
Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Parallel Competing Algorithms
in Global Optimization

by
H.P.J. Bolton

A dissertation submitted in partial fulfilment
of the requirements for the degree of

Master of Engineering

in the Department of Mechanical and Aeronautical Engineering,
University of Pretoria

December 2000

Supervisor:
Dr. Albert A. Groenwold

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Abstract

Title: Parallel Competing Algorithms in Global Optimization

Author: Hermanus Petrus Johannes Bolton

Degree: M.Eng (Mechanical)

Department: Mechanical Engineering

Supervisor: Prof. Albert A. Groenwold

Keywords: Global Optimization, Global Stopping Rule, Parallel Competing
Algorithms, Slope Stability.

Specialized techniques are needed to solve global optimization problems, due to the existence
of multiple local optima or numerical noise in the objective function. The complexity of the
problem is aggravated when discontinuities and constraints are present, or when evaluation of
the objective function is computationally expensive. The global (minimization) programming
problem is defined as finding the variable set for which the objective function obtains not only
a local minimum, but also the smallest value, the global minimum. From a mathematical
point of view, the global programming problem is essentially unsolvable, due to a lack of
mathematical conditions characterizing the global optimum. In this study, the unconstrained
global programming problem is addressed using a number of novel heuristic approaches.

Firstly, a probabilistic global stopping criterion is presented for multi-start algorithms. This
rule, denoted the unified Bayesian stopping criterion, is based on the single mild assumption
that the probability of convergence to the global minimum is comparable to the probability
of convergence to any other local minimum. This rule was previously presented for use in
combination with a specific global optimization algorithm, and is now shown to be effective
when used in a general multi-start approach. The suitability of the unified Bayesian stopping
criterion is demonstrated for a number of algorithms using standard test functions.

Secondly, multi-start global optimization algorithms based on multiple local searches, com­
bined with the unified Bayesian stopping criterion, are presented. Numerical results reveal
that these simple multi-start algorithms outperform a number of leading contenders.

Thirdly, parallelization of the sequential multi-start algorithms is shown to effectively re­
duce the apparent computational time associated with solving expensive global programming

11

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

problems.

Fourthly, two algorithms simulating natural phenomena are implemented, namely the rel­
atively new particle swarm optimization method and the well known genetic algorithm.
For the current implementations, numerical results indicate that the computational effort
associated with these methods is comparable.

Fifthly, the observation that no single global optimization algorithm can consistently out­
perform any other algorithm when a large set of problems is considered, leads to the de­
velopment of a parallel competing algorithm infrastructure. In this infrastructure different
algorithms, ranging from deterministic to stochastic, compete simultaneously for a contri­
bution to the unified Bayesian global stopping criterion. This is an important step towards
facilitating an infrastructure that is suitable for a range of problems in different classes.

In the sixth place, the constrained global programming problems is addressed using con­
strained algorithms in the parallel competing algorithm infrastructure.

The developed methods are extensively tested using standard test functions, for both serial
and parallel implementations. An optimization procedure is also presented to solve the slope
stability problem faced in civil engineering. This new procedure determines the factor of
safety of slopes using a global optimization approach.

lll

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Opsomming

Titel: Parallelle Kompeterende Algoritmes in Globale Optimering

Outeur: Hermanus Petrus Johannes Bolton

Graad: M.Ing (Meganies)

Departement: Meganiese Ingenieurswese

Studieleier: Prof. Albert A. Groenwold

Sleutelwoorde: Globale Optimering, Globale Termineringsreel, Parallelle
Kompeterende Algoritmes, Hellingstabiliteit.

Gespesialiseerde tegnieke word benodig vir die oplos van globale programmeringsprobleme,
vanwee die teenwoordigheid van lokale minima of numeriese geraas in die doelfunksie. Die
probleem se kompleksiteit word vererger deur diskontuiniteite en begrensings in die doel­
funksie en wanneer die evaluering van die doelfunksie berekeningsgewys duur is. Die globale
(minimerings) programmeringsprobleem impliseer die bepaling van die stel veranderlikes
waar die doelfunksie nie net 'n lokale minimum bereik nie, maar ook die kleinste waarde,
die globale minimum. Vanuit 'n wiskundige oogpunt is die globale programmeringsprobleem
nie oplosbaar nie, vanwee die gebrek aan wiskundige voorwaardes wat die globale minimum
beskryf. In hierdie studie word die globale optimeringsprobleem aangespreek deur 'n paar
nuwe heuristiese benaderings.

Eerstens word 'n globale termineringsreel vir multi-begin algoritmes voorgestel. Hierdie reel,
genoem die universele Bayesiaanse termineringsreel, is gebaseer op die gematigde aanname
dat die waarskynlikheid vir konvergensie na die globale minimum vergelykbaar is met die
waarskynlikheid van konvergensie na enige antler lokale minimum. Hierdie reel was voorheen
voorgestel vir die gebruik saam met 'n spesifieke globale optimerings algoritme, en word nou
aangetoon as effektief vir 'n algemene multi-begin benadering. Die reel se toepaslikheid word
vir 'n verskeidenheid van algoritmes met 'n stel standaard toetsfunksies aangetoon.

Tweedens word multi-begin globale optimeringsalgoritmes voorgestel, wat gebaseer is op
veelvuldige lokale soekprosedures, gekombineerd met die universele Bayesiaanse terminerings­
reel. Numeriese resultate toon dat hierdie eenvoudige benadering heelwat bekende algoritmes
oortref.

lV

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Derdens word aangetoon <lat parallelisering van multi-begin algoritmes die berekeningstyd
gepaardgaande met die oplossing van duur globale optimeringsprobleme effektief verminder.

Vierdens is die relatiewe nuwe deeltjie swerm ('particle swarm') optimeringsalgoritme en
'n genetiese algoritme geimplimenteer. Die twee algoritmes is gebaseer op natuurlike ver­
skynsels en numeriese resultate toon <lat die metodes vergelykbaar presteer vir die huidige
implementerings.

Vyfdens lei die waarneming <lat geen globale optimeringsalgoritme deurentyd beter as an­
tler algoritmes kan presteer nie, tot die ontwikkeling van die parallele kompeterende algo­
ritme infrastruktuur. Verskillende algoritmes, van deterministiese tot stogastiese metodes,
kompeteer gelyktydig vir 'n bydrae tot die universele Bayesiaanse termineringsreel in die
infrastruktuur. Hierdie is 'n belangrike stap in die fasilitering van 'n infrastruktuur wat
toepaslik is vir 'n wye spektrum van probleme vanuit verskillende klasse.

In die sesde plek word die begrensde globale optimeringsprobleem aangespreek deur die im­
plementering van begrense algoritmes in die parallele kompeterende algoritme infrastruktuur.

Die ontwikkelde metodes is breedvoerig met behulp van 'n stel standaard toetsfunksies
getoets, vir serie sowel as parallele implementerings. 'n Optimerings prosedure is ook ontwik­
kel vir die hellingstabiliteitsprobleem in siviele ingenieurswese. Hierdie nuwe prosedure bepaal
die veiligheidsfaktor vir grondhellings deur middel van 'n globale optimerings benadering.

V

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Acknow ledgrnents

I would like to express my sincere gratitude towards the following persons:

• Dr. A.A. Groenwold, my supervisor, for his guidance and support throughout this
study. This research would have been impossible without him.

• To both my parents for their unfailing support, and for granting me the opportunity
to study and financial backing.

• Dr. G. Heymann for his contribution regarding the geotechnical aspect of the slope
stability analysis.

• My fellow students for their assistance with LINUX.

Vl

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Contents

Abstract

Opsomming

Acknowledgments

List of Figures

List of Tables

1 Introduction

1.1 Motivation .

1.1.1 Global optimization methods

1.2 Objectives

1.2.1 Testing of the developed algorithms

1.3 Thesis overview

2 On Global Stopping Criteria

2.1 Introduction

2.1.1 A criterion due to Boender and Rinnooy Kan

2.1.2 A criterion due to Snyman and Fatti

2.2 The unified Bayesian stopping rule

2.2.1 Combination with local optimization algorithms

2.2.2 Combination with global optimization algorithms

2. 2. 3 Beta distribution parameters .

2. 2 .4 Confidence level .

2.3 Summary

3 Multiple Local Searches In Global Optimization

Vll

11

IV

VI

XI

XllI

1

1

2

2

3

3

5

5

5

6

6

7

8

11

12

12

14

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

3.1 Introduction

3.2 A simple global search heuristic

3.3 Multiple local searches ...

3.3.1 Line search methods

3.4 Multiple local searches with a global phase

3.4.1 Modified bouncing ball trajectory algorithm

3. 5 Numerical results

3.5.1 Comparison with other methods .

3.6 Summary

4 Genetic Algorithm

4.1 Introduction

4.2 The genetic algorithm operators

4.2.1 Representation of design variables

4.2.2 Selection .

4. 2. 3 Crossover

4.2.4 Mutation

4.3 Genetic algorithm principles

4.3.1 Similarity template/schema

4.3.2 Schema reproduction

4.3.3 Fundamental schemata theorem

4.3.4 Implicit parallelism

4.4 Genetic algorithm implementation .

4.4.1 On the selection process . .

4.5 Comparison between different GA implementations

4.5.1 Most significant bit property .

4.6 Summary

5 Particle Swarm Optimization

5.1 Introduction

5.2 Mimicking social behaviour

5.2.1 Particle swarm equations .

5. 3 Numerical results

5.4 PSOA combined with the unified Bayesian stopping criterion

5.5 Summary .

Vlll

14

14

15

15

16

16

17

18

20

21

21

21

21

22

23

24

24

24

24

26

26

26

28

28

28

29

30

30

30

31

31

31

33

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

6 Multiple Parallel Local Searches in Global Optimization

6.1 Introduction

6.2 Parallel implementation

6.2.1 A measure of computational effort .

6.3 Numerical results

6.4 Summary

7 Parallel Competing Algorithms In Global Optimization

7.1 Introduction .

7.2

7.3

7.4

Motivation . .

Multiple competing algorithms .

7.3.1 Leapfrog algorithm

7.3.2 SQSD algorithm .

Parallel implementation .

7.4.1 Assigning algorithms to slaves

7.5

7.6

7.4.2 A measure of computational effort .

Results for parallel competing algorithms .

Summary

8 Constrained Global Optimization

8.1 Introduction .

8.2 GLSlC

8.2.1 Penalty function method

8.2.2 Augmented Lagrangian multiplier methods .

8.3 LFOPC ..

8.4 Dynamic-Q

8.5 ETOPC ..

8.6 Constrained algorithms in multi-start procedure

8. 6 .1 Numerical results

8. 7 Multiple parallel constrained searches

8.8 Parallel competing constrained algorithms

8.9 Summary

9 Slope Stability Analysis

9.1 Introduction

9.2 Janbu's simplified method

IX

34

34

34

35

35

36

37

37

37

39

40

40

41

41

42

42

44

45

45

45

46

46

47

47

48

49

49

50

51

52

53

53

54

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

9.3 Spencer's method

9 .4 Mathematical representation of failing mass

9.5 Slope stability optimization procedure

9.5.1 Adaptive slicing ..

9.6 Optimization algorithms .

9.6.1 Leapfrog algorithm

9.7 Examples

9.8 Discussion of numerical results .

9.9 Recommendations.

9.10 Summary

10 Conclusions and Recommendations

10.1 Conclusions

10.2 Recommendations .

A The extended Dixon-Szego unconstrained test set

B The constrained test set

C Proof of stopping criterion

D Slope geometries for examples and critical failure plane figures

E Coordinates of critical failure planes

F Program Listings

F .1 Genetic Algorithm

F.2 Particle Swarm Optimization Algorithm

F.3 Master program for parallel optimization infrastructure

F .4 Slave program for parallel optimization infrastructure .

X

55

56

57

58

58

58

58

59

61

61

63

63

64

70

74

77

79

86

90

91

100

103

115

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

List of Figures

9.1 Definition of the geometric variables. 62

D.1 Slope geometry for Example 1. . 79

D.2 Slope geometry for Example 2. . 80

D.3 Slope geometry for Example 3. . 80

D.4 Slope geometry for Example 4. . 81

D.5 Critical Failure plane found by the Leapfrog-Janbu analysis for Example 1. 81

D.6 Critical Failure plane found by the Leapfrog-Spencer analysis for Example 1. 82

D. 7 Critical Failure plane found by the Leapfrog-Janbu analysis for Example 2. . 82

D.8 Critical Failure plane found by the Leapfrog-Spencer analysis for Example 2. 83

D.9 Critical Failure plane found by the Leapfrog-Janbu analysis for Example 3. . 83

D.10 Critical Failure plane found by the Leapfrog-Spencer analysis for Example 3. 84

D.11 Critical Failure plane found by the Leapfrog-Janbu analysis for Example 4. . 84

D.12 Critical Failure plane found by the Leapfrog-Spencer analysis for Example 4. 85

Xl

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

List of Tables

1.1 The extended Dixon-Szego test set. 3

2.1 Results when combining the unified Bayesian stopping criterion with different
algorithms. 7

2.2 Combination of the unified Bayesian stopping rule and the algorithm pre-
sented by Mockus. 8

2.3 Combination of the unified Bayesian stopping rule and the clustering algorithm. 9

2.4 Combination of the unified Bayesian stopping rule and the genetic algorithm
discussed in Chapter 4. 10

2.5 The effect of a and bin the Beta distribution /3(a, b) on the number of failures
F and function evaluations Nfe for 100 random restarts for all 12 the test
problems. 11

2.6 Number of failures of convergence to the global optimum J* for 100 random
restarts of each algorithm for all 12 the test problems. 13

3.1 Numerical results for the 11S1 and 11S2 algorithms. . 18

3.2 Numerical results for the GLSl and GLS2 algorithms. . 18

3.3 Average number of function evaluations N 1e for 10 random restarts of each
algorithm for the complete test set. 19

3.4 Number of failures of convergence to the global optimum for 10 random

4.1

5.1

restarts of some algorithms for the complete test set. 19

The results for the successive GA method and a basic GA.

Comparing the PSOA with other methods

29

32

5.2 Results for the PSOA combined with the unified Bayesian stopping rule. 32

6.1 Apparent visual cost Nvc for a 32-node parallel virtual machine and a 128-node
parallel virtual machine. 36

7.1 Results for the Griewank Function (n = 5, 10, 20, with d = 200, 1000, 20000
respectively). 38

Xll

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

7.2 Effect of variation of din the IO-dimensional Griewank Function. 38

7.3 Results for the Rastrigin Function (n = 2, 5, 10, 20). 39

7.4 Results using different algorithms for the extended Dixon-Szego test set. 39

7.5 The results for the parallel competing algorithm infrastructure. . 43

7.6 Breakdown of successful algorithms. 43

8.1 Results for constrained algorithms combined with the unified Bayesian stop-
ping criterion in multi-start procedures. 50

8.2 Apparent visual cost Nvc and the probability q(ii, r) that J is equal to f* for
the parallel multi-start Dynamic-Q algorithm using a MPPVM consisting of
32 machines. 50

8.3 Apparent visual cost Nvc consisting of the gradient evaluations N_ge and the
function evaluations Nfe for the parallel competing algorithm method using
a 32-node MPPVM.. 51

8.4 The contributions of the algorithms towards the unified Bayesian stopping rule. 51

9.1 Soil parameters for Example 1. 59

9.2 Soil parameters for Example 2. 59

9.3 Soil parameters for Example 3. 60

9.4 Soil parameters for Example 4. 60

9.5 Factor of safety using the Leapfrog algorithm in slope stability optimization
procedure. 61

9.6 Factor of safety calculated with methods reported by Goh. 61

9.7 Number of function evaluations using the Leapfrog algorithm for the two
methods. 62

E.1 Critical failure plane coordinates calculated with Leapfrog-J anbu.

E.2 Critical failure plane coordinates calculated with Leapfrog-Spencer.

Xlll

87

89

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Chapter 1

Introduction

1.1 Motivation

Numerical techniques are frequently used in science, economics and engineering to compute
globally optimal solutions to practical optimization problems. Global optimization problems
are extraordinarily diverse and specialized techniques are needed to solve these problems due
to:

• the existence of multiple local optima,

• numerical noise,

• the presence of discontinuities,

• the presence of constraint functions,

• computationally expensive functions, and

• a large number of design variables.

The aim of global optimization is to find the solution in a design space D for which the
objective function f (x) obtains not only a local minimum, but its smallest value, the global
minimum. More formally, the unconstrained minimization problem is expressed as follows:
Consider the unconstrained (or bounds constrained) mathematical programming problem
represented by the following: Given a real valued objective function f (x) defined on the set
x E D in IRn, find the point x* and the corresponding function value f* such that

f* = f(x*) = min {f(x)lx ED} (1.1)

if x* exists and is unique. Alternatively, find a low approximation J to f*. If the objective
function and/or the feasible domain Dare non-convex, then there may be many local minima
which are not optimal. From a mathematical point of view, Problem (1.1) is essentially
unsolvable due to a lack of mathematical conditions characterizing the global optimum, as

1

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

opposed to the attainment of the local minima which is characterized by the Karush-Kuhn­
Tucker conditions.

Global optimization problems fall into the class of NP-hard problems when considering the
complexity of the problem. This means that the computational time required to solve the
problem increases exponentially when the number of variables are increased [I].

1.1.1 Global optimization methods

Optimization algorithms aimed at solving Problem (1. 1) are divided in two classes, namely
deterministic and stochastic. The first class being those algorithms which implicitly search
all of the function domain and thus are guaranteed to find the global optimum. In gen­
eral, the algorithms within this class are forced to deal with restricted classes of functions
(e.g. Lipschitz continuous functions with known Lipschitz constants). Even with these re­
strictions it is often computationally infeasible to apply deterministic algorithms to search
for the guaranteed global optimum as the number of computations required increases expo­
nentially with the dimension of the feasible space. To overcome the inherent difficulties of
the guaranteed-accuracy algorithms, much research effort has been devoted to algorithms
in which a stochastic element is introduced, this way the deterministic guarantee is relaxed
into a confidence measure. A number of successful algorithms belong to the latter class.

A general stochastic algorithm for global optimization consists of three major steps [2]: a
sampling step, an optimization step, and a check of some global stopping criterion.

The selection of a suitable global stopping criterion is probably the most important step in
formulating global optimization algorithms. It is also the most problematic, due to the very
fact that characterization of the global optimum is in general not possible. In order to solve
the problem heuristics may be introduced. One would expect a successful global optimization
algorithm to be neither purely heuristic nor purely mathematical, but a combination of
both. Hence global algorithms should not be judged on rigorous mathematics only. Instead,
algorithms and their associated global stopping criteria should ultimately be judged on
performance.

1.2 Objectives

This study is focused on the development of methods which address the unconstrained
global programming problem and to a lesser extend, the constrained global programming
problem. In practice, it is desired to present new algorithms and stopping criteria. These
methodologies should be

• cost efficient in terms of the number of function evaluations, and

• robust in providing a high probability of finding the global minimum.

Calculating the factor of safety of slopes is important in a number of civil engineering appli­
cations. These include natural slopes, earth works construction, embankments, earth dams,

2

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

etc. In recent years finite element methods have been developed for slope stability analyses
[3, 4], but limiting equilibrium methods are still widely used. Limiting equilibrium methods
combined with global optimization algorithms, can be used for determining the geometry of
the critical failure plain and corresponding factor of safety. The study also aims at developing
a global optimization procedure for determining the factor of safety of soil slopes.

1.2.1 Testing of the developed algorithms

The performance of the optimization methods must be evaluated in some way for comparison
purposes. In this study, the test functions tabulated in Table 1.1 are used to evaluate the
algorithms developed, implemented and/ or tested. The set represents an extended Dixon­
Szego test set, and the test problems are explicitly given in Appendix A.

No. Acronym Name

1 Gl Griewank Gl
2 G2 Griewank G2
3 GP Goldstein-Price
4 C6 Six-hump camel back
5 SH Shubert, Levi No. 4
6 RA Rastrigin
7 BR Branin
8 H3 Hartman 3
9 H6 Hartman 6
10 S5 Shekel 5
11 S7 Shekel 7
12 SlO Shekel 10

Table 1.1: The extended Dixon-Szego test set.

When comparing different algorithms no a priori known information about the objective
function should be used. For example, the termination of algorithms once they reach the
known global optimum within a prescribed tolerance is unrealistic, since the global minimum
of problems encountered in practice would not be known. This makes the comparison of
different algorithms very difficult.

1.3 Thesis overview

This thesis is constructed as follows:

• A global stopping criterion suitable for general multi-start procedures is proposed in
Chapter 2.

3

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

• Simple heuristic local search algorithms are presented as efficient global optimization
solvers in Chapter 3.

• The fundamentals and computer implementation of a simple genetic algorithm are
discussed in Chapter 4.

• In Chapter 5 the recently new particle swarm optimization algorithm is discussed.

• In Chapter 6, parallelization of multi-start algorithms is shown to be effective in re­
ducing the time for solving expensive global programming problems.

• The parallel competing algorithm infrastructure is motivated and implemented in
Chapter 7, in which different algorithms compete for a contribution to the stopping
criterion presented in Chapter 2.

• The implementation of four constrained algorithms in the parallel competing algorithm
infrastructure for solving constrained global programming problems is described in
Chapter 8.

• In Chapter 9 a global programming approach is presented for determining the factor
of safety of slopes.

• Conclusions and recommendations regarding the developed methods are presented in
Chapter 10.

The Appendices include the following:

• Appendix A presents the extended Dixon-Szego unconstrained test set.

• Appendix B presents the constrained test set.

• Appendix C presents the derivation of the unified Bayesian global stopping criterion.

• Appendix D presents the soil slope geometries of the examples used for testing the slope
stability procedure. The figures of the critical failure planes found are also included.

• Appendix E presents the critical failure plane coordinates calculated with the proposed
slope stability optimization procedure.

• Appendix F reflects fragments of the FORTRAN code developed during this study,
namely

- the genetic algorithm,

- the particle swarm optimization algorithm, and

- the parallel competing optimization algorithm.

4

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Chapter 2

On Global Stopping Criteria

2.1 Introduction

As mentioned in Section 1.1.1, a general stochastic global optimization algorithm consists of
a number of steps, one of which is the evaluation of a suitable stopping criterion. Stopping
criteria may be divided into two classes, namely passive stopping conditions, in which no
information obtained during the optimization process is used, and sequential stopping rules,
which make use of information obtained during the optimization process [5]. In this chapter
a stopping criterion suitable for algorithms in a general multi-start procedure is considered.

In any multi-start procedure it is required to determine f, i.e.

