 
all the minimizers are found. 

2.1.2 A criterion due to Snyman and Fatti 

Snyman and Fatti [7] developed a stopping condition for their multi-start trajectory method, 
which gives an indication of the probability of convergence to the global minimum f*. In 
deriving the stopping condition an assumption is made regarding the probability that a ran­
dom starting point will converge to the global minimum in relation to the probability of 
convergence to any local minimum of the function. Let ak denote the probability that a ran­
dom starting point will converge to local minimum xk. Also, the probability of convergence 
to the global minimum x* is denoted a*. The following mild assumption, which is probably 
true for many functions of practical interest, is now made: 

a* 2:: ak for all local minima xk. (2.3) 

Furthermore, le~ r be the number of starting points from which convergence to the current 
best minimum f occurs after ii random searches have been started. Then, under assumption 
(2.3), the probability that .f is equal to f* is given by 

P [17 f*] (- ) (ii+ a)! (2ii + b)! r = >qnr =l-------=--
- ' (2ii+a)! (ii+b)!' 

(2.4) 

with a = a+ b - I, b = b - r - I, and a, b suitable parameters of the Beta distribution 
f3(a, b). On the basis of (2.4) the adopted stopping rule becomes: 

STOP when Pr [.f = f*] 2:: q*, (2.5) 

where q* is some prescribed desired confidence level, typically chosen as 0.99 - 0.999. 

A proof of (2.5) is presented in Appendix C. However, the proof is expressed in terms of the 
probability of convergence to a local minimum, and not in terms of the region of attraction 
of the local minimum 1. 

Snyman and Fatti [7] present an argument that their trajectory method is expected to satisfy 
assumption (2.3) for many functions, although no mathematical proof of applicability of the 
stopping condition is available. Nevertheless, their result is quite important and is in all 
probability of greater importance and more applicable than hitherto realized. Henceforth 
the rule of Snyman and Fatti will be denoted the unified Bayesian stopping rule. 

2.2 The unified Bayesian stopping rule 

In the following, it will numerically be shown that the unified Bayesian stopping criterion 
may be used in many multi-start procedures, albeit for a restricted class of functions. It is 

1Studying simple 1-D search trajectories, it was observed that the definition of region of attraction of a 
local minimum is problematic. Strictly speaking, the region of attraction can only be defined when non­
discrete search trajectories (line search or other) are employed. 
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simply argued that the rule can be adopted in any multi-start algorithm if the function and 
the algorithm comply with basic assumption (2.3). The effectiveness of (2.5) can be demon­
strated numerically when the stopping condition is successfully used in different algorithms 
for various test functions. 

The algorithms used to demonstrate the general applicability of the unified Bayesian stopping 
rule range from local to global optimization algorithms. Numerical experiments have shown 
that when using clustering (8, 9] or a genetic algorithm, it is advantageous to decrease the 
number of sampling points ( or the population size) used, and to rather restart the algorithm 
a number of times using different random starting points as opposed to a large number of 
sampling points ( or large population size) for a single run. 

2.2.1 Combination with local optimization algorithms 

The well known BFGS (10, 11, 12] and Polak-Ribiere (13] local minimizers, and indeed any 
other local minimizer, can be 'converted' into a global optimization algorithm using a random 
multi-start procedure, combined with the unified Bayesian stopping criterion (see Chapter 
3). Initially, one hesitates to denote these local solvers global optimization algorithms, even 
though the algorithms are started using ii different random starting points. A clustering 
method seems more suitable. 

Nonetheless, these global optimization algorithms perform better than a number of rigorously 
derived algorithms. This is evident from the numerical results presented in Table 2.1. Table 
2.1 reflects on the performance of the BFGS algorithm, the Polak-Ribiere (PR) algorithm and 
the SQSD algorithm (14] when implemented with the unified Bayesian stopping condition 
(with q* = 0.99 and a= b = 1). The results using the Snyman-Fatti (SF) algorithm [7], for 
which the stopping condition was originally proposed, are also shown. 

BFGS PR SQSD SF 

Prob. F Nfe r/n F NJe r/n F Nfe r/n F Nfe r/ii 
Gl 4 5607 6 / 284 3 5696 6 / 212 0 207141 6 I 5873 0 5062 6 / 37 
G2 0 952 6 / 24 1 966 6 / 17 3 25730 6 / 33 
GP 0 204 5 / 8 0 306 5 I 9 0 355 6 / 18 0 1901 6 / 35 
C6 0 90 5 / 6 0 160 5 / 8 1 122 5 / 12 0 516 5 / 6 
SH 0 1718 6 / 127 0 1206 6 / 51 0 1172 6 / 155 0 12440 6 / 37 
RA 3 872 6 / 155 3 1896 6 / 102 2 925 6 / 155 3 10971 6 / 99 
BR 0 329 4 / 4 0 614 5 / 10 0 1384 6 / 27 0 680 4 / 5 
H3 0 299 5 / 8 0 275 5 / 7 0 243 5 / 8 0 1370 5 / 6 
H6 0 358 5 / 7 0 445 5 / 8 0 252 5 / 8 0 2346 5 / 7 
S5 1 297 5 / 14 0 457 5 / 14 0 464 6 / 15 1 1571 5 / 13 
S7 0 273 5 / 13 0 482 6 / 14 0 471 6 / 17 0 1624 5 / 13 
SlO 0 364 6 / 17 0 503 6 / 15 0 620 6 / 24 0 1477 5 / 12 

Table 2.1: Results when combining the unified Bayesian stopping criterion with different 
algorithms. F indicates the number of failures out of 10 independent restarts and Nfe the 
average number of function evaluations. 
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Ten independent runs for each test problem are performed and the number of failures F and 
the average number of function evaluations Nfe for the runs are reported in the table. Clearly, 
these three algorithms outperform the SF algorithm in terms of function evaluations Nfe and 
number of failures F. r repres~nts the number of starting points from which convergence 
to the current best minimum f occurs after ii random searches have been started in each 
independent run. (Average values are reported.) These result shows that local minimizers 
can be transformed into robust and cost efficient global optimization algorithms using the 
unified Bayesian stopping criterion. 

2.2.2 Combination with global optimization algorithms 

A genetic algorithm and two well known global optimization algorithms, namely the Bayesian 
search implementation by Mockus [15, 16] and the clustering algorithm [8, 9], are combined 
with the unified Bayesian stopping rule. 

In all cases, the prescribed probability of convergence is also taken as q* = 0.99 and a = b = l. 
In the following, F indicates the number of times the algorithms fails to converge to the a 

priori known global optimum J*, for 10 independent runs of the algorithms. The probability 
that / is equal to J* is given by q( ii, r). 

Bayesian optimization 

The implementation of a Bayesian search strategy by Mockus is described in [15]. Table 2.2 
illustrates the influence of the unified Bayesian stopping criterion on this algorithm. The 
results entered in the columns denoted 'Mockus' represent the stand-alone algorithm, while 

Mockus Mockust 

Prob. F Nfe F Nfe r /ii q(ii,r) 

Gl 6 354 0 3710 5 I 10 0.9915 
G2 9 1442 0 74929 6 / 52 0.9932 
GP 9 365 0 39416 6 / 106 0.9927 
C6 0 371 0 1449 4 / 4 0.9921 
SH 0 373 0 1485 4 / 4 0.9921 
RA 0 194 0 776 4 / 4 0.9921 
BR 7 258 0 4521 6 / 18 0.9951 
H3 8 165 0 2938 6 / 19 0.9950 
H6 6 404 1 5646 6 / 11 0.9953 
S5 6 158 0 3672 6 / 23 0.9945 
S7 9 160 0 13147 6 / 82 0.9929 
SlO 9 164 0 18987 6 / 118 0.9926 

Table 2.2: Combination of the unified Bayesian stopping rule and the algorithm presented 
by Mockus. The stopping rule is included in the columns denoted Mockust. 
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the algorithm combined with the new stopping rule is represented by the columns denoted 
Mockust. 

Clearly, the combination with the stopping criterion makes the algorithm more robust, i.e. 
the number of times the algorithm converges to f* increases, albeit at additional compu­
tational effort. However, the computational effort increases dramatically only for those 
functions for which the stand-alone algorithm performs badly. 

Clustering 

The clustering algorithm [8, 9] aims at finding all the local minima that are potentially 
global. Points are sampled within the design space D and are grouped into clusters, with 
each cluster containing hopefully only one promising local minima. A local search procedure, 
such as the BFGS algorithm, may then be used to find the local minima corresponding to 
each cluster. The aim of clustering is to ensure that no computational effort is wasted in the 
local search procedure to find a minimum that was already determined. 

In Table 2.3, similar results to those for the algorithm of Mockus are presented for the 
clustering algorithm. For the stand-alone algorithm, the suggested value of lOOn sampling 
points is used. In each case, an expectation of 10 local minima is prescribed, since the ex­
ploitation a priori known information about f is undesireable. The results for the combined 
algorithm are obtained with very optimistic settings, namely only lOn sampling points, and 
an expectation of only 2 local minima. 

For the difficult Griewank problems, the combined results are superior to the results obtained 
with the stand-alone algorithm, both in terms of robustness, and computational effort. 

Clustering Clustering t 

Prob. F Nfe F Nfe r/n q(n,r) 

Gl 8 1302 1 5239 6 / 37 0.9936 
G2 0 11644 0 8231 5 / 7 0.9944 
GP 0 985 0 971 5 / 5 0.9978 
C6 0 643 0 749 4 / 4 0.9921 
SH 0 1626 0 4117 5 / 6 0.9959 
RA 1 2038 0 5617 5 / 10 0.9915 
BR 0 683 0 708 4 / 4 0.9921 
H3 0 1232 0 884 4 / 4 0.9921 
H6 0 3278 0 2832 4 / 4 0.9921 
S5 0 1891 0 2684 5 / 8 0.9932 
S7 0 2139 0 2831 5 / 8 0.9932 
S10 0 2805 0 3620 5 / 9 0.9923 

Table 2.3: Combination of the unified Bayesian stopping rule and the clustering algorithm. 
The stopping rule is included in the columns denoted Clusteringt. 

9 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

Genetic algorithm 

For the GA ( discussed in Chapter 4) a small population size of 8 is used. Table 2.4 illustrates 
the robustness of the combination of the unified Bayesian stopping criterion with the GA, 
except for the G2 problem for which 10 failures are still recorded. 

GA GAt 

Prob. F Nfe F Nfe r/ii q(ii,r) 

Gl 6 2557 0 7891 5 / 7 0.9944 
G2 10 10 
GP 1 2213 0 6471 5 / 6 0.9959 
C6 0 1293 0 2907 4 / 4 0.9921 
SH 0 3155 0 8204 5 / 5 0.9978 
RA 2 1619 0 6784 5 / 8 0.9932 
BR 0 1685 0 3773 4 / 4 0.9921 
H3 0 1477 0 3073 4 / 4 0.9921 
H6 4 2275 0 6235 5 / 6 0.9959 
S5 4 3319 0 23932 6 / 11 0.9953 
S7 6 3277 0 23798 6 / 11 0.9953 
S10 5 3235 0 24686 6 / 1s 0.9951 

Table 2.4: Combination of the unified Bayesian stopping rule and the genetic algorithm 
discussed in Chapter 4. The stopping rule is included in the columns denoted GA t. 

Discussion 

Doubtless, the results obtained above with the three algorithms are not optimal, and can be 
improved. For instance, the results reported by Boender et al. for the clustering algorithm 
are notably more efficient, since they use less sampling points. In addition, the mathematical 
justification of Bayesian optimization is violated ( e.g. see [16)). Eventually, the combination 
of the unified Bayesian stopping rule with algorithms such as clustering or Bayesian op­
timization justifies further investigation. Nevertheless, extremely simple and robust global 
optimization algorithms have been constructed using the unified Bayesian stopping criterion. 
The algorithms require no 'tuning', and are free of problem dependent parameters. 

Based on these results the hypothesis is made that the unified Bayesian stopping rule can 
be combined with many algorithms, ranging from global to local, forming efficient stochastic 
multi-start algorithms. The effects of the parameters of the stopping rule, namely a, b and 
q*, are discussed in the following sections. 
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2.2.3 Beta distribution parameters 

The Beta distribution f3(a, b), with parameters a and b, is used as the marginal prior distribu­
tion of a, the probability that a random selected point from the domain D will convergence 
to the current overall minimum. In [7] the parameter values were taken as a = b = 1, which 
means the Beta distribution correspond to the uniform prior distribution, implying that a 
has a prior expectation of 0.5. 

The effects the values a and b have on the total number of failures F and the average function 
evaluations Nfe for different values of the prescribed confidence level q* are studied in Table 
2.5. The Polak-Ribiere algorithm is used for demonstration purposes, but similar results 
can be generated using d1fferent algorithms. From Table 2.5 it is noted that a and b have 
little effect on the number of failures and function evaluations at high values of q*. The 
reason is that with high values of q*, a relatively high number of starts must be performed 
before the stopping rule can be satisfied and the assumed prior distribution of a becomes 
less prominent. 

Values of a = b = l are probably too optimistic and values of a = l and b = 5 are used 

a= 1; b = 1 a= l; b = 5 a= 5; b = l a= 1; b = 10 a= 5; b = 5 

q* F Nfe F N1e F Nfe F Nfe F N1e 

.80 264 269 178 356 765 36 128 447 460 98 

.82 264 269 160 378 765 36 114 485 358 130 

.84 264 269 143 416 765 36 102 530 358 130 

.86 264 269 134 475 523 73 103 576 358 130 

.88 214 497 112 602 523 73 87 683 319 154 

.90 189 543 91 643 523 73 84 732 293 166 

.91 126 574 85 650 523 73 73 763 294 177 

.92 126 574 84 689 460 98 74 778 291 188 

.93 126 574 88 687 460 98 70 853 270 204 

.94 120 691 80 845 404 117 74 916 245 226 

.95 113 774 70 875 404 117 53 963 205 253 

.96 107 790 68 895 394 140 52 1022 283 186 

.97 93 900 54 1081 331 165 43 1173 162 335 

.98 68 1032 44 1143 208 262 46 1246 133 419 

.99 49 1309 44 1415 156 402 25 1586 104 582 

.999 19 2122 13 2259 49 1143 15 2463 52 1407 

.9999 10 3089 5 3261 21 2102 4 3363 13 2239 

.99999 2 3972 3 4085 11 2898 2 4210 6 3081 

Table 2.5: The effect of a and b in the Beta distribution /3( a, b) on the number of failures 
F and function evaluations Nfe for 100 random restarts for all 12 the test problems. Nfe is 
calculated as the average number: of function evaluations for the 1200 runs performed, using 
the Polak-Ribiere algorithm. 
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throughout this study. This effectively increases the minimum number of random starts 
before the stopping condition can be satisfied. For example: with a prescribed stopping 
probability of q* = 0.99, the minimum number of random starts with a = b = l is 4, but 
with a= l and b = 5 this number is 7. This reduces the probability of 'quick' convergence to 
strong local minima. However, the values of a and b have a minor effect when the algorithm 
does not converge quickly. 

2.2.4 Confidence level 

A salient feature of the unified Bayesian stopping criterion is that the probability of finding 
the global minimum can easily be increased by simply increasing the value of the prescribed 
confidence level q*. This is shown in Table 2.6. The results are obtained using a = l 
and b = 5 and the results of six algorithms, namely 11S1, 11S2, GLSl, and GLS2 (all 
based on multiple local searches, see Chapter 3), a GA (Chapter 4), and the SF algorithm 
[7] are presented. At a confidence level of 0.99 a relatively high number of failures occur 
using most algorithms. A value of 0.999, which results in a small number of failures and 
a reasonable number of function evaluations, seems most applicable. For values greater 
than 0.999 the number of failures decreased slightly, but the function evaluations increased 
drastically. The decreasing number of failures to converge to f* as q* increases, illustrates 
the general applicability of the unified Bayesian stopping rule. 

2.3 Summary 

In this chapter the general applicability of the unified Bayesian stopping rule in a multi-start 
procedure is demonstrated. This stopping rule is even combined with a genetic algorithm 
(with a small population size) into an effective optimization algorithm. Values of a = l, 
b = 5 and q* = 0.99 through 0.9999 are suggested as effective parameters in the unified 
Bayesian stopping rule. 
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Algorithm Function q* = .95 q* = .99 q* = .999 q* = .9999 

LLSl Gl 34 28 7 3 
SH 3 2 0 0 
RA 39 33 8 11 

LLS2 Gl 32 20 8 3 
C6 1 0 0 0 
SH 1 0 0 0 
RA 31 24 4 2 
S5 5 0 1 0 

GLSl Gl 35 26 7 1 
GP 1 0 0 0 
C6 1 0 0 0 
SH 2 0 0 0 
RA 38 17 8 5 

GLS2 Gl 37 19 10 2 
GP 1 0 0 0 
C6 1 0 0 0 
SH 3 0 0 0 
RA 29 11 9 4 
H6 1 0 0 0 
S5 3 0 0 0 

SF Gl 11 3 1 1 
G2 61 38 13 11 
SH 1 0 0 0 
RA 35 17 9 2 

GA Gl 3 0 0 0 
G2 100 100 100 100 
RA 3 0 0 0 
H3 1 1 0 0 
H6 13 4 0 0 

Table 2.6: Number of failures of convergence to the global optimum f* for 100 random 
restarts of each algorithm for all 12 the test problems. For the problems not listed here, the 
number of failures is O for all values of q*. 
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Chapter 3 

Multiple Local Searches In Global 
Optimization 

3.1 Introduction 

In the previous chapter the general applicability of the unified Bayesian stopping rule is 
demonstrated. In all probability, the simplest global optimization algorithm is the combina­
tion of multiple local searches, combined with some probabilistic stopping criterion. In this 
chapter such a formulation is presented, using the unified Bayesian stopping rule. 

3.2 A simple global search heuristic 

In accordance with the steps presented by Schoen [2], various sequential global optimization 
algorithms can be constructed as follows: 

1. Initialization: Set the counter j := 1, and prescribe the desired confidence level q*. 

2. Sampling steps: Randomly generate xi E D in lR,n. 

3. Global minimization steps: Starting at xi , attempt to minimize .f in a global 
sense by some preliminary search procedure, viz. find and record some low function 
value P +-+ xJ. 

4. Local minimization steps: xJ is used as the starting point for a robust gradient 
based convex minimization algorithm, with stopping criteria defined in terms of the 
Karush-Kuhn-Tucker conditions. Record the lowest function value P +-+ xj. 

5. Global termination: Assess the global convergence after k searches are completed 
(yielding xk, k = l, 2, ... , j) using (2.5). If (2.5) is satisfied, STOP, else j := j + l and 
goto 2. 

14 
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3.3 Multiple local searches 

Pure multiple local searches are obtained if step 3 is excluded, with xJ = xf Two such 
simple algorithms are now constructed, namely: 

1. LLSl: multiple local searches using the bound-constrained BFGS algorithm [10, 11, 12], 
and 

2. LLS2: multiple local searches using the unconstrained Polak-Ribiere algorithm [13]. 

3.3.1 Line search methods 

The BFGS and the Polak-Ribiere algorithms both employ explicit line searches. The steps 
in a general successive line search method are as follows: 

1. Initialization: Given a starting point x 0
, set i := 0 and determine the first search 

direction u O• 

2. One-dimensional minimization steps: 

(a) Set i := i + 1 and determine the next point xi by minimizing f (xi-I + ,\ui-I) 
with respect to A. The one dimensional minimization may be performed by any 
method. 

(b) Evaluate V f(xi). 

( c) Test convergence criteria. If: 

llf(xi) - f(xi- 1)11 < E2 or 

IIVJ(xi)II < c3 

then x* := xi and STOP, else continue. 

(d) Determine new search direction ui and go to 2 (a). 

(3.1) 

(3.2) 

(3.3) 

The descent directions u i for the various line search methods are chosen differently. The 
Polak-Ribiere descent directions are: 

u 0 = -Vf(x0
) 

where: 
i (V f(xi) - Vf(xi- 1)fV f(xi) 

(3 = IIV.f(xi)Jl2 

These search directions are mutually conjugate and the Polak-Ribiere method will therefore 
terminate in a finite number of steps when applied to a quadratic function. For the BFGS 
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algorithm, which forms part of the Quasi-Newton methods, the descent directions are given 
by: 

ui = -H-1(xi)V J(xi) 

where H-1 denotes the inverse of the approximated Hessian matrix. In the Quasi-Newton 
methods approximations are made of the Hessian matrix, avoiding the problems associated 
with the Hessian matrix evaluation. The BFGS algorithm has previously been used as a 
local phase in a global optimization algorithm by Lee and Lee (in conjunction with a genetic 
algorithm) [17]. 

The two local minimizers meet the requirement of being robust, if not optimal for the appli­
cation. 

3.4 Multiple local searches with a global phase 

For both LLSl and LLS2 a global minimization phase (step 3) is provided for, and the re­
spective algorithms are denoted GLSl and GLS2. The global phase simulates the trajectories 
of a bouncing ball ( the MBB algorithm [18]), which is attractive due to its simplicity. The 
ball's elasticity coefficient is chosen such that the ball's energy is dissipated quickly. The 
governing equations of the MBB algorithm are discussed in the following subsection. 

3.4.1 Modified bouncing ball trajectory algorithm 

The successive random sample points Xb, j = l, 2, ... , from the box D generated in step 2 
are used as starting points for the MBB algorithm. For each sample point xh, a sequence of 
trajectory steps A.xi and associated projection points Xi+1, i = 0, l, 2, ... , are computed from 
the successive analytical relationships (with x0 := xi and prescribed V0 > 0): 

(3.4) 

where 
(3.5) 

(3.6) 

h(xi) = J(xi) + k (3.7) 

with k a constant chosen such that h( x) > 0 \/ x E D, g a positive constant, and 

(3.8) 

Each step A.xi represents the simulated horizontal displacement obtained by projecting a 
particle in a vertical gravitational field ( constant g) at an elevation h( xi), with speed ¼ 
and at an inclination 0i. The angle 0i represents the angle that the outward normal n to 
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the hyper surface represented by y = h( x) makes, at xi in n + l dimensional space, with 
the horizontal. The time of flight ti is the time taken to reach the ground corresponding to 
y = 0. For the next step, ¼+1 = Ge¼, Ge < 1, with Ge the elasticity coefficient. 

More formally, the minimization trajectory for a given sample point xl and some initial 
prescribed speed Vo is obtained by computing the sequence xi, i = 0, 1, 2, ... , as follows. 

Minimization procedure MP 

1. For given sample point xt set x 0 := xl and compute trajectory step 8x0 according 
to (3.4) - (3.7) and subject to Vo; record x 1 := x 0 + 8x0 , set i := 1 and ½_ := GV0 

(G < 1) 

2. Compute 8xi according to (3.4) - (3. 7) to give xi+l := xi+ 8xi, record xi+l and set 

¼+1 := GY'i 

3. set i := i + 1 and go to 2 

In the vicinity of a local minimum x the sequence of projection points xi, i = 0, 1, 2, ... , 
constituting the search trajectory for starting point xl will converge since 8xi ➔ 0 ( see 
(3.4)). In the presence of many local minima, the probability of convergence to a relative 
low local minimum is increased, since the kinetic energy can only decrease for G < 1. 

Procedure MP, for a given j, is successfully terminated if I IVJ(xi) 11 ::; E for some small 
prescribed positive value E, or when GY'i < j3V0 , and Xi is taken as the local minimizer 
xJ with corresponding function value P := h(xJ) - k. Note that xJ does not necessarily 
have to be the last point of the minimization procedure, but the Xi corresponding to the 
lowest function value recorded during the procedure is taken as xJ. Clearly, the condition 
G ¼ < j31lo will always occur for 0 < /3 < G and 0 < G < 1. 