J = min {P, over all j to date } (2.1)
as the approximation to the global minimum value f*, when j searches have been performed
from j starting points. A stopping criterion should be used to prevent over-sampling. In
addition, it is desirable to have an indication of the probability of convergence to the global
minimum f*. A Bayesian argument seems the proper framework for the formulation of such
a criterion. Previously two such criteria have been presented, respectively by Boender and
Rinnooy Kan [6], and Snyman and Fatti [7].
In the following sections, these two Bayesian global stopping criteria are briefly outlined.

2.1.1 A criterion due to Boender and Rinnooy Kan

This criterion, denoted the optimal sequential Bayesian stopping rule, is based on a Bayesian
estimate of the number of local minima and the relative size of each region of attraction Rk
in D.

Let W be the number of minimizers found after ii different sampling points have been
sampled. Boender et al. [6] showed that the least number of random starts to find the global
mm1mum in a probabilistically sense is the smallest ii value that satisfies the following
equation:

integer part of [W(ii - l) + !] = W
ii-W-2 2

5

(2.2)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

While apparently effective, computational expense prohibits using this rule for functions
with a large number of local minima in D, because this rule is effectively only satisfied when
all the minimizers are found.

2.1.2 A criterion due to Snyman and Fatti

Snyman and Fatti [7] developed a stopping condition for their multi-start trajectory method,
which gives an indication of the probability of convergence to the global minimum f*. In
deriving the stopping condition an assumption is made regarding the probability that a ran­
dom starting point will converge to the global minimum in relation to the probability of
convergence to any local minimum of the function. Let ak denote the probability that a ran­
dom starting point will converge to local minimum xk. Also, the probability of convergence
to the global minimum x* is denoted a*. The following mild assumption, which is probably
true for many functions of practical interest, is now made:

a* 2:: ak for all local minima xk. (2.3)

Furthermore, le~ r be the number of starting points from which convergence to the current
best minimum f occurs after ii random searches have been started. Then, under assumption
(2.3), the probability that .f is equal to f* is given by

P [17 f*] (-) (ii+ a)! (2ii + b)! r = >qnr =l-------=--
- ' (2ii+a)! (ii+b)!'

(2.4)

with a = a+ b - I, b = b - r - I, and a, b suitable parameters of the Beta distribution
f3(a, b). On the basis of (2.4) the adopted stopping rule becomes:

STOP when Pr [.f = f*] 2:: q*, (2.5)

where q* is some prescribed desired confidence level, typically chosen as 0.99 - 0.999.

A proof of (2.5) is presented in Appendix C. However, the proof is expressed in terms of the
probability of convergence to a local minimum, and not in terms of the region of attraction
of the local minimum 1.

Snyman and Fatti [7] present an argument that their trajectory method is expected to satisfy
assumption (2.3) for many functions, although no mathematical proof of applicability of the
stopping condition is available. Nevertheless, their result is quite important and is in all
probability of greater importance and more applicable than hitherto realized. Henceforth
the rule of Snyman and Fatti will be denoted the unified Bayesian stopping rule.

2.2 The unified Bayesian stopping rule

In the following, it will numerically be shown that the unified Bayesian stopping criterion
may be used in many multi-start procedures, albeit for a restricted class of functions. It is

1Studying simple 1-D search trajectories, it was observed that the definition of region of attraction of a
local minimum is problematic. Strictly speaking, the region of attraction can only be defined when non­
discrete search trajectories (line search or other) are employed.

6

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

simply argued that the rule can be adopted in any multi-start algorithm if the function and
the algorithm comply with basic assumption (2.3). The effectiveness of (2.5) can be demon­
strated numerically when the stopping condition is successfully used in different algorithms
for various test functions.

The algorithms used to demonstrate the general applicability of the unified Bayesian stopping
rule range from local to global optimization algorithms. Numerical experiments have shown
that when using clustering (8, 9] or a genetic algorithm, it is advantageous to decrease the
number of sampling points (or the population size) used, and to rather restart the algorithm
a number of times using different random starting points as opposed to a large number of
sampling points (or large population size) for a single run.

2.2.1 Combination with local optimization algorithms

The well known BFGS (10, 11, 12] and Polak-Ribiere (13] local minimizers, and indeed any
other local minimizer, can be 'converted' into a global optimization algorithm using a random
multi-start procedure, combined with the unified Bayesian stopping criterion (see Chapter
3). Initially, one hesitates to denote these local solvers global optimization algorithms, even
though the algorithms are started using ii different random starting points. A clustering
method seems more suitable.

Nonetheless, these global optimization algorithms perform better than a number of rigorously
derived algorithms. This is evident from the numerical results presented in Table 2.1. Table
2.1 reflects on the performance of the BFGS algorithm, the Polak-Ribiere (PR) algorithm and
the SQSD algorithm (14] when implemented with the unified Bayesian stopping condition
(with q* = 0.99 and a= b = 1). The results using the Snyman-Fatti (SF) algorithm [7], for
which the stopping condition was originally proposed, are also shown.

BFGS PR SQSD SF

Prob. F Nfe r/n F NJe r/n F Nfe r/n F Nfe r/ii
Gl 4 5607 6 / 284 3 5696 6 / 212 0 207141 6 I 5873 0 5062 6 / 37
G2 0 952 6 / 24 1 966 6 / 17 3 25730 6 / 33
GP 0 204 5 / 8 0 306 5 I 9 0 355 6 / 18 0 1901 6 / 35
C6 0 90 5 / 6 0 160 5 / 8 1 122 5 / 12 0 516 5 / 6
SH 0 1718 6 / 127 0 1206 6 / 51 0 1172 6 / 155 0 12440 6 / 37
RA 3 872 6 / 155 3 1896 6 / 102 2 925 6 / 155 3 10971 6 / 99
BR 0 329 4 / 4 0 614 5 / 10 0 1384 6 / 27 0 680 4 / 5
H3 0 299 5 / 8 0 275 5 / 7 0 243 5 / 8 0 1370 5 / 6
H6 0 358 5 / 7 0 445 5 / 8 0 252 5 / 8 0 2346 5 / 7
S5 1 297 5 / 14 0 457 5 / 14 0 464 6 / 15 1 1571 5 / 13
S7 0 273 5 / 13 0 482 6 / 14 0 471 6 / 17 0 1624 5 / 13
SlO 0 364 6 / 17 0 503 6 / 15 0 620 6 / 24 0 1477 5 / 12

Table 2.1: Results when combining the unified Bayesian stopping criterion with different
algorithms. F indicates the number of failures out of 10 independent restarts and Nfe the
average number of function evaluations.

7

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Ten independent runs for each test problem are performed and the number of failures F and
the average number of function evaluations Nfe for the runs are reported in the table. Clearly,
these three algorithms outperform the SF algorithm in terms of function evaluations Nfe and
number of failures F. r repres~nts the number of starting points from which convergence
to the current best minimum f occurs after ii random searches have been started in each
independent run. (Average values are reported.) These result shows that local minimizers
can be transformed into robust and cost efficient global optimization algorithms using the
unified Bayesian stopping criterion.

2.2.2 Combination with global optimization algorithms

A genetic algorithm and two well known global optimization algorithms, namely the Bayesian
search implementation by Mockus [15, 16] and the clustering algorithm [8, 9], are combined
with the unified Bayesian stopping rule.

In all cases, the prescribed probability of convergence is also taken as q* = 0.99 and a = b = l.
In the following, F indicates the number of times the algorithms fails to converge to the a

priori known global optimum J*, for 10 independent runs of the algorithms. The probability
that / is equal to J* is given by q(ii, r).

Bayesian optimization

The implementation of a Bayesian search strategy by Mockus is described in [15]. Table 2.2
illustrates the influence of the unified Bayesian stopping criterion on this algorithm. The
results entered in the columns denoted 'Mockus' represent the stand-alone algorithm, while

Mockus Mockust

Prob. F Nfe F Nfe r /ii q(ii,r)

Gl 6 354 0 3710 5 I 10 0.9915
G2 9 1442 0 74929 6 / 52 0.9932
GP 9 365 0 39416 6 / 106 0.9927
C6 0 371 0 1449 4 / 4 0.9921
SH 0 373 0 1485 4 / 4 0.9921
RA 0 194 0 776 4 / 4 0.9921
BR 7 258 0 4521 6 / 18 0.9951
H3 8 165 0 2938 6 / 19 0.9950
H6 6 404 1 5646 6 / 11 0.9953
S5 6 158 0 3672 6 / 23 0.9945
S7 9 160 0 13147 6 / 82 0.9929
SlO 9 164 0 18987 6 / 118 0.9926

Table 2.2: Combination of the unified Bayesian stopping rule and the algorithm presented
by Mockus. The stopping rule is included in the columns denoted Mockust.

8

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

the algorithm combined with the new stopping rule is represented by the columns denoted
Mockust.

Clearly, the combination with the stopping criterion makes the algorithm more robust, i.e.
the number of times the algorithm converges to f* increases, albeit at additional compu­
tational effort. However, the computational effort increases dramatically only for those
functions for which the stand-alone algorithm performs badly.

Clustering

The clustering algorithm [8, 9] aims at finding all the local minima that are potentially
global. Points are sampled within the design space D and are grouped into clusters, with
each cluster containing hopefully only one promising local minima. A local search procedure,
such as the BFGS algorithm, may then be used to find the local minima corresponding to
each cluster. The aim of clustering is to ensure that no computational effort is wasted in the
local search procedure to find a minimum that was already determined.

In Table 2.3, similar results to those for the algorithm of Mockus are presented for the
clustering algorithm. For the stand-alone algorithm, the suggested value of lOOn sampling
points is used. In each case, an expectation of 10 local minima is prescribed, since the ex­
ploitation a priori known information about f is undesireable. The results for the combined
algorithm are obtained with very optimistic settings, namely only lOn sampling points, and
an expectation of only 2 local minima.

For the difficult Griewank problems, the combined results are superior to the results obtained
with the stand-alone algorithm, both in terms of robustness, and computational effort.

Clustering Clustering t

Prob. F Nfe F Nfe r/n q(n,r)

Gl 8 1302 1 5239 6 / 37 0.9936
G2 0 11644 0 8231 5 / 7 0.9944
GP 0 985 0 971 5 / 5 0.9978
C6 0 643 0 749 4 / 4 0.9921
SH 0 1626 0 4117 5 / 6 0.9959
RA 1 2038 0 5617 5 / 10 0.9915
BR 0 683 0 708 4 / 4 0.9921
H3 0 1232 0 884 4 / 4 0.9921
H6 0 3278 0 2832 4 / 4 0.9921
S5 0 1891 0 2684 5 / 8 0.9932
S7 0 2139 0 2831 5 / 8 0.9932
S10 0 2805 0 3620 5 / 9 0.9923

Table 2.3: Combination of the unified Bayesian stopping rule and the clustering algorithm.
The stopping rule is included in the columns denoted Clusteringt.

9

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Genetic algorithm

For the GA (discussed in Chapter 4) a small population size of 8 is used. Table 2.4 illustrates
the robustness of the combination of the unified Bayesian stopping criterion with the GA,
except for the G2 problem for which 10 failures are still recorded.

GA GAt

Prob. F Nfe F Nfe r/ii q(ii,r)

Gl 6 2557 0 7891 5 / 7 0.9944
G2 10 10
GP 1 2213 0 6471 5 / 6 0.9959
C6 0 1293 0 2907 4 / 4 0.9921
SH 0 3155 0 8204 5 / 5 0.9978
RA 2 1619 0 6784 5 / 8 0.9932
BR 0 1685 0 3773 4 / 4 0.9921
H3 0 1477 0 3073 4 / 4 0.9921
H6 4 2275 0 6235 5 / 6 0.9959
S5 4 3319 0 23932 6 / 11 0.9953
S7 6 3277 0 23798 6 / 11 0.9953
S10 5 3235 0 24686 6 / 1s 0.9951

Table 2.4: Combination of the unified Bayesian stopping rule and the genetic algorithm
discussed in Chapter 4. The stopping rule is included in the columns denoted GA t.

Discussion

Doubtless, the results obtained above with the three algorithms are not optimal, and can be
improved. For instance, the results reported by Boender et al. for the clustering algorithm
are notably more efficient, since they use less sampling points. In addition, the mathematical
justification of Bayesian optimization is violated (e.g. see [16)). Eventually, the combination
of the unified Bayesian stopping rule with algorithms such as clustering or Bayesian op­
timization justifies further investigation. Nevertheless, extremely simple and robust global
optimization algorithms have been constructed using the unified Bayesian stopping criterion.
The algorithms require no 'tuning', and are free of problem dependent parameters.

Based on these results the hypothesis is made that the unified Bayesian stopping rule can
be combined with many algorithms, ranging from global to local, forming efficient stochastic
multi-start algorithms. The effects of the parameters of the stopping rule, namely a, b and
q*, are discussed in the following sections.

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

2.2.3 Beta distribution parameters

The Beta distribution f3(a, b), with parameters a and b, is used as the marginal prior distribu­
tion of a, the probability that a random selected point from the domain D will convergence
to the current overall minimum. In [7] the parameter values were taken as a = b = 1, which
means the Beta distribution correspond to the uniform prior distribution, implying that a
has a prior expectation of 0.5.

The effects the values a and b have on the total number of failures F and the average function
evaluations Nfe for different values of the prescribed confidence level q* are studied in Table
2.5. The Polak-Ribiere algorithm is used for demonstration purposes, but similar results
can be generated using d1fferent algorithms. From Table 2.5 it is noted that a and b have
little effect on the number of failures and function evaluations at high values of q*. The
reason is that with high values of q*, a relatively high number of starts must be performed
before the stopping rule can be satisfied and the assumed prior distribution of a becomes
less prominent.

Values of a = b = l are probably too optimistic and values of a = l and b = 5 are used

a= 1; b = 1 a= l; b = 5 a= 5; b = l a= 1; b = 10 a= 5; b = 5

q* F Nfe F N1e F Nfe F Nfe F N1e

.80 264 269 178 356 765 36 128 447 460 98

.82 264 269 160 378 765 36 114 485 358 130

.84 264 269 143 416 765 36 102 530 358 130

.86 264 269 134 475 523 73 103 576 358 130

.88 214 497 112 602 523 73 87 683 319 154

.90 189 543 91 643 523 73 84 732 293 166

.91 126 574 85 650 523 73 73 763 294 177

.92 126 574 84 689 460 98 74 778 291 188

.93 126 574 88 687 460 98 70 853 270 204

.94 120 691 80 845 404 117 74 916 245 226

.95 113 774 70 875 404 117 53 963 205 253

.96 107 790 68 895 394 140 52 1022 283 186

.97 93 900 54 1081 331 165 43 1173 162 335

.98 68 1032 44 1143 208 262 46 1246 133 419

.99 49 1309 44 1415 156 402 25 1586 104 582

.999 19 2122 13 2259 49 1143 15 2463 52 1407

.9999 10 3089 5 3261 21 2102 4 3363 13 2239

.99999 2 3972 3 4085 11 2898 2 4210 6 3081

Table 2.5: The effect of a and b in the Beta distribution /3(a, b) on the number of failures
F and function evaluations Nfe for 100 random restarts for all 12 the test problems. Nfe is
calculated as the average number: of function evaluations for the 1200 runs performed, using
the Polak-Ribiere algorithm.

11

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

throughout this study. This effectively increases the minimum number of random starts
before the stopping condition can be satisfied. For example: with a prescribed stopping
probability of q* = 0.99, the minimum number of random starts with a = b = l is 4, but
with a= l and b = 5 this number is 7. This reduces the probability of 'quick' convergence to
strong local minima. However, the values of a and b have a minor effect when the algorithm
does not converge quickly.

2.2.4 Confidence level

A salient feature of the unified Bayesian stopping criterion is that the probability of finding
the global minimum can easily be increased by simply increasing the value of the prescribed
confidence level q*. This is shown in Table 2.6. The results are obtained using a = l
and b = 5 and the results of six algorithms, namely 11S1, 11S2, GLSl, and GLS2 (all
based on multiple local searches, see Chapter 3), a GA (Chapter 4), and the SF algorithm
[7] are presented. At a confidence level of 0.99 a relatively high number of failures occur
using most algorithms. A value of 0.999, which results in a small number of failures and
a reasonable number of function evaluations, seems most applicable. For values greater
than 0.999 the number of failures decreased slightly, but the function evaluations increased
drastically. The decreasing number of failures to converge to f* as q* increases, illustrates
the general applicability of the unified Bayesian stopping rule.

2.3 Summary

In this chapter the general applicability of the unified Bayesian stopping rule in a multi-start
procedure is demonstrated. This stopping rule is even combined with a genetic algorithm
(with a small population size) into an effective optimization algorithm. Values of a = l,
b = 5 and q* = 0.99 through 0.9999 are suggested as effective parameters in the unified
Bayesian stopping rule.

12

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Algorithm Function q* = .95 q* = .99 q* = .999 q* = .9999

LLSl Gl 34 28 7 3
SH 3 2 0 0
RA 39 33 8 11

LLS2 Gl 32 20 8 3
C6 1 0 0 0
SH 1 0 0 0
RA 31 24 4 2
S5 5 0 1 0

GLSl Gl 35 26 7 1
GP 1 0 0 0
C6 1 0 0 0
SH 2 0 0 0
RA 38 17 8 5

GLS2 Gl 37 19 10 2
GP 1 0 0 0
C6 1 0 0 0
SH 3 0 0 0
RA 29 11 9 4
H6 1 0 0 0
S5 3 0 0 0

SF Gl 11 3 1 1
G2 61 38 13 11
SH 1 0 0 0
RA 35 17 9 2

GA Gl 3 0 0 0
G2 100 100 100 100
RA 3 0 0 0
H3 1 1 0 0
H6 13 4 0 0

Table 2.6: Number of failures of convergence to the global optimum f* for 100 random
restarts of each algorithm for all 12 the test problems. For the problems not listed here, the
number of failures is O for all values of q*.

13

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Chapter 3

Multiple Local Searches In Global
Optimization

3.1 Introduction

In the previous chapter the general applicability of the unified Bayesian stopping rule is
demonstrated. In all probability, the simplest global optimization algorithm is the combina­
tion of multiple local searches, combined with some probabilistic stopping criterion. In this
chapter such a formulation is presented, using the unified Bayesian stopping rule.

3.2 A simple global search heuristic

In accordance with the steps presented by Schoen [2], various sequential global optimization
algorithms can be constructed as follows:

1. Initialization: Set the counter j := 1, and prescribe the desired confidence level q*.

2. Sampling steps: Randomly generate xi E D in lR,n.

3. Global minimization steps: Starting at xi , attempt to minimize .f in a global
sense by some preliminary search procedure, viz. find and record some low function
value P +-+ xJ.

4. Local minimization steps: xJ is used as the starting point for a robust gradient
based convex minimization algorithm, with stopping criteria defined in terms of the
Karush-Kuhn-Tucker conditions. Record the lowest function value P +-+ xj.

5. Global termination: Assess the global convergence after k searches are completed
(yielding xk, k = l, 2, ... , j) using (2.5). If (2.5) is satisfied, STOP, else j := j + l and
goto 2.

14

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

3.3 Multiple local searches

Pure multiple local searches are obtained if step 3 is excluded, with xJ = xf Two such
simple algorithms are now constructed, namely:

1. LLSl: multiple local searches using the bound-constrained BFGS algorithm [10, 11, 12],
and

2. LLS2: multiple local searches using the unconstrained Polak-Ribiere algorithm [13].

3.3.1 Line search methods

The BFGS and the Polak-Ribiere algorithms both employ explicit line searches. The steps
in a general successive line search method are as follows:

1. Initialization: Given a starting point x 0
, set i := 0 and determine the first search

direction u O•

2. One-dimensional minimization steps:

(a) Set i := i + 1 and determine the next point xi by minimizing f (xi-I + ,\ui-I)
with respect to A. The one dimensional minimization may be performed by any
method.

(b) Evaluate V f(xi).

(c) Test convergence criteria. If:

llf(xi) - f(xi- 1)11 < E2 or

IIVJ(xi)II < c3

then x* := xi and STOP, else continue.

(d) Determine new search direction ui and go to 2 (a).

(3.1)

(3.2)

(3.3)

The descent directions u i for the various line search methods are chosen differently. The
Polak-Ribiere descent directions are:

u 0 = -Vf(x0
)

where:
i (V f(xi) - Vf(xi- 1)fV f(xi)

(3 = IIV.f(xi)Jl2

These search directions are mutually conjugate and the Polak-Ribiere method will therefore
terminate in a finite number of steps when applied to a quadratic function. For the BFGS

15

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

algorithm, which forms part of the Quasi-Newton methods, the descent directions are given
by:

ui = -H-1(xi)V J(xi)

where H-1 denotes the inverse of the approximated Hessian matrix. In the Quasi-Newton
methods approximations are made of the Hessian matrix, avoiding the problems associated
with the Hessian matrix evaluation. The BFGS algorithm has previously been used as a
local phase in a global optimization algorithm by Lee and Lee (in conjunction with a genetic
algorithm) [17].

The two local minimizers meet the requirement of being robust, if not optimal for the appli­
cation.

3.4 Multiple local searches with a global phase

For both LLSl and LLS2 a global minimization phase (step 3) is provided for, and the re­
spective algorithms are denoted GLSl and GLS2. The global phase simulates the trajectories
of a bouncing ball (the MBB algorithm [18]), which is attractive due to its simplicity. The
ball's elasticity coefficient is chosen such that the ball's energy is dissipated quickly. The
governing equations of the MBB algorithm are discussed in the following subsection.

3.4.1 Modified bouncing ball trajectory algorithm

The successive random sample points Xb, j = l, 2, ... , from the box D generated in step 2
are used as starting points for the MBB algorithm. For each sample point xh, a sequence of
trajectory steps A.xi and associated projection points Xi+1, i = 0, l, 2, ... , are computed from
the successive analytical relationships (with x0 := xi and prescribed V0 > 0):

(3.4)

where
(3.5)

(3.6)

h(xi) = J(xi) + k (3.7)

with k a constant chosen such that h(x) > 0 \/ x E D, g a positive constant, and

(3.8)

Each step A.xi represents the simulated horizontal displacement obtained by projecting a
particle in a vertical gravitational field (constant g) at an elevation h(xi), with speed ¼
and at an inclination 0i. The angle 0i represents the angle that the outward normal n to

16

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

the hyper surface represented by y = h(x) makes, at xi in n + l dimensional space, with
the horizontal. The time of flight ti is the time taken to reach the ground corresponding to
y = 0. For the next step, ¼+1 = Ge¼, Ge < 1, with Ge the elasticity coefficient.

More formally, the minimization trajectory for a given sample point xl and some initial
prescribed speed Vo is obtained by computing the sequence xi, i = 0, 1, 2, ... , as follows.

Minimization procedure MP

1. For given sample point xt set x 0 := xl and compute trajectory step 8x0 according
to (3.4) - (3.7) and subject to Vo; record x 1 := x 0 + 8x0 , set i := 1 and ½_ := GV0

(G < 1)

2. Compute 8xi according to (3.4) - (3. 7) to give xi+l := xi+ 8xi, record xi+l and set

¼+1 := GY'i

3. set i := i + 1 and go to 2

In the vicinity of a local minimum x the sequence of projection points xi, i = 0, 1, 2, ... ,
constituting the search trajectory for starting point xl will converge since 8xi ➔ 0 (see
(3.4)). In the presence of many local minima, the probability of convergence to a relative
low local minimum is increased, since the kinetic energy can only decrease for G < 1.

Procedure MP, for a given j, is successfully terminated if I IVJ(xi) 11 ::; E for some small
prescribed positive value E, or when GY'i < j3V0 , and Xi is taken as the local minimizer
xJ with corresponding function value P := h(xJ) - k. Note that xJ does not necessarily
have to be the last point of the minimization procedure, but the Xi corresponding to the
lowest function value recorded during the procedure is taken as xJ. Clearly, the condition
G ¼ < j31lo will always occur for 0 < /3 < G and 0 < G < 1.

3.5 Numerical results

The algorithms are tested using the extended Dixon-Szego test set, presented in Table 1.1.

Table 3.1 shows the results for algorithms LLSl and LLS2, while the results for algorithms
GLSl and GLS2 are shown in Table 3.2. The tables show the average number of function
evaluations Nfe and the number of failures F to converge to the global minimum, for 10
independent runs of each problem. The stopping rule parameters utilized are a = l, b = 5
and q* = 0.999. Also included are the average number of sampling points ii and the average
number of times r that the lowest minimum is found, before stopping.

The results reveal that the inclusion of the MBB global phase reduces the number of function
evaluations for some problems, but for others the cost increased. For LLSl, the MBB
algorithm is in general beneficial.

17

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

LLSl LLS2

Prob. F Nfe r/ii q(ii,r) F Nfe r /ii q(ii,r)

Gl 1 12583 9 / 798 0.9990 0 4225 9 / 155 0.9990
G2 0 2333 10 / 49 0.9995 0 4139 10 / 73 0.9995
GP 0 463 10 / 17 0.9996 0 664 10 / 20 0.9996
C6 0 168 9 I 11 0.9991 0 304 9 I 13 0.9990
SH 0 2830 9 / 223 0.9990 0 1719 10 / 57 0.9995
RA 1 1562 9 / 259 0.9990 0 3684 9 / 142 0.9990
BR 0 823 9 / 10 0.9991 0 778 9 / 11 0.9991
H3 0 601 10 / 17 0.9996 0 619 9 / 16 0.9990
H6 0 664 9 / 13 0.9990 0 716 9 / 14 0.9990
S5 0 543 10 / 28 0.9995 0 556 10 / 24 0.9995
S7 0 546 10 / 24 0.9995 0 628 10 / 25 0.9995
SlO 0 596 10 / 22 0.9996 0 565 10 / 22 0.9996

Table 3.1: Numerical results for the LLSl and LLS2 algorithms.

GLSl GLS2

Prob. F Nfe r /ii q(ii,r) F Nfe r /ii q(ii,r)

Gl 1 3544 9 / 148 0.9990 0 11907 9 / 442 0.9990
G2 0 3398 10 / 72 0.9995 0 3313 10 / 59 0.9995
GP 0 764 10 / 24 0.9995 0 581 10 / 17 0.9996
C6 0 330 10 / 16 0.9996 0 303 10 / 15 0.9996
SH 0 1724 10 / 65 0.9995 0 2639 9 / 114 0.9990
RA 0 3010 9 / 154 0.9990 0 3235 9 / 175 0.9990
BR 0 542 9 I 9 0.9991 0 1402 10 / 22 0.9996
H3 0 711 10 / 17 0.9996 0 566 9 / 14 0.9990
H6 0 750 9 / 14 0.9990 0 715 9 / 14 0.9990
S5 0 334 10 / 23 0.9995 0 805 10 / 26 0.9995
S7 0 413 10 / 27 0.9995 0 822 10 / 24 0.9995
SlO 0 387 10 / 24 0.9995 0 865 10 / 26 0.9995

Table 3.2: Numerical results for the GLSl and GLS2 algorithms.

3.5.1 Comparison with other methods

Tables 3.3 and 3.4 reveal that the simple sequential algorithms presented herein compare very
favorably with a number of leading contenders, namely the Snyman-Fatti (SF) algorithm [7),
algorithm 'sigma' [19, 20), clustering [8, 9] and the algorithm presented by Mockus [15]. All
the algorithms were started from different random starting points, and the reported cost is
the average number of function evaluations N1e for 10 independent runs of the algorithms.

18

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

The number of failures F to converge to the global optimum for the 10 independent runs
are also reported.

Prob. LLSl LLS2 GLSl GLS2 SF cluster. Mockus 'sigma'

Gl 12583 4225 3544 11907 5062 1302 354 396147
G2 2333 4139 3398 3313 25730 11644 1442 828441
GP 463 664 764 581 1901 985 365 94587
C6 168 304 330 303 516 643 371 76293
SH 2830 1719 1724 2639 12440 1626 373 139087
RA 1562 3684 3010 3235 10971 2038 194 445711
BR 823 778 542 1402 680 683 258 71688
H3 601 619 711 566 1370 1232 165 103466
H6 664 716 750 715 2346 3278 404 106812
S5 543 556 334 805 1571 1891 158 234654
S7 546 628 413 822 1624 2139 160 212299
SlO 596 565 387 865 1477 2805 164 330486

Table 3.3: Average number of function evaluations Nfe for 10 random restarts of each
algorithm for the complete test set.

Prob. LLSl LLS2 GLSl GLS2 SF cluster. Mockus

Gl 1 0 1 0 0 8 6
G2 0 0 0 0 3 0 9
GP 0 0 0 0 0 0 9
C6 0 0 0 0 0 0 0
SH 0 0 0 0 0 0 0
RA 1 0 1 0 3 1 0
BR 0 0 0 0 0 0 7
H3 0 0 0 0 0 0 8
H6 0 0 0 0 0 0 6
S5 0 0 0 0 1 0 6
S7 0 0 0 0 0 0 9
S10 0 0 0 0 0 0 9

Table 3.4: Number of failures of convergence to the global optimum for 10 random restarts
of some algorithms for the complete test set.

In particular, the results for two very difficult test functions, namely Griewank G 1 and
Griewank G2 are encouraging: Few algorithms find the solution to G2 (which has a few
thousand local minima in the region of interest), in less than 20000 function evaluations.
Although the number of function evaluations obtained with the algorithm of Mockus are the
lowest for most of the problems, the number of failures for this algorithm are significantly
more than those recorded for the other algorithms.

19

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

3.6 Summary

A number of efficient multi-start algorithms are presented for the unconstrained global pro­
gramming problem. These algorithms are based on simple local searches, combined with
the unified Bayesian global stopping criterion. In addition, a global phase based on the
trajectories of a bouncing ball is presented. These simple algorithms outperform a number
of leading contenders.

20

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Chapter 4

Genetic Algorithm

4.1 Introduction

Many optimization methods have been formulated by simulating natural phenomena and the
search for nature-like algorithms continues. The principle of survival of the fittest found in
nature, resulted in species which are well adapted to their environment despite the richness
of the genetic material originally contained in the specie population. This principle forms
the basis for a stochastic search strategy, denoted the genetic algorithm (GA) [21).

GA's combine survival of the fittest among population members with a structured yet ran­
domised genetic information exchange. GA's are well suited for discrete optimization prob­
lems, use no gradient-based information and they have been applied successfully in many
fields, e.g. the design of truss structures [22), the slope stability problem [23) and in chemi­
cal engineering [24). The GA can be used for discontinuous functions, while constraints are
easily incorporated.

In this chapter a brief description of the genetic algorithm is presented, based on [21, 25, 26).
Some novel operators are also presented.

4.2 The genetic algorithm operators

Genetic algorithms act on a population of possible design solutions. An initial design pop­
ulation, constituting of e design vectors x, is created by a random selection of the variables
in the variable space for each design. The design vectors are improved in subsequent gen­
erations by means of the selection, crossover and mutation operators. In the following, the
term design vector is replaced with 'string'.

4.2.1 Representation of design variables

The values of the variables in the strings must be represented by an unique coding scheme.
For simplicity, it is possible to use floating point coding [24). In this coding scheme the

21

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

variable is directly represented by one possible value taken from the number of unique discrete
values the variable can assume. However, binary coding is powerful and is frequently used.
For example, the binary string (01101) of length l = 5 represents the real number 22:

0 . 2° + 1 . 21 + 1 . 22 + 0 . 23 + 1 . 24 = 22

A real value x within bounds (xb, Xe) is represented by binary coding in the following way:

(xe - xb)
X = Xbin · (2l) + Xb (4.1)

where
l

X!Jin = L Zi . 2(i-l) (4.2)
i=l

and zi can be either 1 or 0 with l the binary string length.

If the objective function has several variables, then the design vector can be represented by a
concatenation of the coding of each variable (26]. For example, the three dimensional design
vector

X = (22 8 11]

with corresponding binary code (01101); (00010); (11010) is represented as

X = [011010001011010]

4.2.2 Selection

The selection operation selects e strings from the current population to form the mating pool.
The strings corresponding to low objective function values have the greatest chance to be
selected for mating and therefore to contribute to the next generation. From all the numerous
different selection processes possible, only the expected value selection, tournament selection
and ranking selection methods are briefly discussed.

Expected value selection (roulette wheel selection)

In the expected value selection f 21], also known as the roulette wheel selection, the minimiza­
tion problem is converted to a maximization problem by multiplying the objective function
with -1. Also, the function values must be positive and therefore a constant must be added
to functions with negative values. The relative fitness Pi for each design is calculated as
follows:

.fi () Pi = e i = l, 2, 3, .. . e 4.3
I:i=l fi

where fi denotes the function value of design i. The cumulative probability space ,9j 1s
defined as:

j

gj = LPi j = l, 2, 3, ... e
i=l

(4.4)

String i is selected for the mating pool if a random number v between 0 and 1 is generated
and satisfies the condition: .9i-l < v ~ .9i with go = 0.

22

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Tournament selection

Tournament selection simulates the process where individuals compete for mating rights in
the population [24]. In the GA, e tournaments are held between a sub group of strings
chosen randomly from the existing population. The design from each tournament with the
lowest function value is selected for the mating pool.

Ranking methods

After ranking the strings in ascending order according to the objective function values, the
relative fitness Pi of member i is expressed as

(4.5)

where

(4.6)

c is taken as any value between 1 and 10 (typically 1) and e is the population size. The
cumulative probability space gj is constructed using the above defined relative fitness Pi and
the strings are selected as in the expected value selection.

4.2.3 Crossover

After selecting e strings for the mating pool, new designs are explored by the crossover
process. Crossover allows selected individuals to trade characteristics of their designs by
exchanging parts of their strings. The mating pool strings are randomly grouped into pairs
and a breaking point in the strings for each pair is chosen randomly. The values at the string
positions after the breaking point are interchanged between the pair and the new designs
are copied to the new generation. Crossover for each pair is applied with a given probability
Pc, usually between 0.6 and 1. For example, when crossover is applied at the third crossover
position of the following strings

X 1 = [01110100]

X2 = [01011101]

the strings exchange the last four bits and become:

X 1 = [01111101]

X2 = [01010100]

If crossover for a pair is not applied, then the unchanged parents are copied into the next
generation. It is also common to use more than one braking point during crossover.

23

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

4.2.4 Mutation

The mutation operation protects against complete loss of genetic diversity by randomly
changing bit values in a string. For each bit in the population a random number is generated
and the bit value is changed if the random number is less than the prescribed probability
of mutation Pm· The changed value can randomly be selected from the possible values from
the alphabet (jump mutation), or given the value of a neighbour bit (creep mutation).

4.3 Genetic algorithm principles

From the foregoing description of the GA, the question arises how a procedure with so much
randomness can exploit the current information and improve on the fitness of the design
vectors. The answer lies in the fundamental schemata theorem and the phenomenon of
implicit parallelism. In order to explain these two principles, the concept of schemata and
its characteristics must firstly be described.

4.3.1 Similarity template/schema

Sometimes similarities between strings at certain string positions exist together with their
corresponding fitnesses. According to Davidor [25) a schema (over the binary alphabet) is
a string of type (a1 , a2 , al) where the value of ai can be '1','0' or '*'· The '*' symbol is a
'don't care' symbol which accepts both '1' and '0'. A schema is a template that describes
a sub-space of strings that match the schema at all positions where the schema is specific
(specifies either '1' or '0'), and regardless of the value the string exhibit at the positions of
the '*' symbol.

For example: the schema of length 5 (1, *, 0, 0, *) describes the following string set:

(1, 1,0,0,1)(1,0,0,0,0)(l, 1,0,o,o)(l,0,0,0,l)

The defining length b (H) of the schema H is the distance between the first and last specific
schema positions. This is important as it defines the number of crossover sites which can
disrupt the schema, unless crossover is performed between identical strings.

The order o(H) of the schema His the number of specific positions contained in the schema.
Mutation disrupts a schema if any specific position is changed.

For a string of length l and k number of possible characters, a total of (k + l)z different
schemata exists and for a given string the number of schema contained in the string is 2t.
For a population of e strings, the total number of schema contained in the population is less
thane· 2t.

4.3.2 Schema reproduction

The foregoing sections stated that the different GA processes effects the number of schemata
contained in the population. Goldberg [21] quantified the effects mathematically as follows:

24

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Selection effect

Suppose the number of strings representing a particular schema present in the population at
time t is rn(H, t) and the average fitness of the strings representing the schema is denoted by
f (H). The estimated number of strings representing this schema after the selection process
is then estimated as:

rn(H, t + 1) = rn(H, t) · J(Hf) · e
Li

Noting that the average fitness J of the strings is given by:

and substituting this into (4. 7), the schema growth equation becomes:

m(H, t + 1) = m(H, t). fj)

(4.7)

(4.8)

(4.9)

Let the average represented fitness f of the schema be an amount c · 1 above of below the
strings average]. The value of c is greater than zero when the average represented fitness
is greater than J and is less than zero if otherwise. Equation (4.9) becomes:

rn(H, t + 1) = (1 + c) • rn(H, t) (4.10)

and after a number of selection processes:

rn(H, t) = (1 + c)t · rn(H, 0) (4.11)

(4.11) states that the number of strings representing a particular schema increases exponen­
tially if the average fitness f (H) of the strings representing the schema is above the average
fitness J of the population.

Crossover effect

Crossover exchanges parts of strings between members and disrupts the schemata contained
in them. There are (l - 1) possible crossover positions for strings of length l and the schema
represented by the string is destroyed if the crossover position falls within the defining length
6(H). The probability a schema H will be destroyed is therefore:

(4.12)

and the probability of survival is
Ps = 1 - Pd (4.13)

Since crossover is performed with a probability of Pc, the survival probability is given by

(4.14)

The inequality sign includes the possibility that crossover between similar strings occurs.

25

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Mutation effect

The probability a specific string position being disrupted by mutation is given by Pm and the
survival probability thus is (1 - Pm). The schema survives if all the specific positions remain
unchanged and therefore the survival probability becomes (1 - Pm)o(H). Because Pm « l,
the schema survival probability when mutation are applied is approximated by:

Ps = l - o(H)Pm (4.15)

4.3.3 Fundamental schemata theorem

The fundamental schemata theorem is formed by combining the effects mutation, crossover
and selection have on the number of strings contained in the population representing a
specific schema H:

J(H) [8(H) l
m(H, t + l) - m(H, t) · f l - Pc· (l _ l) - o(H)Pm (4.16)

In words, the schema theorem states that the number of strings representing a specific schema
is increasing exponentially if the strings representing a specific schema have above average
fitnesses and low defining lengths and orders.

4.3.4 Implicit parallelism

In essence, the changing population can be seen as a search through the set of schemata
contained in the strings. A great deal of information regarding the fitnesses of the possible
schemata with one string evaluation is attained, since each string forms part of 2z schemata.
Between 2z and e · 2z possible schema exist in the population, but it is suggested that only
e3 number of schemata are simultaneously being processed, called implicit parallelism [21].

4.4 Genetic algorithm implementation

Here, a basic GA implementation is modified in an attempt to improve the performance. The
GA presented here consists of a number of independent GA runs (GAk; k = l, 2, ... , kmax) in
which the variable bounds are decreased with each run. For each GA run, the probability of
mutation Pm varies linearly from Pbeg for the first generation to Pend for the last generation.
Formally, the successive GA algorithm is presented as follows:

1. Initialization: Prescribe the maximum number of generations per GA run .9max, the
population size e, the number of binary bits representing one variable l, the variable
bounds decreasing factor .6.x, the finishing size of the variable bounds 6-Xend, the
convergence tolerances c1 and c2, the probability of mutation limits Pbeg and Pend, the
maximum number of no-improvement generations bmax· Set the GA run counter k := 1.

26

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

2. Determine number of GA runs: Calculate the maximum number kmax of GA runs
as follows:

k . f [log(~Xmax/ ~Xend) l
max = integer o (A) + 1 ~ 1

log u.x
(4.17)

where ,6.xmax denotes the greatest variable bound size.

3. Genetic Algorithm:

(a) Generate first population: GA run number k starts with the random genera­
tion of the first population of strings. Set the generation number counter g := 1.

(b) Function evaluation: Determine the variable values represented by the popula­
tion of strings and evaluate f (x) for all strings. Record the lowest function value
Jg +-+ xg for the current population.

(c) Selection: Select e strings from the current population, using tournament or
ranking selection.

(d) Crossover: Choose pairs randomly from the selected population and exchange
string parts between randomly selected crossover position for each pair.

(e) Mutation: Determine the probability of mutation Pm for the current generation
g:

, + (Pend - Pbeg) · g
Pm= Pbeg

gmax

and perform jump mutation.

(4.18)

(e) Minimum updating: Record the lowest minimum !min for GA run k and the
number of generations b no improvement is made on this value: If g = 1 or
J min - 19 > Cl set !min := Jg and b := 1. Else if I If min - /91 I < Cl set b := b + 1.

(g) Termination of GA run k: If the maximum number of generations g = .9max is
reached or when the maximum number of no-improvement generations b = bmax
is reached goto 4, else continue with the next generation g := g + 1 and goto 3
(b).

4. Convergence test: Set fk := f min with .fk +-+ xk. If the maximum number of GA
runs is reached k = kmax or when the difference in minima found by two successive
G A's are negligible 11.h - fk-i I I < c2 , then goto 6. Else continue with 5.

5. Changing variable bounds: Change the upper xe and lower xb limits of the variables
according to the following equations:

(4.19)

(4.20)

Set k := k + 1 and goto 3 (a).

27

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

6. STOP: Take fk as approximation to J*.

Numerical experiments revealed that suitable values for the parameters are gmax=30, e=20,

l=l0, ~x = 3, ~Xend = 10-4
' Cl = 10-3

' c2 = 10-5
' Pbeg = 0.08, Pend = 0.05 and bmax=6.

Ranking selection is advised with c = 5. Appendix F.1 presents the code for the successive
GA algorithm.

4.4.1 On the selection process

The developed GA has the option between tournament selection and ranking selection (Step
3 (c)). The expected value selection was at first implemented, but is not included due to
poor performance when compared to the other two methods. Groenwold et al [22] used
the ranking selection with the exponent c taken as unity. Numerical experiments revealed
that larger values for c improves this GA's efficiency. The selection technique employed
with larger c values, chooses the best fit strings more often than the lower ranking strings.
This may appear to be a weak selection technique in that much genetic information is lost.
However, this GA constructs a total new population at the beginning of each inner GA run
(Step 3 (a)). Consequently, a whole new genetic pool is constructed which overcomes the
problem of premature convergence.

4.5 Comparison between different GA implementations

The performance of the GA implementation as outlined in Section 4.4 is compared to a
basic GA implementation presented by Carroll [24]. Table 4.1 shows the results for both
GA implementations when each test problem from the set listed in Table 1.1 was performed
10 times from different starting points. Clearly, the successive GA method presented in
this study requires less function evaluations and finds the global minimum more often than
the basic GA. The reason for the excellent performance lies in the exploitation of the most
significant bit property.

4.5.1 Most significant bit property

The most significant bits are the string positions where a change of bit value effects the
variable value it represents most. For example, consider the binary bit string of length 5:
(1,0,0,0,1) represents a variable value of 17 since 1 · 2° + 1 · 24 = 17. If the first bit is changed
to zero the string represents 16, since 1 · 24 = 16. Changing the last bit to zero and the
first bit back to 1, means that the variable changes much more and now equals 1. The most
significant bits in a binary string representation are thus the ending bit positions.

A GA will quickly find the values of the significant bits corresponding to good fitness, but is
slow in finding the least significant bit values. The changing bound technique as explained in
Section 4.4 exploits this property of the most significant bits in that as soon as the significant
bits are found and the GA struggles to find the least significant bit values, a next GA starts

28

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

GA [24] Successive GA

Prob. F Nfe Jfave - J*J Jfbest - J* J F Nfe Jfave - f*J Jfbest - f* J
Gl 6 4026 0.5670E-01 0.6912E-08 6 2557 0.8737E-0l 0.1006E-09
G2 10 7196 0.7623E+00 0.2174E+00 10 5553 0.1001E+00 0.2917E-01
QP 4 4691 o.6250E+oo 0.9167E-09 1 2213 0.8100E+Ol 0.4644E-08
C6 5 4056 0.6278E-04 0.4654E-07 0 1293 0.3711E-06 0.4783E-07
SH 6 4016 0.2082E+00 0.1466E-04 0 3155 0.5537E-05 0.2426E-05
RA 4 3606 0.6394E-01 0.2965E-09 2 1619 0.2422E-01 0.1055E-07
BR 8 4246 0.6954E-03 0.3048E-07 0 1685 0.1691E-06 0.9433E-08
H3 6 5601 0.5549E-03 0.1190E-06 0 1477 0.2152E-05 0.ll 79E-06
H6 10 6886 0.4091E-01 0.5307E-02 4 2275 0.4783E-01 0.lO0lE-06
S5 10 4636 0.5252E+Ol 0.6820E-0l 4 3319 0.2756E+Ol 0.3276E-06
S7 10 4511 0.7075E+Ol 0.6129E+Ol 6 3277 0.4492E+0l 0.2570E-06
S10 10 3771 0.5671E+Ol 0.3100E-02 5 3235 0.3915E+0l 0.4199E-06

Table 4.1: The results for the successive GA method and a basic GA. Nfe denotes the
average nu~ber of function evaluations, F the numb~r of failures to converge to the global
minimum, !ave the average of the minima found and !best the lowest minimum found for the
10 runs. f* denotes the global minimum.

with a smaller variable bound size. The convergence to the optimum is thus not performed
by locating the least significant bit values, but through finding the most significant bit values
for small variable bound sizes. The ranking selection technique with a large c value makes
it possible for the GA to distinguish better fit strings from less fit strings for small variable
bound sizes.