3.5 Numerical results 

The algorithms are tested using the extended Dixon-Szego test set, presented in Table 1.1. 

Table 3.1 shows the results for algorithms LLSl and LLS2, while the results for algorithms 
GLSl and GLS2 are shown in Table 3.2. The tables show the average number of function 
evaluations Nfe and the number of failures F to converge to the global minimum, for 10 
independent runs of each problem. The stopping rule parameters utilized are a = l, b = 5 
and q* = 0.999. Also included are the average number of sampling points ii and the average 
number of times r that the lowest minimum is found, before stopping. 

The results reveal that the inclusion of the MBB global phase reduces the number of function 
evaluations for some problems, but for others the cost increased. For LLSl, the MBB 
algorithm is in general beneficial. 
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LLSl LLS2 

Prob. F Nfe r/ii q(ii,r) F Nfe r /ii q(ii,r) 

Gl 1 12583 9 / 798 0.9990 0 4225 9 / 155 0.9990 
G2 0 2333 10 / 49 0.9995 0 4139 10 / 73 0.9995 
GP 0 463 10 / 17 0.9996 0 664 10 / 20 0.9996 
C6 0 168 9 I 11 0.9991 0 304 9 I 13 0.9990 
SH 0 2830 9 / 223 0.9990 0 1719 10 / 57 0.9995 
RA 1 1562 9 / 259 0.9990 0 3684 9 / 142 0.9990 
BR 0 823 9 / 10 0.9991 0 778 9 / 11 0.9991 
H3 0 601 10 / 17 0.9996 0 619 9 / 16 0.9990 
H6 0 664 9 / 13 0.9990 0 716 9 / 14 0.9990 
S5 0 543 10 / 28 0.9995 0 556 10 / 24 0.9995 
S7 0 546 10 / 24 0.9995 0 628 10 / 25 0.9995 
SlO 0 596 10 / 22 0.9996 0 565 10 / 22 0.9996 

Table 3.1: Numerical results for the LLSl and LLS2 algorithms. 

GLSl GLS2 

Prob. F Nfe r /ii q(ii,r) F Nfe r /ii q(ii,r) 

Gl 1 3544 9 / 148 0.9990 0 11907 9 / 442 0.9990 
G2 0 3398 10 / 72 0.9995 0 3313 10 / 59 0.9995 
GP 0 764 10 / 24 0.9995 0 581 10 / 17 0.9996 
C6 0 330 10 / 16 0.9996 0 303 10 / 15 0.9996 
SH 0 1724 10 / 65 0.9995 0 2639 9 / 114 0.9990 
RA 0 3010 9 / 154 0.9990 0 3235 9 / 175 0.9990 
BR 0 542 9 I 9 0.9991 0 1402 10 / 22 0.9996 
H3 0 711 10 / 17 0.9996 0 566 9 / 14 0.9990 
H6 0 750 9 / 14 0.9990 0 715 9 / 14 0.9990 
S5 0 334 10 / 23 0.9995 0 805 10 / 26 0.9995 
S7 0 413 10 / 27 0.9995 0 822 10 / 24 0.9995 
SlO 0 387 10 / 24 0.9995 0 865 10 / 26 0.9995 

Table 3.2: Numerical results for the GLSl and GLS2 algorithms. 

3.5.1 Comparison with other methods 

Tables 3.3 and 3.4 reveal that the simple sequential algorithms presented herein compare very 
favorably with a number of leading contenders, namely the Snyman-Fatti (SF) algorithm [7), 
algorithm 'sigma' [19, 20), clustering [8, 9] and the algorithm presented by Mockus [15]. All 
the algorithms were started from different random starting points, and the reported cost is 
the average number of function evaluations N1e for 10 independent runs of the algorithms. 
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The number of failures F to converge to the global optimum for the 10 independent runs 
are also reported. 

Prob. LLSl LLS2 GLSl GLS2 SF cluster. Mockus 'sigma' 

Gl 12583 4225 3544 11907 5062 1302 354 396147 
G2 2333 4139 3398 3313 25730 11644 1442 828441 
GP 463 664 764 581 1901 985 365 94587 
C6 168 304 330 303 516 643 371 76293 
SH 2830 1719 1724 2639 12440 1626 373 139087 
RA 1562 3684 3010 3235 10971 2038 194 445711 
BR 823 778 542 1402 680 683 258 71688 
H3 601 619 711 566 1370 1232 165 103466 
H6 664 716 750 715 2346 3278 404 106812 
S5 543 556 334 805 1571 1891 158 234654 
S7 546 628 413 822 1624 2139 160 212299 
SlO 596 565 387 865 1477 2805 164 330486 

Table 3.3: Average number of function evaluations Nfe for 10 random restarts of each 
algorithm for the complete test set. 

Prob. LLSl LLS2 GLSl GLS2 SF cluster. Mockus 

Gl 1 0 1 0 0 8 6 
G2 0 0 0 0 3 0 9 
GP 0 0 0 0 0 0 9 
C6 0 0 0 0 0 0 0 
SH 0 0 0 0 0 0 0 
RA 1 0 1 0 3 1 0 
BR 0 0 0 0 0 0 7 
H3 0 0 0 0 0 0 8 
H6 0 0 0 0 0 0 6 
S5 0 0 0 0 1 0 6 
S7 0 0 0 0 0 0 9 
S10 0 0 0 0 0 0 9 

Table 3.4: Number of failures of convergence to the global optimum for 10 random restarts 
of some algorithms for the complete test set. 

In particular, the results for two very difficult test functions, namely Griewank G 1 and 
Griewank G2 are encouraging: Few algorithms find the solution to G2 (which has a few 
thousand local minima in the region of interest), in less than 20000 function evaluations. 
Although the number of function evaluations obtained with the algorithm of Mockus are the 
lowest for most of the problems, the number of failures for this algorithm are significantly 
more than those recorded for the other algorithms. 
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3.6 Summary 

A number of efficient multi-start algorithms are presented for the unconstrained global pro­
gramming problem. These algorithms are based on simple local searches, combined with 
the unified Bayesian global stopping criterion. In addition, a global phase based on the 
trajectories of a bouncing ball is presented. These simple algorithms outperform a number 
of leading contenders. 
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Chapter 4 

Genetic Algorithm 

4.1 Introduction 

Many optimization methods have been formulated by simulating natural phenomena and the 
search for nature-like algorithms continues. The principle of survival of the fittest found in 
nature, resulted in species which are well adapted to their environment despite the richness 
of the genetic material originally contained in the specie population. This principle forms 
the basis for a stochastic search strategy, denoted the genetic algorithm (GA) [21). 

GA's combine survival of the fittest among population members with a structured yet ran­
domised genetic information exchange. GA's are well suited for discrete optimization prob­
lems, use no gradient-based information and they have been applied successfully in many 
fields, e.g. the design of truss structures [22), the slope stability problem [23) and in chemi­
cal engineering [24). The GA can be used for discontinuous functions, while constraints are 
easily incorporated. 

In this chapter a brief description of the genetic algorithm is presented, based on [21, 25, 26). 
Some novel operators are also presented. 

4.2 The genetic algorithm operators 

Genetic algorithms act on a population of possible design solutions. An initial design pop­
ulation, constituting of e design vectors x, is created by a random selection of the variables 
in the variable space for each design. The design vectors are improved in subsequent gen­
erations by means of the selection, crossover and mutation operators. In the following, the 
term design vector is replaced with 'string'. 

4.2.1 Representation of design variables 

The values of the variables in the strings must be represented by an unique coding scheme. 
For simplicity, it is possible to use floating point coding [24). In this coding scheme the 

21 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

variable is directly represented by one possible value taken from the number of unique discrete 
values the variable can assume. However, binary coding is powerful and is frequently used. 
For example, the binary string (01101) of length l = 5 represents the real number 22: 

0 . 2° + 1 . 21 + 1 . 22 + 0 . 23 + 1 . 24 = 22 

A real value x within bounds (xb, Xe) is represented by binary coding in the following way: 

(xe - xb) 
X = Xbin · (2l) + Xb (4.1) 

where 
l 

X!Jin = L Zi . 2(i-l) (4.2) 
i=l 

and zi can be either 1 or 0 with l the binary string length. 

If the objective function has several variables, then the design vector can be represented by a 
concatenation of the coding of each variable (26]. For example, the three dimensional design 
vector 

X = (22 8 11] 

with corresponding binary code (01101); (00010); (11010) is represented as 

X = [011010001011010] 

4.2.2 Selection 

The selection operation selects e strings from the current population to form the mating pool. 
The strings corresponding to low objective function values have the greatest chance to be 
selected for mating and therefore to contribute to the next generation. From all the numerous 
different selection processes possible, only the expected value selection, tournament selection 
and ranking selection methods are briefly discussed. 

Expected value selection (roulette wheel selection) 

In the expected value selection f 21], also known as the roulette wheel selection, the minimiza­
tion problem is converted to a maximization problem by multiplying the objective function 
with -1. Also, the function values must be positive and therefore a constant must be added 
to functions with negative values. The relative fitness Pi for each design is calculated as 
follows: 

.fi ( ) Pi = e i = l, 2, 3, .. . e 4.3 
I:i=l fi 

where fi denotes the function value of design i. The cumulative probability space ,9j 1s 
defined as: 

j 

gj = LPi j = l, 2, 3, ... e 
i=l 

( 4.4) 

String i is selected for the mating pool if a random number v between 0 and 1 is generated 
and satisfies the condition: .9i-l < v ~ .9i with go = 0. 
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Tournament selection 

Tournament selection simulates the process where individuals compete for mating rights in 
the population [24]. In the GA, e tournaments are held between a sub group of strings 
chosen randomly from the existing population. The design from each tournament with the 
lowest function value is selected for the mating pool. 

Ranking methods 

After ranking the strings in ascending order according to the objective function values, the 
relative fitness Pi of member i is expressed as 

(4.5) 

where 

(4.6) 

c is taken as any value between 1 and 10 ( typically 1) and e is the population size. The 
cumulative probability space gj is constructed using the above defined relative fitness Pi and 
the strings are selected as in the expected value selection. 

4.2.3 Crossover 

After selecting e strings for the mating pool, new designs are explored by the crossover 
process. Crossover allows selected individuals to trade characteristics of their designs by 
exchanging parts of their strings. The mating pool strings are randomly grouped into pairs 
and a breaking point in the strings for each pair is chosen randomly. The values at the string 
positions after the breaking point are interchanged between the pair and the new designs 
are copied to the new generation. Crossover for each pair is applied with a given probability 
Pc, usually between 0.6 and 1. For example, when crossover is applied at the third crossover 
position of the following strings 

X 1 = [01110100] 

X2 = [01011101] 

the strings exchange the last four bits and become: 

X 1 = [01111101] 

X2 = [01010100] 

If crossover for a pair is not applied, then the unchanged parents are copied into the next 
generation. It is also common to use more than one braking point during crossover. 
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4.2.4 Mutation 

The mutation operation protects against complete loss of genetic diversity by randomly 
changing bit values in a string. For each bit in the population a random number is generated 
and the bit value is changed if the random number is less than the prescribed probability 
of mutation Pm· The changed value can randomly be selected from the possible values from 
the alphabet (jump mutation), or given the value of a neighbour bit (creep mutation). 

4.3 Genetic algorithm principles 

From the foregoing description of the GA, the question arises how a procedure with so much 
randomness can exploit the current information and improve on the fitness of the design 
vectors. The answer lies in the fundamental schemata theorem and the phenomenon of 
implicit parallelism. In order to explain these two principles, the concept of schemata and 
its characteristics must firstly be described. 

4.3.1 Similarity template/schema 

Sometimes similarities between strings at certain string positions exist together with their 
corresponding fitnesses. According to Davidor [25) a schema ( over the binary alphabet) is 
a string of type (a1 , a2 , .... al) where the value of ai can be '1','0' or '*'· The '*' symbol is a 
'don't care' symbol which accepts both '1' and '0'. A schema is a template that describes 
a sub-space of strings that match the schema at all positions where the schema is specific 
(specifies either '1' or '0'), and regardless of the value the string exhibit at the positions of 
the '*' symbol. 

For example: the schema of length 5 (1, *, 0, 0, *) describes the following string set: 

(1, 1,0,0,1)(1,0,0,0,0)(l, 1,0,o,o)(l,0,0,0,l) 

The defining length b ( H) of the schema H is the distance between the first and last specific 
schema positions. This is important as it defines the number of crossover sites which can 
disrupt the schema, unless crossover is performed between identical strings. 

The order o(H) of the schema His the number of specific positions contained in the schema. 
Mutation disrupts a schema if any specific position is changed. 

For a string of length l and k number of possible characters, a total of ( k + l )z different 
schemata exists and for a given string the number of schema contained in the string is 2t. 
For a population of e strings, the total number of schema contained in the population is less 
thane· 2t. 

4.3.2 Schema reproduction 

The foregoing sections stated that the different GA processes effects the number of schemata 
contained in the population. Goldberg [21] quantified the effects mathematically as follows: 

24 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

Selection effect 

Suppose the number of strings representing a particular schema present in the population at 
time t is rn(H, t) and the average fitness of the strings representing the schema is denoted by 
f ( H). The estimated number of strings representing this schema after the selection process 
is then estimated as: 

rn(H, t + 1) = rn(H, t) · J(Hf) · e 
Li 

Noting that the average fitness J of the strings is given by: 

and substituting this into ( 4. 7), the schema growth equation becomes: 

m(H, t + 1) = m(H, t). fj) 

(4.7) 

(4.8) 

(4.9) 

Let the average represented fitness f of the schema be an amount c · 1 above of below the 
strings average ]. The value of c is greater than zero when the average represented fitness 
is greater than J and is less than zero if otherwise. Equation ( 4.9) becomes: 

rn(H, t + 1) = (1 + c) • rn(H, t) (4.10) 

and after a number of selection processes: 

rn(H, t) = (1 + c)t · rn(H, 0) (4.11) 

( 4.11) states that the number of strings representing a particular schema increases exponen­
tially if the average fitness f (H) of the strings representing the schema is above the average 
fitness J of the population. 

Crossover effect 

Crossover exchanges parts of strings between members and disrupts the schemata contained 
in them. There are ( l - 1) possible crossover positions for strings of length l and the schema 
represented by the string is destroyed if the crossover position falls within the defining length 
6(H). The probability a schema H will be destroyed is therefore: 

(4.12) 

and the probability of survival is 
Ps = 1 - Pd ( 4.13) 

Since crossover is performed with a probability of Pc, the survival probability is given by 

( 4.14) 

The inequality sign includes the possibility that crossover between similar strings occurs. 
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Mutation effect 

The probability a specific string position being disrupted by mutation is given by Pm and the 
survival probability thus is (1 - Pm). The schema survives if all the specific positions remain 
unchanged and therefore the survival probability becomes (1 - Pm)o(H). Because Pm « l, 
the schema survival probability when mutation are applied is approximated by: 

Ps = l - o(H)Pm (4.15) 

4.3.3 Fundamental schemata theorem 

The fundamental schemata theorem is formed by combining the effects mutation, crossover 
and selection have on the number of strings contained in the population representing a 
specific schema H: 

J(H) [ 8(H) l 
m(H, t + l) - m(H, t) · f l - Pc· (l _ l) - o(H)Pm (4.16) 

In words, the schema theorem states that the number of strings representing a specific schema 
is increasing exponentially if the strings representing a specific schema have above average 
fitnesses and low defining lengths and orders. 

4.3.4 Implicit parallelism 

In essence, the changing population can be seen as a search through the set of schemata 
contained in the strings. A great deal of information regarding the fitnesses of the possible 
schemata with one string evaluation is attained, since each string forms part of 2z schemata. 
Between 2z and e · 2z possible schema exist in the population, but it is suggested that only 
e3 number of schemata are simultaneously being processed, called implicit parallelism [21]. 

4.4 Genetic algorithm implementation 

Here, a basic GA implementation is modified in an attempt to improve the performance. The 
GA presented here consists of a number of independent GA runs (GAk; k = l, 2, ... , kmax) in 
which the variable bounds are decreased with each run. For each GA run, the probability of 
mutation Pm varies linearly from Pbeg for the first generation to Pend for the last generation. 
Formally, the successive GA algorithm is presented as follows: 

1. Initialization: Prescribe the maximum number of generations per GA run .9max, the 
population size e, the number of binary bits representing one variable l, the variable 
bounds decreasing factor .6.x, the finishing size of the variable bounds 6-Xend, the 
convergence tolerances c1 and c2, the probability of mutation limits Pbeg and Pend, the 
maximum number of no-improvement generations bmax· Set the GA run counter k := 1. 
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2. Determine number of GA runs: Calculate the maximum number kmax of GA runs 
as follows: 

k . f [log(~Xmax/ ~Xend) l 
max = integer o ( A ) + 1 ~ 1 

log u.x 
( 4.17) 

where ,6.xmax denotes the greatest variable bound size. 

3. Genetic Algorithm: 

(a) Generate first population: GA run number k starts with the random genera­
tion of the first population of strings. Set the generation number counter g := 1. 

(b) Function evaluation: Determine the variable values represented by the popula­
tion of strings and evaluate f ( x) for all strings. Record the lowest function value 
Jg +-+ xg for the current population. 

( c) Selection: Select e strings from the current population, using tournament or 
ranking selection. 

( d) Crossover: Choose pairs randomly from the selected population and exchange 
string parts between randomly selected crossover position for each pair. 

( e) Mutation: Determine the probability of mutation Pm for the current generation 
g: 

, + (Pend - Pbeg) · g 
Pm= Pbeg 

gmax 

and perform jump mutation. 

(4.18) 

(e) Minimum updating: Record the lowest minimum !min for GA run k and the 
number of generations b no improvement is made on this value: If g = 1 or 
J min - 19 > Cl set !min := Jg and b := 1. Else if I If min - /91 I < Cl set b := b + 1. 

(g) Termination of GA run k: If the maximum number of generations g = .9max is 
reached or when the maximum number of no-improvement generations b = bmax 
is reached goto 4, else continue with the next generation g := g + 1 and goto 3 
(b ). 

4. Convergence test: Set fk := f min with .fk +-+ xk. If the maximum number of GA 
runs is reached k = kmax or when the difference in minima found by two successive 
G A's are negligible 11.h - fk-i I I < c2 , then goto 6. Else continue with 5. 

5. Changing variable bounds: Change the upper xe and lower xb limits of the variables 
according to the following equations: 

(4.19) 

(4.20) 

Set k := k + 1 and goto 3 (a). 
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6. STOP: Take fk as approximation to J*. 

Numerical experiments revealed that suitable values for the parameters are gmax=30, e=20, 

l=l0, ~x = 3, ~Xend = 10-4
' Cl = 10-3

' c2 = 10-5
' Pbeg = 0.08, Pend = 0.05 and bmax=6. 

Ranking selection is advised with c = 5. Appendix F.1 presents the code for the successive 
GA algorithm. 

4.4.1 On the selection process 

The developed GA has the option between tournament selection and ranking selection (Step 
3 ( c)). The expected value selection was at first implemented, but is not included due to 
poor performance when compared to the other two methods. Groenwold et al [22] used 
the ranking selection with the exponent c taken as unity. Numerical experiments revealed 
that larger values for c improves this GA's efficiency. The selection technique employed 
with larger c values, chooses the best fit strings more often than the lower ranking strings. 
This may appear to be a weak selection technique in that much genetic information is lost. 
However, this GA constructs a total new population at the beginning of each inner GA run 
(Step 3 (a)). Consequently, a whole new genetic pool is constructed which overcomes the 
problem of premature convergence. 

4.5 Comparison between different GA implementations 

The performance of the GA implementation as outlined in Section 4.4 is compared to a 
basic GA implementation presented by Carroll [24]. Table 4.1 shows the results for both 
GA implementations when each test problem from the set listed in Table 1.1 was performed 
10 times from different starting points. Clearly, the successive GA method presented in 
this study requires less function evaluations and finds the global minimum more often than 
the basic GA. The reason for the excellent performance lies in the exploitation of the most 
significant bit property. 

4.5.1 Most significant bit property 

The most significant bits are the string positions where a change of bit value effects the 
variable value it represents most. For example, consider the binary bit string of length 5: 
(1,0,0,0,1) represents a variable value of 17 since 1 · 2° + 1 · 24 = 17. If the first bit is changed 
to zero the string represents 16, since 1 · 24 = 16. Changing the last bit to zero and the 
first bit back to 1, means that the variable changes much more and now equals 1. The most 
significant bits in a binary string representation are thus the ending bit positions. 

A GA will quickly find the values of the significant bits corresponding to good fitness, but is 
slow in finding the least significant bit values. The changing bound technique as explained in 
Section 4.4 exploits this property of the most significant bits in that as soon as the significant 
bits are found and the GA struggles to find the least significant bit values, a next GA starts 
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GA [24] Successive GA 

Prob. F Nfe Jfave - J*J Jfbest - J* J F Nfe Jfave - f*J Jfbest - f* J 
Gl 6 4026 0.5670E-01 0.6912E-08 6 2557 0.8737E-0l 0.1006E-09 
G2 10 7196 0.7623E+00 0.2174E+00 10 5553 0.1001E+00 0.2917E-01 
QP 4 4691 o.6250E+oo 0.9167E-09 1 2213 0.8100E+Ol 0.4644E-08 
C6 5 4056 0.6278E-04 0.4654E-07 0 1293 0.3711E-06 0.4783E-07 
SH 6 4016 0.2082E+00 0.1466E-04 0 3155 0.5537E-05 0.2426E-05 
RA 4 3606 0.6394E-01 0.2965E-09 2 1619 0.2422E-01 0.1055E-07 
BR 8 4246 0.6954E-03 0.3048E-07 0 1685 0.1691E-06 0.9433E-08 
H3 6 5601 0.5549E-03 0.1190E-06 0 1477 0.2152E-05 0.ll 79E-06 
H6 10 6886 0.4091E-01 0.5307E-02 4 2275 0.4783E-01 0.lO0lE-06 
S5 10 4636 0.5252E+Ol 0.6820E-0l 4 3319 0.2756E+Ol 0.3276E-06 
S7 10 4511 0.7075E+Ol 0.6129E+Ol 6 3277 0.4492E+0l 0.2570E-06 
S10 10 3771 0.5671E+Ol 0.3100E-02 5 3235 0.3915E+0l 0.4199E-06 

Table 4.1: The results for the successive GA method and a basic GA. Nfe denotes the 
average nu~ber of function evaluations, F the numb~r of failures to converge to the global 
minimum, !ave the average of the minima found and !best the lowest minimum found for the 
10 runs. f* denotes the global minimum. 

with a smaller variable bound size. The convergence to the optimum is thus not performed 
by locating the least significant bit values, but through finding the most significant bit values 
for small variable bound sizes. The ranking selection technique with a large c value makes 
it possible for the GA to distinguish better fit strings from less fit strings for small variable 
bound sizes. 

4.6 Summary 

An optimization algorithm consisting of successive GA runs in which the variable bounds 
are continuously decreasing, is presented in this chapter. Numerical results shows that this 
implementation of a GA outperforms a basic GA implementation. 
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Chapter 5 

Particle Swarm Optimization 

5.1 Introduction 

Genetic algorithms (GA) [21], simulated biological growth (SBG) [27] and simulated anneal­
ing (SA) [28] are well known optimization methods simulating natural phenomena. 