4.6 Summary

An optimization algorithm consisting of successive GA runs in which the variable bounds
are continuously decreasing, is presented in this chapter. Numerical results shows that this
implementation of a GA outperforms a basic GA implementation.

29

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Chapter 5

Particle Swarm Optimization

5.1 Introduction

Genetic algorithms (GA) [21], simulated biological growth (SBG) [27] and simulated anneal­
ing (SA) [28] are well known optimization methods simulating natural phenomena.

In recent years an efficient optimization algorithm that mimics the social behaviour of bird
flocks or fish schools was developed by Kennedy and Eberhart [29], called the particle swarm
optimization algorithm (PSOA). This algorithm is based on the natural phenomena that
members of a school or swarm benefit from the discoveries and experience of all other mem­
bers of the school or swarm. The sharing of information between individuals ensures that
the school or swarm explores spaces that enhances the survival of the specie. Fourie and
Groenwold [30] applied the particle swarm optimization algorithm successfully to the optimal
design of structures with sizing and shape variables.

In this chapter, a simple PSOA is applied to global optimization.

5.2 Mimicking social behaviour

The PSOA uses a 'swarm' of possible designs and the governing principle behind the PSOA
is that every member of the swarm remembers the best position it has passed through.
Through intercommunication between members, the overall best position is determined. In
the following, the term member is replaced with particle and each particle position repre­
sents the design variables x. In minimization, the best position corresponds to the design
vector x which attains the lowest objective function f (x). The movement of each particle is
determined by the overall minimum recorded by the members and each member's minimum
value for f(x) obtained during their search paths.

30

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

5.2.1 Particle swarm equations

Following Shi and Eberhart [31], the position and velocity of particle i is updated in the
following way:

xt+1 = xt + vt+l
vt+i = wvt + c1r1(Pi - xi)+ c2r2(bk - xi)

vi= 0

(5.1)

(5.2)

(5.3)

Here, the best position of particle i is represented as Pt while the best swarm position up
to iteration k is recorded as bk. The term vi+i, called the velocity, represents the change
in position between iterations for particle i. The attraction particle i has to the overall best
position bk is controlled by the product c2r 2, while c1r 1 controls the attraction particle i has
to its own best position Pi . c1 and c2 are two constants, while random numbers between
0 and 1 are generated for r 1 and r2 . Kennedy and Eberhart [29) used a value of 2 for both
c1 and c2 . Continuity of the path of particle i is improved by introducing the inertia term,
wvt Shi and Eberhart [31] found that values between 0.8 and 1.4 are suitable for w.

5.3 Numerical results

A simple PSOA is implemented in FORTRAN and the code is given in Appendix F.2. Nu­
merical results using the PSOA algorithm are compared to other methods that also operate
on a population of solution vectors, namely the GA implemented in this study, Clustering
[8, 9) and the algorithm of Mockus [15]. The current values for the parameters in the PSOA
algorithm are as follows: p=20, C1 =1.0, C2=l.0, w=0.8, Vmax=30.0, kmax=4000 and r max=30.

Vmax represents the maximum step limit for any particle (0 < I lvi+l 11 ~ Vmax) and kmax
the maximum number of time steps k. The number of time steps for which the overall best
swarm position bk does not change is recorded, and the algorithm is terminated when a value
of r max is reached. p represents the number of particles.

The test problems presented in Table 1.1 are used for comparison and Table 5.1 reflects
the performance of the PSOA. The values reported are the average number of function
evaluations N 1e and the number of failures F to converge to the known global minimum for
10 independent runs of each problem. Each of the algorithms excelled for some problems,
although the clustering algorithm in general outperforms the other algorithms. The results
of the GA and the PSOA algorithms are roughly comparable.

5.4 PSOA combined with the unified Bayesian stop­
ping criterion

The results in Table 5.1 shows that the PSOA failed to converge to the global optima a
number of times for some problems. The robustness of the PSOA can be improved by using
smaller number of particles and combining the algorithm with the unified Bayesian stopping

31

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

PSOA GA Cluster Mockus

Prob. F Nfe F N1e F Nfe F Nfe

Gl 0 1776 6 2557 8 1302 6 354
G2 10 10 0 11644 9 1442
GP 2 1610 1 2213 0 985 9 365
C6 0 1262 0 1293 0 643 0 371
SH 0 2138 0 3155 0 1626 0 373
RA 6 1390 2 1619 1 2038 0 194
BR 0 1332 0 1685 0 683 7 258
H3 0 1486 0 1477 0 1232 8 165
H6 4 2356 4 2275 0 3278 6 404
S5 7 1896 4 3319 0 1891 6 158
S7 5 2190 6 3277 0 2139 9 160
SlO 6 1964 5 3235 0 2805 9 164

Table 5.1: Comparing the PSOA with other methods.

criterion. Table 5.2 shows that the function evaluations cost increased, but the number of
failures decreased notably for such a combination with p = 13 and r max = 20.

PSOA

Prob. F Nfe r/ii q(ii,r)

Gl 0 10524 9 / 10 0.9991
G2 10
GP 0 9135 9 / 10 0.9991
C6 0 6139 9 I 9 0.9991
SH 0 12197 9 / 10 0.9991
RA 0 22804 10 / 26 0.9995
BR 0 7010 9 I 9 0.9991
H3 0 9171 9 / 10 0.9991
H6 0 41635 10 / 21 0.9996
S5 0 45004 10 / 34 0.9995
S7 0 39122 10 / 29 0.9995
SlO 0 40969 10 / 30 0.9995

Table 5.2: Results for the PSOA combined with the unified Bayesian stopping rule.

32

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

5.5 Summary

A simple implementation of the PSOA shows that the algorithm can effectively be used in
global optimization. Doubtless, the performance can be improved through other operators,
e.g. decreasing of the inertia constant w and the maximum allowed velocity Vmax, and by
introducing craziness (30). The combination of a PSOA (employing a reduced number of
particles) with the unified Bayesian stopping criterion, forms a robust global optimization
algorithm.

33

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Chapter 6

Multiple Parallel Local Searches
Global Optimization

6.1 Introduction

•
Ill

The combination of a multi-start local search strategy and the unified Bayesian global stop­
ping criterion for solving the unconstrained global optimization problem is presented in
Chapter 3. In structural optimization however, each function evaluation typically involves
a complete finite element or boundary element analysis. Performing structural optimization
using these efficient algorithms in sequential form, may still be extremely time-consuming.
The search paths for the sequential algorithms presented in Section 3.2 are completely inde­
pendent of each other. Hence the sequential algorithm may easily be parallelized.

In this chapter, the unconstrained global programming problem is addressed using an efficient
multi-start algorithm, in which the local searches presented in Chapter 3 are performed
simultaneously on different computers for a contribution towards the unified Bayesian global
stopping criterion (Chapter 2).

6.2 Parallel implementation

The freely available pvm3 [32] code for FORTRAN, running under the Linux operating
system, is utilized as the software system that enables a cluster of computers to be used as
a massive parallel processing virtual machine (MPPVM). Currently, the MPPVM consists
of up to 128 Pentium III 450 MHz machines in an existing undergraduate computer lab.

The distributed computing model represents a master-slave configuration where the master
program assigns tasks and interprets results, while the slaves compute the search paths.
The workload is statically assigned, and no inter-slave communication occurs. The master
program informs each slave task individually of the optimization problem parameters, and
awaits individual optimization results from each slave. A slave continues with a new search
path after sending results back to the master program, until the unified Bayesian global
stopping criterion is satisfied.

34

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

6.2.1 A measure of computational effort

It is assumed that the parallelized algorithm will ultimately be used in problems for which the
CPU requirements of evaluating the objective function is orders of magnitudes larger than
the time required for message passing and algorithm internals. This is the case, for example,
when every function evaluation involves a complete finite element analysis, boundary element
analysis or computational fluid dynamics analysis.

Hence a somewhat unconventional measure for the cost of the parallelized algorithm is de­
fined, which is denoted apparent visible cost (Nvc). This cost represents the maximum number
of function evaluations Nfe recorded for any slave during the parallel optimization. The time
window (in CPU seconds) associated with this number of function evaluations is denoted
the virtual CPU time. The virtual CPU time includes the time window associated with
initialization and evaluation of stopping criterion (2.5).

6.3 Numerical results

Any optimization algorithm may be used for the global and local phases of the multi-start
strategy presented in Section 3.2. As an example, the GLSl algorithm is used here.

If many computers are available, it seems sensible to place a lower limit on the number of
random searches n performed, before terminating the multi-start algorithm. This mainly
improves the probability of convergence without increasing the computational cost (since
the n searches are performed in parallel).

Table 6.1 reveals the effect of parallel implementation. The results of the sequential GLSl
algorithm are compared to the parallel implementation of GLSl, using a MPPVM consisting
of 32 and also 128 machines. The minimum number of sampling points n are 20 for the 32-
node cluster and 90 for the 128-node cluster, representing in each case some 70 % of the
available number of nodes.

For relatively 'simple' problems (viz. problems with few design variables or few local minima
in the design space), the probability of convergence to the global optimum becomes very high
when the number of nodes is increased. This is illustrated by, for example, the results for
the C6 problem.

Simultaneously, the total computational time, (as compared to the sequential GLSl algo­
rithm), decreases. For the 32-node parallel virtual machine, the virtual CPU time to evaluate
all the test functions on average decreases by a factor of more or less 2 (not shown in tab­
ulated form). This low factor is a result of the inexpensive analytical test functions and
the time associated with message passing. For more difficult problems (e.g. the Gl and G2
problems), the computational effort decreases drastically. When the time associated with
a single function evaluations become much larger than the time required for algorithm in­
ternals, the fraction Nie/ Nvc based on Table 6.1 may be used as a direct indication of the
decrease in virtual computational time obtainable as a result of parallelization. For the G2
problem, this would imply a reduction in computational time by a factor of roughly 75 for
the 128-node parallel virtual machine.

35

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

GLSl 32-node pvm 128-node pvm

Prob. N1e r/ii q(ii, r) Nvc r/ii q(ii, r) Nvc r/ii q(ii, r)

Gl 3544 9 / 148 0.9990 147 9 / 162 0.9990 55 9 / 166 0.9990
G2 4996 9 / 106 0.9990 189 10 / 93 0.9995 67 10 / 97 0.9995
GP 695 10 / 22 0.9996 47 10 / 24 0.9995 49 42 / 90 1.0000
C6 350 10 / 17 0.9996 26 12 / 20 0.9999 26 53 / 90 1.0000
SH 1739 10 / 66 0.9995 71 10 / 65 0.9995 44 16 / 90 1.0000
RA 2817 9 / 144 0.9990 130 9 / 167 0.9990 45 9 / 202 0.9990
BR 472 9 / 9 0.9991 54 20 / 20 1.0000 46 89 / 90 1.0000
H3 701 10 / 17 0.9996 59 11 / 23 0.9998 54 49 / 90 1.0000
H6 683 9 / 13 0.9990 48 20 / 20 1.0000 51 89 / 90 1.0000
S5 384 10 / 27 0.9995 27 10 / 24 0.9995 28 35 / 90 1.0000
S7 363 10 / 23 0.9995 28 10 / 24 0.9995 27 40 / go 1.0000
S10 381 10 / 24 0.9995 31 10 / 29 0.9995 28 35 / 90 1.0000

Table 6.1: Apparent visual cost Nvc for a 32-node parallel virtual machine and a 128-node
parallel virtual machine. Nvc may be compared with the number of function evaluations
Nfe of the sequential GLSl algorithm. r repre~ents the number of starting points from
which convergence to the current best minimum f occurs after ii random searches have been
started. The probability that .f is equal to J* is given by q(ii, r).

6.4 Summary

Parallelization of multi-start algorithms is shown to be effective in reducing the computa­
tional time associated with the solution of expensive global programming problems. For
example, the parallelized GLSl algorithm is applied to the (extremely expensive) optimal
design of composite shell structures using a finite element approximation by Schutte et al.
(33].

While the apparent computational effort is reduced, the probability of convergence to the
global optimum is simultaneously increased as a result of parallelization.

36

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Chapter 7

Parallel Competing Algorithms In
Global Optimization

7.1 Introduction

It is often asked which algorithm can be considered the leading global optimization algorithm.
In the literature, numerical results reveal that no single global optimization algorithm can
consistently outperform all other algorithms when a large set of problems in different classes
is considered. Hence, a sensible approach is to attempt to solve the unconstrained global
programming problem using different algorithms simultaneously.

In this chapter, the unconstrained global programming problem is addressed using different
algorithms competing in parallel in a multi-start procedure.

7.2 Motivation

As stated in the above, it is observed that no single global optimization algorithm can
consistently outperform all other algorithms when large sets of problems in different classes
are considered. A cursory glance at numerical results in the literature suffices to impress
this observation. Nevertheless, this obvious but important observation is emphasized in the
following.

In Tables 7.1 and 7.2, numerical results are presented for the well known (and difficult)
Griewank function. The results for the DIRECT [34], DOT [35] and LFOPC [36, 37, 38]
algorithms are taken from [39]. Note that the simple GLSl algorithm presented in Section
3.2 by far outperforms these algorithms.

Table 7.3 presents similar results to the above for the Rastrigin function. Here, the Bayesian
algorithm of Mockus is by far superior to the other algorithms evaluated.

Table 7.4, similar to Table 3.3 presented in Section 3.5.1, further emphasises that no algo­
rithm can be considered the leading global optimization algorithm. Due to the large number
of times the Bayesian search implementation by Mockus fails to converge to f* (Table 2.2),

37

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

n Algorithm Successes Nfe (Ave.)

5 DIRECT 87 / 100 3400
DOT 5 / 300 10260
LFOPC 60; 400 9050
GLSl 500 / 500 1034

10 DIRECT 56 / 100 11810
DOT 96 ; 500 1260
LFOPC 136 / 500 32240
GLSl 497 / 500 977

20 DIRECT 8 I 200 102650
DOT 16 / 2000 19740
LFOPC 128 / 2000 7220
GLSl 469 / 500 476

Table 7.1: Results for the Griewank Function (n = 5, 10, 20, with d = 200, 1000, 20000
respectively). 'Successes' indicates the number of times the algorithms converged to f*.

Algorithm d Successes Nfe (Ave.)

DIRECT 4000 19 / 100 39480
1000 56 / 100 11810

200 83 / 100 6990

DOT 4000 37 / 500 3970
1000 96 / 500 1260
200 160 / 500 620

LFOPC 4000 25 / 500 193410
1000 136 / 500 32240
200 390 / 500 830

GLSl 4000 498 / 500 1289
1000 497 / 500 977
200 500 / 500 413

Table 7.2: Effect of variation of din the IO-dimensional Griewank Function.

the reported results for this algorithm include the unified Bayesian stopping rule. The ta­
ble also includes the results of the SQSD algorithm (explained in Section 7.3.2 to come).
This algorithm is converted to a global optimization algorithm using the unified Bayesian
stopping rule (with a= 1, b = 5 and q* = 0.999).

38

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

n Algorithm Successes Nfe (Ave.)

2 LLSl 9/ 10 1487
Clustering 9/ 10 3420
LFOPC 10/ 10 45273
Mockus 10/ 10 251

5 LLSl 2/ 10 6548
Clustering 0/ 10
LFOPC 3/ 10 348937
Mockus 10/ 10 482

10 LLSl 2/ 10 24281
Clustering 0/ 10
LFOPC 0/ 10
Mockus 10/ 10 964

20 LLSl 0/ 10
Clustering 0/ 10
LFOPC 0/ 10
Mockus 10/ 10 1928

Table 7.3: Results for the Rastrigin Function (n = 2, 5, 10, 20).

Problem LLSl LLS2 GLSl GLS2 SF [7] [8, 9] [19, 20] [15] SQSD

Gl 12583 4225 3544 11907 5062 1302 396147 3710 183604
G2 2333 4139 3398 3313 25730 11644 828441 74929
GP 463 664 764 581 1901 985 94587 39416 649
C6 168 304 330 303 516 643 76293 1449 275
SH 2830 1719 1724 2639 12440 1626 139087 1485 1817
RA 1562 3684 3010 3235 10971 2038 445711 776 1445
BR 823 778 542 1402 680 683 71688 4521 3045
H3 601 619 711 566 1370 1232 103466 2938 506
H6 664 716 750 715 2346 3278 106812 5646 417
S5 543 556 334 805 1571 1891 234654 3672 713
S7 546 628 413 822 1624 2139 212299 13147 926
SlO 596 565 387 865 1477 2805 330486 18987 990

Table 7.4: Results using different algorithms for the extended Dixon-Szego test set. For the
problems listed, the number of function values Nfe for the different algorithms are reported.
Clearly, no algorithm consistently outperforms the other algorithms. '-' indicates that the
algorithm failed to find the global optimum J* for 10 independent runs.

7.3 Multiple competing algorithms

Based on the foregoing, a sensible, if somewhat unconventional, approach is to attempt to
solve global programming problems using a number of different algorithms simultaneously.

39

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

The results of all the different algorithms combined may then be used to study the quality
of local minima found. Obviously, this approach is senseless if the different algorithms are
incorporated in a sequential algorithm. On the other hand, multiple algorithms in parallel
are very viable.

A complication when using different algorithms simultaneously once again relates to the
selection of a global stopping criterion. However, if assumption (2.3) holds for a given
algorithm and objective function, then stopping criterion (2.5) may be used. Hence, multiple
algorithms are implemented in an infrastructure, which compete for a contribution towards
the unified Bayesian stopping criterion.

Currently, the various unconstrained algorithms competing for a contribution to the unified
Bayesian global stopping criterion (2.5) are GLSl, GLS2, LLSl, a genetic algorithm (GA)
(Chapter 4), the Snyman-Fatti algorithm [7], the relatively new particle swarm optimization
algorithm (PSOA) (Chapter 5), clustering [8, 9], the SQSD algorithm [14] and the Bayesian
search algorithm presented by Mockus [15]. Some of these algorithms are briefly reviewed
in the following.

7.3.1 Leapfrog algorithm

The Leapfrog algorithm was developed by Snyman [36, 37] and is derived by considering
the motion of a particle with unit mass in a conservative force field. The objective function
being minimized represents the particle's potential energy.

The method therefore requires the solution to the differential equation with initial conditions:

x(t) = -VF(x(t))

x(O) = -xo; x(O) = Vo

From (7.1) it follows that for time interval [O, t]:

½ll±(t)ll2 - ½11±(0)112 = F(x(O)) - F(x(t)) or

T(t) - T(O) = F(O) - F(t)

(7.1)

(7.2)

(7.3)

(7.4)

(7.4) indicates that if the kinetic energy T(t) increases then the objective function F(t) must
be decreasing. Using numerical integration the initial value problem is solved and x(t) is
monitored. The particle moves uphill when ½llx(t)112 decreases and an interfering strategy
is then applied to extract the energy to increase the likelihood of descent.

The Leapfrog algorithm uses only gradient information in minimizing the objective function.

7.3.2 SQSD algorithm

The SQSD algorithm, developed by Snyman and Hay [14], makes successive spherical quadratic
approximations to the objective function f(x), as in Dynamic-Q (see Section 8.4). The sec­
ond point x 1 is calculated by stepping a distance c5 in the steepest descent direction from a

40

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

given starting point x0
:

(7.5)

SQSD is used for unconstrained optimization and the solution of the quadratic subproblems
can therefore explicitly be calculated as:

ak = 2 [f(xk-1) - f(xk) - VT f(xk)(xk-1 - xk)]

llxk-l_xkll2

(7.6)

(7.7)

A sequence of points are generated using these equations (for k = l, 2). Move limits
are added to ensure that no excessive change in position between iterations occur and the
algorithm therefore converges in a stable manner. The maximum allowed step size between
iterations is c5, i.e. if the combination of (7.6) and (7. 7) results in:

(7.8)

then xk+ 1 calculated with (7.6) is discarded and a new xk+ 1 is calculated by taking a step
of size c5 from xk in the steepest descent direction:

(7.9)

7 .4 Parallel implementation

In the multi-start competing algorithm approach, the minimizations performed by the algo­
rithms are completely independent of each other and are therefore easily parallelized. As in
Section 6.2, the pvm3 code [32] for FORTRAN is used enabling a cluster of computers to be
used as a massive parallel processing virtual machine (MPPVM). Here again, the distributed
computing model represents a master-slave configuration where the master program informs
each slave task of the problem parameters and assigns optimization algorithms to the slaves.
The master program awaits individual optimization results from each slave and parallel op­
timizations are terminated using (2.5). Appendix F.3 presents the master program code and
Appendix F .4 the slave program code.

7.4.1 Assigning algorithms to slaves

Different strategies for assigning algorithms to the slaves are possible. For example, the
algorithm assigned to a particular slave can be determined randomly with uniform proba­
bility, or according to a predetermined probability (based on, for instance, the performance
of individual algorithms for a large set of test problems). The probabilities can also change
during the analysis, according to the results obtained. In this initial study it is opted to use
constant predetermined probabilities for the algorithms.

41

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

7.4.2 A measure of computational effort

Section 6.2.1 defined the apparent visible cost (Nvc) for the parallelized multi-start algo­
rithms as the maximum function evaluations Nfe recorded for any slave. This definition
for Nvc is not entirely satisfactory when gradient based and derivative free algorithms are
used simultaneously. To facilitate the comparison between gradient based algorithms and
derivative free algorithms, an algorithm's compound cost Ne is defined as Ne = Nfe + nN9e,
where N9e represents the number of gradient evaluation performed, n the number of design
variables and Nfe the number of function evaluations performed. Once again, it is assumed
that the competing algorithm infrastructure will be used in problems for which the CPU
requirements of evaluating the objective function is orders of magnitudes larger than the
time required for message passing and algorithm internals.

Hence, the apparent visible cost (Nve) of the parallelized competing algorithm infrastruc­
ture is defined as the greatest compound cost Ne recorded for any slave during the parallel
optimization.

7.5 Results for parallel competing algorithms

Table 7.5 reflects the efficiency of the developed competing algorithm infrastructure. Here,
GLSl, the Bayesian search implementation by Mockus, clustering, the Snyman-Fatti and
the SQSD algorithms compete for a contribution to the stopping rule. The algorithms
are assigned to the n 8 slaves with an equal probability of 0.20. The computational effort
associated with a single function evaluation and a gradient evaluation is increased artificially,
as to prevent a bias towards algorithms which require little computational effort in evaluating
algorithm internals. The lower limit on the number of random searches n from the slaves is
prescribed as 20 (compare Section 6.3).

While a specific algorithm in the infrastructure can yield superior results to those in Table 7.5
for a single given problem, the overall performance of the competing algorithm infrastructure
for the complete test set is always superior. No failures were recorded when performing each
test problem 7 times from different starting points.

Table 7.6 presents a breakdown of successful algorithms for a 128-node pvm. In the table,
r P indicates the proportional contribution to r, and np the proportional contribution to n.
High values for r P indicate that an algorithm is successful in locating the global optimum
.f*. Similarly, high values for np indicate that an algorithm converged very quickly to non­
optimal values. As expected, GLSl converges quickly, resulting in high values of both rp
and np. This simple algorithm represents the largest contribution to rp, with the exception
of the Rastrigin problem, for which the Bayesian search strategy of Mockus makes the only
notable contribution when n increases.

42

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

GLSl 128-node pvm

Prob. Nge Nfe Ne r/ii q(ii,r) Nge Nfe Nve r/ii q(ii, r)

Gl 3544 3544 10632 9 / 148 0.9990 0 337 337 9 I 119 0.9990
G2 3398 3398 37378 10 / 72 0.9990 5 1001 1051 10 / 40 0.9995
GP 764 764 2292 10 / 24 0.9996 4 97 105 10 / 32 0.9995
C6 330 330 990 10 / 16 0.9996 3 95 101 11 / 20 0.9998
SH 1724 1724 5172 10 / 65 0.9995 14 271 299 9 / 95 0.9990
RA (n = 2) 3010 3010 9030 9 / 154 0.9990 0 196 196 10 / 89 0.9995
RA (n = 5) 0 486 486 9 / 121 0.9990
RA (n = 10) 0 969 969 9 I 101 0.9990
BR 542 542 1626 9 / 9 0.9991 6 112 124 11 / 22 0.9998
H3 711 711 2844 10 / 17 0.9996 0 162 162 10 / 41 0.9995
H6 750 750 5250 9; 14 0.9990 25 25 175 20 / 20 1.0000
S5 334 334 1670 10 / 23 0.9995 0 159 159 10 / 28 0.9995
S7 413 413 2065 10 / 27 0.9995 14 90 146 10 / 30 0.9995
S10 387 387 1935 10 / 24 0.9995 5 147 167 10 / 42 0.9995

Table 7.5: The results for the parallel competing algorithm infrastructure. The apparent
visual cost Nve for a 128 node parallel virtual machine may be compared with the compound
cost Ne of the sequential GLSl algorithm. '-' indicates that the GLSl algorithm did not
convergence to the global minimum f*.

Clustering Mockus GLSl SF SQSD

Prob. r /ii rp/iip r p/iip rp/iip rp/iip r p/iip

Gl 9 / 119 3 / 45 4 / 5 2 / 44 o / 5 o I 20
G2 10 / 40 6 / 12 o / o 4 / 28 o / o o / o
GP 10 / 32 2 / 2 o / o 4 / 9 o I 9 4 / 12
C6 11 / 20 2 / 2 0/0 6 / 9 o Io 3 / 9
SH 9 I 95 2 / 6 o / o 5 / 39 o I 5 2 / 45
RA (n = 2) 10 / 89 o / 2 6 / 6 2 / 40 o / 2 2 / 39
RA (n = 5) 9 / 121 o / 3 9 I 9 o I 43 o I 26 o I 46
RA (n = 10) g / 101 0 / 1 9 / 9 o I 45 o Io o I 46
BR 11 / 22 3 I 3 o Io 7 / 7 o I 3 1 / 9
H3 10 / 41 4 / 4 1 / 12 o I 8 o / o 5 / 11
H6 20 / 20 o / o o / o 2 / 2 o / o 18 / 18
S5 10 / 28 0 / 1 1 / 4 7 / 17 o Io 2 / 6
S7 10 / 30 o Io o / 4 s / 19 o / o 2 / 7
SlO 10 / 42 1 / 2 o / 9 6 / 20 o / o 3 / 11

Table 7.6: Breakdown of successful algorithms. r P indicates the proportional contribution
to r, and iip the proportional contribution to ii.

43

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

7.6 Summary

A multi-start, multi-algorithm infrastructure is presented, in which different algorithms com­
pete in parallel for a contribution towards the unified Bayesian global stopping criterion. The
algorithm which is most suitable for a specific problem, outperforms the other algorithms
and yields the largest contribution to the number of times the lowest minimum is found.
This infrastructure is suitable for expensive unconstrained global programming problems.

44

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Chapter 8

Constrained Global Optimization

8.1 Introduction

In addition to the unconstrained problem as formulated in Section 1.1, many practical prob­
lems include explicit constraint functions, which represent additional relationships among the
variables. For instance, in structural optimization, the relationship between the variables
should be such that the maximum allowable stress and the maximum allowable deflection
are not exceeded.

The constrained optimization problem in general mathematical form is:

subject to the constraints:
9i(x) ~ 0 i = 1, 2, ... m

hj(x) = 0 j = 1,2, ... r

where f, 9i and hj are scalar functions of x.

(8.1)

(8.2)

(8.3)

This chapter presents three existing algorithms used for solving the constrained optimiza­
tion problem, namely the LFOPC, ETOPC and Dynamic-Q algorithms. In addition, a
constrained algorithm (GLSlC) using the search components of the GLSl algorithm (see
Chapter 3) is presented. The parallel infrastructure developed and presented in Chapters 6
and 7 is extended by the inclusion of these four constrained algorithms for solving expensive
constrained optimization problems. The numerical results obtained using a set of simple
constrained test functions are given here, for both serial and parallel implementations.

8.2 GLSlC

The performance of a constrained optimization algorithm, denoted GLSlC, using the search
components of the GLSl algorithm is investigated. The GLSlC constrained optimization
algorithm consists of a global and local phase. The global phase is performed using the MBB
algorithm on a penalty function formulation of the constrained problem. The solution of

45

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

the global phase is used as the starting point for the local phase which is performed with
an augmented Lagrangian multiplier method. The BFGS algorithm is used for this local
unconstrained optimization phase.

8.2.1 Penalty function method

The most simple and straight forward approach to handle constrained problems is with the
penalty function method. The constrained problem is solved by applying an unconstrained
optimization algorithm to a penalty function formulation P(x) of the constrained problem:

m r

minimize P(x) where P(x) = f(x) + L big;(x) + LWjh~(x) (8.4)
i=l j=l

with:
b· = { 0 if gi ~ 0

i Si » 0 if gi > 0

Usually the penalty parameters take on the same positive value, i.e. si = Wj = p. Very large
values for p are used when high accuracy is needed, but the method unfortunately becomes
unstable and inefficient for such high values of p.

8.2.2 Augmented Lagrangian multiplier methods

The Augmented Lagrangian multiplier method transforms the constrained problem to suc­
cessive unconstrained problems involving the so-called Augmented Lagrangian. Combining
the Lagrange function with the penalty function give the augmented Lagrange function Lk:

where
(a)= maximum of a and 0 (8.6)

The values for .\f and .\J are approximations to the Lagrange multipliers. The penalty
parameter pk is usually taken as a constant value p and low values for p result in a more
stable method. The first multiplier approximations, .\f and ,\~, can arbitrarily be taken as 0.
Any unconstrained optimization algorithm can be used to minimize the successive Lagrange
functions with respect to x. The solution xk-l of Lagrange function Lk-l is used to calculate
the next approximations to the Lagrange multipliers (.\f and .\}) in the following way:

.\7 =< .\7-1 +2pk-1gi(xk-1) >

where (a) = maximum of a and 0.

46

(8.7)

(8.8)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

The successive optimizations are terminated if:

8.3 LFOPC

llxk-xk-111 <c1 or

IILk(xk) - Lk-1(xk-1)II < c2

(8.9)

(8.10)

The Leapfrog dynamic trajectory method developed by Snyman [36, 37) were modified to
handle constraints using the penalty function formulation. This constrained version, called
LFOPC, applies the penalty function formulation in 3 phases [38):

Phase 0: For a given starting point x 0 apply Leapfrog to the penalty function with p := 100,
giving the solution x~ of phase 0.

Phase 1: Apply Leapfrog to the same penalty function but with p =: 10000, using x~ as
the starting point. This gives xi and the active inequality constraints at this point can
be determined. The active inequality set (ga(x); a= l, 2, ... na) corresponds to the set of
inequality constraint functions for which (gi(xi) > O; i = 1, 2, ... m).

Phase 2: The penalty function is redefined using only the active inequality set and the
equality equations with p = 10000:

na r

Pa(x) = LP9~(x) + LPh~(x) (8.11)
a=l j=l

Leapfrog is used for minimizing Pa (x) with xi as starting point, giving the solution x* to
the constrained problem.

8.4 Dynamic-Q

The Dynamic-Q method [40) consists of applying the LFOPC algorithm to successive ap­
proximate quadratic subproblems (P[k], k = 0, l, 2, 3 ...) derived from the actual problem
functions. The Dynamic-Q method gives results of equal accuracy within comparable num­
ber of function evaluations when compared to the performance of the sequential quadratic
programming (SQP) methods [41).

The Dynamic-Q method is primarily intended for constrained optimization problems where
function evaluations are expensive. The actual problem functions, f (x), .9i (x) and hj (x),
are approximated by spherically quadratic functions, J (x), .9i (x) and hj (x) at design point
xk as follows:

f (x) = f(xk) + VTf(xk)(x - xk) + ~(x - xkf Ak(x - xk)

1
.9i(x) = gi(xk) + vr gi(xk)(x - xk) + 2(x - xkf B7(x - xk) i = l, 2, ... m

47

(8.12)

(8.13)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

hi(x) = hi(xk) + v'Thi(xk) (x - xk) + ~(x - xkf Cj(x - xk) j = 1, 2, ... r

with the diagonal Hessian matrices A k, BJ and CJ:

B~ = b~ I
i i

c: = cJI
Using these quadratic equations, subproblem P[k] are defined as:

minimize i(x), x = (xi, X2, xn) E Rn

subject to:
lMx) ~ 0 i = 1,2, ... m

.9m+1(x) = llx - xkll2 - 62 ~ 0

hj(x) = 0 j = 1,2, ... r

(8.14)

(8.15)

(8.16)

(8.17)

(8.18)

(8.19)

(8.20)

(8.21)

An additional constraint .9m+l (x) is added which ensures that the maximum step between
iterations are <5. The curvatures a0

, b? and c~ for the first subproblem P[O] is taken as zero,
forming linear functions. Solving the first subproblem P[O] for any starting point x 0 gives
x 1 . Thereafter the curvatures for subproblems P[k]; k = 1, 2, 3, 4 ... are defined as follows:

ak = 2 [f (xk-1) - f (xk) - VT f (xk) (xk-1 - xk)]

llxk-1 - xkll2

k 2 [gi(xk-1) - gi(xk) - vr gi(xk)(xk-1 - xk)]
b- = -----------------

i llxk-1_xkll2

k 2 [hj(xk-1) - hj(xk) - v'Thj(xk)(xk-1 - xk)]
C· = -----------------
] llxk-1 - xkjj2

(8.22)

(8.23)

(8.24)

A sequence of points are found by using the solution of subproblem P[k] as the next point
xk+l at which the following subproblem P[k + 1] is constructed.

8.5 ETOPC

The penalty function problems associated with large values for the penalty parameter p,
can be solved by applying Sequential Unconstrained Minimization Techniques (SUMT) [42].
SUMT consists of performing a succession of penalty function pk (x) minimizations, with
the penalty parameter pk increasing with each minimization. Snyman used SUMT with the
ETOP [43] unconstrained algorithm in developing the ETOPC constrained algorithm. More
formally, the ETOPC algorithm consists of the following steps:

1. Given a starting point x 0 , set k := 0 and choose the first penalty parameter p1 .

48

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

2. Set k := k + 1 and minimize pk(x) with associated penalty parameter pk and starting
point xk-l, using ETOP to give xk.

3. Test convergence criteria. If:

llxk-xk-1ll<c1 or

IIPk(xk) - pk-1(xk-1)II < c2

then STOP, else continue.

4. Set pk+l := cpk with c > 1 and go to 2.

p1 and c are typically taken as 1 and 10 respectively.

(8.25)

(8.26)

8.6 Constrained algorithms in multi-start procedure

In Chapter 3 efficient multi-start algorithms are presented to solve unconstrained global
programming problems. The constrained global programming problem is addressed in this
section using the same multi-start strategy. It is argued that the constrained or uncon­
strained global minimum is associated with a higher probability of convergence than any
other constrained or unconstrained local minimum. The unified Bayesian stopping rule is
therefore also applicable to constrained algorithms.

8.6.1 Numerical results

The above mentioned constrained algorithms are combined with the unified Bayesian stop­
ping rule in a multi-start procedure and tested on a set of simple constrained test functions.
Appendix B presents the 7 problems explicitly.

The stopping rule parameters used are a = 1, b = 5 and q* = 0.999. Table 8.1 shows the
average number of function evaluations Nfe, average number of gradient evaluations N 9e
and the number of failures F to converge to the constrained optima for 10 independent
runs of each problem using each method. The table reveals that the Dynamic-Q method
outperformes the other algorithms. This is expected as the test functions used are mainly
of quadratic form. For the Dynamic-Q algorithm, the value of c5 was chosen as 100 for all
the problems, except for C6 where c5 = 1 was used.

The suitability of the unified Bayesian stopping rule is also demonstrated in that no failures
are recorded for all the problems and algorithms, except for GLSlC when applied to problem
C3.

49

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

GLSlC LFOPC ETOPC Dynamic-Q

Prob. Nie N_qe F Nie Nge F Nie Nge F Nie Nge F

Cl 433 433 0 37 1490 0 144 906 0 90 90 0
C2 2180 2180 0 36 3757 0 157 10389 0 27 27 0
C3 8251 8251 2 54 6012 0 164 7927 0 153 153 0
C4 810 810 0 36 1520 0 144 11706 0 64 64 0
C5 150 150 0 37 2080 0 144 5800 0 64 64 0
C6 3772 3772 0 54 12488 0 180 6667 0 483 483 0
C7 21661 21661 0 64 44210 0 294 64260 0 328 328 0

Table 8.1: Results for constrained algorithms combined with the unified Bayesian stopping
criterion in multi-start procedures.

8. 7 Multiple parallel constrained searches

In Chapter 6 it is shown that multiple independent searches in a multi-start procedure per­
formed simultaneously on different computers, effectively reduces the cost of solving expen­
sive global programming problems. The same approach is adopted for expensive constrained
global programming problems. For demonstration purposes, the efficient Dynamic-Q algo­
rithm is used in the multi-start parallel infrastructure as explained in Chapter 6. Table
8.2 shows the results when solving the constrained test set using a MPPVM consisting of
32 computers. The table shows that the computational effort of the parallel multi-start
Dynamic-Q algorithm is much less than the computational effort of the sequential multi­
start Dynamic-Q algorithm (shown in Table 8.1). For the parallel multi-start Dynamic-Q
algorithm the results from a minimum of 20 sampling points ii are required before stopping.
This increases the probability of finding the global minimum from 0.999 for the sequential
algorithm to the probability q* shown in the last column of Table 8.2, without increasing

Prob. Nvc r/ii q(ii,r)

Cl 17 20 / 20 1.0000
C2 3 20 / 20 1.0000
C3 16 10 / 24 0.9995
C4 10 20 / 20 1.0000
C5 8 11 / 21 0.9998
C6 70 18 / 20 1.0000
C7 56 20 / 20 1.0000

Table 8.2: Apparent visual cost Nvc and the probability q(ii, r) that J is equal to f* for the
parallel multi-start Dynamic-Q algorithm using a MPPVM consisting of 32 machines. The
apparent visual cost Nvc for a 32-node parallel virtual machine may be compared with the
number of function evaluations N 1e of the sequential Dynamic-Q algorithm.

50

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

the computational cost.

8.8 Parallel competing constrained algorithms

The unconstrained global programming problem is addressed in Chapter 7 by simultaneously
applying different unconstrained algorithms using a MPPVM. The same approach is adopted
here for constrained global programming problems using the four constrained optimization
algorithms, GLSlC, LFOPC, ETOPC and Dynamic-Q. These algorithms compete for a
contribution to the unified Bayesian stopping rule as described in Chapter 7. In this case,
the algorithms are assigned to the n 8 slaves with an equal probability of 0.25.

The apparent visible cost (Nvc) as defined in Section 7.4.2 is used to express the performance
of the competing constrained algorithms method. Table 8.3 shows the function evaluations
Nfe and the gradient evaluations N 9e that make up the greatest compound cost Ne recorded
for a specific slave, when solving the constrained test set with a 32-node MPPVM. Table

Prob. Nge Nfe Nvc r/n q(n, r)
Cl 51 41 143 20 / 20 1.0000
C2 175 151 851 17 / 20 1.0000
C3 182 37 583 10 / 26 0.9995
C4 95 66 256 20 / 20 1.0000
C5 22 22 132 15 / 20 1.0000
C6 308 137 2293 13/ 20 1.0000
C7 574 426 4444 15/ 20 1.0000

Table 8.3: Apparent visual cost Nvc consisting of the gradient evaluations N 9e and the func­
tion evaluations Nfe for the parallel competing algorithm method using a 32-node MPPVM.

GLSlC LFOPC ETOPC Dynamic-Q

Prob. r/n r p/np r p/np rp/np rp/np
Cl 20/ 20 4 / 4 o / o 1 / 1 15 / 15
C2 17 / 20 4 / 7 o / o o / o 13 / 13
C3 10/ 26 o I 9 2 / 2 o / o 8 I 15
C4 20/ 20 4 / 4 1 / 1 o Io 15 / 15
C5 15/ 20 7/7 o / o o Io 8 I 13
C6 13/ 20 2 / 7 o / o 1 / 2 10 / 11
C7 15/ 20 1 / 6 o Io o Io 14 / 14

Table 8.4: The contributions of the algorithms towards the unified Bayesian stopping rule.
r P indicates the proportional contribution to r, and np the proportional contribution to n.

51

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

8.4 shows the contributions of the algorithms towards the stopping rule.

From the results presented in Table 8.1 it is expected that the Dynamic-Q algorithm will
have the greatest contribution, and the results of Table 8.4 confirm this. The Dynamic-Q
algorithm outperformed the other algorithms and the high values of rp indicate that the
algorithm was successful in locating the global optimum J* a number of times.

8.9 Summary

The global constrained problem is addressed in the following ways:

• Constrained algorithms are combined with the unified Bayesian stopping rule in effec­
tive multi-start algorithms.

• The independent searches involved in the multi-start procedure are performed simul­
taneously on different computers, which effectively reduces the computational cost.

• Using different constrained algorithms simultaneously in a multi-start procedure, re­
sults in a highly robust and efficient method for solving expensive constrained global
programming problems.

52

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Chapter 9

Slope Stability Analysis

9.1 Introduction

Calculating the safety factor of slopes is important in a number of engineering applications.
These include natural slopes, earthworks construction, embankments, earth dams, etc. In
recent years finite element methods have been developed for slope stability analyses [3, 4),
but limiting equilibrium methods are still widely used.

Limiting equilibrium methods require an assumption about the geometry of the failure plane.
For homogeneous soils the critical failure plane can be accurately modelled using mathemat­
ical functions such as circular arcs or log spiral functions, but for layered soils the geometry
of the failure plane can become irregular. Methods which assume a failure plane of a regular
shape are widely used for slope stability analyses. A computer can be used to randomly
generate hundreds of different failure planes and identify the one with the smallest factor
of safety as the critical plane. However, this method is not suitable for non-homogeneous
soil profiles. With a complex soil profile the shape and position of the failure plane can not
be modelled by a simple mathematical function and an alternative method for finding the
critical failure plane is needed.

Limiting equilibrium methods such as Janbu's method (44, 45), Morgenstern Price's method
(46) and Spencer's method (47, 48) are suitable to determine the factor of safety for an
arbitrary failure surface geometry. The problem of finding the critical failure plane when
using these methods may be addressed by randomly generating possible failure planes, but
with some restrictions to ensure the kinematically admissibility of the surfaces (49). Nguyen
(50) developed a method where the factor of safety is formulated as a multivariate function
F(x) with the independent variables x describing the geometry of the failure plane, which
can be circular or non-circular. He employed the simplex method as optimization tech­
nique. Celestina and Duncan (51) used the same approach for non-circular failure planes,
but used the alternating-variable optimization technique. Li (52) proposed a more efficient
one-dimensional optimization technique to replace the quadratic interpolation method which
Celestina and Duncan (51) used in the alternating-variable technique. Baker (53) made use
of Spencer's method and defined the failure plane by a number of nodal points connected
by straight lines. The vertical coordinates of the nodal points are the variables in Baker's

53

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

method and the dynamic programming technique is employed as the optimization method.
Recently, workers have addressed the problem by using a genetic algorithm that determines
the critical slip surface for a multiple wedge stability analysis [23].

Nguyen's [50] method for non-circular failure planes and Baker's method [53] are fairly
general, but lack the property of variable horizontal coordinates of the nodal points in
the analyses. Celestina and Duncan's [51] method is formulated such that the horizontal
coordinates of the nodal points may vary, but some of the coordinates are given a prescribed
direction of movement. This inhibits the failure plane to be entirely general. It is also
uncertain if the algorithms used for the different methods are able to locate the global
minimum of the factor of safety formulations. For some of these methods the starting values
for the variables are chosen such that the initial failure plane closely resembles the critical
plane, thereby reducing the effort of finding the global minimum.

This chapter presents a global optimization algorithm combined with Janbu's simplified
method and Spencer's method as an alternative method for finding the critical failure plane
of any shape. The failure plane is defined by nodal points connected by straight lines.
The points are equidistant from each other with the first and last points at the ground
surface. These two points may move horizontal and consequently all the nodal points have
the possibility of moving horizontal together with the freedom of vertical movement. This
results in a general formulation of the failure plane position.

The next section briefly revises Janbu's and Spencer's method and presents the relevant equa­
tions to calculate the factor of safety using these two methods. The unconstrained problem
is then formulated using these equations and the optimization algorithm used for solving the
problem is discussed. Four examples are presented to demonstrate the performance of the
new slope stability optimization procedure.

9.2 Janbu's simplified method

Janbu's simplified method [44, 45] forms part of the limiting equilibrium techniques based
on the method of slices. This method was developed to calculate the factor of safety for slip
surfaces of any shape. Firstly a failure plane is assumed and the slipping mass is divided
into vertical slices. The following static equilibrium conditions of each slice is considered:

• Sum of the vertical forces I: Fy = 0

• Sum of the forces parallel to failure plane I: -Fi1 = 0

For the soil mass as a whole the equations used are:

• Sum of the vertical forces I: Fy = 0

• Sum of the horizontal forces I: Fx = 0

The above equations indicate that Janbu's simplified method may violate moment equilib­
rium of the soil mass as a whole.

54

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

The factor of safety is defined as:

F = soil shear strength
mobilized shear stress

Combining these equations gives Janbu's simplified factor of safety as:

F = L~=l (cibi + (Wi - uibi) tan c/>i) / (ma cos ai)
L~=l wi tan ai

where:

[
tan ai tan c/>i]

ma= 1 + F

and
ai = angle of failure plane for slice i
Wi = weight of slice i
c/>i = angle of internal friction slice i
ci = cohesion of slice i
ui = water pressure of slice i
n = number of vertical slices.