In recent years an efficient optimization algorithm that mimics the social behaviour of bird 
flocks or fish schools was developed by Kennedy and Eberhart [29], called the particle swarm 
optimization algorithm (PSOA). This algorithm is based on the natural phenomena that 
members of a school or swarm benefit from the discoveries and experience of all other mem­
bers of the school or swarm. The sharing of information between individuals ensures that 
the school or swarm explores spaces that enhances the survival of the specie. Fourie and 
Groenwold [30] applied the particle swarm optimization algorithm successfully to the optimal 
design of structures with sizing and shape variables. 

In this chapter, a simple PSOA is applied to global optimization. 

5.2 Mimicking social behaviour 

The PSOA uses a 'swarm' of possible designs and the governing principle behind the PSOA 
is that every member of the swarm remembers the best position it has passed through. 
Through intercommunication between members, the overall best position is determined. In 
the following, the term member is replaced with particle and each particle position repre­
sents the design variables x. In minimization, the best position corresponds to the design 
vector x which attains the lowest objective function f ( x). The movement of each particle is 
determined by the overall minimum recorded by the members and each member's minimum 
value for f(x) obtained during their search paths. 
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5.2.1 Particle swarm equations 

Following Shi and Eberhart [31], the position and velocity of particle i is updated in the 
following way: 

xt+1 = xt + vt+l 
vt+i = wvt + c1r1(Pi - xi)+ c2r2(bk - xi) 

vi= 0 

(5.1) 

(5.2) 

(5.3) 

Here, the best position of particle i is represented as Pt while the best swarm position up 
to iteration k is recorded as bk. The term vi+i, called the velocity, represents the change 
in position between iterations for particle i. The attraction particle i has to the overall best 
position bk is controlled by the product c2r 2, while c1r 1 controls the attraction particle i has 
to its own best position Pi . c1 and c2 are two constants, while random numbers between 
0 and 1 are generated for r 1 and r2 . Kennedy and Eberhart [29) used a value of 2 for both 
c1 and c2 . Continuity of the path of particle i is improved by introducing the inertia term, 
wvt Shi and Eberhart [31] found that values between 0.8 and 1.4 are suitable for w. 

5.3 Numerical results 

A simple PSOA is implemented in FORTRAN and the code is given in Appendix F.2. Nu­
merical results using the PSOA algorithm are compared to other methods that also operate 
on a population of solution vectors, namely the GA implemented in this study, Clustering 
[8, 9) and the algorithm of Mockus [15]. The current values for the parameters in the PSOA 
algorithm are as follows: p=20, C1 =1.0, C2=l.0, w=0.8, Vmax=30.0, kmax=4000 and r max=30. 

Vmax represents the maximum step limit for any particle (0 < I lvi+l 11 ~ Vmax) and kmax 
the maximum number of time steps k. The number of time steps for which the overall best 
swarm position bk does not change is recorded, and the algorithm is terminated when a value 
of r max is reached. p represents the number of particles. 

The test problems presented in Table 1.1 are used for comparison and Table 5.1 reflects 
the performance of the PSOA. The values reported are the average number of function 
evaluations N 1e and the number of failures F to converge to the known global minimum for 
10 independent runs of each problem. Each of the algorithms excelled for some problems, 
although the clustering algorithm in general outperforms the other algorithms. The results 
of the GA and the PSOA algorithms are roughly comparable. 

5.4 PSOA combined with the unified Bayesian stop­
ping criterion 

The results in Table 5.1 shows that the PSOA failed to converge to the global optima a 
number of times for some problems. The robustness of the PSOA can be improved by using 
smaller number of particles and combining the algorithm with the unified Bayesian stopping 
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PSOA GA Cluster Mockus 

Prob. F Nfe F N1e F Nfe F Nfe 

Gl 0 1776 6 2557 8 1302 6 354 
G2 10 10 0 11644 9 1442 
GP 2 1610 1 2213 0 985 9 365 
C6 0 1262 0 1293 0 643 0 371 
SH 0 2138 0 3155 0 1626 0 373 
RA 6 1390 2 1619 1 2038 0 194 
BR 0 1332 0 1685 0 683 7 258 
H3 0 1486 0 1477 0 1232 8 165 
H6 4 2356 4 2275 0 3278 6 404 
S5 7 1896 4 3319 0 1891 6 158 
S7 5 2190 6 3277 0 2139 9 160 
SlO 6 1964 5 3235 0 2805 9 164 

Table 5.1: Comparing the PSOA with other methods. 

criterion. Table 5.2 shows that the function evaluations cost increased, but the number of 
failures decreased notably for such a combination with p = 13 and r max = 20. 

PSOA 

Prob. F Nfe r/ii q(ii,r) 

Gl 0 10524 9 / 10 0.9991 
G2 10 
GP 0 9135 9 / 10 0.9991 
C6 0 6139 9 I 9 0.9991 
SH 0 12197 9 / 10 0.9991 
RA 0 22804 10 / 26 0.9995 
BR 0 7010 9 I 9 0.9991 
H3 0 9171 9 / 10 0.9991 
H6 0 41635 10 / 21 0.9996 
S5 0 45004 10 / 34 0.9995 
S7 0 39122 10 / 29 0.9995 
SlO 0 40969 10 / 30 0.9995 

Table 5.2: Results for the PSOA combined with the unified Bayesian stopping rule. 
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5.5 Summary 

A simple implementation of the PSOA shows that the algorithm can effectively be used in 
global optimization. Doubtless, the performance can be improved through other operators, 
e.g. decreasing of the inertia constant w and the maximum allowed velocity Vmax, and by 
introducing craziness (30). The combination of a PSOA ( employing a reduced number of 
particles) with the unified Bayesian stopping criterion, forms a robust global optimization 
algorithm. 

33 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

Chapter 6 

Multiple Parallel Local Searches 
Global Optimization 

6.1 Introduction 

• 
Ill 

The combination of a multi-start local search strategy and the unified Bayesian global stop­
ping criterion for solving the unconstrained global optimization problem is presented in 
Chapter 3. In structural optimization however, each function evaluation typically involves 
a complete finite element or boundary element analysis. Performing structural optimization 
using these efficient algorithms in sequential form, may still be extremely time-consuming. 
The search paths for the sequential algorithms presented in Section 3.2 are completely inde­
pendent of each other. Hence the sequential algorithm may easily be parallelized. 

In this chapter, the unconstrained global programming problem is addressed using an efficient 
multi-start algorithm, in which the local searches presented in Chapter 3 are performed 
simultaneously on different computers for a contribution towards the unified Bayesian global 
stopping criterion (Chapter 2). 

6.2 Parallel implementation 

The freely available pvm3 [32] code for FORTRAN, running under the Linux operating 
system, is utilized as the software system that enables a cluster of computers to be used as 
a massive parallel processing virtual machine (MPPVM). Currently, the MPPVM consists 
of up to 128 Pentium III 450 MHz machines in an existing undergraduate computer lab. 

The distributed computing model represents a master-slave configuration where the master 
program assigns tasks and interprets results, while the slaves compute the search paths. 
The workload is statically assigned, and no inter-slave communication occurs. The master 
program informs each slave task individually of the optimization problem parameters, and 
awaits individual optimization results from each slave. A slave continues with a new search 
path after sending results back to the master program, until the unified Bayesian global 
stopping criterion is satisfied. 
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6.2.1 A measure of computational effort 

It is assumed that the parallelized algorithm will ultimately be used in problems for which the 
CPU requirements of evaluating the objective function is orders of magnitudes larger than 
the time required for message passing and algorithm internals. This is the case, for example, 
when every function evaluation involves a complete finite element analysis, boundary element 
analysis or computational fluid dynamics analysis. 

Hence a somewhat unconventional measure for the cost of the parallelized algorithm is de­
fined, which is denoted apparent visible cost (Nvc). This cost represents the maximum number 
of function evaluations Nfe recorded for any slave during the parallel optimization. The time 
window (in CPU seconds) associated with this number of function evaluations is denoted 
the virtual CPU time. The virtual CPU time includes the time window associated with 
initialization and evaluation of stopping criterion (2.5). 

6.3 Numerical results 

Any optimization algorithm may be used for the global and local phases of the multi-start 
strategy presented in Section 3.2. As an example, the GLSl algorithm is used here. 

If many computers are available, it seems sensible to place a lower limit on the number of 
random searches n performed, before terminating the multi-start algorithm. This mainly 
improves the probability of convergence without increasing the computational cost (since 
the n searches are performed in parallel). 

Table 6.1 reveals the effect of parallel implementation. The results of the sequential GLSl 
algorithm are compared to the parallel implementation of GLSl, using a MPPVM consisting 
of 32 and also 128 machines. The minimum number of sampling points n are 20 for the 32-
node cluster and 90 for the 128-node cluster, representing in each case some 70 % of the 
available number of nodes. 

For relatively 'simple' problems (viz. problems with few design variables or few local minima 
in the design space), the probability of convergence to the global optimum becomes very high 
when the number of nodes is increased. This is illustrated by, for example, the results for 
the C6 problem. 

Simultaneously, the total computational time, (as compared to the sequential GLSl algo­
rithm), decreases. For the 32-node parallel virtual machine, the virtual CPU time to evaluate 
all the test functions on average decreases by a factor of more or less 2 ( not shown in tab­
ulated form). This low factor is a result of the inexpensive analytical test functions and 
the time associated with message passing. For more difficult problems (e.g. the Gl and G2 
problems), the computational effort decreases drastically. When the time associated with 
a single function evaluations become much larger than the time required for algorithm in­
ternals, the fraction Nie/ Nvc based on Table 6.1 may be used as a direct indication of the 
decrease in virtual computational time obtainable as a result of parallelization. For the G2 
problem, this would imply a reduction in computational time by a factor of roughly 75 for 
the 128-node parallel virtual machine. 
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GLSl 32-node pvm 128-node pvm 

Prob. N1e r/ii q(ii, r) Nvc r/ii q(ii, r) Nvc r/ii q(ii, r) 

Gl 3544 9 / 148 0.9990 147 9 / 162 0.9990 55 9 / 166 0.9990 
G2 4996 9 / 106 0.9990 189 10 / 93 0.9995 67 10 / 97 0.9995 
GP 695 10 / 22 0.9996 47 10 / 24 0.9995 49 42 / 90 1.0000 
C6 350 10 / 17 0.9996 26 12 / 20 0.9999 26 53 / 90 1.0000 
SH 1739 10 / 66 0.9995 71 10 / 65 0.9995 44 16 / 90 1.0000 
RA 2817 9 / 144 0.9990 130 9 / 167 0.9990 45 9 / 202 0.9990 
BR 472 9 / 9 0.9991 54 20 / 20 1.0000 46 89 / 90 1.0000 
H3 701 10 / 17 0.9996 59 11 / 23 0.9998 54 49 / 90 1.0000 
H6 683 9 / 13 0.9990 48 20 / 20 1.0000 51 89 / 90 1.0000 
S5 384 10 / 27 0.9995 27 10 / 24 0.9995 28 35 / 90 1.0000 
S7 363 10 / 23 0.9995 28 10 / 24 0.9995 27 40 / go 1.0000 
S10 381 10 / 24 0.9995 31 10 / 29 0.9995 28 35 / 90 1.0000 

Table 6.1: Apparent visual cost Nvc for a 32-node parallel virtual machine and a 128-node 
parallel virtual machine. Nvc may be compared with the number of function evaluations 
Nfe of the sequential GLSl algorithm. r repre~ents the number of starting points from 
which convergence to the current best minimum f occurs after ii random searches have been 
started. The probability that .f is equal to J* is given by q( ii, r). 

6.4 Summary 

Parallelization of multi-start algorithms is shown to be effective in reducing the computa­
tional time associated with the solution of expensive global programming problems. For 
example, the parallelized GLSl algorithm is applied to the (extremely expensive) optimal 
design of composite shell structures using a finite element approximation by Schutte et al. 
(33]. 

While the apparent computational effort is reduced, the probability of convergence to the 
global optimum is simultaneously increased as a result of parallelization. 
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Chapter 7 

Parallel Competing Algorithms In 
Global Optimization 

7.1 Introduction 

It is often asked which algorithm can be considered the leading global optimization algorithm. 
In the literature, numerical results reveal that no single global optimization algorithm can 
consistently outperform all other algorithms when a large set of problems in different classes 
is considered. Hence, a sensible approach is to attempt to solve the unconstrained global 
programming problem using different algorithms simultaneously. 

In this chapter, the unconstrained global programming problem is addressed using different 
algorithms competing in parallel in a multi-start procedure. 

7.2 Motivation 

As stated in the above, it is observed that no single global optimization algorithm can 
consistently outperform all other algorithms when large sets of problems in different classes 
are considered. A cursory glance at numerical results in the literature suffices to impress 
this observation. Nevertheless, this obvious but important observation is emphasized in the 
following. 

In Tables 7.1 and 7.2, numerical results are presented for the well known (and difficult) 
Griewank function. The results for the DIRECT [34], DOT [35] and LFOPC [36, 37, 38] 
algorithms are taken from [39]. Note that the simple GLSl algorithm presented in Section 
3.2 by far outperforms these algorithms. 

Table 7.3 presents similar results to the above for the Rastrigin function. Here, the Bayesian 
algorithm of Mockus is by far superior to the other algorithms evaluated. 

Table 7.4, similar to Table 3.3 presented in Section 3.5.1, further emphasises that no algo­
rithm can be considered the leading global optimization algorithm. Due to the large number 
of times the Bayesian search implementation by Mockus fails to converge to f* (Table 2.2), 
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n Algorithm Successes Nfe (Ave.) 

5 DIRECT 87 / 100 3400 
DOT 5 / 300 10260 
LFOPC 60; 400 9050 
GLSl 500 / 500 1034 

10 DIRECT 56 / 100 11810 
DOT 96 ; 500 1260 
LFOPC 136 / 500 32240 
GLSl 497 / 500 977 

20 DIRECT 8 I 200 102650 
DOT 16 / 2000 19740 
LFOPC 128 / 2000 7220 
GLSl 469 / 500 476 

Table 7.1: Results for the Griewank Function (n = 5, 10, 20, with d = 200, 1000, 20000 
respectively). 'Successes' indicates the number of times the algorithms converged to f*. 

Algorithm d Successes Nfe (Ave.) 

DIRECT 4000 19 / 100 39480 
1000 56 / 100 11810 

200 83 / 100 6990 

DOT 4000 37 / 500 3970 
1000 96 / 500 1260 
200 160 / 500 620 

LFOPC 4000 25 / 500 193410 
1000 136 / 500 32240 
200 390 / 500 830 

GLSl 4000 498 / 500 1289 
1000 497 / 500 977 
200 500 / 500 413 

Table 7.2: Effect of variation of din the IO-dimensional Griewank Function. 

the reported results for this algorithm include the unified Bayesian stopping rule. The ta­
ble also includes the results of the SQSD algorithm (explained in Section 7.3.2 to come). 
This algorithm is converted to a global optimization algorithm using the unified Bayesian 
stopping rule (with a= 1, b = 5 and q* = 0.999). 
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n Algorithm Successes Nfe (Ave.) 

2 LLSl 9/ 10 1487 
Clustering 9/ 10 3420 
LFOPC 10/ 10 45273 
Mockus 10/ 10 251 

5 LLSl 2/ 10 6548 
Clustering 0/ 10 
LFOPC 3/ 10 348937 
Mockus 10/ 10 482 

10 LLSl 2/ 10 24281 
Clustering 0/ 10 
LFOPC 0/ 10 
Mockus 10/ 10 964 

20 LLSl 0/ 10 
Clustering 0/ 10 
LFOPC 0/ 10 
Mockus 10/ 10 1928 

Table 7.3: Results for the Rastrigin Function (n = 2, 5, 10, 20). 

Problem LLSl LLS2 GLSl GLS2 SF [7] [8, 9] [19, 20] [15] SQSD 

Gl 12583 4225 3544 11907 5062 1302 396147 3710 183604 
G2 2333 4139 3398 3313 25730 11644 828441 74929 
GP 463 664 764 581 1901 985 94587 39416 649 
C6 168 304 330 303 516 643 76293 1449 275 
SH 2830 1719 1724 2639 12440 1626 139087 1485 1817 
RA 1562 3684 3010 3235 10971 2038 445711 776 1445 
BR 823 778 542 1402 680 683 71688 4521 3045 
H3 601 619 711 566 1370 1232 103466 2938 506 
H6 664 716 750 715 2346 3278 106812 5646 417 
S5 543 556 334 805 1571 1891 234654 3672 713 
S7 546 628 413 822 1624 2139 212299 13147 926 
SlO 596 565 387 865 1477 2805 330486 18987 990 

Table 7.4: Results using different algorithms for the extended Dixon-Szego test set. For the 
problems listed, the number of function values Nfe for the different algorithms are reported. 
Clearly, no algorithm consistently outperforms the other algorithms. '-' indicates that the 
algorithm failed to find the global optimum J* for 10 independent runs. 

7.3 Multiple competing algorithms 

Based on the foregoing, a sensible, if somewhat unconventional, approach is to attempt to 
solve global programming problems using a number of different algorithms simultaneously. 
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The results of all the different algorithms combined may then be used to study the quality 
of local minima found. Obviously, this approach is senseless if the different algorithms are 
incorporated in a sequential algorithm. On the other hand, multiple algorithms in parallel 
are very viable. 

A complication when using different algorithms simultaneously once again relates to the 
selection of a global stopping criterion. However, if assumption (2.3) holds for a given 
algorithm and objective function, then stopping criterion (2.5) may be used. Hence, multiple 
algorithms are implemented in an infrastructure, which compete for a contribution towards 
the unified Bayesian stopping criterion. 

Currently, the various unconstrained algorithms competing for a contribution to the unified 
Bayesian global stopping criterion (2.5) are GLSl, GLS2, LLSl, a genetic algorithm (GA) 
(Chapter 4), the Snyman-Fatti algorithm [7], the relatively new particle swarm optimization 
algorithm (PSOA) (Chapter 5), clustering [8, 9], the SQSD algorithm [14] and the Bayesian 
search algorithm presented by Mockus [15]. Some of these algorithms are briefly reviewed 
in the following. 

7.3.1 Leapfrog algorithm 

The Leapfrog algorithm was developed by Snyman [36, 37] and is derived by considering 
the motion of a particle with unit mass in a conservative force field. The objective function 
being minimized represents the particle's potential energy. 

The method therefore requires the solution to the differential equation with initial conditions: 

x(t) = -VF(x(t)) 

x(O) = -xo; x(O) = Vo 

From (7.1) it follows that for time interval [O, t]: 

½ll±(t)ll2 - ½11±(0)112 = F(x(O)) - F(x(t)) or 

T(t) - T(O) = F(O) - F(t) 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.4) indicates that if the kinetic energy T(t) increases then the objective function F(t) must 
be decreasing. Using numerical integration the initial value problem is solved and x(t) is 
monitored. The particle moves uphill when ½llx(t)112 decreases and an interfering strategy 
is then applied to extract the energy to increase the likelihood of descent. 

The Leapfrog algorithm uses only gradient information in minimizing the objective function. 

7.3.2 SQSD algorithm 

The SQSD algorithm, developed by Snyman and Hay [14], makes successive spherical quadratic 
approximations to the objective function f(x), as in Dynamic-Q (see Section 8.4). The sec­
ond point x 1 is calculated by stepping a distance c5 in the steepest descent direction from a 
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given starting point x0
: 

(7.5) 

SQSD is used for unconstrained optimization and the solution of the quadratic subproblems 
can therefore explicitly be calculated as: 

ak = 2 [f(xk-1) - f(xk) - VT f(xk)(xk-1 - xk)] 

llxk-l_xkll2 

(7.6) 

(7.7) 

A sequence of points are generated using these equations (for k = l, 2 .... ). Move limits 
are added to ensure that no excessive change in position between iterations occur and the 
algorithm therefore converges in a stable manner. The maximum allowed step size between 
iterations is c5, i.e. if the combination of (7.6) and (7. 7) results in: 

(7.8) 

then xk+ 1 calculated with (7.6) is discarded and a new xk+ 1 is calculated by taking a step 
of size c5 from xk in the steepest descent direction: 

(7.9) 

7 .4 Parallel implementation 

In the multi-start competing algorithm approach, the minimizations performed by the algo­
rithms are completely independent of each other and are therefore easily parallelized. As in 
Section 6.2, the pvm3 code [32] for FORTRAN is used enabling a cluster of computers to be 
used as a massive parallel processing virtual machine (MPPVM). Here again, the distributed 
computing model represents a master-slave configuration where the master program informs 
each slave task of the problem parameters and assigns optimization algorithms to the slaves. 
The master program awaits individual optimization results from each slave and parallel op­
timizations are terminated using (2.5). Appendix F.3 presents the master program code and 
Appendix F .4 the slave program code. 

7.4.1 Assigning algorithms to slaves 

Different strategies for assigning algorithms to the slaves are possible. For example, the 
algorithm assigned to a particular slave can be determined randomly with uniform proba­
bility, or according to a predetermined probability (based on, for instance, the performance 
of individual algorithms for a large set of test problems). The probabilities can also change 
during the analysis, according to the results obtained. In this initial study it is opted to use 
constant predetermined probabilities for the algorithms. 
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7.4.2 A measure of computational effort 

Section 6.2.1 defined the apparent visible cost (Nvc) for the parallelized multi-start algo­
rithms as the maximum function evaluations Nfe recorded for any slave. This definition 
for Nvc is not entirely satisfactory when gradient based and derivative free algorithms are 
used simultaneously. To facilitate the comparison between gradient based algorithms and 
derivative free algorithms, an algorithm's compound cost Ne is defined as Ne = Nfe + nN9e, 
where N9e represents the number of gradient evaluation performed, n the number of design 
variables and Nfe the number of function evaluations performed. Once again, it is assumed 
that the competing algorithm infrastructure will be used in problems for which the CPU 
requirements of evaluating the objective function is orders of magnitudes larger than the 
time required for message passing and algorithm internals. 

Hence, the apparent visible cost (Nve) of the parallelized competing algorithm infrastruc­
ture is defined as the greatest compound cost Ne recorded for any slave during the parallel 
optimization. 

7.5 Results for parallel competing algorithms 

Table 7.5 reflects the efficiency of the developed competing algorithm infrastructure. Here, 
GLSl, the Bayesian search implementation by Mockus, clustering, the Snyman-Fatti and 
the SQSD algorithms compete for a contribution to the stopping rule. The algorithms 
are assigned to the n 8 slaves with an equal probability of 0.20. The computational effort 
associated with a single function evaluation and a gradient evaluation is increased artificially, 
as to prevent a bias towards algorithms which require little computational effort in evaluating 
algorithm internals. The lower limit on the number of random searches n from the slaves is 
prescribed as 20 ( compare Section 6.3). 

While a specific algorithm in the infrastructure can yield superior results to those in Table 7.5 
for a single given problem, the overall performance of the competing algorithm infrastructure 
for the complete test set is always superior. No failures were recorded when performing each 
test problem 7 times from different starting points. 