(9.1)

(9.2)

(9.3)

Note that F is present on both sides of (9.2). The secant iterative method which finds the
roots of a function g(F) with one variable is used to solve F. g(F) is defined as:

(9.4)

and the secant formula is given by:

(9.5)

The above equations tend to converge rapidly.

9.3 Spencer's method

Spencer [47, 48] developed a slope stability analysis technique based on the method of slices,
which satisfies all equilibrium equations. Spencer's method is suitable for a failure surface
of arbitrary shape and considers the following equilibrium conditions for each slice:

• Sum of the forces perpendicular to failure plane I: F J_ = 0

• Sum of the forces parallel to failure plane I: -F11 = 0

• Sum of the moments about the middle of the slice's base I: J\!l = 0

55

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Combing these equations with (9.1) results in the following two equations:

Hi (F, 0) = t [cibi sec ai/ F + tan c/>i (Wi cos ai - uibi sec ai) / F - Wi sin ai] =
0

i=l cos(ai - 0) (1 + tan c/>i tan(ai - 0) / F]
(9.6)

(9.7)

where:

z. = cibi sec ai/ F + tan c/>i(Wi cos ai - uibi sec ai)/ F - Wi sin ai + z.
i-l cos(ai - 0) [1 + tan c/>i tan(ai - 0)/ F] i-2

(
9.S)

and
Zo = 0
0 = direction of interslice force.

(9.6) considers force equilibrium and (9. 7) moment equilibrium, with the two unknowns F
and 0. The factor of safety of the specified failure plane is taken as F, with the corresponding
0, which satisfies these two equations. The problem of solving the set of two non-linear
equations is transformed to a minimization problem by defining an auxiliary function G(F, 0):

(9.9)

Finding the values for F and 0 that results in G(F, 0) = 0 corresponds to the solution of the
two equations. The BFGS algorithm (10, 11, 12] is used for this minimization phase.

9.4 Mathematical representation of failing mass

Janbu's and Spencer's factor of safety equations require information regarding each slice.
These are the weight, pore water pressure at the failure plane, angle of internal friction,
cohesion and the failure plane angle. These values are dependent on the geometry of the
failure plane, the width and the number of slices. The analysis therefore requires a unique
set of variables x representing a failure plane of any shape.

For the method described herein, the first two variables x1 and x2 , defines the horizontal
positions where the failure plane intersects the ground surface (see Figure 9.1). x1 is the
horizontal distance between a reference point and the initiation point of the failure plane,
while the horizontal distance between the initiation and termination points of the failure
plane is denoted as x2 . The method of slices requires the failing soil mass to be divided into
n vertical slices and the bottom of each slice forms the failure plane. The vertical distances
of the slice interfaces, measured from the ground level to the failure plane, can be used to
define a unique failure plane in terms of the variables (x 3 , x 4 , x 5 , Xn+1). The failure plane
between the slice interfaces is assumed to be linear. In this analysis the width of the failing
mass x2 is divided into n slices of equal width and the width of each slice may be calculated
as:

bi = X2 (9.10)
n

The formulation of the unconstrained problem is completed with n + l independent variables
x describing the failure plane and the factor of safety F(x) as the objective function.

56

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

9.5 Slope stability optimization procedure

The procedure for finding the critical slip surface consists of two phases, a global optimization
phase and a local refinement phase. In the global optimization phase multiple independent
searches are performed with a minimum number of slices to determine an initial approxima­
tion to the critical slip surface. The local refinement phase uses the approximate solution of
the global optimization phase to refine the slip surface geometry. This strategy is used to
reduce the overall number of function evaluations required.

More formally the slope stability optimization procedure is as follows:

1. Initialization: Set the counter j := 1, prescribe the desired confidence level q*,

tmax, n1, kmax, lmax and Xbeg· Here, Xbeg denotes the maximum random starting value
for X3, X4, X5, Xnk+l, tmax the maximum number of global phase iterations, n 1 the
starting number of slices, kmax the maximum number of adaptive slicing loops in the
global phase and lmax the maximum number of adaptive slicing loops in the local phase.

2. Global Optimization phase:

(a)

(b)

(c)

(d)

Sampling steps: Set the counter k := 1 and start with nk slices and randomly
generate x{ E D. That is choose x1 and x2 randomly within the slope geometry
and generate random values for x 3 , x 4 , x 5 , Xnk+l between O and depth Xbeg·

Minimization steps: Starting at x{, attempt to minimize F in a global sense
by any optimization algorithm, viz. find and record some low function value
F
-j -j

k tt Xk.

Termination check: If k = kmax or P1 ~ 10 go to 3, else continue.

Double number of slices: Set k := k + 1, double the number of slices (nk :=

2nk_ 1) and determine the new starting vector x{ from x{_ 1 (perform adaptive
slicing as explained in Section 9.5.1). Go to 2 (b).

3. Global Termination: Assess the global convergence after n searches was completed
(yielding x{ and F1,j = 1, 2, ... , n) using (2.4). If (2.5) is satisfied or j = tmax, go to
4, else j := j + 1 and go to 2.

4. Local refinement phase:

(a)

(b)

(c)

(d)

Initialization: Set the counter l := 2 and determine the starting vector Xz for
the local refinement phase from x{ (see Section 9.5.1) which corresponds to the
lowest recorded P1 for j = 1, 2, ... , n. Set Fi = Fl and the number of slices are
nz := 2n{.

Minimization steps: Starting at x1, attempt to minimize Fin a local sAense by
any optimization algorithm, viz. find and record some low function value F1 tt x1.

Termination check: If l = lmax or F} > F1z_ 1 go to 5, else continue.

Double number of slices: Set l := l + 1, double the number of slices (n1 :=

2n1_ 1) and determine the new starting vector x1 from Xz_ 1 (perform adaptive
slicing as explained in Section 9.5.1). Go to 4 (b).

57

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

5. Slope Stability Termination: Take the lowest recorded F} for l = l, 2, 3 ... as factor
of safety. STOP.

Typical search routines require the approximate position of the initiation and the termination
points of the failure plane to be specified. This requires a priori knowledge of the behaviour
of soil slopes. Step 2 (a) requires no a priori information regarding the initiation and
the termination points and results in the procedure being more general. The values for
x 3 , x 4 , x5 , Xnk+l are not constrained within bounds during the analysis. Also note that
the unified Bayesian stopping criterion is utilized to terminate the global optimization phase
mentioned in step 3.

9.5.1 Adaptive slicing

The minimum found from an optimization iteration with n slices can be used to determine
the starting point for the next optimization iteration with double the number of slices (2n
slices). This is done by introducing another slice interface in the centre of each of the n slices
and by linear interpolation of the failure surface the values for the new intermediate variables
can be obtained. The starting values for the variables (x1 , x2 , x 3 , x2n+1) therefore presents
the exact same failure plane as was found by the n-slice solution. The motivation for this is
reduced computational effort.

9.6 Optimization algorithms

A number of algorithms were tested as part of the described slope stability optimization
procedure. These include GLSl (Chapter 3), Leapfrog [38], ETOP [43], a GA (Chapter
4) and the PSOA presented in Chapter 5. The Leapfrog algorithm proved to be the most
efficient algorithm for this problem and the results of the Leapfrog algorithm are described
below in more detail. Results for Janbu's and Spencer's method combined with the Leapfrog
algorithm are presented, and are denoted Leapfrog-Janbu and Leapfrog-Spencer.

9.6.1 Leapfrog algorithm

As mentioned in Section 7.3.1, the Leapfrog [38) algorithm uses only gradient information
in minimizing the objective function. The defined objective functions have no explicitly
defined gradient functions and the gradient vectors are calculated with first order difference
formulas.

9.7 Examples

Three non-homogeneous examples are taken from Goh [23) and Fredlund and Krahn [54) to
illustrate the performance of the algorithms with Janbu's and Spencer's method in the slope

58

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Soil No. Cohesion (kPa) Friction angle (0
) Unit Weight (kN/m3

)

1 0.0 38.0 19.5
2 5.3 23.0 19.5
3 7.2 20.0 19.5

Table 9.1: Soil parameters for Example 1.

Soil No. Cohesion (kPa) Friction angle (0
)

1 28.73 20.0
2 0.0 10.0

Unit Weight (kN /m3
)

18.84
18.84

Table 9.2: Soil parameters for Example 2.

stability procedure. A forth example is used to demonstrate the effectiveness of the slope
stability procedure for multiple slope sections. The safety factors of the examples reported
by Goh [23] are compared with the results obtained using the new analysis technique.

The soil slope for Example 1 consists of three layers, as shown in Figure D.1. The soil
parameters are given in Table 9.1. For Example 2 the soil profile contains a 0.5m weak layer
as depicted in Figure D.2. Table 9.2 tabulates the soil parameters of the different layers.
The soil profile of Example 3 (Figure D.3) contains an inclined weak layer of thickness lm,
with properties given in Table 9.3. Example 4 represents a multiple slope geometry and the
dimensions are those typically used for gold tailing dams [55) (see Figure D.4). The problem
contains a phreatic surface with the unit weight of water taken as 9.81 kN /m3

.

The parameter values used in the slope stability optimization procedure are q*=0.999, trnax =
100, krnax = 3, lrnax = 3 and Xbeg = 15m. n1 = 4 for the Leapfrog-Janbu analysis, while
n 1 = 3 for the Leapfrog-Spencer analysis.

9.8 Discussion of numerical results

The safety factors of the critical failure planes found by the Leapfrog algorithm using Janbu's
and Spencer's method are presented in Table 9.5. In addition, the coordinates which define
the critical slip surfaces are given in Appendix E, while Figures D.5 to D.12 depict these
critical failure planes. Table 9.6 presents the safety factors using the methods reported by
Goh [23). The function evaluations performed using Leapfrog in the different analyses are
given in Table 9.7.

It is important to note that the governing equations for the methods presented in the tables
are different. Janbu's method ignores interslice shear forces and violates moment equilib­
rium for the mass as a whole. In contrast, Spencer's method incorporates the interslice shear
force by assuming a constant force angle and satisfies all equilibrium conditions. This results
in Janbu's method generating factors of safety lower than those calculated using Spencer's

59

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Soil No. Cohesion (kPa) Friction angle (0
) Unit Weight (kN /m3)

1 10.0 25.0 20.0
2 0.0 10.0 20.0

Table 9.3: Soil parameters for Example 3.

Soil No. Cohesion (kPa) Friction angle (0
) Unit Weight (kN/m3)

1 5.0
2 5.0

35.0
35.0

17.0
19.0

Table 9.4: Soil parameters for Example 4.

method (see for example Fredlund and Krahn [54]). For this reason Janbu [56, 57] suggested
a correction factor. As expected, using Janbu's method the Leapfrog algorithm calculated
lower factors of safety compared with Spencer's method, but the critical failure planes cal­
culated using the two methods are only slightly different (see Figures D. 5 to D .12). This
generates confidence that the global optima were found.

Tables 9.5 and 9.6 allows the comparison of the factors of safety presented by Goh [23] to
those calculated using this new two phase technique; The methods reported by Goh [23]
(shown in Table 9.6), make different assumptions and use different equations. The global
minimum of each method will not necessarily be equal even though the same slope problem
is analysed and even when the same optimization algorithm is used. The Leapfrog-Janbu
values are lower for all the examples. This was due to the algorithm being able to find
more critical failure planes, but as explained also to an extent that Janbu's method tends
to be conservative. Using Spencer's method the Leapfrog algorithm found a lower value for
Example 1 compared with the result for Spencer's method presented by Goh [23].

The algorithm satisfied the stopping rule (2.5) before the maximum of 100 iterations were
reached only for Example 1. The number of function evaluations for Examples 2, 3 and 4
are therefore less to attain the prescribed confidence level q*=0.999.

Table 9.7 shows the number of function evaluations for the different methods. Janbu's
method is more costly to solve in terms of function evaluations, but a single function eval­
uation with Spencer's method far exceed the time needed to perform a Janbu evaluation.
The Leapfrog-Janbu analysis for Example 1 performed 21136 Janbu function evaluations
and took 14 seconds with a Pentium III 800 MHz processor. The average time for a single
function evaluation was therefore 0.0007 seconds. Performing the Leapfrog-Spencer analy­
sis on the same problem took 453 seconds and 30877 function evaluations to complete. A
single function evaluation was therefore performed in 0.015 seconds. The time of a Spencer
function evaluation is therefore almost 22 times longer than that for a Janbu function evalu­
ation. So even though the number of Janbu function evaluations exceeds Spencer's function
evaluations, the time for a Janbu's analysis is significantly less.

60

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Method Example 1 Example 2 Example 3 Example 4

Leapfrog-Janbu 1.247 1.195 0.879 1.476
Leapfrog-Spencer 1.359 1.305 1.060 1.549

Table 9.5: Factor of safety using the Leapfrog algorithm in slope stability optimization
procedure.

Method Example 1 Example 2 Example 3

GAWEDGEM(6) 1.387 1.288 1.021
GAWEDGE(6) 1.393 1.286 1.003
Slope 1.364-1.378
Spencer 1.39 1.24
Chen and Shoa 1.39 1.242
Donald and Giam 1.39 1.27

Table 9.6: Factor of safety calculated with methods reported by Goh.

9.9 Recommendations

For the results presented in the tables no restrictions were placed on the starting values for
the initiation point x 1 and the termination point (x1 + x2) of the failure plane. For single
slope problems (Examples 1 to 3), more reasonably chosen starting values (Step 2 (a)) for
x 1 and x2 will improve the procedure's efficiency. The first initiation point can randomly be
selected within an interval of appropriately chosen size containing the slope's toe. The first
termination point can randomly be selected within a similarly chosen interval containing the
crest of the slope. This pre-knowledge of the possible position of the critical failure plane can
therefore be used to reduce the effort to solve the problem. For multiple slope geometries, as
in Example 4, the position of the initiation and termination points are difficult to predict and
ideally no restrictions should be placed on the starting values for x1 and x2 . The new method
described above does not place any restrictions on the values of x1 and x2 and are therefore
most suitable to find the global minimum factor of safety for multiple slope geometries.

Spencer's function evaluation time far exceeds Janbu's function evaluation time. Therefore,
it seems practical to perform the global optimization phase (Step 2) with Janbu's method
and the local refinement phase (Step 4) with Spencer's method. The analysis time and
number of function evaluations with Spencer's method will therefore be significantly less.

9.10 Summary

This chapter describes a global optimization procedure for calculating the critical failure
plane in slope stability analyses using Janbu's simplified method or Spencer's method of

61

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Method

Leapfrog-J anbu
Leapfrog-Spencer

Example 1 Example 2 Example 3 Example 4

21136 98727 125794 31784
30877 24269 38025 27018

Table 9.7: Number of function evaluations using the Leapfrog algorithm for the two methods.

slices. The procedure starts with a global phase where a number of independent runs with a
few slices are performed to determine an initial approximation to the critical failure plane.
The procedure then refines this approximate surface with increased number of slices. Any
optimization algorithm can be employed in the procedure but in this study the Leapfrog
algorithm is used.

The safety factors obtained with this procedure using Janbu's method and Spencer's method
are slightly lower than the reported values for the three examples considered. As expected,
J anbu's method gives more conservative results when compared with Spencer's method. The
time needed for a single Spencer analysis is significantly longer than a J anbu analysis and
the number of function evaluations becomes important only when Spencer's method is used.

A slope geometry consisting of multiple inclined sections demonstrates the robustness of
the procedure. The procedure places no restriction on the initiation and termination points
and the method therefore implicitly considers failure of the individual slopes as well as the
multi-slope as a whole to find the global minimum factor of safety.

Initiation point

Figure 9.1: Definition of the geometric variables.

62

Termination
point

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Chapter 10

Conclusions and Recommendations

10.1 Conclusions

The main objective of this study is the development of optimization methods to solve prac­
tical optimization problems in engineering. This goal is attained in the following ways:

• A probabilistic global stopping criterion, previously derived for a specific algorithm,
is extended to multi-start algorithms, and is denoted the unified Bayesian stopping
criterion. The suitability of the unified Bayesian stopping criterion is demonstrated
for a number of local and global optimization algorithms using standard test functions.

• A multi-start global optimization infrastructure based on multiple local searches, com­
bined with the unified Bayesian stopping criterion, is presented. Numerical results
reveal that this simple multi-start approach outperforms a number of leading con­
tenders.

• Parallelization of sequential multi-start algorithms is shown to effectively reduce the
computational time associated with solving expensive global programming problems.

• Two algorithms simulating natural phenomena are implemented, namely the relatively
new particle swarm optimization method and the well known genetic algorithm. For
the current implementations, numerical results indicate that the computational effort
associated with these methods are comparable.

• The observation that no single global optimization algorithm can consistently out­
perform all other algorithms when large sets of problems are considered, lead to the
development of a parallel competing algorithm infrastructure. In this infrastructure
different algorithms, ranging from deterministic to stochastic, compete simultaneously
for a contribution to the unified Bayesian stopping criterion.

• The constrained global programming problem is addressed using constrained algo­
rithms in the parallel competing algorithm infrastructure.

63

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

• An optimization procedure is developed for solving the slope stability problem faced
in civil engineering. This new procedure determines the factor of safety of slopes using
a global optimization approach.

10.2 Recommendations

1. The applicability of the Unified Bayesian stopping rule presented in Chapter 2 when
used in combination with different algorithms should be investigated further.

2. An analysis of the effect of the Unified Bayesian stopping rule for functions for which
the probability of convergence to the global optimum is less than the probability of
convergence of some other local optimum is desirable.

3. Additional algorithms based on multiple local searches (Chapter 3) and the Unified
Bayesian stopping rule can be formulated.

4. For both the successive genetic algorithm (Chapter 4) and the particle swarm algorithm
(Chapter 5), additional operators can be formulated, in an attempt to improve the
convergence characteristics of the algorithms.

5. In the competing algorithm infrastructure, additional algorithms should be incorpo­
rated. This is true for both the unconstrained and constrained infrastructures. A
promising algorithm is the Lipschitzan DIRECT optimizer proposed by Jones et al
[34].

In addition, the algorithms in the infrastructure should be selected based on perfor­
mance, as to exclude inefficient algorithms. Performance should be based on a larger
test set than the set considered in this study.

6. The slope stability procedure presented in Chapter 9 can be improved in the following
ways:

(a) For single slope problems (see Examples 1 to 3), the starting values for the initia­
tion point x1 can randomly be selected close to the slope's toe and the termination
point (x1 + x2) close to the slope's crest.

(b) Due to the difference in function evaluation time, it seems practical to perform the
global optimization phase with Janbu's method and the local refinement phase
with Spencer's method.

64

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Bibliography

[1) C.A. Floudas and P.M. Pardalos. A collection of Test Problems for Constrained Global
Optimization Algorithms, volume 455 of Lecture notes in computer science. Springer­
Verlag, Berlin, Heidelberg, 1990.

[2) F. Schoen. Stochastic techniques for global optimization: A survey of recent advances.
J. Global Optim., 1:207-228, 1991.

[3) J.P. Lourens, H. Czapla, and A.L. Parrack. Finite element analysis of failure and
structural rehabilitation of a high embankment on a soft foundation. The Civil Engineer
in South Africa, pages 211-220, 1989.

[4) J.B. Lechman and D.V. Griffiths. Analysis of progressive failure of earth slopes by
finite elements. In Geotechnics for Developing Africa. Wardle G.R. et al (eds.), editor,
Proceedings of the 12th African Regional Conference of the ISSMGE., pages 577-596,
Balkema, Rotterdam., 1999.

[5) A. Torn and A. Zilinskas. Global optimization, volume 350 of Lecture notes in computer
science. Springer-Verlag, Berlin, Heidelberg, 1989.

[6) C.G.E. Boender and A.H.G. Rinnooy Kan. A Bayesian analysis of the number of cells
of a multinomial distribution,. Statistician, 32:240-248, 1983.

[7) J .A. Snyman and L.P. Fatti. A multi-start global minimization algorithm with dynamic
search trajectories. J. Optim. Theory Appl., 54:121-141, 1987.

[8) C.G.E. Boender, A.H.G. Rinnooy Kan, G.T. Timmer, and L. Stougie. A stochastic
method for global optimization. Math. Program., 22:125-140, 1982.

[9) A.H.G. Rinnooy Kan and G.T. Timmer. Stochastic global optimization methods, Part
I: Clustering methods. Math. Program., 39:27-56, 1987.

[10) R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound
constrained optimization. SIAM J. Scient. Comput., 16:1190-1208, 1995.

[11) C. Zhu, R.H. Byrd, P. Lu, and J. Nocedal. L-BFGS-B: FORTRAN subroutines for
large scale bound constrained optimization. Technical Report NAM-11, Northwestern
University, EECS Department, 1994.

65

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

[12] J.E. Dennis Jr. and J.J. More. Quasi-newton methods, motivation and theory. SAIM
Review, 19, No. 1:46-89, 1977.

[13] J.C. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient meth­
ods. SIAM J. Optim., 2, 1992.

[14] J.A. Snyman and A.M. Hay. The spherical quadratic steepest descent (SQSD) method
for unconstrained minimization with no explicit line searches. Comp. Math. Appl., To
appear, 2000.

[15] J. Mockus. Bayesian Approach to Global Optimization. Kluwer Academic Publishers,
Dordrecht, Netherlands, 1989.

[16] J. Mockus. Application of bayesian approach to numerical methods of global and
stochastic optimization. J. Global Opt., 4:347-36, 1994.

[17] J.B. Lee and B.C. Lee. A global optimization algorithm based on the new filled function
method and the genetic algorithm. Eng. Opt., 27:1-20, 1996.

[18] A.A. Groenwold and J .A. Snyman. Global optimization using dynamic search trajecto­
ries. In Proc. Conference Discrete and Global Optimization, Chania, Crete, May 1998.

[19] F. Aluffi-Pentini, V. Parisi, and F. Zirilli. Global optimization and stochastic differential
equations. J. Optim. Theory Appl., 47:1-16, 1985.

[20] F. Aluffi-Pentini, V. Parisi, and F. Zirilli. SIGMA - a stochastic-integration global
minimization algorithm. ACM Trans. Math. Softw., 14:366-380, 1988.

[21] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine learning.
Addison-Wesley, MA, 1989.

[22] A.A. Groenwold, N. Stander, and J.A. Snyman. A regional genetic algorithm for the
discrete optimal design of truss structures. Int. J. Num. Meth. Eng., 44:749-766, 1999.

[23] A.T.C. Goh. Genetic algorithm search for critical slip surface in multiple-wedge stability
analysis. Can. Geotech. J., 36:382-391, 1999.