Table 7.6 presents a breakdown of successful algorithms for a 128-node pvm. In the table, 
r P indicates the proportional contribution to r, and np the proportional contribution to n. 
High values for r P indicate that an algorithm is successful in locating the global optimum 
.f*. Similarly, high values for np indicate that an algorithm converged very quickly to non­
optimal values. As expected, GLSl converges quickly, resulting in high values of both rp 
and np. This simple algorithm represents the largest contribution to rp, with the exception 
of the Rastrigin problem, for which the Bayesian search strategy of Mockus makes the only 
notable contribution when n increases. 
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GLSl 128-node pvm 

Prob. Nge Nfe Ne r/ii q(ii,r) Nge Nfe Nve r/ii q(ii, r) 

Gl 3544 3544 10632 9 / 148 0.9990 0 337 337 9 I 119 0.9990 
G2 3398 3398 37378 10 / 72 0.9990 5 1001 1051 10 / 40 0.9995 
GP 764 764 2292 10 / 24 0.9996 4 97 105 10 / 32 0.9995 
C6 330 330 990 10 / 16 0.9996 3 95 101 11 / 20 0.9998 
SH 1724 1724 5172 10 / 65 0.9995 14 271 299 9 / 95 0.9990 
RA (n = 2) 3010 3010 9030 9 / 154 0.9990 0 196 196 10 / 89 0.9995 
RA (n = 5) 0 486 486 9 / 121 0.9990 
RA (n = 10) 0 969 969 9 I 101 0.9990 
BR 542 542 1626 9 / 9 0.9991 6 112 124 11 / 22 0.9998 
H3 711 711 2844 10 / 17 0.9996 0 162 162 10 / 41 0.9995 
H6 750 750 5250 9; 14 0.9990 25 25 175 20 / 20 1.0000 
S5 334 334 1670 10 / 23 0.9995 0 159 159 10 / 28 0.9995 
S7 413 413 2065 10 / 27 0.9995 14 90 146 10 / 30 0.9995 
S10 387 387 1935 10 / 24 0.9995 5 147 167 10 / 42 0.9995 

Table 7.5: The results for the parallel competing algorithm infrastructure. The apparent 
visual cost Nve for a 128 node parallel virtual machine may be compared with the compound 
cost Ne of the sequential GLSl algorithm. '-' indicates that the GLSl algorithm did not 
convergence to the global minimum f*. 

Clustering Mockus GLSl SF SQSD 

Prob. r /ii rp/iip r p/iip rp/iip rp/iip r p/iip 

Gl 9 / 119 3 / 45 4 / 5 2 / 44 o / 5 o I 20 
G2 10 / 40 6 / 12 o / o 4 / 28 o / o o / o 
GP 10 / 32 2 / 2 o / o 4 / 9 o I 9 4 / 12 
C6 11 / 20 2 / 2 0/0 6 / 9 o Io 3 / 9 
SH 9 I 95 2 / 6 o / o 5 / 39 o I 5 2 / 45 
RA (n = 2) 10 / 89 o / 2 6 / 6 2 / 40 o / 2 2 / 39 
RA (n = 5) 9 / 121 o / 3 9 I 9 o I 43 o I 26 o I 46 
RA (n = 10) g / 101 0 / 1 9 / 9 o I 45 o Io o I 46 
BR 11 / 22 3 I 3 o Io 7 / 7 o I 3 1 / 9 
H3 10 / 41 4 / 4 1 / 12 o I 8 o / o 5 / 11 
H6 20 / 20 o / o o / o 2 / 2 o / o 18 / 18 
S5 10 / 28 0 / 1 1 / 4 7 / 17 o Io 2 / 6 
S7 10 / 30 o Io o / 4 s / 19 o / o 2 / 7 
SlO 10 / 42 1 / 2 o / 9 6 / 20 o / o 3 / 11 

Table 7.6: Breakdown of successful algorithms. r P indicates the proportional contribution 
to r, and iip the proportional contribution to ii. 
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7.6 Summary 

A multi-start, multi-algorithm infrastructure is presented, in which different algorithms com­
pete in parallel for a contribution towards the unified Bayesian global stopping criterion. The 
algorithm which is most suitable for a specific problem, outperforms the other algorithms 
and yields the largest contribution to the number of times the lowest minimum is found. 
This infrastructure is suitable for expensive unconstrained global programming problems. 

44 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

Chapter 8 

Constrained Global Optimization 

8.1 Introduction 

In addition to the unconstrained problem as formulated in Section 1.1, many practical prob­
lems include explicit constraint functions, which represent additional relationships among the 
variables. For instance, in structural optimization, the relationship between the variables 
should be such that the maximum allowable stress and the maximum allowable deflection 
are not exceeded. 

The constrained optimization problem in general mathematical form is: 

subject to the constraints: 
9i(x) ~ 0 i = 1, 2, ... m 

hj(x) = 0 j = 1,2, ... r 

where f, 9i and hj are scalar functions of x. 

(8.1) 

(8.2) 

(8.3) 

This chapter presents three existing algorithms used for solving the constrained optimiza­
tion problem, namely the LFOPC, ETOPC and Dynamic-Q algorithms. In addition, a 
constrained algorithm (GLSlC) using the search components of the GLSl algorithm (see 
Chapter 3) is presented. The parallel infrastructure developed and presented in Chapters 6 
and 7 is extended by the inclusion of these four constrained algorithms for solving expensive 
constrained optimization problems. The numerical results obtained using a set of simple 
constrained test functions are given here, for both serial and parallel implementations. 

8.2 GLSlC 

The performance of a constrained optimization algorithm, denoted GLSlC, using the search 
components of the GLSl algorithm is investigated. The GLSlC constrained optimization 
algorithm consists of a global and local phase. The global phase is performed using the MBB 
algorithm on a penalty function formulation of the constrained problem. The solution of 
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the global phase is used as the starting point for the local phase which is performed with 
an augmented Lagrangian multiplier method. The BFGS algorithm is used for this local 
unconstrained optimization phase. 

8.2.1 Penalty function method 

The most simple and straight forward approach to handle constrained problems is with the 
penalty function method. The constrained problem is solved by applying an unconstrained 
optimization algorithm to a penalty function formulation P(x) of the constrained problem: 

m r 

minimize P(x) where P(x) = f(x) + L big;(x) + LWjh~(x) (8.4) 
i=l j=l 

with: 
b· = { 0 if gi ~ 0 

i Si » 0 if gi > 0 

Usually the penalty parameters take on the same positive value, i.e. si = Wj = p. Very large 
values for p are used when high accuracy is needed, but the method unfortunately becomes 
unstable and inefficient for such high values of p. 

8.2.2 Augmented Lagrangian multiplier methods 

The Augmented Lagrangian multiplier method transforms the constrained problem to suc­
cessive unconstrained problems involving the so-called Augmented Lagrangian. Combining 
the Lagrange function with the penalty function give the augmented Lagrange function Lk: 

where 
(a)= maximum of a and 0 (8.6) 

The values for .\f and .\J are approximations to the Lagrange multipliers. The penalty 
parameter pk is usually taken as a constant value p and low values for p result in a more 
stable method. The first multiplier approximations, .\f and ,\~, can arbitrarily be taken as 0. 
Any unconstrained optimization algorithm can be used to minimize the successive Lagrange 
functions with respect to x. The solution xk-l of Lagrange function Lk-l is used to calculate 
the next approximations to the Lagrange multipliers (.\f and .\}) in the following way: 

.\7 =< .\7-1 +2pk-1gi(xk-1) > 

where (a) = maximum of a and 0. 
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The successive optimizations are terminated if: 

8.3 LFOPC 

llxk-xk-111 <c1 or 

IILk(xk) - Lk-1(xk-1)II < c2 

(8.9) 

(8.10) 

The Leapfrog dynamic trajectory method developed by Snyman [36, 37) were modified to 
handle constraints using the penalty function formulation. This constrained version, called 
LFOPC, applies the penalty function formulation in 3 phases [38): 

Phase 0: For a given starting point x 0 apply Leapfrog to the penalty function with p := 100, 
giving the solution x~ of phase 0. 

Phase 1: Apply Leapfrog to the same penalty function but with p =: 10000, using x~ as 
the starting point. This gives xi and the active inequality constraints at this point can 
be determined. The active inequality set (ga(x); a= l, 2, ... na) corresponds to the set of 
inequality constraint functions for which (gi(xi) > O; i = 1, 2, ... m). 

Phase 2: The penalty function is redefined using only the active inequality set and the 
equality equations with p = 10000: 

na r 

Pa(x) = LP9~(x) + LPh~(x) (8.11) 
a=l j=l 

Leapfrog is used for minimizing Pa ( x) with xi as starting point, giving the solution x* to 
the constrained problem. 

8.4 Dynamic-Q 

The Dynamic-Q method [40) consists of applying the LFOPC algorithm to successive ap­
proximate quadratic subproblems (P[k], k = 0, l, 2, 3 ... ) derived from the actual problem 
functions. The Dynamic-Q method gives results of equal accuracy within comparable num­
ber of function evaluations when compared to the performance of the sequential quadratic 
programming (SQP) methods [41). 

The Dynamic-Q method is primarily intended for constrained optimization problems where 
function evaluations are expensive. The actual problem functions, f ( x), .9i ( x) and hj ( x), 
are approximated by spherically quadratic functions, J ( x), .9i ( x) and hj ( x) at design point 
xk as follows: 

f (x) = f(xk) + VTf(xk)(x - xk) + ~(x - xkf Ak(x - xk) 

1 
.9i(x) = gi(xk) + vr gi(xk)(x - xk) + 2(x - xkf B7(x - xk) i = l, 2, ... m 
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hi(x) = hi(xk) + v'Thi(xk) (x - xk) + ~(x - xkf Cj(x - xk) j = 1, 2, ... r 

with the diagonal Hessian matrices A k, BJ and CJ: 

B~ = b~ I 
i i 

c: = cJI 
Using these quadratic equations, subproblem P[k] are defined as: 

minimize i(x ), x = (xi, X2, .... xn) E Rn 

subject to: 
lMx) ~ 0 i = 1,2, ... m 

.9m+1(x) = llx - xkll2 - 62 ~ 0 

hj(x) = 0 j = 1,2, ... r 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

An additional constraint .9m+l ( x) is added which ensures that the maximum step between 
iterations are <5. The curvatures a0

, b? and c~ for the first subproblem P[O] is taken as zero, 
forming linear functions. Solving the first subproblem P[O] for any starting point x 0 gives 
x 1 . Thereafter the curvatures for subproblems P[k]; k = 1, 2, 3, 4 ... are defined as follows: 

ak = 2 [f (xk-1) - f (xk) - VT f (xk) (xk-1 - xk)] 

llxk-1 - xkll2 

k 2 [gi(xk-1) - gi(xk) - vr gi(xk)(xk-1 - xk)] 
b- = -----------------

i llxk-1_xkll2 

k 2 [hj(xk-1) - hj(xk) - v'Thj(xk)(xk-1 - xk)] 
C· = -----------------
] llxk-1 - xkjj2 

(8.22) 

(8.23) 

(8.24) 

A sequence of points are found by using the solution of subproblem P[k] as the next point 
xk+l at which the following subproblem P[ k + 1] is constructed. 

8.5 ETOPC 

The penalty function problems associated with large values for the penalty parameter p, 
can be solved by applying Sequential Unconstrained Minimization Techniques (SUMT) [42]. 
SUMT consists of performing a succession of penalty function pk ( x) minimizations, with 
the penalty parameter pk increasing with each minimization. Snyman used SUMT with the 
ETOP [43] unconstrained algorithm in developing the ETOPC constrained algorithm. More 
formally, the ETOPC algorithm consists of the following steps: 

1. Given a starting point x 0 , set k := 0 and choose the first penalty parameter p1 . 
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2. Set k := k + 1 and minimize pk(x) with associated penalty parameter pk and starting 
point xk-l, using ETOP to give xk. 

3. Test convergence criteria. If: 

llxk-xk-1ll<c1 or 

IIPk(xk) - pk-1(xk-1)II < c2 

then STOP, else continue. 

4. Set pk+l := cpk with c > 1 and go to 2. 

p1 and c are typically taken as 1 and 10 respectively. 

(8.25) 

(8.26) 

8.6 Constrained algorithms in multi-start procedure 

In Chapter 3 efficient multi-start algorithms are presented to solve unconstrained global 
programming problems. The constrained global programming problem is addressed in this 
section using the same multi-start strategy. It is argued that the constrained or uncon­
strained global minimum is associated with a higher probability of convergence than any 
other constrained or unconstrained local minimum. The unified Bayesian stopping rule is 
therefore also applicable to constrained algorithms. 

8.6.1 Numerical results 

The above mentioned constrained algorithms are combined with the unified Bayesian stop­
ping rule in a multi-start procedure and tested on a set of simple constrained test functions. 
Appendix B presents the 7 problems explicitly. 

The stopping rule parameters used are a = 1, b = 5 and q* = 0.999. Table 8.1 shows the 
average number of function evaluations Nfe, average number of gradient evaluations N 9e 
and the number of failures F to converge to the constrained optima for 10 independent 
runs of each problem using each method. The table reveals that the Dynamic-Q method 
outperformes the other algorithms. This is expected as the test functions used are mainly 
of quadratic form. For the Dynamic-Q algorithm, the value of c5 was chosen as 100 for all 
the problems, except for C6 where c5 = 1 was used. 

The suitability of the unified Bayesian stopping rule is also demonstrated in that no failures 
are recorded for all the problems and algorithms, except for GLSlC when applied to problem 
C3. 
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GLSlC LFOPC ETOPC Dynamic-Q 

Prob. Nie N_qe F Nie Nge F Nie Nge F Nie Nge F 

Cl 433 433 0 37 1490 0 144 906 0 90 90 0 
C2 2180 2180 0 36 3757 0 157 10389 0 27 27 0 
C3 8251 8251 2 54 6012 0 164 7927 0 153 153 0 
C4 810 810 0 36 1520 0 144 11706 0 64 64 0 
C5 150 150 0 37 2080 0 144 5800 0 64 64 0 
C6 3772 3772 0 54 12488 0 180 6667 0 483 483 0 
C7 21661 21661 0 64 44210 0 294 64260 0 328 328 0 

Table 8.1: Results for constrained algorithms combined with the unified Bayesian stopping 
criterion in multi-start procedures. 

8. 7 Multiple parallel constrained searches 

In Chapter 6 it is shown that multiple independent searches in a multi-start procedure per­
formed simultaneously on different computers, effectively reduces the cost of solving expen­
sive global programming problems. The same approach is adopted for expensive constrained 
global programming problems. For demonstration purposes, the efficient Dynamic-Q algo­
rithm is used in the multi-start parallel infrastructure as explained in Chapter 6. Table 
8.2 shows the results when solving the constrained test set using a MPPVM consisting of 
32 computers. The table shows that the computational effort of the parallel multi-start 
Dynamic-Q algorithm is much less than the computational effort of the sequential multi­
start Dynamic-Q algorithm (shown in Table 8.1). For the parallel multi-start Dynamic-Q 
algorithm the results from a minimum of 20 sampling points ii are required before stopping. 
This increases the probability of finding the global minimum from 0.999 for the sequential 
algorithm to the probability q* shown in the last column of Table 8.2, without increasing 

Prob. Nvc r/ii q(ii,r) 

Cl 17 20 / 20 1.0000 
C2 3 20 / 20 1.0000 
C3 16 10 / 24 0.9995 
C4 10 20 / 20 1.0000 
C5 8 11 / 21 0.9998 
C6 70 18 / 20 1.0000 
C7 56 20 / 20 1.0000 

Table 8.2: Apparent visual cost Nvc and the probability q(ii, r) that J is equal to f* for the 
parallel multi-start Dynamic-Q algorithm using a MPPVM consisting of 32 machines. The 
apparent visual cost Nvc for a 32-node parallel virtual machine may be compared with the 
number of function evaluations N 1e of the sequential Dynamic-Q algorithm. 
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the computational cost. 

8.8 Parallel competing constrained algorithms 

The unconstrained global programming problem is addressed in Chapter 7 by simultaneously 
applying different unconstrained algorithms using a MPPVM. The same approach is adopted 
here for constrained global programming problems using the four constrained optimization 
algorithms, GLSlC, LFOPC, ETOPC and Dynamic-Q. These algorithms compete for a 
contribution to the unified Bayesian stopping rule as described in Chapter 7. In this case, 
the algorithms are assigned to the n 8 slaves with an equal probability of 0.25. 

The apparent visible cost (Nvc) as defined in Section 7.4.2 is used to express the performance 
of the competing constrained algorithms method. Table 8.3 shows the function evaluations 
Nfe and the gradient evaluations N 9e that make up the greatest compound cost Ne recorded 
for a specific slave, when solving the constrained test set with a 32-node MPPVM. Table 

Prob. Nge Nfe Nvc r/n q(n, r) 
Cl 51 41 143 20 / 20 1.0000 
C2 175 151 851 17 / 20 1.0000 
C3 182 37 583 10 / 26 0.9995 
C4 95 66 256 20 / 20 1.0000 
C5 22 22 132 15 / 20 1.0000 
C6 308 137 2293 13/ 20 1.0000 
C7 574 426 4444 15/ 20 1.0000 

Table 8.3: Apparent visual cost Nvc consisting of the gradient evaluations N 9e and the func­
tion evaluations Nfe for the parallel competing algorithm method using a 32-node MPPVM. 

GLSlC LFOPC ETOPC Dynamic-Q 

Prob. r/n r p/np r p/np rp/np rp/np 
Cl 20/ 20 4 / 4 o / o 1 / 1 15 / 15 
C2 17 / 20 4 / 7 o / o o / o 13 / 13 
C3 10/ 26 o I 9 2 / 2 o / o 8 I 15 
C4 20/ 20 4 / 4 1 / 1 o Io 15 / 15 
C5 15/ 20 7/7 o / o o Io 8 I 13 
C6 13/ 20 2 / 7 o / o 1 / 2 10 / 11 
C7 15/ 20 1 / 6 o Io o Io 14 / 14 

Table 8.4: The contributions of the algorithms towards the unified Bayesian stopping rule. 
r P indicates the proportional contribution to r, and np the proportional contribution to n. 
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8.4 shows the contributions of the algorithms towards the stopping rule. 

From the results presented in Table 8.1 it is expected that the Dynamic-Q algorithm will 
have the greatest contribution, and the results of Table 8.4 confirm this. The Dynamic-Q 
algorithm outperformed the other algorithms and the high values of rp indicate that the 
algorithm was successful in locating the global optimum J* a number of times. 

8.9 Summary 

The global constrained problem is addressed in the following ways: 

• Constrained algorithms are combined with the unified Bayesian stopping rule in effec­
tive multi-start algorithms. 

• The independent searches involved in the multi-start procedure are performed simul­
taneously on different computers, which effectively reduces the computational cost. 

• Using different constrained algorithms simultaneously in a multi-start procedure, re­
sults in a highly robust and efficient method for solving expensive constrained global 
programming problems. 
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Chapter 9 

Slope Stability Analysis 

9.1 Introduction 

Calculating the safety factor of slopes is important in a number of engineering applications. 
These include natural slopes, earthworks construction, embankments, earth dams, etc. In 
recent years finite element methods have been developed for slope stability analyses [3, 4), 
but limiting equilibrium methods are still widely used. 

Limiting equilibrium methods require an assumption about the geometry of the failure plane. 
For homogeneous soils the critical failure plane can be accurately modelled using mathemat­
ical functions such as circular arcs or log spiral functions, but for layered soils the geometry 
of the failure plane can become irregular. Methods which assume a failure plane of a regular 
shape are widely used for slope stability analyses. A computer can be used to randomly 
generate hundreds of different failure planes and identify the one with the smallest factor 
of safety as the critical plane. However, this method is not suitable for non-homogeneous 
soil profiles. With a complex soil profile the shape and position of the failure plane can not 
be modelled by a simple mathematical function and an alternative method for finding the 
critical failure plane is needed. 

Limiting equilibrium methods such as Janbu's method (44, 45), Morgenstern Price's method 
(46) and Spencer's method (47, 48) are suitable to determine the factor of safety for an 
arbitrary failure surface geometry. The problem of finding the critical failure plane when 
using these methods may be addressed by randomly generating possible failure planes, but 
with some restrictions to ensure the kinematically admissibility of the surfaces (49). Nguyen 
(50) developed a method where the factor of safety is formulated as a multivariate function 
F(x) with the independent variables x describing the geometry of the failure plane, which 
can be circular or non-circular. He employed the simplex method as optimization tech­
nique. Celestina and Duncan (51) used the same approach for non-circular failure planes, 
but used the alternating-variable optimization technique. Li (52) proposed a more efficient 
one-dimensional optimization technique to replace the quadratic interpolation method which 
Celestina and Duncan (51) used in the alternating-variable technique. Baker (53) made use 
of Spencer's method and defined the failure plane by a number of nodal points connected 
by straight lines. The vertical coordinates of the nodal points are the variables in Baker's 
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method and the dynamic programming technique is employed as the optimization method. 
Recently, workers have addressed the problem by using a genetic algorithm that determines 
the critical slip surface for a multiple wedge stability analysis [23]. 

Nguyen's [50] method for non-circular failure planes and Baker's method [53] are fairly 
general, but lack the property of variable horizontal coordinates of the nodal points in 
the analyses. Celestina and Duncan's [51] method is formulated such that the horizontal 
coordinates of the nodal points may vary, but some of the coordinates are given a prescribed 
direction of movement. This inhibits the failure plane to be entirely general. It is also 
uncertain if the algorithms used for the different methods are able to locate the global 
minimum of the factor of safety formulations. For some of these methods the starting values 
for the variables are chosen such that the initial failure plane closely resembles the critical 
plane, thereby reducing the effort of finding the global minimum. 

This chapter presents a global optimization algorithm combined with Janbu's simplified 
method and Spencer's method as an alternative method for finding the critical failure plane 
of any shape. The failure plane is defined by nodal points connected by straight lines. 
The points are equidistant from each other with the first and last points at the ground 
surface. These two points may move horizontal and consequently all the nodal points have 
the possibility of moving horizontal together with the freedom of vertical movement. This 
results in a general formulation of the failure plane position. 

The next section briefly revises Janbu's and Spencer's method and presents the relevant equa­
tions to calculate the factor of safety using these two methods. The unconstrained problem 
is then formulated using these equations and the optimization algorithm used for solving the 
problem is discussed. Four examples are presented to demonstrate the performance of the 
new slope stability optimization procedure. 

9.2 Janbu's simplified method 

Janbu's simplified method [44, 45] forms part of the limiting equilibrium techniques based 
on the method of slices. This method was developed to calculate the factor of safety for slip 
surfaces of any shape. Firstly a failure plane is assumed and the slipping mass is divided 
into vertical slices. The following static equilibrium conditions of each slice is considered: 

• Sum of the vertical forces I: Fy = 0 

• Sum of the forces parallel to failure plane I: -Fi1 = 0 

For the soil mass as a whole the equations used are: 

• Sum of the vertical forces I: Fy = 0 

• Sum of the horizontal forces I: Fx = 0 

The above equations indicate that Janbu's simplified method may violate moment equilib­
rium of the soil mass as a whole. 
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The factor of safety is defined as: 

F = soil shear strength 
mobilized shear stress 

Combining these equations gives Janbu's simplified factor of safety as: 

F = L~=l ( cibi + (Wi - uibi) tan c/>i) / ( ma cos ai) 
L~=l wi tan ai 

where: 

[ 
tan ai tan c/>i] 

ma= 1 + F 

and 
ai = angle of failure plane for slice i 
Wi = weight of slice i 
c/>i = angle of internal friction slice i 
ci = cohesion of slice i 
ui = water pressure of slice i 
n = number of vertical slices. 

(9.1) 

(9.2) 

(9.3) 

Note that F is present on both sides of (9.2). The secant iterative method which finds the 
roots of a function g(F) with one variable is used to solve F. g(F) is defined as: 

(9.4) 

and the secant formula is given by: 

(9.5) 

The above equations tend to converge rapidly. 