[24] D.L. Carroll. Chemical laser modelling with genetic algorithms. AIAA Journal, 34, No.
2:338-346, 1996.

[25] Y. Davidor. Genetic algorithms and robotics: a heuristic strategy for optimization.
London, England, 1991.

[26] E. Potgieter. A Genetic algorithm for the discrete structural optimization of laminated
plates. M. Eng. Dissertation, Department of Mechanical Engineering, University of
Pretoria, 1997.

[27] C. Mattheck and S. Burkhardt. A new method of structural shape optimization based
on biological growth. Int. J. Fatigue, 12: 185-190, 1990.

66

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

[28] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of
state calculations by fast computing machine. J. Chem. Physics, 21:1084-1092, 1953.

[29] J. Kennedy and Eberhart R. Particle swarm optimization. proceedings of the IEEE
International Conference on Neural Network, pages 1942-1948, 1995.

[30] P.C. Fourie and A.A. Groenwold. Particle swarms in size and shape optimization.
In J.A. Snyman and K. Craig, editors, Proc. Workshop on Multidisciplinary Design
Optimization, pages 97-106, Pretoria, South Africa, August 2000.

[31] Y. Shi and R. Eberhart. Parameter selection in particle swarm optimization. The
Seventh Annual Conference on Evolutionary Programming, 1998.

[32] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PYM:
Parallel Virtual Machine - A users guide and tutorial for networked parallel computing.
ftp://netlib2.cs.utk.edu/pvm3/, 1997. (ver. 3.4).

[33] J.F. Schutte, H.P.J. Bolton, C. Erasmus, S. Geyer, and A.A. Groenwold. An efficient
parallel global optimization infrastructure for composite structures. In The Fifth Inter­
national Conference on Computational Structures Technology, Leuven, Belgium, Sept.
2000. Accepted.

[34] D.R. Jones, C.D. Pertunnen, and B.E. Stuckman. Lipschitzan optimization without the
lipschitz constant. J. Opt. Theory Appl., 79:157-181, 1993.

[35] Vanderplaats Research & Development, Inc. DOT: Design Optimization Tools, 1995.
Version 4.2.

(36] J.A. Snyman. A new and dynamic method for unconstrained minimization. Appl. Math.
Modelling, 6:449-462, 1982.

[37] J.A. Snyman. An improved version of the original leap-frog dynamic method for un­
constrained minimization: LFOPl(b). Appl. Math. Modelling, 7:216-218, 1983.

(38] J.A. Snyman. The LFOPC leap-frog method for constrained optimization. Comp. Math.
Appl., To appear, 2000.

[39] S.E. Cox, R.T. Haftka, C.A. Baker, B. Grossman, W.H. Mason, and L.T. Watson.
Global optimization for noise and multiple local optima. In J .A. Snyman and K. Craig,
editors, Proc. Workshop on Multidisciplinary Design Optimization, pages 50-59, Preto­
ria, South Africa, August 2000.

[40] J.A. Snyman, W.J. Roux, and Stander N. A dynamic penalty function method for the
solution of structural optimization problems. Appl. Math. Modelling, 18:453-460, 1994.

[41] J.A. Snyman and A.M. Hay. The Dynamic-Q optimization method: An alternative to
SQP. Proceedings of the International Workshop on multi disciplinary design optimiza­
tion, pages 163-172, 2000.

67

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

[42] A.V. Fiacco and G.P. McCormick. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. John Wiley and Sons, New York, 1968.

[43] J.A. Snyman. Unconstrained minimization by combining the dynamic and conjugate
gradient methods. Quaestiones Mathematicae, 8:33-42, 1985.

[44] N. Janbu. Stability analysis of slopes with dimensionless parameters. Harvard Soil
Mechanics Series, 46, 1954.

[45] N. Janbu. Earth pressure and bearing capacity calculations by generalized procedure of
slices. Proceedings of the 4th International Conference of the ISSMFE, 2:207-212, 1957.

[46] N.R. Morgenstern and V.E. Price. The analysis of the stability of general slip surfaces.
Geotechnical and Geological Engineering, 1:79-93, 1965.

[47] E. Spencer. A method of analysis for stability of embankments using parallel inter-slice
forces. Geotechnique, 17: 11-26, 1967.

[48] E. Spencer. Thrust line criterion in embankment stability analysis. Geotechnique,
23:85-100, 1973.

[49] R.A. Siegel, W.D. Kovacs, and C.W. Lovell. Random search generation in stability
analysis. ASCE, 107, No. GT7:996-1002, 1981.

[50] V.U. Nguyen. Determination of critical slope failure surfaces. .J. Geotech. Eng., 111,
No. 2:238-250, 1985.

[51] T.B. Celestino and J.M. Duncan. Simplified search for non-circular slip surface. Poceed­
ings of the 10th International Conference on Soil Mechanics and Foundation Engineer­
ing, 1981.

[52] K.S. Li and W. White. Rapid evaluation of the critical slip surface in slope stability
problems. Int . .J. Num. Anal. Meth. Geomech., 11:449-473, 1987.

[53] R. Baker. Determination of critical slip surface in slope stability computations. Int. J.
Num. Anal. Meth. Geomech., 4:333-359, 1980.

[54] D.G. Fredlund and J. Krahn. Comparison of slope stability methods of analysis. Can.
Geotech. J., 14:429-439, 1977.

[55] F. Wagner. The merriespruit slimes dam failure: Overview and lessons learnt. SAICE
Journal, 39:11-15, 1997.

[56] N. Janbu, L. Bjerrum, and B. Kjaernsli. Veilidning ved losning av fundamenteringsopp­
graver (soil mechanics applied to some engineering problems). N.G.I. Publication, 16,
1956.

[57] C.R.I. Clayton, J. Milititsky, and R.I. Woods. Earth pressure and earth retaining struc­
tures. 2nd Edition. Blackie Acadamic and Professional, England, London, 1993.

68

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

[58] W. Hock and K. Schittkowski. Test examples for nonlinear programming codes, volume
187 of Lecture notes in Economics and Mathematical Systems. Springer-Verlag, Berlin,
Heidelberg, New York, 1981.

69

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Appendix A

The extended Dixon-SzegO
unconstrained test set

Problems 1 and 2 (Griewank Gl and G2 functions, respectively)

OBJECTIVE FUNCTION:

n n

J(x) = L x;jd - II cos (xd✓i) + 1.
i=l i=l

For Problem 1, n = 2 and d = 200; for Problem 2, n = 10 and d = 4000.

SEARCH DOMAIN FOR 1:

SEARCH DOMAIN FOR 2:

D = { (x1, x2, · · ·, x 10) E R 10 : -600.0:::; Xi :::; 600.0, i = 1, 2, · · ·, 10}.

SOLUTION:

Problem 3 (Goldstein-Price)

OBJECTIVE FUNCTION:

x* = (0.0, · · ·, 0.0) f* = 0.0.

f(x) = [1 + (x1 + x2 + 1)2 · (19 - 14x1 + 3xi - 14x2 + 6x1x2 + 3x~)]x
[30 + (2x1 - 3x2)2(18 - 32x1 + 12xi + 48x2 - 36x1.r2 + 27x~)].

SEARCH DOMAIN:

SOLUTION:

x* = (0.0, -1.0) f* = 3.0.

70

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Problem 4 (Six-hump Camelback)

OBJECTIVE FUNCTION:

SEARCH DOMAIN:
1 D = {x1 ER : -3.0 ~ X1 ~ 3.0}

D = { X2 E R1 : -2.0 ~ X2 ~ 2.0}

SOLUTION:

xi = (0.0898, -0. 7126) x; = (-0.0898, 0. 7126) f* = -1.0316285

Problem 5 (Shubert function, Levi no. 4)

OBJECTIVE FUNCTION:

5 5

f(x) ={Li cos[(i + l)x1 + i)}{L i cos[(i + l)x2 + i]}
i=l i=l

SEARCH DOMAIN:

SOLUTION:

xi = (5.48289, -1.426531) f* = -186. 73091

Problem 6 (Rastrigin)

OBJECTIVE FUNCTION:

SEARCH DOMAIN:

SOLUTION:

Problem 7 (Branin)

OBJECTIVE FUNCTION:

SEARCH DOMAIN:

f (x) = xf + x~ - cos(18xi) - cos(18x2)

x* = (0.0, 0.0) f* = -2.0

D = { X1 E R1 : -5.0 ~ X1 ~ 10.0}

71

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

SOLUTION:

x;' ~ (3.142, 2.275) f* ~ 0.398

Problem 8 and 9 (Hartman 3, 6)

OBJECTIVE FUNCTION:

where x = (x1 , ... , Xn), and

H3: m = 4, n = 3

i aij Ci Pij

1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828

H6: m = 4, n = 6

i a·· 1,J Ci

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2

i Pij

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

SEARCH DOMAIN:

SOLUTIONS:

H3:
x* = (0.11461478, 0.55564892, 0.85254688), f* = -3.8627821.

72

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

H6:

x* = (0.20168955, 0.15000963, 0.47687211, 0.27533377, 0.31165102, 0.65730111),

f* = -3.322368.

Problem 10, 11 and 12 (Shekel 5, 7, 10)

OBJECTIVE FUNCTION:

m 1
J(x) = - L -----,

. (x - a·)T(x - a·)+ c·
i=l i i i

where:

'l ai C· i

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

SEARCH DOMAIN:

SOLUTIONS:

S5:
x* = (4.00003727, 4.00013375, 4.00003730, 4.00013346) f* = -10.153200.

S7:
x* = (4.00057280, 4.00069020, 3.99948997, 3.99960620) f* = -10.402941.

SlO:
x* = (4.00074671, 4.00059326, 3.99966290, 3.99950981) f* = -10.536410.

73

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Appendix B

The constrained test set

Constrained Problem 1 (Cl)

OBJECTIVE FUNCTION:

CONSTRAINTS:

SEARCH DOMAIN:

SOLUTION:

91 (X) = -(X~ - X1)

92 (X) = - (Xi - X 2)

X1 E R1 : -0.5 ::::; X1 ::::; 0.5

X2 E R 1
: -20.0 ::::; X2 ::::; 1.0

x~ = (0.0, 0.0) f* = 1.0

Constrained Problem 2 (C2)

OBJECTIVE FUNCTION:

CONSTRAINTS:

SEARCH DOMAIN:

SOLUTION:

91(x) = 8 - (2x1 - 3x2 - X3 + x4)

92(x) = 12 - (6x1 + x2 + 2x3 - 2x4)

93(x) = 10 + (x1 - X2 - X3 - X4)

x~ = (2.8, 0.0, 5.2, 7.6) f* = 42.8

74

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Constrained Problem 3 (C3)

OBJECTIVE FUNCTION:

CONSTRAINTS:
2 2 2 g1(x)=x 1 +x2 -x3

92 (x) = 4 - (xf + x~ + xD

SEARCH DOMAIN:

X1 E R1 : 0.0 ~ X1 ~ 20.0

X2 E R1 : 0.0 ~ X2 ~ 20.0

X3 E R1
: 0.0 ~ X3 ~ 5.0

SOLUTION:

xi = (0.0, 1.4142, 1.4142) f* = 1.4142

Constrained Problem 4 (C4)

OBJECTIVE FUNCTION:

CONSTRAINTS:

SEARCH DOMAIN:

SOLUTION:

g1(x)=x1+x2-2

92(x) = Xi - X2

X1 E R1 : -20.0 ~ X1 ~ 20.0

X2 E R1 : -20.0 ~ X2 ~ 20.0

xi = (1.0, 1.0) f* = 1.0

Constrained Problem 5 (C5)

OBJECTIVE FUNCTION:

SEARCH DOMAIN:

SOLUTION:

X1 E R1 : 0.0 ~ X1 ~ 1.0

X2 E R1 : 0.0 ~ X2 ~ 2.0

X3 E R1 : 0.0 ~ X2 ~ 3.0

X4 E R1 : 0.0 ~ X2 ~ 4.0

X5 E R1 : 0.0 ~ X2 ~ 5.0

xi = (1.0, 2.0, 3.0, 4.0, 5.0) f* = 1.0

75

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Constrained Problem 6 [58] (C6)

OBJECTIVE FUNCTION:

CONSTRAINTS:

h1(x) = x1 - 4.2(sinx4)
2 = 0

. 2 h2(x) = X2 - 4.2(sm x 5) = 0

h3(x) = x3 - 4.2(sin x 6)
2 = 0

h4(x) = X1 + 2x2 + 2x3 - 7.2(sinx7)
2 = 0

SEARCH DOMAIN:

SOLUTION:

x;' = (2.4, 1.2, 1.2, *, *, *, *) f* = -3.4560

Constrained Problem 7 [58] (C7)

OBJECTIVE FUNCTION:

CONSTRAINTS:

SEARCH DOMAIN:

SOLUTION:

2 4 2 91(x) = 2x1 + 3x2 + X3 + 4x4 + 5xs -127:::; 0

92 (x) = 7 X1 + 3x2 + lOx~ + x4 - X5 - 282 :::; 0

g3(x) = 2xi + 3x~ + x 6 + 4x72 - 196:::; 0

g4(x) = 4xi + x~ - 3x1x2 + 2x~ + 5x6 - llx1:::; 0

x~ = (2.3305, 1.9513, -0.47754, 4.3658, -0.62448, 1.0381, 1.5942) f* = 680.63

76

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Appendix C

Proof of stopping criterion

An outline of the proof of (2.4) is presented, which follows closely the proof in [7].

Given ii* and a*, the probability that at least one point, n ~ 1, has converged to J* is

Pr[n* ~ lln, r] = 1 - (1 - a*)"l. (C.l)

In the Bayesian approach, the uncertainty about the value of a* is characterized by speci­
fying a prior probability distribution for it. This distribution is modified using the sample
information (namely, n and r) to form a posterior probability distribution. Let p* (a* In, r)
be the posterior probability distribution of a*. Then,

Pr[n* ~ lln,r] { [1 - (1 - a')"] p,(a'lii, r)da*

1 - { (1 - a')np,(a*lii, r)da*. (C.2)

Now, although the r sample points converge to the current overall minimum, it is not known
whether this minimum corresponds to the global minimum of J*. Utilizing (2.3), and noting
that (1 - a)ii is a decreasing function of a, the replacement of a* in the above integral by a
yields

Pr[ii* 2 llii,r] 2 { [1- (1-a)n]p(alii,r)da. (C.3)

Now, using Bayes theorem:

(I
_) _ p(rla, n)p(a)

pan, r - 1 .
Io p(rla, n)p(a)da

(C.4)

Since the n points are sampled at random and each point has a probability a of converging
to the current overall minimum, r has a binomial distribution with parameters a and n.
Therefore

p(rla, ii) = (:) a' (1 - a)"-r . (C.5)

Substituting (C.5) and (C.4) into (C.3) gives:

Pr[n* > lln, r] > 1 - fl ar(l - a)2~-rp(a)da
- - fl ar(l - a)n-rp(a)da

(C.6)

77

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

A suitable flexible prior distribution p(a) for a is the beta distribution with parameters a
and b:

Using this prior distribution gives:

1 -
f(n +a+ b) r(2n - r + b)

Pr[ii* >_ l Iii, r] >
f(2n +a+ b) r(n - r + b)

which is the required result.

_ l- (n+a+b- l)! (2n-r+b- l)!
(2n +a+ b - 1)! (ii - r + b - 1)!'

78

(C.7)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Appendix D

Slope geometries for examples and
critical failure plane figures

50

45

40

35

Soil no.1

f30
>,

Soil no.2

25

20 Soil no.3

15

10
20 30 40 50 60 70

x(m)

Figure D.1: Slope geometry for Example 1.

79

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

50

45

40

35

Soil no.1

f30
>,

25

20 Soil no.1

15

10
20 30 40 50 60 70 80 90

x(m)

Figure D.2: Slope geometry for Example 2.

50

45

40

Soil no.1

35

f30
>,

25

20

15

10
20 30 40 50 60 70 80 90

x(m)

Figure D.3: Slope geometry for Example 3.

80

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

80

70

60

Soil no.1

50

40

30
Phreatic

Surface
20

10

0 .______. ___ __.__ ___ __._ ___ _..__ __ _____...__ __ __._ ___ ___.___

20 40 60 80 100 120 140

Figure D.4: Slope geometry for Example 4.

50

45

40

35

30

25

20

15

10
20 30 40 50 60 70

Figure D.5: Critical Failure plane found by the Leapfrog-Janbu analysis for Example 1.

81

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

50

45

40

35

30

25

20

15

10
20 30 40 50 60 70

Figure D.6: Critical Failure plane found by the Leapfrog-Spencer analysis for Example 1.

50

45

40

35

30

25

20

15

10
20 30 40 50 60 70 80 90

Figure D.7: Critical Failure plane found by the Leapfrog-Janbu analysis for Example 2.

82

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

50

45

40

35

30

25

20

15

10
20 30 40 50 60 70 80 90

Figure D.8: Critical Failure plane found by the Leapfrog-Spencer analysis for Example 2.

50

45

40

35

30

25

20

15

10
20 30 40 50 60 70 80 90

Figure D.9: Critical Failure plane found by the Leapfrog-Janbu analysis for Example 3.

83

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

50

45

40

35

30

25

20

15

10
20 30 40 50 60 70 80 90

Figure D.10: Critical Failure plane found by the Leapfrog-Spencer analysis for Example 3.

80

70

60

50

40

30

20

10

0
20 40 60 80 100 120 140

Figure D.11: Critical Failure plane found by the Leapfrog-Janbu analysis for Example 4.

84

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

80

70

60

50

40

30

20

10

0
20 40 60 80 100 120 140

Figure D.12: Critical Failure plane found by the Leapfrog-Spencer analysis for Example 4.

85

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Appendix E

Coordinates of critical failure planes

86

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Table E.1: Critical failure plane coordinates calculated with Leapfrog-Janbu.

Example. 1 Example. 2 Example. 3 Example. 4
Node x-coord. y-coord. x-coord. y-coord. x-coord. y-coord. x-coord. y-coord.

1 29.323 25.000 41.599 27.600 40.480 27.600 82.999 41.000
2 29.661 24.786 43.593 26.304 41.498 26.967 83.376 40.849
3 30.000 24.559 45.588 26.520 42.515 26.323 83.753 40.759
4 30.338 24.356 47.582 26.348 43.533 25.783 84.130 40.706
5 30.677 24.180 49.576 26.310 44.551 25.288 84.508 40.683
6 31.015 24.035 51.570 26.295 45.568 24.852 84.885 40.679
7 31.353 23.909 53.564 26.382 46.586 24.445 85.262 40.696
8 31.692 23.802 55.559 26.293 47.604 24.375 85.639 40.725
9 32.030 23.716 57.553 26.326 48.621 24.428 86.016 40.766
10 32.369 23.643 59.547 26.489 49.639 24.577 86.393 40.824
11 32.707 23.589 61.541 26.296 50.657 24.809 86.770 40.885
12 33.046 23.546 63.535 27.859 51.67 4 25.076 87.147 40.956
13 33.384 23.513 65.529 29.982 52.692 25.316 87.524 41.038
14 33.722 23.491 67.524 32.318 53.710 25.577 87.901 41.127
15 34.061 23.477 69.518 34.967 54.727 25.847 88.278 41.223
16 34.399 23.473 71.512 37.486 55.745 26.109 88.655 41.325
17 34.738 23.478 73.506 40.000 56.762 26.445 89.032 41.433
18 35.076 23.492 57.780 26.639 89.410 41.547
19 35.415 23.515 58.798 26.910 89.787 41.668
20 35.753 23.546 59.815 27.185 90.164 41.795
21 36.091 23.586 60.833 27.469 90.541 41.928
22 36.430 23.633 61.851 27.779 90.918 42.068
23 36.768 23.689 62.868 28.137 91.295 42.212
24 37.107 23.751 63.886 28.567 91.672 42.365
25 37.445 23.822 64.904 29.092 92.049 42.522
26 37.784 23.898 65.921 29.710 92.426 42.686
27 38.122 23.983 66.939 31.081 92.803 42.855
28 38.460 24.073 67.957 32.527 93.180 43.030
29 38.799 24.171 68.974 34.014 93.557 43.210

87

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Table E. l continued:

Example. 1 Example. 2 Example. 3 Example. 4
Node x-coord. y-coord. x-coord. y-coord. x-coord. y-coord. x-coord. y-coord.

30 39.137 24.275 69.992 35.527 93.935 43.397
31 39.476 24.386 71.010 37.043 94.312 43.588
32 39.814 24.503 72.027 38.552 94.689 43.785
33 40.153 24.628 73.045 40.000 95.066 43.988
34 40.491 24.759 95.443 44.195
35 40.829 24.898 95.820 44.408
36 41.168 25.044 96.197 44.626
37 41.506 25.196 96.574 44.849
38 41.845 25.356 96.951 45.079
39 42.183 25.523 97.328 45.314
40 42.522 25.697 97.705 45.555
41 42.860 25.880 98.082 45.802
42 43.198 26.069 98.459 46.057
43 43.537 26.280 98.837 46.317
44 43.875 26.503 99.214 46.584
45 44.214 26.732 99.591 46.858
46 44.552 26.966 99.968 47.140
47 44.891 27.208 100.345 47.430
48 45.229 27.456 100.722 47.726
49 45.567 27.712 101.099 48.033
50 45.906 27.974 101.476 48.346
51 46.244 28.248 101.853 48.670
52 46.583 28.699 102.230 49.004
53 46.921 29.158 102.607 49.347
54 47.260 29.620 102.984 49.703
55 47.598 30.082 103.362 50.072
56 47.936 30.541 103.739 50.456
57 48.275 31.001 104.116 50.860
58 48.613 31.468 104.493 51.286
59 48.952 31.943 104.870 51.737
60 49.290 32.426 105.247 52.221
61 49.628 32.924 105.624 52.744
62 49.967 33.448 106.001 53.318
63 50.305 33.997 106.378 53.906
64 50.644 34.510 106.755 54.488
65 50.982 35.000 107.132 55.000

88

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Table E.2: Critical failure plane coordinates calculated with Leapfrog-Spencer.

Example. 1 Example. 2 Example. 3 Example. 4
Node x-coord. y-coord. x-coord. y-coord. x-coord. y-coord. x-coord. y-coord.