9.3 Spencer's method 

Spencer [47, 48] developed a slope stability analysis technique based on the method of slices, 
which satisfies all equilibrium equations. Spencer's method is suitable for a failure surface 
of arbitrary shape and considers the following equilibrium conditions for each slice: 

• Sum of the forces perpendicular to failure plane I: F J_ = 0 

• Sum of the forces parallel to failure plane I: -F11 = 0 

• Sum of the moments about the middle of the slice's base I: J\!l = 0 
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Combing these equations with (9.1) results in the following two equations: 

Hi ( F, 0) = t [cibi sec ai/ F + tan c/>i (Wi cos ai - uibi sec ai) / F - Wi sin ai] = 
0 

i=l cos( ai - 0) (1 + tan c/>i tan( ai - 0) / F] 
(9.6) 

(9.7) 

where: 

z. = cibi sec ai/ F + tan c/>i(Wi cos ai - uibi sec ai)/ F - Wi sin ai + z. 
i-l cos(ai - 0) [1 + tan c/>i tan(ai - 0)/ F] i-2 

(
9.S) 

and 
Zo = 0 
0 = direction of interslice force. 

(9.6) considers force equilibrium and (9. 7) moment equilibrium, with the two unknowns F 
and 0. The factor of safety of the specified failure plane is taken as F, with the corresponding 
0, which satisfies these two equations. The problem of solving the set of two non-linear 
equations is transformed to a minimization problem by defining an auxiliary function G(F, 0): 

(9.9) 

Finding the values for F and 0 that results in G(F, 0) = 0 corresponds to the solution of the 
two equations. The BFGS algorithm (10, 11, 12] is used for this minimization phase. 

9.4 Mathematical representation of failing mass 

Janbu's and Spencer's factor of safety equations require information regarding each slice. 
These are the weight, pore water pressure at the failure plane, angle of internal friction, 
cohesion and the failure plane angle. These values are dependent on the geometry of the 
failure plane, the width and the number of slices. The analysis therefore requires a unique 
set of variables x representing a failure plane of any shape. 

For the method described herein, the first two variables x1 and x2 , defines the horizontal 
positions where the failure plane intersects the ground surface (see Figure 9.1). x1 is the 
horizontal distance between a reference point and the initiation point of the failure plane, 
while the horizontal distance between the initiation and termination points of the failure 
plane is denoted as x2 . The method of slices requires the failing soil mass to be divided into 
n vertical slices and the bottom of each slice forms the failure plane. The vertical distances 
of the slice interfaces, measured from the ground level to the failure plane, can be used to 
define a unique failure plane in terms of the variables (x 3 , x 4 , x 5 , ..... Xn+1). The failure plane 
between the slice interfaces is assumed to be linear. In this analysis the width of the failing 
mass x2 is divided into n slices of equal width and the width of each slice may be calculated 
as: 

bi = X2 (9.10) 
n 

The formulation of the unconstrained problem is completed with n + l independent variables 
x describing the failure plane and the factor of safety F(x) as the objective function. 
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9.5 Slope stability optimization procedure 

The procedure for finding the critical slip surface consists of two phases, a global optimization 
phase and a local refinement phase. In the global optimization phase multiple independent 
searches are performed with a minimum number of slices to determine an initial approxima­
tion to the critical slip surface. The local refinement phase uses the approximate solution of 
the global optimization phase to refine the slip surface geometry. This strategy is used to 
reduce the overall number of function evaluations required. 

More formally the slope stability optimization procedure is as follows: 

1. Initialization: Set the counter j := 1, prescribe the desired confidence level q*, 

tmax, n1, kmax, lmax and Xbeg· Here, Xbeg denotes the maximum random starting value 
for X3, X4, X5, ..... Xnk+l, tmax the maximum number of global phase iterations, n 1 the 
starting number of slices, kmax the maximum number of adaptive slicing loops in the 
global phase and lmax the maximum number of adaptive slicing loops in the local phase. 

2. Global Optimization phase: 

(a) 

(b) 

(c) 

(d) 

Sampling steps: Set the counter k := 1 and start with nk slices and randomly 
generate x{ E D. That is choose x1 and x2 randomly within the slope geometry 
and generate random values for x 3 , x 4 , x 5 , ..... Xnk+l between O and depth Xbeg· 

Minimization steps: Starting at x{, attempt to minimize F in a global sense 
by any optimization algorithm, viz. find and record some low function value 
F
-j -j 

k tt Xk. 

Termination check: If k = kmax or P1 ~ 10 go to 3, else continue. 

Double number of slices: Set k := k + 1, double the number of slices (nk := 

2nk_ 1 ) and determine the new starting vector x{ from x{_ 1 (perform adaptive 
slicing as explained in Section 9.5.1). Go to 2 (b). 

3. Global Termination: Assess the global convergence after n searches was completed 
(yielding x{ and F1,j = 1, 2, ... , n) using (2.4). If (2.5) is satisfied or j = tmax, go to 
4, else j := j + 1 and go to 2. 

4. Local refinement phase: 

(a) 

(b) 

(c) 

(d) 

Initialization: Set the counter l := 2 and determine the starting vector Xz for 
the local refinement phase from x{ (see Section 9.5.1) which corresponds to the 
lowest recorded P1 for j = 1, 2, ... , n. Set Fi = Fl and the number of slices are 
nz := 2n{. 

Minimization steps: Starting at x1, attempt to minimize Fin a local sAense by 
any optimization algorithm, viz. find and record some low function value F1 tt x1. 

Termination check: If l = lmax or F} > F1z_ 1 go to 5, else continue. 

Double number of slices: Set l := l + 1, double the number of slices (n1 := 

2n1_ 1 ) and determine the new starting vector x1 from Xz_ 1 (perform adaptive 
slicing as explained in Section 9.5.1). Go to 4 (b). 
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5. Slope Stability Termination: Take the lowest recorded F} for l = l, 2, 3 ... as factor 
of safety. STOP. 

Typical search routines require the approximate position of the initiation and the termination 
points of the failure plane to be specified. This requires a priori knowledge of the behaviour 
of soil slopes. Step 2 (a) requires no a priori information regarding the initiation and 
the termination points and results in the procedure being more general. The values for 
x 3 , x 4 , x5 , ..... Xnk+l are not constrained within bounds during the analysis. Also note that 
the unified Bayesian stopping criterion is utilized to terminate the global optimization phase 
mentioned in step 3. 

9.5.1 Adaptive slicing 

The minimum found from an optimization iteration with n slices can be used to determine 
the starting point for the next optimization iteration with double the number of slices (2n 
slices). This is done by introducing another slice interface in the centre of each of the n slices 
and by linear interpolation of the failure surface the values for the new intermediate variables 
can be obtained. The starting values for the variables (x1 , x2 , x 3 , ..... x2n+1) therefore presents 
the exact same failure plane as was found by the n-slice solution. The motivation for this is 
reduced computational effort. 

9.6 Optimization algorithms 

A number of algorithms were tested as part of the described slope stability optimization 
procedure. These include GLSl (Chapter 3), Leapfrog [38], ETOP [43], a GA (Chapter 
4) and the PSOA presented in Chapter 5. The Leapfrog algorithm proved to be the most 
efficient algorithm for this problem and the results of the Leapfrog algorithm are described 
below in more detail. Results for Janbu's and Spencer's method combined with the Leapfrog 
algorithm are presented, and are denoted Leapfrog-Janbu and Leapfrog-Spencer. 

9.6.1 Leapfrog algorithm 

As mentioned in Section 7.3.1, the Leapfrog [38) algorithm uses only gradient information 
in minimizing the objective function. The defined objective functions have no explicitly 
defined gradient functions and the gradient vectors are calculated with first order difference 
formulas. 

9.7 Examples 

Three non-homogeneous examples are taken from Goh [23) and Fredlund and Krahn [54) to 
illustrate the performance of the algorithms with Janbu's and Spencer's method in the slope 
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Soil No. Cohesion (kPa) Friction angle (0
) Unit Weight (kN/m3

) 

1 0.0 38.0 19.5 
2 5.3 23.0 19.5 
3 7.2 20.0 19.5 

Table 9.1: Soil parameters for Example 1. 

Soil No. Cohesion (kPa) Friction angle (0
) 

1 28.73 20.0 
2 0.0 10.0 

Unit Weight (kN /m3
) 

18.84 
18.84 

Table 9.2: Soil parameters for Example 2. 

stability procedure. A forth example is used to demonstrate the effectiveness of the slope 
stability procedure for multiple slope sections. The safety factors of the examples reported 
by Goh [23] are compared with the results obtained using the new analysis technique. 

The soil slope for Example 1 consists of three layers, as shown in Figure D.1. The soil 
parameters are given in Table 9.1. For Example 2 the soil profile contains a 0.5m weak layer 
as depicted in Figure D.2. Table 9.2 tabulates the soil parameters of the different layers. 
The soil profile of Example 3 (Figure D.3) contains an inclined weak layer of thickness lm, 
with properties given in Table 9.3. Example 4 represents a multiple slope geometry and the 
dimensions are those typically used for gold tailing dams [55) (see Figure D.4). The problem 
contains a phreatic surface with the unit weight of water taken as 9.81 kN /m3

. 

The parameter values used in the slope stability optimization procedure are q*=0.999, trnax = 
100, krnax = 3, lrnax = 3 and Xbeg = 15m. n1 = 4 for the Leapfrog-Janbu analysis, while 
n 1 = 3 for the Leapfrog-Spencer analysis. 

9.8 Discussion of numerical results 

The safety factors of the critical failure planes found by the Leapfrog algorithm using Janbu's 
and Spencer's method are presented in Table 9.5. In addition, the coordinates which define 
the critical slip surfaces are given in Appendix E, while Figures D.5 to D.12 depict these 
critical failure planes. Table 9.6 presents the safety factors using the methods reported by 
Goh [23). The function evaluations performed using Leapfrog in the different analyses are 
given in Table 9.7. 

It is important to note that the governing equations for the methods presented in the tables 
are different. Janbu's method ignores interslice shear forces and violates moment equilib­
rium for the mass as a whole. In contrast, Spencer's method incorporates the interslice shear 
force by assuming a constant force angle and satisfies all equilibrium conditions. This results 
in Janbu's method generating factors of safety lower than those calculated using Spencer's 
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Soil No. Cohesion (kPa) Friction angle (0
) Unit Weight (kN /m3) 

1 10.0 25.0 20.0 
2 0.0 10.0 20.0 

Table 9.3: Soil parameters for Example 3. 

Soil No. Cohesion (kPa) Friction angle (0
) Unit Weight (kN/m3) 

1 5.0 
2 5.0 

35.0 
35.0 

17.0 
19.0 

Table 9.4: Soil parameters for Example 4. 

method (see for example Fredlund and Krahn [54]). For this reason Janbu [56, 57] suggested 
a correction factor. As expected, using Janbu's method the Leapfrog algorithm calculated 
lower factors of safety compared with Spencer's method, but the critical failure planes cal­
culated using the two methods are only slightly different ( see Figures D. 5 to D .12). This 
generates confidence that the global optima were found. 

Tables 9.5 and 9.6 allows the comparison of the factors of safety presented by Goh [23] to 
those calculated using this new two phase technique; The methods reported by Goh [23] 
(shown in Table 9.6), make different assumptions and use different equations. The global 
minimum of each method will not necessarily be equal even though the same slope problem 
is analysed and even when the same optimization algorithm is used. The Leapfrog-Janbu 
values are lower for all the examples. This was due to the algorithm being able to find 
more critical failure planes, but as explained also to an extent that Janbu's method tends 
to be conservative. Using Spencer's method the Leapfrog algorithm found a lower value for 
Example 1 compared with the result for Spencer's method presented by Goh [23]. 

The algorithm satisfied the stopping rule (2.5) before the maximum of 100 iterations were 
reached only for Example 1. The number of function evaluations for Examples 2, 3 and 4 
are therefore less to attain the prescribed confidence level q*=0.999. 

Table 9.7 shows the number of function evaluations for the different methods. Janbu's 
method is more costly to solve in terms of function evaluations, but a single function eval­
uation with Spencer's method far exceed the time needed to perform a Janbu evaluation. 
The Leapfrog-Janbu analysis for Example 1 performed 21136 Janbu function evaluations 
and took 14 seconds with a Pentium III 800 MHz processor. The average time for a single 
function evaluation was therefore 0.0007 seconds. Performing the Leapfrog-Spencer analy­
sis on the same problem took 453 seconds and 30877 function evaluations to complete. A 
single function evaluation was therefore performed in 0.015 seconds. The time of a Spencer 
function evaluation is therefore almost 22 times longer than that for a Janbu function evalu­
ation. So even though the number of Janbu function evaluations exceeds Spencer's function 
evaluations, the time for a Janbu's analysis is significantly less. 
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Method Example 1 Example 2 Example 3 Example 4 

Leapfrog-Janbu 1.247 1.195 0.879 1.476 
Leapfrog-Spencer 1.359 1.305 1.060 1.549 

Table 9.5: Factor of safety using the Leapfrog algorithm in slope stability optimization 
procedure. 

Method Example 1 Example 2 Example 3 

GAWEDGEM(6) 1.387 1.288 1.021 
GAWEDGE(6) 1.393 1.286 1.003 
Slope 1.364-1.378 
Spencer 1.39 1.24 
Chen and Shoa 1.39 1.242 
Donald and Giam 1.39 1.27 

Table 9.6: Factor of safety calculated with methods reported by Goh. 

9.9 Recommendations 

For the results presented in the tables no restrictions were placed on the starting values for 
the initiation point x 1 and the termination point (x1 + x2 ) of the failure plane. For single 
slope problems (Examples 1 to 3), more reasonably chosen starting values (Step 2 (a)) for 
x 1 and x2 will improve the procedure's efficiency. The first initiation point can randomly be 
selected within an interval of appropriately chosen size containing the slope's toe. The first 
termination point can randomly be selected within a similarly chosen interval containing the 
crest of the slope. This pre-knowledge of the possible position of the critical failure plane can 
therefore be used to reduce the effort to solve the problem. For multiple slope geometries, as 
in Example 4, the position of the initiation and termination points are difficult to predict and 
ideally no restrictions should be placed on the starting values for x1 and x2 . The new method 
described above does not place any restrictions on the values of x1 and x2 and are therefore 
most suitable to find the global minimum factor of safety for multiple slope geometries. 

Spencer's function evaluation time far exceeds Janbu's function evaluation time. Therefore, 
it seems practical to perform the global optimization phase (Step 2) with Janbu's method 
and the local refinement phase (Step 4) with Spencer's method. The analysis time and 
number of function evaluations with Spencer's method will therefore be significantly less. 

9.10 Summary 

This chapter describes a global optimization procedure for calculating the critical failure 
plane in slope stability analyses using Janbu's simplified method or Spencer's method of 
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Method 

Leapfrog-J anbu 
Leapfrog-Spencer 

Example 1 Example 2 Example 3 Example 4 

21136 98727 125794 31784 
30877 24269 38025 27018 

Table 9.7: Number of function evaluations using the Leapfrog algorithm for the two methods. 

slices. The procedure starts with a global phase where a number of independent runs with a 
few slices are performed to determine an initial approximation to the critical failure plane. 
The procedure then refines this approximate surface with increased number of slices. Any 
optimization algorithm can be employed in the procedure but in this study the Leapfrog 
algorithm is used. 

The safety factors obtained with this procedure using Janbu's method and Spencer's method 
are slightly lower than the reported values for the three examples considered. As expected, 
J anbu's method gives more conservative results when compared with Spencer's method. The 
time needed for a single Spencer analysis is significantly longer than a J anbu analysis and 
the number of function evaluations becomes important only when Spencer's method is used. 

A slope geometry consisting of multiple inclined sections demonstrates the robustness of 
the procedure. The procedure places no restriction on the initiation and termination points 
and the method therefore implicitly considers failure of the individual slopes as well as the 
multi-slope as a whole to find the global minimum factor of safety. 

Initiation point 

Figure 9.1: Definition of the geometric variables. 
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Chapter 10 

Conclusions and Recommendations 

10.1 Conclusions 

The main objective of this study is the development of optimization methods to solve prac­
tical optimization problems in engineering. This goal is attained in the following ways: 

• A probabilistic global stopping criterion, previously derived for a specific algorithm, 
is extended to multi-start algorithms, and is denoted the unified Bayesian stopping 
criterion. The suitability of the unified Bayesian stopping criterion is demonstrated 
for a number of local and global optimization algorithms using standard test functions. 

• A multi-start global optimization infrastructure based on multiple local searches, com­
bined with the unified Bayesian stopping criterion, is presented. Numerical results 
reveal that this simple multi-start approach outperforms a number of leading con­
tenders. 

• Parallelization of sequential multi-start algorithms is shown to effectively reduce the 
computational time associated with solving expensive global programming problems. 

• Two algorithms simulating natural phenomena are implemented, namely the relatively 
new particle swarm optimization method and the well known genetic algorithm. For 
the current implementations, numerical results indicate that the computational effort 
associated with these methods are comparable. 

• The observation that no single global optimization algorithm can consistently out­
perform all other algorithms when large sets of problems are considered, lead to the 
development of a parallel competing algorithm infrastructure. In this infrastructure 
different algorithms, ranging from deterministic to stochastic, compete simultaneously 
for a contribution to the unified Bayesian stopping criterion. 

• The constrained global programming problem is addressed using constrained algo­
rithms in the parallel competing algorithm infrastructure. 

63 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

• An optimization procedure is developed for solving the slope stability problem faced 
in civil engineering. This new procedure determines the factor of safety of slopes using 
a global optimization approach. 

10.2 Recommendations 

1. The applicability of the Unified Bayesian stopping rule presented in Chapter 2 when 
used in combination with different algorithms should be investigated further. 

2. An analysis of the effect of the Unified Bayesian stopping rule for functions for which 
the probability of convergence to the global optimum is less than the probability of 
convergence of some other local optimum is desirable. 

3. Additional algorithms based on multiple local searches (Chapter 3) and the Unified 
Bayesian stopping rule can be formulated. 

4. For both the successive genetic algorithm (Chapter 4) and the particle swarm algorithm 
(Chapter 5), additional operators can be formulated, in an attempt to improve the 
convergence characteristics of the algorithms. 

5. In the competing algorithm infrastructure, additional algorithms should be incorpo­
rated. This is true for both the unconstrained and constrained infrastructures. A 
promising algorithm is the Lipschitzan DIRECT optimizer proposed by Jones et al 
[34]. 

In addition, the algorithms in the infrastructure should be selected based on perfor­
mance, as to exclude inefficient algorithms. Performance should be based on a larger 
test set than the set considered in this study. 

6. The slope stability procedure presented in Chapter 9 can be improved in the following 
ways: 

(a) For single slope problems (see Examples 1 to 3), the starting values for the initia­
tion point x1 can randomly be selected close to the slope's toe and the termination 
point (x1 + x2 ) close to the slope's crest. 

(b) Due to the difference in function evaluation time, it seems practical to perform the 
global optimization phase with Janbu's method and the local refinement phase 
with Spencer's method. 
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Appendix A 

The extended Dixon-SzegO 
unconstrained test set 

Problems 1 and 2 (Griewank Gl and G2 functions, respectively) 

OBJECTIVE FUNCTION: 

n n 

J(x) = L x;jd - II cos (xd✓i) + 1. 
i=l i=l 

For Problem 1, n = 2 and d = 200; for Problem 2, n = 10 and d = 4000. 

SEARCH DOMAIN FOR 1: 

SEARCH DOMAIN FOR 2: 

D = { (x1, x2, · · ·, x 10 ) E R 10 : -600.0:::; Xi :::; 600.0, i = 1, 2, · · ·, 10}. 

SOLUTION: 

Problem 3 (Goldstein-Price) 

OBJECTIVE FUNCTION: 

x* = (0.0, · · ·, 0.0) f* = 0.0. 

f(x) = [1 + (x1 + x2 + 1)2 · (19 - 14x1 + 3xi - 14x2 + 6x1x2 + 3x~)]x 
[30 + (2x1 - 3x2)2(18 - 32x1 + 12xi + 48x2 - 36x1.r2 + 27x~)]. 

SEARCH DOMAIN: 

SOLUTION: 

x* = (0.0, -1.0) f* = 3.0. 
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Problem 4 (Six-hump Camelback) 

OBJECTIVE FUNCTION: 

SEARCH DOMAIN: 
1 D = {x1 ER : -3.0 ~ X1 ~ 3.0} 

D = { X2 E R1 : -2.0 ~ X2 ~ 2.0} 

SOLUTION: 

xi = (0.0898, -0. 7126) x; = ( -0.0898, 0. 7126) f* = -1.0316285 

Problem 5 (Shubert function, Levi no. 4) 

OBJECTIVE FUNCTION: 

5 5 

f(x) ={Li cos[(i + l)x1 + i)}{L i cos[(i + l)x2 + i]} 
i=l i=l 

SEARCH DOMAIN: 

SOLUTION: 

xi = (5.48289, -1.426531) f* = -186. 73091 

Problem 6 (Rastrigin) 

OBJECTIVE FUNCTION: 

SEARCH DOMAIN: 

SOLUTION: 

Problem 7 (Branin) 

OBJECTIVE FUNCTION: 

SEARCH DOMAIN: 

f (x) = xf + x~ - cos(18xi) - cos(18x2) 

x* = (0.0, 0.0) f* = -2.0 

D = { X1 E R1 : -5.0 ~ X1 ~ 10.0} 
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SOLUTION: 

x;' ~ (3.142, 2.275) f* ~ 0.398 

Problem 8 and 9 (Hartman 3, 6) 

OBJECTIVE FUNCTION: 

where x = (x1 , ... , Xn), and 

H3: m = 4, n = 3 

i aij Ci Pij 

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673 
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470 
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547 
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828 

H6: m = 4, n = 6 

i a·· 1,J Ci 

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 

i Pij 

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650 
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

SEARCH DOMAIN: 

SOLUTIONS: 

H3: 
x* = (0.11461478, 0.55564892, 0.85254688), f* = -3.8627821. 
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H6: 

x* = (0.20168955, 0.15000963, 0.47687211, 0.27533377, 0.31165102, 0.65730111), 

f* = -3.322368. 

Problem 10, 11 and 12 (Shekel 5, 7, 10) 

OBJECTIVE FUNCTION: 

m 1 
J(x) = - L -----, 

. (x - a·)T(x - a·)+ c· 
i=l i i i 

where: 

'l ai C· i 

1 4.0 4.0 4.0 4.0 0.1 
2 1.0 1.0 1.0 1.0 0.2 
3 8.0 8.0 8.0 8.0 0.2 
4 6.0 6.0 6.0 6.0 0.4 
5 3.0 7.0 3.0 7.0 0.4 
6 2.0 9.0 2.0 9.0 0.6 
7 5.0 5.0 3.0 3.0 0.3 
8 8.0 1.0 8.0 1.0 0.7 
9 6.0 2.0 6.0 2.0 0.5 
10 7.0 3.6 7.0 3.6 0.5 

SEARCH DOMAIN: 

SOLUTIONS: 

S5: 
x* = ( 4.00003727, 4.00013375, 4.00003730, 4.00013346) f* = -10.153200. 

S7: 
x* = ( 4.00057280, 4.00069020, 3.99948997, 3.99960620) f* = -10.402941. 

SlO: 
x* = ( 4.00074671, 4.00059326, 3.99966290, 3.99950981) f* = -10.536410. 
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Appendix B 

The constrained test set 

Constrained Problem 1 (Cl) 

OBJECTIVE FUNCTION: 

CONSTRAINTS: 

SEARCH DOMAIN: 

SOLUTION: 

91 ( X) = -( X~ - X1) 

92 ( X) = - ( Xi - X 2) 

X1 E R1 : -0.5 ::::; X1 ::::; 0.5 

X2 E R 1 
: -20.0 ::::; X2 ::::; 1.0 

x~ = (0.0, 0.0) f* = 1.0 

Constrained Problem 2 (C2) 

OBJECTIVE FUNCTION: 

CONSTRAINTS: 

SEARCH DOMAIN: 

SOLUTION: 

91(x) = 8 - (2x1 - 3x2 - X3 + x4) 

92(x) = 12 - (6x1 + x2 + 2x3 - 2x4) 

93(x) = 10 + (x1 - X2 - X3 - X4) 

x~ = (2.8, 0.0, 5.2, 7.6) f* = 42.8 
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Constrained Problem 3 (C3) 

OBJECTIVE FUNCTION: 

CONSTRAINTS: 
2 2 2 g1(x)=x 1 +x2 -x3 

92 ( x) = 4 - ( xf + x~ + xD 

SEARCH DOMAIN: 

X1 E R1 : 0.0 ~ X1 ~ 20.0 

X2 E R1 : 0.0 ~ X2 ~ 20.0 

X3 E R1 
: 0.0 ~ X3 ~ 5.0 

SOLUTION: 

xi = (0.0, 1.4142, 1.4142) f* = 1.4142 

Constrained Problem 4 (C4) 

OBJECTIVE FUNCTION: 

CONSTRAINTS: 

SEARCH DOMAIN: 

SOLUTION: 

g1(x)=x1+x2-2 

92(x) = Xi - X2 

X1 E R1 : -20.0 ~ X1 ~ 20.0 

X2 E R1 : -20.0 ~ X2 ~ 20.0 

xi = (1.0, 1.0) f* = 1.0 

Constrained Problem 5 (C5) 

OBJECTIVE FUNCTION: 

SEARCH DOMAIN: 

SOLUTION: 

X1 E R1 : 0.0 ~ X1 ~ 1.0 

X2 E R1 : 0.0 ~ X2 ~ 2.0 

X3 E R1 : 0.0 ~ X2 ~ 3.0 

X4 E R1 : 0.0 ~ X2 ~ 4.0 

X5 E R1 : 0.0 ~ X2 ~ 5.0 

xi = (1.0, 2.0, 3.0, 4.0, 5.0) f* = 1.0 
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Constrained Problem 6 [58] ( C6) 

OBJECTIVE FUNCTION: 

CONSTRAINTS: 

h1(x) = x1 - 4.2(sinx4 )
2 = 0 

. 2 h2(x) = X2 - 4.2(sm x 5 ) = 0 

h3(x) = x3 - 4.2(sin x 6 )
2 = 0 

h4(x) = X1 + 2x2 + 2x3 - 7.2(sinx7 )
2 = 0 

SEARCH DOMAIN: 

SOLUTION: 

x;' = (2.4, 1.2, 1.2, *, *, *, *) f* = -3.4560 

Constrained Problem 7 [58] ( C7) 

OBJECTIVE FUNCTION: 

CONSTRAINTS: 

SEARCH DOMAIN: 

SOLUTION: 

2 4 2 91(x) = 2x1 + 3x2 + X3 + 4x4 + 5xs -127:::; 0 

92 ( x) = 7 X1 + 3x2 + lOx~ + x4 - X5 - 282 :::; 0 

g3(x) = 2xi + 3x~ + x 6 + 4x72 - 196:::; 0 

g4(x) = 4xi + x~ - 3x1x2 + 2x~ + 5x6 - llx1:::; 0 

x~ = (2.3305, 1.9513, -0.47754, 4.3658, -0.62448, 1.0381, 1.5942) f* = 680.63 
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Appendix C 

Proof of stopping criterion 

An outline of the proof of (2.4) is presented, which follows closely the proof in [7]. 

Given ii* and a*, the probability that at least one point, n ~ 1, has converged to J* is 

Pr[n* ~ lln, r] = 1 - (1 - a*)"l. (C.l) 

In the Bayesian approach, the uncertainty about the value of a* is characterized by speci­
fying a prior probability distribution for it. This distribution is modified using the sample 
information (namely, n and r) to form a posterior probability distribution. Let p* ( a* In, r) 
be the posterior probability distribution of a*. Then, 

Pr[n* ~ lln,r] { [1 - (1 - a')"] p,(a'lii, r)da* 

1 - { (1 - a')np,(a*lii, r)da*. (C.2) 

Now, although the r sample points converge to the current overall minimum, it is not known 
whether this minimum corresponds to the global minimum of J*. Utilizing (2.3), and noting 
that (1 - a )ii is a decreasing function of a, the replacement of a* in the above integral by a 
yields 

Pr[ii* 2 llii,r] 2 { [1- (1-a)n]p(alii,r)da. (C.3) 

Now, using Bayes theorem: 

( I
_ ) _ p(rla, n)p(a) 

pan, r - 1 . 
Io p(rla, n)p(a)da 

(C.4) 

Since the n points are sampled at random and each point has a probability a of converging 
to the current overall minimum, r has a binomial distribution with parameters a and n. 
Therefore 

p(rla, ii) = (:) a' (1 - a)"-r . (C.5) 

Substituting (C.5) and (C.4) into (C.3) gives: 

Pr[n* > lln, r] > 1 - fl ar(l - a)2~-rp(a)da 
- - fl ar(l - a)n-rp(a)da 

(C.6) 
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A suitable flexible prior distribution p( a) for a is the beta distribution with parameters a 
and b: 

Using this prior distribution gives: 

1 -
f(n +a+ b) r(2n - r + b) 

Pr[ii* >_ l Iii, r] > 
f(2n +a+ b) r(n - r + b) 

which is the required result. 

_ l- (n+a+b- l)! (2n-r+b- l)! 
(2n +a+ b - 1)! (ii - r + b - 1)!' 
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Appendix D 

Slope geometries for examples and 
critical failure plane figures 
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Figure D.1: Slope geometry for Example 1. 
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Figure D.2: Slope geometry for Example 2. 
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Figure D.3: Slope geometry for Example 3. 
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Figure D.4: Slope geometry for Example 4. 
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Figure D.5: Critical Failure plane found by the Leapfrog-Janbu analysis for Example 1. 
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Figure D.6: Critical Failure plane found by the Leapfrog-Spencer analysis for Example 1. 
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Figure D.7: Critical Failure plane found by the Leapfrog-Janbu analysis for Example 2. 
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Figure D.8: Critical Failure plane found by the Leapfrog-Spencer analysis for Example 2. 
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Figure D.9: Critical Failure plane found by the Leapfrog-Janbu analysis for Example 3. 
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Figure D.10: Critical Failure plane found by the Leapfrog-Spencer analysis for Example 3. 
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Figure D.11: Critical Failure plane found by the Leapfrog-Janbu analysis for Example 4. 
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Figure D.12: Critical Failure plane found by the Leapfrog-Spencer analysis for Example 4. 
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Appendix E 

Coordinates of critical failure planes 
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Table E.1: Critical failure plane coordinates calculated with Leapfrog-Janbu. 

Example. 1 Example. 2 Example. 3 Example. 4 
Node x-coord. y-coord. x-coord. y-coord. x-coord. y-coord. x-coord. y-coord. 

1 29.323 25.000 41.599 27.600 40.480 27.600 82.999 41.000 
2 29.661 24.786 43.593 26.304 41.498 26.967 83.376 40.849 
3 30.000 24.559 45.588 26.520 42.515 26.323 83.753 40.759 
4 30.338 24.356 47.582 26.348 43.533 25.783 84.130 40.706 
5 30.677 24.180 49.576 26.310 44.551 25.288 84.508 40.683 
6 31.015 24.035 51.570 26.295 45.568 24.852 84.885 40.679 
7 31.353 23.909 53.564 26.382 46.586 24.445 85.262 40.696 
8 31.692 23.802 55.559 26.293 47.604 24.375 85.639 40.725 
9 32.030 23.716 57.553 26.326 48.621 24.428 86.016 40.766 
10 32.369 23.643 59.547 26.489 49.639 24.577 86.393 40.824 
11 32.707 23.589 61.541 26.296 50.657 24.809 86.770 40.885 
12 33.046 23.546 63.535 27.859 51.67 4 25.076 87.147 40.956 
13 33.384 23.513 65.529 29.982 52.692 25.316 87.524 41.038 
14 33.722 23.491 67.524 32.318 53.710 25.577 87.901 41.127 
15 34.061 23.477 69.518 34.967 54.727 25.847 88.278 41.223 
16 34.399 23.473 71.512 37.486 55.745 26.109 88.655 41.325 
17 34.738 23.478 73.506 40.000 56.762 26.445 89.032 41.433 
18 35.076 23.492 57.780 26.639 89.410 41.547 
19 35.415 23.515 58.798 26.910 89.787 41.668 
20 35.753 23.546 59.815 27.185 90.164 41.795 
21 36.091 23.586 60.833 27.469 90.541 41.928 
22 36.430 23.633 61.851 27.779 90.918 42.068 
23 36.768 23.689 62.868 28.137 91.295 42.212 
24 37.107 23.751 63.886 28.567 91.672 42.365 
25 37.445 23.822 64.904 29.092 92.049 42.522 
26 37.784 23.898 65.921 29.710 92.426 42.686 
27 38.122 23.983 66.939 31.081 92.803 42.855 
28 38.460 24.073 67.957 32.527 93.180 43.030 
29 38.799 24.171 68.974 34.014 93.557 43.210 
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Table E. l continued: 

Example. 1 Example. 2 Example. 3 Example. 4 
Node x-coord. y-coord. x-coord. y-coord. x-coord. y-coord. x-coord. y-coord. 

30 39.137 24.275 69.992 35.527 93.935 43.397 
31 39.476 24.386 71.010 37.043 94.312 43.588 
32 39.814 24.503 72.027 38.552 94.689 43.785 
33 40.153 24.628 73.045 40.000 95.066 43.988 
34 40.491 24.759 95.443 44.195 
35 40.829 24.898 95.820 44.408 
36 41.168 25.044 96.197 44.626 
37 41.506 25.196 96.574 44.849 
38 41.845 25.356 96.951 45.079 
39 42.183 25.523 97.328 45.314 
40 42.522 25.697 97.705 45.555 
41 42.860 25.880 98.082 45.802 
42 43.198 26.069 98.459 46.057 
43 43.537 26.280 98.837 46.317 
44 43.875 26.503 99.214 46.584 
45 44.214 26.732 99.591 46.858 
46 44.552 26.966 99.968 47.140 
47 44.891 27.208 100.345 47.430 
48 45.229 27.456 100.722 47.726 
49 45.567 27.712 101.099 48.033 
50 45.906 27.974 101.476 48.346 
51 46.244 28.248 101.853 48.670 
52 46.583 28.699 102.230 49.004 
53 46.921 29.158 102.607 49.347 
54 47.260 29.620 102.984 49.703 
55 47.598 30.082 103.362 50.072 
56 47.936 30.541 103.739 50.456 
57 48.275 31.001 104.116 50.860 
58 48.613 31.468 104.493 51.286 
59 48.952 31.943 104.870 51.737 
60 49.290 32.426 105.247 52.221 
61 49.628 32.924 105.624 52.744 
62 49.967 33.448 106.001 53.318 
63 50.305 33.997 106.378 53.906 
64 50.644 34.510 106.755 54.488 
65 50.982 35.000 107.132 55.000 
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Table E.2: Critical failure plane coordinates calculated with Leapfrog-Spencer. 

Example. 1 Example. 2 Example. 3 Example. 4 
Node x-coord. y-coord. x-coord. y-coord. x-coord. y-coord. x-coord. y-coord. 

1 29.333 25.000 38.836 27.600 41.211 27.600 83.000 41.000 
2 30.245 24.620 40.357 26.806 44.383 26.494 84.023 40.945 
3 31.157 24.365 41.879 26.223 47.554 25.742 85.046 41.068 
4 32.069 24.251 43.400 26.485 50.726 25.101 86.069 41.271 
5 32.981 24.204 44.922 26.483 53.898 25.935 87.092 41.529 
6 33.893 24.216 46.444 26.302 57.069 26.817 88.115 41.825 
7 34.805 24.291 47.965 26.417 60.241 27.332 89.138 42.164 
8 35.717 24.407 49.487 26.439 63.412 28.460 90.161 42.544 
9 36.629 24.555 51.008 26.266 66.584 28.982 91.185 42.951 
10 37.541 24.747 52.530 26.566 69.756 31.829 92.208 43.380 
11 38.453 24.978 54.051 26.569 72.927 34.941 93.231 43.850 
12 39.365 25.233 55.573 26.635 76.099 37.535 94.254 44.343 
13 40.277 25.519 57.095 26.373 79.271 40.000 95.277 44.855 
14 41.189 25.842 58.616 26.367 96.300 45.414 
15 42.101 26.208 60.138 26.466 97.323 46.003 
16 43.013 26.618 61.659 27.160 98.346 46.615 
17 43.925 27.112 63.181 28.243 99.370 47.263 
18 44.837 27.643 64.703 29.600 100.393 47.963 
19 45.749 28.227 66.224 30.970 101.416 48.695 
20 46.661 29.295 67.746 32.360 102.439 49.473 
21 47.573 30.322 69.267 33.695 103.462 50.335 
22 48.485 31.407 70.789 35.253 104.485 51.272 
23 49.397 32.541 72.311 36.861 105.508 52.309 
24 50.309 33.870 73.832 38.409 106.531 53.620 
25 51.221 35.000 75.354 40.000 107.554 55.000 
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Appendix F 

Program Listings 
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F.1 Genetic Algorithm 

C ******************************************************************** C 
C ******************************************************************** C 
C C 
C 

C 

GENETIC ALGORITHM BY H.P.J.BOLTON C 

C 

C ******************************************************************** C 
C ******************************************************************** C 

C 

SUBROUTINE GA(F,N,X,BL,BU,NI,NE 
&,PFB,PFE,NBIN,NPOP,NGEN,BM,EM,FM,nSTIPE, 
#CP,NTOUR,DELTAXDELING,EINDGRENSGROOOTE,NVSK) 

IMPLICIT REAL*8(A-H,0-Z),INTEGER(I-N) 
INCLUDE 'params.inc' 
INTEGER POP(MAXPOP,MAXDNA*MAXSIZ),PPOP(MAXPOP,MAXDNA*MAXSIZ) 
INTEGER MNR(2),DNA,VOLGORDE(MAXPOP),OPTMETHOD,HERHAAL,RY,RYNR 
DOUBLE PRECISION GRENS(MAXSIZ,2),PERS(MAXPOP),FUNK(MAXPOP,2) 
DOUBLE PRECISION MAKSMUTC,MUT,FC(MAXPOP),GEBIED,FMINWAR 
DOUBLE PRECISION P,MUTW,XX(MAXPOP,MAXSIZ),TOURF(MAXSIZ,2) 
DOUBLE PRECISION FF(MAXPOP,2),DELTAX(MAXSIZ) 
DOUBLE PRECISION C(MAXCON),H(MAXCON),MAXDX,XMIN(MAXSIZ) 
DIMENSION X(N),BL(N),BU(N) 
COMMON /GAFEVAL/ NGAFEVAL 

C *************************** INPUT PARAMETERS*********************** C 
PFB=1.0 
PFE=15.0 
NBIN = 10 
NPOP = 8 
NGEN = 30 
BM = 0.08 
EM= 0.05 
FM= 1.0 
nSTIPE=O 
CP = 5 
NTOUR=10 
DELTAXDELING=3.0DO 

!= Number of binary bits per variable 
!= Number of population size 
!= Maximum number of generations per GA run 
!= Begin mutation probability 
!= End mutation probability 
!= Factor for varying mutation 
!= Selection type option 
!= Exponent Cc) for ranking method 
!= Number of strings in tournament 
!= Variable bounds decreasing factor 

EINDGRENSGROOOTE=l.OD-4 != Maximum variable bound size 
NVSK=5 != No improvement per run stopping criteria 
STOPHER=l.d-6 

C *************************** INPUT PARAMETERS*********************** C 
C ******************************************************************** C 
C MAIN PROGRAM BELOW C 
C ******************************************************************** C 

DO I=1,N 
GRENS(I,1)=BL(I) 
GRENS(I ,2)=BU(I) 
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ENDDO 
NPOPBEG=NPOP 
FMBEG=FM 
EMBEG=EM 
PFBBEG=PFB 
PFEBEG=PFE 
NGAFEVAL=O 

C ************* DETERMINE NUMBER OF INDEPENDANT GA RUNS************* C 
MAXDX=O.dO 
DO I=1,N 
DELTAX(I)=GRENS(I,2)-GRENS(I,1) 
IF (DELTAX(I).GT.MAXDX) MAXDX=DELTAX(I) 
ENDDO 
HERHAAL=IDNINT(log(MAXDX/EINDGRENSGROOOTE)/log(DELTAXDELING)+1.DO) 
IF (HERHAAL.LT.0.1D-1) THEN 
HERHAAL=1 
ENDIF 

C ************* DETERMINE NUMBER OF INDEPENDANT GA RUNS************* C 
C 

DO 5000,nHER=i,HERHAAL 
111 CONTINUE 

DO I=1,N 
DELTAX(I)=GRENS(I,2)-GRENS(I,1) 

! INDEPENDANT GA RUNS LOOP BEGIN 

IF (DELTAX(I).LT.EINDGRENSGROOOTE) THEN 
RETURN 
ENDIF 
ENDDO 

C ******************** INITIALIZE PARAMETERS************************* C 
GEBIED=2**NBIN-1 
DNA=N*NBIN 
DELTAM=(EM-BM)/dble(NGEN-1) 
DELTAPF=(PFE-PFB)/dble(NGEN) 
PL=O 
M=O 

C ******************** INITIALIZE PARAMETERS************************* C 
C ******** DETERMINE RELATIVE FITNESS IN RANKING SELECTION*********** C 

SOMPERS=O 
DO 10,I=i,NPOP 
PERS(I)=2*dble(NPOP+1-I)**CP/dble(NPOP**2+NPOP) 
SOMPERS=SOMPERS+PERS(I) 

10 CONTINUE 
SOM=O 
DO 15,I=i,NPOP 
SOM=SOM+PERS(I)/SOMPERS 
PERS(I)=SOM 

15 CONTINUE 
C ******** DETERMINE RELATIVE FITNESS IN RANKING SELECTION*********** C 
C *********************** GENERATE FIRST POPULATION****************** C 
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DO 18,I=1,NPOP 
DO 17,J=1,DNA 
CALL RANMAR(P,1) 
P=NINT(P) 
POP(I,J)=P 

17 CONTINUE 
18 CONTINUE 

C *********************** GENERATE FIRST POPULATION****************** C 
MINNR=O 

C *********** NUMBER OF GENERATIONS PER GA RUN LOOP BEGIN************ C 
19 M=M+1 

C ******* CALCULATE CHANGING PENALTY FACTOR FOR CONSTRAINTS********** C 
IF (PL.EQ.O) THEN 
PENFAK=PFB+DELTAPF*5*M/6.0d0 
PL=1 
ELSE 
PENFAK=PFB+DELTAPF*M 
PL=O 
ENDIF 

C ******* CALCULATE CHANGING PENALTY FACTOR FOR CONSTRAINTS********** C 
MUT=BM+(M-1)*(DELTAM) 
MAKSMUTC=NBIN-IDNINT(M*(dble(NBIN)-dble(NBIN)/FM)/dble(NGEN)) 

C ************* EVALUATE POPULATION OF STRINGS BEGIN***************** C 
DO 30,I=1,NPOP 

VOLGORDE(I)=I 
C ******* DETERMINE X-VALUE CORESPONDING TO BINARY REPRESENTATION**** C 

DO 25, II=1,N 
XX (I, II) =O 
DO 20, J=1, NBIN 
XX(I,II)=XX(I,II)+POP(I,NBIN*(II-1)+J)*2**(J-1) 

20 CONTINUE 
XX(I,II)=XX(I,II)*(GRENS(II,2)-GRENS(II,1))/GEBIED+GRENS(II,1) 

X(II)=XX(I, II) 

25 CONTINUE 
C ******* DETERMINE X-VALUE CORESPONDING TO BINARY REPRESENTATION**** C 

CALL FUN(N,X,F) FUNCTION EVALUATION FOR VECTOR X 
FC(I)=F 
NGAFEVAL=NGAFEVAL+1 
IF (NI.GT.O) THEN 
CALL CONIN(N,NI,X,C)! INEQUALITY CONSTRAINTS EVALUATION FOR VECTOR X 
DO CI=1,NI 
IF (C(CI).GT.O) THEN 
F=F+PENFAK*C(CI)**2 
ENDIF 
ENDDO 
ENDIF 
IF (NE.GT.O) THEN 
CALL CONEQ(N,NE,X,H)! EQUALITY CONSTRAINTS EVALUATION FOR VECTOR X 
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DO CI=1,NE 
F=F+PENFAK*H(CI)**2 
ENDDO 
ENDIF 
FUNK(I,1)=F 
FUNK(I,2)=I 
FF(I,1)=FUNK(I,1) 
FF(I,2)=I 

C ************ UPDATING OF GLOBAL BEST FUNCTION VALUE BEGIN********** C 
IF (NGAFEVAL.EQ.1) THEN 
FMIN=F 
DO KKL=1,N 
XMIN(KKL)=X(KKL) 
ENDDO 
ELSEIF (F.LT.FMIN) THEN 
FMIN=F 
DO KKL=1,N 
XMIN(KKL)=X(KKL) 
ENDDO 
ENDIF 

C ************ UPDATING OF GLOBAL BEST FUNCTION VALUE END************ C 
30 CONTINUE 

C ************* EVALUATE POPULATION OF STRINGS END******************* C 
C ***** ARRANGE FUNCTION VALUES FROM SMALLEST TO LARGEST************* C 

35 DO 40,RY=2,NPOP 
RYNR=RY 

38 IF (RYNR.EQ.1) THEN 
ELSE IF (FUNK(RYNR,1).LT.FUNK(RYNR-1,1)) THEN 
FUNK(RYNR-1,1)=FUNK(RYNR,1) 
FUNK(RYNR-1,2)=FUNK(RYNR,2) 
FUNK(RYNR,i)=FF(RYNR-1,1) 
FUNK(RYNR,2)=FF(RYNR-1,2) 
FF(RYNR-1,i)=FUNK(RYNR-1,1) 
FF(RYNR-1,2)=FUNK(RYNR-1,2) 
FF(RYNR,1)=FUNK(RYNR,1) 
FF(RYNR,2)=FUNK(RYNR,2) 
RYNR=RYNR-1 
GOTO 38 
ELSE 
END IF 

40 CONTINUE 
C ***** ARRANGE FUNCTION VALUES FROM SMALLEST TO LARGEST************* C 
C*************** STOPPING CRITERIA FOR CURRENT GA RUN**************** C 

F=FC(FUNK(1,2)) 
VERSKIL=DABS(F-FMINWAR) 
IF (M.EQ.1) THEN 
FMINWAR=F 
ELSEIF (F.LT.FMINWAR) THEN 
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FMINWAR=F 
IF (VERSKIL.LT.1.D-3) THEN 

MINNR=MINNR+1 
ELSE 
MINNR=1 
ENDIF 

ELSEIF (VERSKIL.LT.1.D-3) THEN 
MINNR=MINNR+1 
ENDIF 
IF (MINNR.GT.NVSK) THEN 
M=NGEN+1 
ENDIF 

C*************** STOPPING CRITERIA FOR CURRENT GA RUN**************** C 
C 

C ********************* SELECTION BEGIN ***************************** C 
C 

C *********************** RANKING SELECTION************************** C 
IF (NSTIPE.EQ.0) THEN 
DO 50,I=1,NPOP 

42 CALL RANMAR(P,1) 
RY=1 

45 IF (P.LT.PERS(RY)) THEN 
DO 47,J=1,DNA 
POPNR=FUNK(RY,2) 
PPOP(I,J)=POP(POPNR,J) 

47 CONTINUE 
ELSE 
RY=RY+1 
GOTO 45 
END IF 

50 CONTINUE 
C *********************** RANKING SELECTION************************** C 
C 

C ******************** TOURNAMENT SELECTION************************* C 
ELSEIF (NSTIPE.EQ.1) THEN 
DO I=1,NPOP 
DO J=1,NTOUR 
CALL RANMAR(P,1) 
P=NINT(NPOP*P) 
IF (P.EQ.0) THEN 
P=NPOP 
ENDIF 
TOURF(J,1)=FUNK(P,2) 
TOURF(J,2)=FUNK(P,1) 
ENDDO 
RY=NTOUR 
MINTSNR=TOURF(RY,1) 
MINTSV=TOURF(RY,2) 
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9 IF (RY.EQ.1) THEN 
ELSEIF (MINTSV.LT.TOURF(RY-1,2)) THEN 
RY=RY-1 
GOTO 9 
ELSE 
MINTSNR=TOURF(RY-1,1) 
MINTSV=TOURF(RY-1,2) 
RY=RY-1 
GOTO 9 
ENDIF 
DO J=1,DNA 
PPOP(I,J)=POP(MINTSNR,J) 
ENDDO 
ENDDO 
ENDIF 

C ******************** TOURNAMENT SELECTION************************* C 
C 

C ********************* SELECTION END ******************************* C 
DO 52,J=1,NPOP 
DO 51,I=1,DNA 
POP(J,I)=PPOP(J,I) 

51 CONTINUE 
52 CONTINUE 

C ********************* CROSSOVER BEGIN****************************** C 
DO 6O,I=1,NPOP/2 

C ********************* CHOOSE FIRST MATING PARENT RANDOMLY********** C 
CALL RANMAR(P,1) 
P=NINT((NPOP-(I-1)*2)*P) 
IF (P.EQ.O) THEN 
P=(NPOP-(I-1)*2) 
END IF 
MNR(1)=VOLGORDE(P) 
K=O 
DO 55,J=1,(NPOP-(I-1)*2) 
IF (J.NE.P) THEN 
VOLGORDE(J-K)=VOLGORDE(J) 
ELSE 
K=1 
END IF 

55 CONTINUE 
C ********************* CHOOSE FIRST MATING PARENT RANDOMLY********** C 
C ******************** CHOOSE SECOND MATING PARENT RANDOMLY********** C 

CALL RANMAR(P,1) 
P=NINT((NPOP-(I-1)*2-1)*P) 
IF (P.EQ.O) THEN 
P=(NPOP-(I-1)*2-1) 
END IF 
MNR(2)=VOLGORDE(P) 
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K=O 
DO 56,J=1,(NPOP-(I-1)*2-1) 
IF (J.NE.P) THEN 
VOLGORDE(J-K)=VOLGORDE(J) 
ELSE 
K=1 
END IF 

56 CONTINUE 
C ******************** CHOOSE SECOND MATING PARENT RANDOMLY********** C 

CALL RANMAR(P,1) 
P=NINT((DNA-1)*P) 
IF (P.EQ.O) THEN 
P=DNA-1 
END IF 
CROSPOS=P 
DO 57,J=CROSPOS+1,DNA 
POP(MNR(1),J)=PPOP(MNR(2),J) 
POP(MNR(2),J)=PPOP(MNR(1),J) 

57 CONTINUE 

CROSSOVER POSITION SELECTED 

C ********************* CROSSOVER END******************************** C 
C **************************MUTATION******************************* C 

DO 59,J=1,2 
RYMUT=MNR(J) 
DO KI=1,N 
DO 58,II=1,MAKSMUTC 
CALL RANMAR(MUTW,1) 
IF (MUTW.LT.MUT) THEN 
KOLMUT=(KI-1)*NBIN+II 
IF (POP(RYMUT,KOLMUT).EQ.1) THEN 
POP(RYMUT,KOLMUT)=O 
ELSE 
POP(RYMUT,KOLMUT)=1 
END IF 
END IF 

58 CONTINUE 
ENDDO 

59 CONTINUE 
C **************************MUTATION******************************* C 

60 CONTINUE 
1000 IF (M.LT.NGEN) THEN 

GOTO 19 
ENDIF 

C *********** NUMBER OF GENERATIONS PER GA RUN LOOP BEGIN************ C 
C ****************** TEST FOR CONSTRAINT VIOLATION******************* C 

DO I=1,N 
X(I)=XX(FUNK(1,2),I) 
ENDDO 
CALL CONIN(N,NI,X,C) 
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CALL CONEQ(N,NI,X,H) 
IVERANDERPF=O 
DO KL=1,NI 
IF (C(KL).GT.2.DO) IVERANDERPF=1 
ENDDO 
DO KL=1,NE 
IF (H(KL).GT.2.DO) IVERANDERPF=1 
ENDDO 
IF (IVERANDERPF.EQ.1) THEN 
PFB=PFB+20.DO 
PFE=PFE+20.DO 
GOTO 111 
ENDIF 

C ****************** TEST FOR CONSTRAINT VIOLATION******************* C 
C ****************DETERMINE NEW BOUNDS FOR FOLLOWING GA RUN********** C 

DO I=1,N 
GRENS(I,1)=X(I)-DELTAX(I)/(DELTAXDELING*2.d0) 
GRENS(I,2)=X(I)+DELTAX(I)/(DELTAXDELING*2.d0) 
ENDDO 

C *********** ENSURE THAT NEW BOUNDS STAY WITHIN PROBLEM BOUNDS***** C 
DO I=1,N 
IF (GRENS(I,1).LT.BL(I)) THEN 
GRENS(I,1)=BL(I) 
IF (GRENS(I,1).GT.GRENS(I,2)) GRENS(I,2)=GRENS(I,1)+0.1d-2 
ENDIF 
IF (GRENS(I,2).GT.BU(I)) THEN 
GRENS(I ,2)=BU(I) 
IF (GRENS(I,1).GT.GRENS(I,2)) GRENS(I,1)=GRENS(I,2)-0.1d-2 
ENDIF 
ENDDO 

C *********** ENSURE THAT NEW BOUNDS STAY WITHIN PROBLEM BOUNDS***** C 
C ****************DETERMINE NEW BOUNDS FOR FOLLOWING GA RUN********** C 
C ************************** TEST EARLY STOPPING CONDITION*********** C 

IF (NHER.NE.1.AND.dabs(FBEST-FMINWAR).LT.STOPHER) GOTO 1111 
FBEST=FMINWAR 

C ************************** TEST EARLY STOPPING CONDITION*********** C 
5000 CONTINUE 

C ******************** END OF NUMBER OF GA RUNS LOOP***************** C 
1111 DO I=1,N 

X(I)=XX(FUNK(1,2),I) 
ENDDO 
NPOP=NPOPBEG 
FM=FMBEG 
EM=EMBEG 
PFB=PFBBEG 
PFE=PFEBEG 
F=FMIN 
DO KLL=1,N 
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X(KLL)=XMIN(KLL) 
ENDDO 
RETURN 
END 

C ********************************END******************************* C 
C ******************************************************************** C 
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F.2 Particle Swarm Optimization Algorithm 

C ******************************************************************** C 
C ******************************************************************** C 
C 

C PARTICLE SWARM OPTIMIZATION BY H.P.J.BOLTON 
C 

C 
C C 
C ******************************************************************** C 
C ******************************************************************** C 

C 

SUBROUTINE PSO(X,N,F,BL,BU) 
IMPLICIT REAL*8(A-H,0-Z),INTEGER(I-N) 
INCLUDE 'params.inc' 
DIMENSION X(N),BL(N),BU(N) 
DOUBLE PRECISION XPSO(MAXPOP,MAXSIZ),XBEST(MAXSIZ) 
DOUBLE PRECISION XPSOBEST(MAXPOP,MAXSIZ),FPSOBEST(MAXPOP) 
DOUBLE PRECISION DELTAXPSO(MAXPOP,MAXSIZ),FPSO(MAXPOP) 

C *************************** INPUT PARAMETERS*********************** C 
NPS0=15 
C1=1.d0 
C2=1. dO 
WBEG=0.8d0 
STEPMAX=30.DO 
NSLOOPSMAX=4000 
NHEHAALMAX=20 

C *************************** INPUT PARAMETERS*********************** C 
C **************** INITIALIZE OF BEGINNING VECTORS BEGIN************* C 

DO I=1,NPSO 
DO JI=1,N 

CALL RANMAR(P,1) 
XPSO(I,JI)=BL(JI)+P*(BU(JI)-BL(JI)) 
DELTAXPSO(I,JI)=O.DO 

ENDDO 
ENDDO 

C **************** INITIALIZE OF BEGINNING VECTORS END*************** C 
NPSLOOPS=O 

C 

50 NPSLOOPS=NPSLOOPS+1 
W=WBEG 

DO I=1,NPSO 
DO II=1,N 

X(II)=XPSO(I,II) 
ENDDO 
CALL FUN(N,X,F) 
FPSO(I)=F 
NPSKOUNTS=NPSKOUNTS+1 

FUNCTION EVALUATION FOR VECTOR X 

C ************ UPDATING OF GLOBAL BEST FUNCTION VALUE BEGIN********** C 

100 



Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021 

IF (NPSLOOPS.EQ.1.AND.I.EQ.1) THEN 
FBEST=F 
DO KI=1,N 

XBEST(KI)=X(KI) 
ENDDO 

ELSEIF (F.LT.FBEST) THEN 
FBEST=F 
DO KI=1,N 

XBEST(KI)=X(KI) 
ENDDO 

ENDIF 
C ************ UPDATING OF GLOBAL BEST FUNCTION VALUE END************ C 
C ************ UPDATING OF PARTICLE BEST FUNCTION VALUE BEGIN******** C 

IF (NPSLOOPS.EQ.1) THEN 
FPSOBEST(I)=F 
DO KI=1,N 

XPSOBEST(I,KI)=X(KI) 
ENDDO 

ELSEIF (F.LT.FPSOBEST(I)) THEN 
FPSOBEST(I)=F 
DO KI=1,N 

XPSOBEST(I,KI)=X(KI) 
ENDDO 

ENDIF 
C ************ UPDATING OF PARTICLE BEST FUNCTION VALUE END********** C 

ENDDO 
C 

C *************** DETERMINE NEW PARTICLE POSITIONS BEGIN************* C 
DO I=1,NPSO 

CALL RANMAR(R1,1) 
CALL RANMAR(R2,1) 
DO II=1,N 
DELTAXPSO(I,II)=DELTAXPSO(I,II)*W+R1*C1*(XBEST(II)-XPSO(I,II)) 

# +R2*C2*(XPSOBEST(I,II)-XPSO(I,II)) 
IF (DELTAXPSO(I,II).GT.STEPMAX) DELTAXPSO(I,II)=STEPMAX 
IF (DELTAXPSO(I,II) .LT.-STEPMAX) DELTAXPSO(I,II)=-STEPMAX 
XPSO(I,II)=XPSO(I,II)+DELTAXPSO(I,II) 

C ******************* KEEP THE VARIABLE WITHIN BOUNDS**************** C 
IF (XPSO(I,II).LT.BL(II)) THEN 
XPSO(I,II)=BL(II) 

ENDIF 
IF (XPSO(I,II).GT.BU(II)) THEN 
XPSO(I,II)=BU(II) 

ENDIF 
C ******************* KEEP THE VARIABLE WITHIN BOUNDS**************** C 

ENDDO 
ENDDO 

C *************** DETERMINE NEW PARTICLE POSITIONS BEGIN************* C 
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IF (NPSLOOPS.EQ.1) THEN 
NSAMEBEST=1 
FSAMEBEST=FBEST 
ELSEIF (DABS(FSAMEBEST-FBEST).LT.1.D-5) THEN 
NSAMEBEST=NSAMEBEST+1 

IF (FBEST.LT.FSAMEBEST) THEN 
FSAMEBEST=FBEST 
ENDIF 

ELSEIF (FBEST.LT.FSAMEBEST) THEN 
NSAMEBEST=1 
FSAMEBEST=FBEST 
ENDIF 
IF (NPSLOOPS.EQ.NSLOOPSMAX.OR.NSAMEBEST.EQ.NHEHAALMAX) THEN 
F=FSAMEBEST 

DO KI=1,N 
X(KI)=XBEST(KI) 

ENDDO 
RETURN 
ELSE 
GOTO 50 
ENDIF 
END 

C ********************************END******************************* C 
C ******************************************************************** C 
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F.3 Master program for parallel optimization infras­
tructure 

C ******************************************************************** C 
C MULTI OPTIMIZATION METHOD FOR UNCONSTAINED AND CONSTRAINED PROBLEMS C 
C C 
C 

C 

C 

C 

C 

C 

C 

PROGRAMMED BY H.P.J.BOLTON 

UNIVERSITY OF PRETORIA 

DEPARTMENT OF MECHANICAL ENGINEERING 

THIS VERSION: 22 AUGUST 2000 

C 

C 

C 

C 

C 

C 

C 
C C 
C ******************************************************************** C 

PROGRAM MASTER 
IMPLICIT REAL*8(A-H,0-Z),INTEGER(I-N) 
INCLUDE 'params.inc' 

C ******************* STANDARD PARALLEL DECLARATIONS***************** C 
include' .. /include/fpvm3.h' 
integer i, info, nproc, nhost, msgtype 
integer mytid, iptid, dtid, tids(128),me 
character*18 nodename, host 
character*8 arch 

C ******************* STANDARD PARALLEL DECLARATIONS***************** C 
DOUBLE PRECISION X(MAXSIZ),BL(MAXSIZ),BU(MAXSIZ) 
DOUBLE PRECISION GF(MAXSIZ),XMIN(MAXSIZ) 
DOUBLE PRECISION C(MAXCON),H(MAXCON) 
double precision probil(15) 
integer nmaxfunct(128),nmaxgradt(128) 
double precision contrn(15),contrr(15) 
double precision tcontrn(15),tcontrr(15) 
character*! converged*! 
dimension iprobmap(56) 
COMMON /PRIORI/ FAPRIORI 
COMMON /PRDATA/ NPROB 
dimension nalgori~hm(15) 
data nalgorithm /1,3,5,6,10,14,15,16,17,19,20,21,25,26,27/ 
data iprobmap /1,2,4,6,8,10,13,22,23,24,25,26, 

& 47,48,49, 
& 

& 

& 

& 

& 

& 

& 

27,28,38,39, 
29,30,31,32,33, 
34,35,36,37, 
44,45,46, 
0,0,0, 
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o, 
50,51,52,53,54,55,56/ 
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C 
C********************** RECEIVE PROBLEM INFORMATION FROM DATAFILE**** C 

NAMELIST / INLIG / METHOD,MULTIJANEE,MAXITER,MINITER 
&,PROBSTOP,NREPEATS,NBPROB,NEPROB,FSELLE,CONVERG,nproc 

OPEN (UNIT=23, FILE='datafile.inp', STATUS='OLD') 
REWIND(23) 
READ (23, NML = INLIG) 
CLOSE(23) 

C********************** RECEIVE PROBLEM INFORMATION FROM DATAFILE**** C 
call timer (time01) 

C ***************** INITIALIZE THE MPPVM WITH SLAVES**************** C 
call pvmfmytid( mytid) ! give master an id (mtid=mytid) 
call pvmfconfig( nhost, narch, dtid, host, arch, speed, info) 
nhost=nproc 
write(*,*) nhost,' hosts detected in configuration.' 

C ***************** INITIALIZE THE MPPVM WITH SLAVES**************** C 
C ***************** INITIALIZE THE RANDOM NUMBER GENERATOR*********** C 

OPEN(UNIT=20,FILE='random.def') 
READ(20,*) ISEED 
READ(20,*) JSEED 
CLOSE(20) 
iseed = 1802 
jseed = 9373 
CALL RMARIN(ISEED,JSEED) 
ISEED=ISEED+7 
IF (ISEED.GT.31328) THEN 
ISEED=ISEED-31328 
ENDIF 
JSEED=JSEED+3 
IF (JSEED.GT.30081) THEN 
JSEED=JSEED-30081 
ENDIF 
OPEN(UNIT=20,FILE='random.def') 
WRITE(20,*) ISEED 
WRITE(20,*) JSEED 
CLOSE(20) 

C ***************** INITIALIZE THE RANDOM NUMBER GENERATOR*********** C 
C ***************** INITIALIZE THE OUTPUT FILES********************** C 

OPEN(1,FILE='results.out') 
WRITE(6,3000) 
WRITE(i,3000) 
WRITE(i,2000) 
open (65,file='averages.out',status='unknown') 
open (70,file='variables.out',status='unknown') 
OPEN(UNIT=45,FILE='algprob.out') 
OPEN(UNIT=55,FILE='contribute.out') 
write(55,1201) (nalgorithm(ki),ki=1,15) 
write(45,1202) (nalgorithm(ki),ki=1,15) 
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C ***************** INITIALIZE THE OUTPUT FILES********************** C 
C 

C 

C 

C 

NRPROBS=O TOTAL NUMBER OF PROBLEMS DONE 
NFAIL=O TOTAL NUMBER OF FAILURES TO CONVERGE 
NTNFEVALS=O TOTAL NUMBER OF NORMILIZED FUNCTION EVALUATIONS 
NTFEVAL=O TOTAL OF PURE FUNCTION EVALUATIONS 
NTGRADFEVALS=O TOTAL OF FUNC EVALS DUE TD GRAD VECT EVALS 

DO 140,NRI=NBPROB,NEPROB 

NAVEFEVALS=O 
NAVECOMP=O 
FMINAVE=O 
NAVER=O 
NAVEN=O 
do ki=i,15 
tcontrn(ki)=O.dO 
tcontrr(ki)=O.dO 
enddo 
NCONVERG=O 

AVERAGE NUMBER OF FUNCTION EVALS 
AVERAGE NUMBER OF COMPOUND EVALS 
AVERAGE FUNCTION VALUE 
NUMBER OF TIMES R 
NUMBER OF TIMES N 

AVERAGE NUMBER OF CONVERGENGE 
NPROB=iprobmap(NRI) ! PROBLEM NUMBER BEING OPTIMIZED 

CALL GETPROBNO (N,BL,BU,NI,NE) ! VERKRY PROBLEEM INLIGTING 
C ******************** PROBLEM REPEATS LOOP BEGIN******************** C 

DO 138,JJ=i,NREPEATS 
call timer (time!) 
do kn=i,128 

nmaxfunct(kn)=O 
nmaxgradt(kn)=O 

enddo 
do ki=i,15 
contrn(ki)=O.dO 
contrr(ki)=O.dO 
enddo 
NGRADEVAL=O 
NFUNCEVAL=O 
NRPROBS=NRPROBS+1 
ndoprob=O 
write(45,*) 'Prob.=' ,nprob,' Nr = ',jj 

C ******************** STARTING PROBABILITIES FOR ALGORITHMS 
if (ni.eq.0.and.ne.eq.O) then 
probil(1)=0.15DO PROB THAT MBB-BFGS 
probil(2)=0.15DO PROB THAT BFGS 
probil(3)=0.05DO PROB THAT SQSD99 
probil(4)=0.0DO PROB THAT ETDPC99 
probil(5)=0.00DO PROB THAT CARROL-GA 
probil(6)=0.07DO PROB THAT BOLTON-GA 
probil(7)=0.00DO PROB THAT CONSTRAINED MBB-BFGS 
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C 

C 

probil(8)=0.05DO PROB THAT CONSTRAINED LEAPFROG 
probil(9)=0.05DO PROB THAT LEAPFROG 
probil(10)=0.07DO PROB THAT MOCKUS 
probil(11)=0.06DO PROB THAT PARTICLE SWORM 
probil(12)=0.10DO PROB THAT CLUSTERING 
probil(13)=0.1DO PROB THAT POLACK RIBIER 
probil(14)=0.05DO PROB THAT DYNAMIC-Q 
probil(15)=0.1DO PROB THAT MBB-POLACK RIBIER 

else 
probil(1)=0.0DO PROB THAT MBB-BFGS 
probil(2)=0.0DO PROB THAT BFGS 
probil(3)=0.0DO PROB THAT SQSD99 
probil(4)=0.25DO PROB THAT ETOPC99 
probil(5)=0.0DO PROB THAT CARROL-GA 
probi1(6)=0.0DO PROB THAT BOLTON-GA 
probil(7)=0.25DO PROB THAT CONSTRAINED MBB-BFGS 
probil(8)=0.25DO PROB THAT CONSTRAINED LEAPFROG 
probil(9)=0.0DO PROB THAT LEAPFROG 
probil(10)=0.0DO PROB THAT MOCKUS 
probil(11)=0.0DO PROB THAT PARTICLE SWORM 
probil(12)=0.0DO PROB THAT CLUSTERING 
probil(13)=0.0DO PROB THAT POLACK RIBIER 
probil(14)=0.25DO PROB THAT DYNAMIC-Q 
probil(15)=0.0DO PROB THAT MBB-POLACK RIBIER 

endif 
******************** STARTING PROBABILITIES FOR ALGORITHMS 

IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 

IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 
IS CHOSEN 

********* C 

C ************** SNYMAN-FATTI STOPPING CONDITION LOOP BEGIN********** C 
J=O 

C 

NR=1 
20 continue 

nodename = 'slave' 
arch = '*' · ! '*' random slave calling 
call pvmfspawn( nodename, PVMDEFAULT, arch, nproc, tids, numt) 
nmaxtids=tids(nproc) 

C ********************* CHECK FOR SPAWNING PROBLEMS****************** C 
if( numt .lt. nproc) then 

print*, 'trouble spawning' ,nodename 
print*, 'Check tids for error code' 
call shutdown( numt, tids) 

endif 
C ********************* CHECK FOR SPAWNING PROBLEMS****************** C 
C 

C ********************* SEND DATA FOR EACH SLAVE********************* C 
do indexslave = 1, nproc 

C 

call GETRANDOM (N,X,bl,bu) GET RANDOM STARTING VECTOR 
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C 
if(MULTIJANEE.eq.1) then 
call CHOOSEMETHOD(METHOD,probil) DETERMINE OPT. ALGORITHM USED 
endif 

C 
call pvmfinitsend( PVMDEFAULT, info) 
call pvmfpack( INTEGER4,nproc 1, 1, info ) 

call pvmfpack( INTEGER4,tids , nproc, 1, info ) 

call pvmfpack( INTEGER4,iseed 1, 1, info ) 

call pvmfpack( INTEGER4,jseed 1, 1, info ) 

call pvmfpack( INTEGER4,n 1, 1, info ) 

call pvmfpack( INTEGER4,nprob 1, 1, info ) 

call pvmfpack( INTEGER4,ni 1, 1, info ) 

call pvmfpack( INTEGER4,ne 1, 1, info ) 

call pvmfpack( INTEGER4,j 1, 1' info ) 

call pvmfpack( REALS,fmin 1, 1, info ) 

call pvmfpack( REALS,bl 20, 1, info ) 

call pvmfpack( REALS,bu 20, 1, info ) 

call pvmfpack( REALS,xmin 20, 1, info ) 

call pvmfpack( REALS,ndoprob 1, 1, info ) 

call pvmfpack( INTEGER4,jj 1, 1, info ) 

call pvmfpack( REALS, x 20, 1, info ) 

call pvmfpack( INTEGER4,METHOD 1, 1, info ) 

C 
msgtype = 1 
itoid = tids(indexslave) 

call pvmfsend(itoid,msgtype,info) 
enddo 

C ********************* SEND DATA FOR EACH SLAVE ********************* 
C 
C ********* RECEIVING OF OPTIMIZATION RESULTS FROM SLAVES BEGIN****** 
C 

do 30 i=1,maxiter 
khi=O 

291 continue 
khi=1+khi 

C 

C 

C ********************* RECEIVE RESULTS FROM SLAVE no. 
msgtype = 2 

me********** C 

call pvmfrecv( -1, msgtype, info) 
C 

call pvmfunpack( INTEGER4,me 
call pvmfunpack( INTEGER4,ntids 
call pvmfunpack( INTEGER4,NtGRADEVAL 
call pvmfunpack( INTEGER4,NtFUNCEVAL 
call pvmfunpack( REALS, x 
call pvmfunpack( REALS, f 
call pvmfunpack( REALS, dummy 
call pvmfunpack( INTEGER4,method 
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C ********************* RECEIVE RESULTS FROM SLAVE no.= me********** C 

C 

if (ntids.lt.tids(1)) goto 291 ! discard pipeline data 
CALL FUN(N,X,F) 
j=j+1 
nmaxfunct(me)=nmaxfunct(me)+NtFUNCEVAL 
nmaxgradt(me)=nmaxgradt(me)+NtGRADEVAL 

INDIVIDUAL EVALUATIONS 
INDIVIDUAL EVALUATIONS 

write(45,367) (probil(kl),kl=1,15) 
C 

C ************** CHECK IF SOLUTION FALLS WITHIN BOUNDS*************** C 
DD KI=1,N 
IF ((X(KI)-BU(KI)).GT.1.d-6) f=1.d99 
IF ((BL(KI)-X(KI)).GT.1.d-6) f=1.d99 
ENDDD 

C ************** CHECK IF SOLUTION FALLS WITHIN BOUNDS*************** C 
C ************** CHECK IF SOLUTION DOES NOT VIOLATE CONSTRAINTS****** C 

if (ne.gt.0) then 
call coneq(n,ne,x,h) 

do ik=1,ne 
if (dabs(h(Ik)).gt.1.d-6) f=1.d99 

enddo 
endif 
if (ni.gt.O) then 

call conin(n,ni,x,c) 
do ik=1,ni 

endif 

if (c(Ik).gt.1.d-6) 
enddo 

f=1.d99 

C ************** CHECK IF SOLUTION DOES NOT VIOLATE CONSTRAINTS****** C 
C 

C ************* TEST FOR GLOBAL MINIMUM FOUND SOFAR ****** 
kl=O 

71 kl=kl+1 
if (method.ne.nalgorithm(kl)) goto 71 
contrn(kl)=contrn(kl)+1.d0 
F=F-DUMMY 
FVERSKIL=DABS(F-FMIN) 
IF (J.EQ.1) THEN 

FMIN=F 
DD JJK=1,N 
XMIN(JJK)=X(JJK) 
ENDDO 
NR=1 
CALL VNORM (gfnorm,gf,N) 
contrr(kl)=contrr(kl)+1.d0 

ELSEIF (F.LT.FMIN) THEN 
IF (FVERSKIL.LT.FSELLE) THEN 

NR=NR+1 

CALCULATE GRADIENT VECTOR NORM 
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contrr(kl)=contrr(kl)+1.d0 
ELSE 

NR=1 
do ki=1,15 
contrr(ki)=O.dO 
enddo 
contrr(kl)=contrr(kl)+1.d0 

ENDIF 
FMIN=F 
DO JJK=1,N 
XMIN(JJK)=X(JJK) 
ENDDO 
CALL VNORM (gfnorm,gf,N) 

ELSEIF (FVERSKIL.LT.FSELLE) THEN 
NR=NR+1 
contrr(kl)=contrr(kl)+1.d0 
ENDIF 

CALCULATE GRADIENT VECTOR NORM 

C ************* TEST FOR GLOBAL MINIMUM FOUND SOFAR ****** 

C 

C 

C 

C 

C ** 

QNR=CONVPROB(J,NR) ! CALCULATE FATTI CONVERGENCE PROBABILITY 

write(70,5001) nprob,jj,j,rne,rnethod,f,NtFUNCEVAL,NtGRADEVAL,qnr 
&,(x(i),i=1,n) 

IF (QNR.lT.PROBSTOP.OR.J.LT.MINITER) then 

call GETRANDOM (N,X,bl,bu) ! GET RANDOM STARTING VECTOR 
if(MULTIJANEE.eq.1) then 
call CHOOSEMETHOD(METHOD,probil) ! DETERMINE OPT. ALGORITHM USED 
endif 

SEND DATA TO SPECIFIC SLAVE AFTER RECEIVING RESULTS FROM SLAVE ** C 
call pvmfinitsend( PVMDEFAULT, info ) 

call pvmfpack( INTEGER4,nproc 1, 1, info ) 

call pvmfpack( INTEGER4,tids , nproc, 1, info ) 

call pvmfpack( INTEGER4,iseed 1, 1, info) 
call pvmfpack( INTEGER4,jseed 1, 1, info ) 

call pvmfpack( INTEGER4,n 1, 1, info ) 

call pvmfpack( INTEGER4,nprob 1, 1, info ) 

call pvmfpack( INTEGER4,ni 1, 1, info ) 

call pvmfpack( INTEGER4,ne 1, 1, info ) 

call pvmfpack( INTEGER4,j 1, 1, info ) 

call pvmfpack( REAL8,fmin 1, 1, info ) 

call pvmfpack( REAL8,bl , 20, 1, info ) 

call pvmfpack( REAL8,bu , 20, 1, info ) 

call pvmfpack( REAL8,xmin , 20, 1, info ) 

call pvmfpack( REAL8,ndoprob 1, 1, info ) 

call pvmfpack( INTEGER4,jj 1, 1, info ) 
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C 

call pvmfpack( REAL8, x 
call pvmfpack( INTEGER4,METHOD 

msgtype = 1 
itoid=tids(me) 
call pvmfsend(itoid,msgtype,info) 

, 20, 1, info ) 
1, 1, info) 

C ** SEND DATA TO SPECIFIC SLAVE AFTER RECEIVING RESULTS FROM SLAVE** C 
else 

do kill=1, nproc 
call pvmfkill(tids(kill),info) 

enddo 
goto 312 

endif 
30 continue 

KILL SLAVES AFTER CONVERGED 

C ********* RECEIVING OF OPTIMIZATION RESULTS FROM SLAVES END******** C 
C ************** SNYMAN-FATTI STOPPING CONDITION LOOP END************ C 

312 continue 
C ****************** TEST FOR CONVERGENCE TO KNOWN SOLUTION********** C 

IF (DABS(FAPRIORI).LT.FSELLE) THEN 
FPRIORIVERSKIL=DABS(FMIN-FAPRIORI) 
ELSE 
FPRIORIVERSKIL=DABS((FMIN-FAPRIORI)/FAPRIORI) 
ENDIF 
IF (FPRIORIVERSKIL.GT.CONVERG) THEN 
NFAIL=NFAIL+1 
CONVERGED='N' 
ELSE 
CONVERGED='C' 
ENDIF 
IF (FMIN.LT.(FAPRIORI-CONVERG)) THEN 
CONVERGED='L' 
ENDIF 

C ****************** TEST FOR CONVERGENCE TO KNOWN SOLUTION********** C 
IF (CONVERGED.EQ.'C'.OR.CONVERGED.EQ.'L') THEN 

C 

NCONVERG=NCONVERG+1 
ENDIF 
ntotalmaxfunk=O 
ntotalmaxgrad=O 
ntotalmaxnorm=O 
do kn=1, 128 
nnorme=nmaxfunct(kn)+n*nmaxgradt(kn) 
if (nnorme.gt.ntotalmaxnorm) then 
ntotalmaxnorm=nnorme 
if (nmaxfunct(kn).gt.ntotalmaxfunk) then 

ntotalmaxfunk=nmaxfunct(kn) 
ntotalmaxgrad=nmaxgradt(kn) 
endif 
enddo 
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NFUNCEVAL=ntotalmaxfunk 
NGRADEVAL=ntotalmaxgrad 

C ************* UPDATE NUMBER OF FUNCTION EVALUATION TOTALS********** C 
NTFEVAL=NTFEVAL+NFUNCEVAL 
NFEVAL=NFUNCEVAL+(N)*NGRADEVAL 
NTNFEVALS=NTNFEVALS+NFEVAL 
NTGRADFEVALS=NTGRADFEVALS+(N)*NGRADEVAL 
NAVEFEVALS=NAVEFEVALS+NFUNCEVAL 
NAVECOMP=NAVECOMP+NFUNCEVAL+(N)*NGRADEVAL 
NAVER=NAVER+NR 
NAVEN=NAVEN+J 
FMINAVE=FMINAVE+FMIN 
IF (JJ.EQ.1) THEN 
FBEST=FMIN 
ELSEIF (FMIN.LT.FBEST) THEN 
FBEST=FMIN 
ENDIF 

FUNCTION COST 
COMPOUND COST 

C ************* UPDATE NUMBER OF FUNCTION EVALUATION TOTALS********** C 
c ************************* PRINTING RESULTS************************* C 

call timer(time2) 
elapsed=(time2-time1) 
fdifference=DABS(FMIN-FAPRIORI) 
write(*,2OO1) nprob,fmin,NFUNCEVAL,NGRADEVAL,NFEVAL,NR,J, 

& converged,elapsed 
IF (N.LE.11) 

& write(i,1OOO) nprob,n,converged,fmin,fdifference,gfnorm,NFUNCEVAL 
&,NGRADEVAL,nr,j,NCONVERG,qnr,(xmin(i),i=1,N) 

IF (N.GT.11) 
& write(i,1OO1) nprob,n,converged,fmin,fdifference,gfnorm,NFUNCEVAL 
&,NGRADEVAL,nr,j,NCONVERG,qnr,(xmin(i),i=1,1O) 

c ************************* PRINTING RESULTS************************* C 
do ki=1,15 
tcontrn(ki)=tcontrn(ki)+contrn(ki) 
tcontrr(ki)=tcontrr(ki)+contrr(ki) 
enddo 

138 ENDDO 
C ******************** PROBLEM REPEATS LOOP END********************** C 

NAVER=idnint( dble(NAVER)/dble(NREPEATS)) 
NAVEN=idnint( dble(NAVEN)/dble(NREPEATS)) 
Qdum=CONVPROB(NAVEN,NAVER) ! CALCULATE CONVERGENCE PROBABILITY 
WRITE(65,665) nprob,NAVEFEVALS/NREPEATS,NAVECOMP/NREPEATS 

&,NREPEATS-NCONVERG,NAVER,NAVEN,Qdum 
&,dabs(FMINAVE/DBLE(NREPEATS)-FAPRIORI),dabs(FBEST-FAPRIORI) 

do ki=1,15 
tcontrn(ki)=tcontrn(ki)/dble(NREPEATS) 
tcontrr(ki)=tcontrr(ki)/dble(NREPEATS) 

enddo 
write(55,3467) nprob,(tcontrr(ki),tcontrn(ki),ki=1,15) 
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140 ENDDO 

C ******************* SUMMARY OF ANALYSIS RESULTS******************** C 
call timer (time02) 
elapsed=(time02-time01) 
write(6,2002) NTFEVAL,NTFEVAL/NRPROBS,nfail,elapsed,NTGRADFEVALS, 

& NTNFEVALS/NRPROBS 
write(1,2002) NTFEVAL,NTFEVAL/NRPROBS,nfail,elapsed,NTGRADFEVALS, 

& NTNFEVALS/NRPROBS 
epsmch1=dpmeps() 
epsmch=1.d-15 
write(6,*) Machine precision= ',epsmch1 

Machine precision= ',epsrnch1 write (1, *) 
write(6,*) 
write (1, *) 
write(6,*) 
write (1, *) 

Current precision= ',epsrnch 
Current precision= ',epsrnch 

' ' 
' ' 

C ******************* SUMMARY OF ANALYSIS RESULTS******************* C 
CLOSE(65) 
CLOSE(1) 
close(70) 
CLOSE(45) 
CLOSE(55) 
call pvmfexit(info) ! leave PVM before exiting 

STOP 
C ********************** FORMATS FOR WRITE*************************** C 

367 format(1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' 
&,1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' 
&,1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' 
&) 

665 format(' AVE. PROBLEM= ',i4,' FUNG= ',i9, 
&'COMPOUND= ',i9,' #FAIL= ',i4,' r =',i2,' n =',i3, 
&' qnr=' ,f7.4,' FMINAVE=',e12.5,' FBEST=',e12.5) 

1000 format (i3,i4,4x,a1,1x,3e14.5,2i6,1i3,' /' ,2i4,f7.4,11e14.5) 
1001 format (i3,i4,4x,a1,1x,3e14.5,2i6,1i3,' /',2i4,f7.4,10e14.5, 

& ' ... etc. . .. ') 
1201 format (' 

&,' Alg.',12,' 
& ' 

' 
Alg.', 12,' 

' , 'Alg. ' , 12,' 
Alg.', 12,' 
Alg.',12,' 

Alg. ',12,' 
Alg.',12,' 
Alg.',12,' 

& , ' Alg. ' , 12, ' Alg. ' , 12, ' Alg. ' , 12, ' 
1202 format('Alg.',12,' Alg.',12,' Alg.',12 

& , ' Alg. ' , 12, ' Alg. ' , 12, ' Alg. ' , 12, ' Alg. ' , 12 
& , ' Alg.', 12,' Alg. ', 12,' Alg. ', 12,' Alg.', 12 
&,' Alg.',12,' Alg.',12,' Alg.',12,' Alg.',12) 

2000 format ('No. n Conv f-* lf-*-fal 
& 'llg-*11 Nf1 Nf2', 
& r I n # p 
& 

& 

Variables x_i-*',/, 
108 ( ' - ')) 
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2001 FORMAT(' Pr# ',I2,': Fopt = ',e12.5,' nfe = ',i7,i8,i9, 
& i3,' / ' , i4, ' ' , A1, ' ' , 1f 5. 2, 's') 

2002 FORMAT(/,' Summary:',/,' nfe_tot = ',I9,'; nfe_ave = ',i5, 
& '; #failures= ',i3,'; ttime = ',1f7.2,'s',// 
& Gradient evaluations= ',i12,/, 
& Normalized cost = ',i12,/) 

3000 FORMAT (/,1X,' UNCONSTRAINED AND CONSTRAINED OPTIMIZATION VIA MULT 
&I-ALGORITHM IMPLEMENTATION 
&',//, 
& ' 
&ld', / /, 
& ' 

& ' 
& ' 
& ' 

Copyright (c) June 2000 by Manie Bolton and Albert Groenwo 

All Commercial Rights Reserved',/, 
Use of this program for purposes other than',/, 

EDUCATION, RESEARCH and DEMONSTRATION',/, 
is Unprofessional and Illegal',//) 

3467 format ('Pr. = ' , I2, ' I ' , 1f 4. 1, ' ' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1 
& ' 

' 
& ' 

' 
& ' 

' 
&, ' 

I ' , 1f 4. 1, ' 
I ', 1f4 .1,' 
I', 1f4.1,' 
I ' , 1f 4. 1, ' 

' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1 
' , 1f4 .1, ' I ' , 1f4. 1,' ' , 1f 4 .1,' I ' , 1f4. 1, ' ' , 1f4 .1 
' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1 
' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1 

& , ' I ', 1f4 .1,' ', 1f4 .1) 
5001 FORMAT(' Pr# ',I2,' Nr# ',I2,' r# ',I3,' sl# ',I3,' Alg# ',I2 

&,': Fopt = ',e12.5, 
&' nfe = ',i7,i8,' qnr = ',f7.4,' x = ',10e14.5) 

C ********************** FORMATS FOR WRITE*************************** C 
END 

C ******************************************************************** C 
C C 
C 

C 

C 

FUNCTION:CALCULATE THE SNYMAN-FATTI 
STOPPING CRITERIA CONVERGENCE PROBABILITY 

C 

C 

C 

C ******************************************************************** C 
FUNCTION CONVPROB(j,nr) 
IMPLICIT REAL*8 (A-H,0-Z) 
DATA ONE /1.DO/ 
na=1 ! na = beta distribution B(a,b) parameter a 
nb=5 ! nb = beta distribution B(a,b) parameter b 
CONVPROB=1.d0 
DO K=O,j-1 
CONVPROB=CONVPROB*(2*j-nr+nb-1-K)/(2*J+nb+na-1-K) 
ENDDO 
CONVPROB=1.DO-CONVPROB 
RETURN 
END 

C ******************************************************************** C 
C C 

subroutine shutdown( nproc, tids) 
C C 
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C ******************************************************************** C 
integer nproc, tids(*) 
do 10 i=1, nproc 

call pvmfkill( tids(i), info) 
10 continue 

call pvmfexit( info) 
stop 

return 
end 

KILL ALL SPAWNED TASKS 

KILL MYSELF 

C ******************************************************************** C 
C 

C 
C 
C 

SUBROUTINE CHOOSEMETHOD(METHOD,probil) 

DETERMINES WHICH OPTIMIZATION ALGORITH WILL BE USED 

C 

C 
C 
C 

C ******************************************************************** C 
IMPLICIT REAL*8 (A-H,0-Z),INTEGER(I-N) 
double precision probil(15),sumprob(15) 
dimension nalgorithm(15) 
integer ntimesalg(15) 
data nalgorithm /1,3,5,6,10,14,15,16,17,19,20,21,25,26,27/ 

C 
do kim=1,15 
if(kim.eq.1) then 
sumprob(1)=probil(1) 
else 
sumprob(kim)=sumprob(kim-1)+probil(kim) 
endif 

enddo 
if (sumprob(15).gt.1.000000001d0.or.sumprob(15).lt.0.989d0) then 
write(*,*) 'prob.gt.1',sumprob(15) 

write(*,*) 'sumprob',(sumprob(kl),kl=1,15) 
stop 
endif 

CALL RANMAR(P,1) 
ialg=O 

10 ialg=ialg+1 
IF (P.LE.sumprob(ialg)) THEN 

METHOD=nalgorithm(ialg) 
ELSE 
GOTO 10 
ENDIF 

return 
end 

C ********************************END******************************* C 
C ******************************************************************** C 
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F.4 Slave program for parallel optimization infrastruc­
ture 

C ******************************************************************** C 
C ******************************************************************** C 
C 

C SLAVE PROGRAM FOR PARALLEL OPTIMIZATION BY H.P.J.BOLTON 
C 

C 
C C 
C ******************************************************************** C 
C ******************************************************************** C 

PROGRAM SLAVE 
c ************************ STANDARD DECLARATIONS********************* C 

IMPLICIT REAL*8(A-H,O-Z),INTEGER(I-N) 
include' .. /include/fpvm3.h' 
integer info, mytid, mtid, msgtype, me 
integer tids(128) 

c ************************ STANDARD DECLARATIONS********************* C 
INCLUDE 'params.inc' 

C 

C 

C 

C 

DOUBLE PRECISION X(MAXSIZ),XMIN(MAXSIZ) 
DOUBLE PRECISION BL(MAXSIZ),BU(MAXSIZ),GF(MAXSIZ) 
COMMON /KGRADEVAL/ NGRADEVAL 
COMMON /KFUNCEVAL/ NFUNCEVAL 
COMMON /PRDATA/ NPROB 
COMMON /DUMVAL/ DUMMY 
COMMON /ntimess/ jj 
COMMON /nslavess/ me 

call pvmfmytid( mytid) 
call pvmfparent( mtid) 

1 continue 
NGRADEVAL=O 
NFUNCEVAL=O 

GET SLAVE ID 
GET MASTER ID 

*************** RECEIVE DATA FROM MASTER(mtid) ********************* C 
msgtype = 1 
call pvmfrecv( mtid, msgtype, info ) 

call pvmfunpack( INTEGER4,nproc 1, 1, info ) 

call pvmfunpack( INTEGER4,tids , nproc, 1, info ) 

call pvmfunpack( INTEGER4,iseed 1, 1, info ) 

call pvmfunpack( INTEGER4,jseed 1, 1, info ) 

call pvmfunpack( INTEGER4,n 1, 1' info ) 

call pvmfunpack( INTEGER4,nprob 1, 1, info ) 

call pvmfunpack( INTEGER4,ni 1' 1, info ) 

call pvmfunpack( INTEGER4,ne 1, 1, info ) 

call pvmfunpack( INTEGER4,j 1, 1, info ) 

call pvmfunpack( REAL8,fmin 1, 1, info ) 
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C 
C 

call pvmfunpack( REALS,bl 
call pvmfunpack( REALS,bu 
call pvmfunpack( REALS,xmin 
call pvmfunpack( REALS,ndoprob 
call pvmfunpack( INTEGER4,jj 
call pvmfunpack( REALS,x 
call pvmfunpack( INTEGER4,METHDD 

*************** RECEIVE DATA FROM MASTER(mtid) 
************** DETERMINE WHICH SLAVE AM I 

DO I=1, nproc 
IF (tids(I).EQ.mytid) me= I 

ENDDD 

(1 

20, 1, info ) 

20, 1, info ) 

20, 1, info ) 

1, 1, info ) 

1, 1, info ) 

20, 1, info ) 

1' 1, info ) 

********************* C 
- nproc) ************* C 

c ************** DETERMINE WHICH SLAVE AM I (1 - nproc) ************* C 
C ***************** INITIALIZE THE RANDOM NUMBER GENERATOR*********** C 

ISEED=ISEED+me 
IF (ISEED.GT.3132S) THEN 
ISEED=ISEED-3132S 
ENDIF 
JSEED=JSEED+me 
IF (JSEED.GT.300S1) THEN 
JSEED=JSEED-300S1 
ENDIF 
CALL RMARIN(ISEED,JSEED) 

C ***************** INITIALIZE THE RANDOM NUMBER GENERATOR*********** C 
C 

C ############# PERFORM OPTIMIZATION WITH CHOSEN METHOD############## C 
call optimize(METHOD,NI,NE,n,f,x,gf,j,bl,bu,fmin,xmin) 

C ############# PERFORM OPTIMIZATION WITH CHOSEN METHOD############## C 
C 

C *********************** SEND RESULTS BACK TO MASTER**************** C 
call pvmfinitsend( PVMDEFAULT, info) 

C 

C 

C 
C 

call pvmfpack( INTEGER4,me 1, 1, info ) 

call pvmfpack( INTEGER4,tids(me) 1, 1, info ) 

call pvmfpack( INTEGER4,NGRADEVAL 1, 1, info ) 

call pvmfpack( INTEGER4,NFUNCEVAL 1, 1, info ) 

call pvmfpack( REALS, x 20, 1, info ) 

call pvmfpack( REALS, f 1, 1, info ) 

call pvmfpack( REALS, dummy 1' 1, info ) 

call pvmfpack( INTEGER4,method 1, 1, info ) 

msgtype = 2 
call pvmfsend( mtid, msgtype, info) 

*********************** SEND RESULTS BACK TO MASTER **************** C 
GOTO 1 
call pvmfexit(info) 
STOP 

leave PVM before exiting 
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END 
C ********************************END******************************* C 
C ******************************************************************** C 
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