1 29.333 25.000 38.836 27.600 41.211 27.600 83.000 41.000
2 30.245 24.620 40.357 26.806 44.383 26.494 84.023 40.945
3 31.157 24.365 41.879 26.223 47.554 25.742 85.046 41.068
4 32.069 24.251 43.400 26.485 50.726 25.101 86.069 41.271
5 32.981 24.204 44.922 26.483 53.898 25.935 87.092 41.529
6 33.893 24.216 46.444 26.302 57.069 26.817 88.115 41.825
7 34.805 24.291 47.965 26.417 60.241 27.332 89.138 42.164
8 35.717 24.407 49.487 26.439 63.412 28.460 90.161 42.544
9 36.629 24.555 51.008 26.266 66.584 28.982 91.185 42.951
10 37.541 24.747 52.530 26.566 69.756 31.829 92.208 43.380
11 38.453 24.978 54.051 26.569 72.927 34.941 93.231 43.850
12 39.365 25.233 55.573 26.635 76.099 37.535 94.254 44.343
13 40.277 25.519 57.095 26.373 79.271 40.000 95.277 44.855
14 41.189 25.842 58.616 26.367 96.300 45.414
15 42.101 26.208 60.138 26.466 97.323 46.003
16 43.013 26.618 61.659 27.160 98.346 46.615
17 43.925 27.112 63.181 28.243 99.370 47.263
18 44.837 27.643 64.703 29.600 100.393 47.963
19 45.749 28.227 66.224 30.970 101.416 48.695
20 46.661 29.295 67.746 32.360 102.439 49.473
21 47.573 30.322 69.267 33.695 103.462 50.335
22 48.485 31.407 70.789 35.253 104.485 51.272
23 49.397 32.541 72.311 36.861 105.508 52.309
24 50.309 33.870 73.832 38.409 106.531 53.620
25 51.221 35.000 75.354 40.000 107.554 55.000

89

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

Appendix F

Program Listings

90

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

F.1 Genetic Algorithm

C ** C
C ** C
C C
C

C

GENETIC ALGORITHM BY H.P.J.BOLTON C

C

C ** C
C ** C

C

SUBROUTINE GA(F,N,X,BL,BU,NI,NE
&,PFB,PFE,NBIN,NPOP,NGEN,BM,EM,FM,nSTIPE,
#CP,NTOUR,DELTAXDELING,EINDGRENSGROOOTE,NVSK)

IMPLICIT REAL*8(A-H,0-Z),INTEGER(I-N)
INCLUDE 'params.inc'
INTEGER POP(MAXPOP,MAXDNA*MAXSIZ),PPOP(MAXPOP,MAXDNA*MAXSIZ)
INTEGER MNR(2),DNA,VOLGORDE(MAXPOP),OPTMETHOD,HERHAAL,RY,RYNR
DOUBLE PRECISION GRENS(MAXSIZ,2),PERS(MAXPOP),FUNK(MAXPOP,2)
DOUBLE PRECISION MAKSMUTC,MUT,FC(MAXPOP),GEBIED,FMINWAR
DOUBLE PRECISION P,MUTW,XX(MAXPOP,MAXSIZ),TOURF(MAXSIZ,2)
DOUBLE PRECISION FF(MAXPOP,2),DELTAX(MAXSIZ)
DOUBLE PRECISION C(MAXCON),H(MAXCON),MAXDX,XMIN(MAXSIZ)
DIMENSION X(N),BL(N),BU(N)
COMMON /GAFEVAL/ NGAFEVAL

C *************************** INPUT PARAMETERS*********************** C
PFB=1.0
PFE=15.0
NBIN = 10
NPOP = 8
NGEN = 30
BM = 0.08
EM= 0.05
FM= 1.0
nSTIPE=O
CP = 5
NTOUR=10
DELTAXDELING=3.0DO

!= Number of binary bits per variable
!= Number of population size
!= Maximum number of generations per GA run
!= Begin mutation probability
!= End mutation probability
!= Factor for varying mutation
!= Selection type option
!= Exponent Cc) for ranking method
!= Number of strings in tournament
!= Variable bounds decreasing factor

EINDGRENSGROOOTE=l.OD-4 != Maximum variable bound size
NVSK=5 != No improvement per run stopping criteria
STOPHER=l.d-6

C *************************** INPUT PARAMETERS*********************** C
C ** C
C MAIN PROGRAM BELOW C
C ** C

DO I=1,N
GRENS(I,1)=BL(I)
GRENS(I ,2)=BU(I)

91

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

ENDDO
NPOPBEG=NPOP
FMBEG=FM
EMBEG=EM
PFBBEG=PFB
PFEBEG=PFE
NGAFEVAL=O

C ************* DETERMINE NUMBER OF INDEPENDANT GA RUNS************* C
MAXDX=O.dO
DO I=1,N
DELTAX(I)=GRENS(I,2)-GRENS(I,1)
IF (DELTAX(I).GT.MAXDX) MAXDX=DELTAX(I)
ENDDO
HERHAAL=IDNINT(log(MAXDX/EINDGRENSGROOOTE)/log(DELTAXDELING)+1.DO)
IF (HERHAAL.LT.0.1D-1) THEN
HERHAAL=1
ENDIF

C ************* DETERMINE NUMBER OF INDEPENDANT GA RUNS************* C
C

DO 5000,nHER=i,HERHAAL
111 CONTINUE

DO I=1,N
DELTAX(I)=GRENS(I,2)-GRENS(I,1)

! INDEPENDANT GA RUNS LOOP BEGIN

IF (DELTAX(I).LT.EINDGRENSGROOOTE) THEN
RETURN
ENDIF
ENDDO

C ******************** INITIALIZE PARAMETERS************************* C
GEBIED=2**NBIN-1
DNA=N*NBIN
DELTAM=(EM-BM)/dble(NGEN-1)
DELTAPF=(PFE-PFB)/dble(NGEN)
PL=O
M=O

C ******************** INITIALIZE PARAMETERS************************* C
C ******** DETERMINE RELATIVE FITNESS IN RANKING SELECTION*********** C

SOMPERS=O
DO 10,I=i,NPOP
PERS(I)=2*dble(NPOP+1-I)**CP/dble(NPOP**2+NPOP)
SOMPERS=SOMPERS+PERS(I)

10 CONTINUE
SOM=O
DO 15,I=i,NPOP
SOM=SOM+PERS(I)/SOMPERS
PERS(I)=SOM

15 CONTINUE
C ******** DETERMINE RELATIVE FITNESS IN RANKING SELECTION*********** C
C *********************** GENERATE FIRST POPULATION****************** C

92

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DO 18,I=1,NPOP
DO 17,J=1,DNA
CALL RANMAR(P,1)
P=NINT(P)
POP(I,J)=P

17 CONTINUE
18 CONTINUE

C *********************** GENERATE FIRST POPULATION****************** C
MINNR=O

C *********** NUMBER OF GENERATIONS PER GA RUN LOOP BEGIN************ C
19 M=M+1

C ******* CALCULATE CHANGING PENALTY FACTOR FOR CONSTRAINTS********** C
IF (PL.EQ.O) THEN
PENFAK=PFB+DELTAPF*5*M/6.0d0
PL=1
ELSE
PENFAK=PFB+DELTAPF*M
PL=O
ENDIF

C ******* CALCULATE CHANGING PENALTY FACTOR FOR CONSTRAINTS********** C
MUT=BM+(M-1)*(DELTAM)
MAKSMUTC=NBIN-IDNINT(M*(dble(NBIN)-dble(NBIN)/FM)/dble(NGEN))

C ************* EVALUATE POPULATION OF STRINGS BEGIN***************** C
DO 30,I=1,NPOP

VOLGORDE(I)=I
C ******* DETERMINE X-VALUE CORESPONDING TO BINARY REPRESENTATION**** C

DO 25, II=1,N
XX (I, II) =O
DO 20, J=1, NBIN
XX(I,II)=XX(I,II)+POP(I,NBIN*(II-1)+J)*2**(J-1)

20 CONTINUE
XX(I,II)=XX(I,II)*(GRENS(II,2)-GRENS(II,1))/GEBIED+GRENS(II,1)

X(II)=XX(I, II)

25 CONTINUE
C ******* DETERMINE X-VALUE CORESPONDING TO BINARY REPRESENTATION**** C

CALL FUN(N,X,F) FUNCTION EVALUATION FOR VECTOR X
FC(I)=F
NGAFEVAL=NGAFEVAL+1
IF (NI.GT.O) THEN
CALL CONIN(N,NI,X,C)! INEQUALITY CONSTRAINTS EVALUATION FOR VECTOR X
DO CI=1,NI
IF (C(CI).GT.O) THEN
F=F+PENFAK*C(CI)**2
ENDIF
ENDDO
ENDIF
IF (NE.GT.O) THEN
CALL CONEQ(N,NE,X,H)! EQUALITY CONSTRAINTS EVALUATION FOR VECTOR X

93

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

DO CI=1,NE
F=F+PENFAK*H(CI)**2
ENDDO
ENDIF
FUNK(I,1)=F
FUNK(I,2)=I
FF(I,1)=FUNK(I,1)
FF(I,2)=I

C ************ UPDATING OF GLOBAL BEST FUNCTION VALUE BEGIN********** C
IF (NGAFEVAL.EQ.1) THEN
FMIN=F
DO KKL=1,N
XMIN(KKL)=X(KKL)
ENDDO
ELSEIF (F.LT.FMIN) THEN
FMIN=F
DO KKL=1,N
XMIN(KKL)=X(KKL)
ENDDO
ENDIF

C ************ UPDATING OF GLOBAL BEST FUNCTION VALUE END************ C
30 CONTINUE

C ************* EVALUATE POPULATION OF STRINGS END******************* C
C ***** ARRANGE FUNCTION VALUES FROM SMALLEST TO LARGEST************* C

35 DO 40,RY=2,NPOP
RYNR=RY

38 IF (RYNR.EQ.1) THEN
ELSE IF (FUNK(RYNR,1).LT.FUNK(RYNR-1,1)) THEN
FUNK(RYNR-1,1)=FUNK(RYNR,1)
FUNK(RYNR-1,2)=FUNK(RYNR,2)
FUNK(RYNR,i)=FF(RYNR-1,1)
FUNK(RYNR,2)=FF(RYNR-1,2)
FF(RYNR-1,i)=FUNK(RYNR-1,1)
FF(RYNR-1,2)=FUNK(RYNR-1,2)
FF(RYNR,1)=FUNK(RYNR,1)
FF(RYNR,2)=FUNK(RYNR,2)
RYNR=RYNR-1
GOTO 38
ELSE
END IF

40 CONTINUE
C ***** ARRANGE FUNCTION VALUES FROM SMALLEST TO LARGEST************* C
C*************** STOPPING CRITERIA FOR CURRENT GA RUN**************** C

F=FC(FUNK(1,2))
VERSKIL=DABS(F-FMINWAR)
IF (M.EQ.1) THEN
FMINWAR=F
ELSEIF (F.LT.FMINWAR) THEN

94

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

FMINWAR=F
IF (VERSKIL.LT.1.D-3) THEN

MINNR=MINNR+1
ELSE
MINNR=1
ENDIF

ELSEIF (VERSKIL.LT.1.D-3) THEN
MINNR=MINNR+1
ENDIF
IF (MINNR.GT.NVSK) THEN
M=NGEN+1
ENDIF

C*************** STOPPING CRITERIA FOR CURRENT GA RUN**************** C
C

C ********************* SELECTION BEGIN ***************************** C
C

C *********************** RANKING SELECTION************************** C
IF (NSTIPE.EQ.0) THEN
DO 50,I=1,NPOP

42 CALL RANMAR(P,1)
RY=1

45 IF (P.LT.PERS(RY)) THEN
DO 47,J=1,DNA
POPNR=FUNK(RY,2)
PPOP(I,J)=POP(POPNR,J)

47 CONTINUE
ELSE
RY=RY+1
GOTO 45
END IF

50 CONTINUE
C *********************** RANKING SELECTION************************** C
C

C ******************** TOURNAMENT SELECTION************************* C
ELSEIF (NSTIPE.EQ.1) THEN
DO I=1,NPOP
DO J=1,NTOUR
CALL RANMAR(P,1)
P=NINT(NPOP*P)
IF (P.EQ.0) THEN
P=NPOP
ENDIF
TOURF(J,1)=FUNK(P,2)
TOURF(J,2)=FUNK(P,1)
ENDDO
RY=NTOUR
MINTSNR=TOURF(RY,1)
MINTSV=TOURF(RY,2)

95

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

9 IF (RY.EQ.1) THEN
ELSEIF (MINTSV.LT.TOURF(RY-1,2)) THEN
RY=RY-1
GOTO 9
ELSE
MINTSNR=TOURF(RY-1,1)
MINTSV=TOURF(RY-1,2)
RY=RY-1
GOTO 9
ENDIF
DO J=1,DNA
PPOP(I,J)=POP(MINTSNR,J)
ENDDO
ENDDO
ENDIF

C ******************** TOURNAMENT SELECTION************************* C
C

C ********************* SELECTION END ******************************* C
DO 52,J=1,NPOP
DO 51,I=1,DNA
POP(J,I)=PPOP(J,I)

51 CONTINUE
52 CONTINUE

C ********************* CROSSOVER BEGIN****************************** C
DO 6O,I=1,NPOP/2

C ********************* CHOOSE FIRST MATING PARENT RANDOMLY********** C
CALL RANMAR(P,1)
P=NINT((NPOP-(I-1)*2)*P)
IF (P.EQ.O) THEN
P=(NPOP-(I-1)*2)
END IF
MNR(1)=VOLGORDE(P)
K=O
DO 55,J=1,(NPOP-(I-1)*2)
IF (J.NE.P) THEN
VOLGORDE(J-K)=VOLGORDE(J)
ELSE
K=1
END IF

55 CONTINUE
C ********************* CHOOSE FIRST MATING PARENT RANDOMLY********** C
C ******************** CHOOSE SECOND MATING PARENT RANDOMLY********** C

CALL RANMAR(P,1)
P=NINT((NPOP-(I-1)*2-1)*P)
IF (P.EQ.O) THEN
P=(NPOP-(I-1)*2-1)
END IF
MNR(2)=VOLGORDE(P)

96

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

K=O
DO 56,J=1,(NPOP-(I-1)*2-1)
IF (J.NE.P) THEN
VOLGORDE(J-K)=VOLGORDE(J)
ELSE
K=1
END IF

56 CONTINUE
C ******************** CHOOSE SECOND MATING PARENT RANDOMLY********** C

CALL RANMAR(P,1)
P=NINT((DNA-1)*P)
IF (P.EQ.O) THEN
P=DNA-1
END IF
CROSPOS=P
DO 57,J=CROSPOS+1,DNA
POP(MNR(1),J)=PPOP(MNR(2),J)
POP(MNR(2),J)=PPOP(MNR(1),J)

57 CONTINUE

CROSSOVER POSITION SELECTED

C ********************* CROSSOVER END******************************** C
C **************************MUTATION******************************* C

DO 59,J=1,2
RYMUT=MNR(J)
DO KI=1,N
DO 58,II=1,MAKSMUTC
CALL RANMAR(MUTW,1)
IF (MUTW.LT.MUT) THEN
KOLMUT=(KI-1)*NBIN+II
IF (POP(RYMUT,KOLMUT).EQ.1) THEN
POP(RYMUT,KOLMUT)=O
ELSE
POP(RYMUT,KOLMUT)=1
END IF
END IF

58 CONTINUE
ENDDO

59 CONTINUE
C **************************MUTATION******************************* C

60 CONTINUE
1000 IF (M.LT.NGEN) THEN

GOTO 19
ENDIF

C *********** NUMBER OF GENERATIONS PER GA RUN LOOP BEGIN************ C
C ****************** TEST FOR CONSTRAINT VIOLATION******************* C

DO I=1,N
X(I)=XX(FUNK(1,2),I)
ENDDO
CALL CONIN(N,NI,X,C)

97

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

CALL CONEQ(N,NI,X,H)
IVERANDERPF=O
DO KL=1,NI
IF (C(KL).GT.2.DO) IVERANDERPF=1
ENDDO
DO KL=1,NE
IF (H(KL).GT.2.DO) IVERANDERPF=1
ENDDO
IF (IVERANDERPF.EQ.1) THEN
PFB=PFB+20.DO
PFE=PFE+20.DO
GOTO 111
ENDIF

C ****************** TEST FOR CONSTRAINT VIOLATION******************* C
C ****************DETERMINE NEW BOUNDS FOR FOLLOWING GA RUN********** C

DO I=1,N
GRENS(I,1)=X(I)-DELTAX(I)/(DELTAXDELING*2.d0)
GRENS(I,2)=X(I)+DELTAX(I)/(DELTAXDELING*2.d0)
ENDDO

C *********** ENSURE THAT NEW BOUNDS STAY WITHIN PROBLEM BOUNDS***** C
DO I=1,N
IF (GRENS(I,1).LT.BL(I)) THEN
GRENS(I,1)=BL(I)
IF (GRENS(I,1).GT.GRENS(I,2)) GRENS(I,2)=GRENS(I,1)+0.1d-2
ENDIF
IF (GRENS(I,2).GT.BU(I)) THEN
GRENS(I ,2)=BU(I)
IF (GRENS(I,1).GT.GRENS(I,2)) GRENS(I,1)=GRENS(I,2)-0.1d-2
ENDIF
ENDDO

C *********** ENSURE THAT NEW BOUNDS STAY WITHIN PROBLEM BOUNDS***** C
C ****************DETERMINE NEW BOUNDS FOR FOLLOWING GA RUN********** C
C ************************** TEST EARLY STOPPING CONDITION*********** C

IF (NHER.NE.1.AND.dabs(FBEST-FMINWAR).LT.STOPHER) GOTO 1111
FBEST=FMINWAR

C ************************** TEST EARLY STOPPING CONDITION*********** C
5000 CONTINUE

C ******************** END OF NUMBER OF GA RUNS LOOP***************** C
1111 DO I=1,N

X(I)=XX(FUNK(1,2),I)
ENDDO
NPOP=NPOPBEG
FM=FMBEG
EM=EMBEG
PFB=PFBBEG
PFE=PFEBEG
F=FMIN
DO KLL=1,N

98

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

X(KLL)=XMIN(KLL)
ENDDO
RETURN
END

C ********************************END******************************* C
C ** C

99

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

F.2 Particle Swarm Optimization Algorithm

C ** C
C ** C
C

C PARTICLE SWARM OPTIMIZATION BY H.P.J.BOLTON
C

C
C C
C ** C
C ** C

C

SUBROUTINE PSO(X,N,F,BL,BU)
IMPLICIT REAL*8(A-H,0-Z),INTEGER(I-N)
INCLUDE 'params.inc'
DIMENSION X(N),BL(N),BU(N)
DOUBLE PRECISION XPSO(MAXPOP,MAXSIZ),XBEST(MAXSIZ)
DOUBLE PRECISION XPSOBEST(MAXPOP,MAXSIZ),FPSOBEST(MAXPOP)
DOUBLE PRECISION DELTAXPSO(MAXPOP,MAXSIZ),FPSO(MAXPOP)

C *************************** INPUT PARAMETERS*********************** C
NPS0=15
C1=1.d0
C2=1. dO
WBEG=0.8d0
STEPMAX=30.DO
NSLOOPSMAX=4000
NHEHAALMAX=20

C *************************** INPUT PARAMETERS*********************** C
C **************** INITIALIZE OF BEGINNING VECTORS BEGIN************* C

DO I=1,NPSO
DO JI=1,N

CALL RANMAR(P,1)
XPSO(I,JI)=BL(JI)+P*(BU(JI)-BL(JI))
DELTAXPSO(I,JI)=O.DO

ENDDO
ENDDO

C **************** INITIALIZE OF BEGINNING VECTORS END*************** C
NPSLOOPS=O

C

50 NPSLOOPS=NPSLOOPS+1
W=WBEG

DO I=1,NPSO
DO II=1,N

X(II)=XPSO(I,II)
ENDDO
CALL FUN(N,X,F)
FPSO(I)=F
NPSKOUNTS=NPSKOUNTS+1

FUNCTION EVALUATION FOR VECTOR X

C ************ UPDATING OF GLOBAL BEST FUNCTION VALUE BEGIN********** C

100

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

IF (NPSLOOPS.EQ.1.AND.I.EQ.1) THEN
FBEST=F
DO KI=1,N

XBEST(KI)=X(KI)
ENDDO

ELSEIF (F.LT.FBEST) THEN
FBEST=F
DO KI=1,N

XBEST(KI)=X(KI)
ENDDO

ENDIF
C ************ UPDATING OF GLOBAL BEST FUNCTION VALUE END************ C
C ************ UPDATING OF PARTICLE BEST FUNCTION VALUE BEGIN******** C

IF (NPSLOOPS.EQ.1) THEN
FPSOBEST(I)=F
DO KI=1,N

XPSOBEST(I,KI)=X(KI)
ENDDO

ELSEIF (F.LT.FPSOBEST(I)) THEN
FPSOBEST(I)=F
DO KI=1,N

XPSOBEST(I,KI)=X(KI)
ENDDO

ENDIF
C ************ UPDATING OF PARTICLE BEST FUNCTION VALUE END********** C

ENDDO
C

C *************** DETERMINE NEW PARTICLE POSITIONS BEGIN************* C
DO I=1,NPSO

CALL RANMAR(R1,1)
CALL RANMAR(R2,1)
DO II=1,N
DELTAXPSO(I,II)=DELTAXPSO(I,II)*W+R1*C1*(XBEST(II)-XPSO(I,II))

+R2*C2*(XPSOBEST(I,II)-XPSO(I,II))
IF (DELTAXPSO(I,II).GT.STEPMAX) DELTAXPSO(I,II)=STEPMAX
IF (DELTAXPSO(I,II) .LT.-STEPMAX) DELTAXPSO(I,II)=-STEPMAX
XPSO(I,II)=XPSO(I,II)+DELTAXPSO(I,II)

C ******************* KEEP THE VARIABLE WITHIN BOUNDS**************** C
IF (XPSO(I,II).LT.BL(II)) THEN
XPSO(I,II)=BL(II)

ENDIF
IF (XPSO(I,II).GT.BU(II)) THEN
XPSO(I,II)=BU(II)

ENDIF
C ******************* KEEP THE VARIABLE WITHIN BOUNDS**************** C

ENDDO
ENDDO

C *************** DETERMINE NEW PARTICLE POSITIONS BEGIN************* C

101

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

IF (NPSLOOPS.EQ.1) THEN
NSAMEBEST=1
FSAMEBEST=FBEST
ELSEIF (DABS(FSAMEBEST-FBEST).LT.1.D-5) THEN
NSAMEBEST=NSAMEBEST+1

IF (FBEST.LT.FSAMEBEST) THEN
FSAMEBEST=FBEST
ENDIF

ELSEIF (FBEST.LT.FSAMEBEST) THEN
NSAMEBEST=1
FSAMEBEST=FBEST
ENDIF
IF (NPSLOOPS.EQ.NSLOOPSMAX.OR.NSAMEBEST.EQ.NHEHAALMAX) THEN
F=FSAMEBEST

DO KI=1,N
X(KI)=XBEST(KI)

ENDDO
RETURN
ELSE
GOTO 50
ENDIF
END

C ********************************END******************************* C
C ** C

102

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

F.3 Master program for parallel optimization infras­
tructure

C ** C
C MULTI OPTIMIZATION METHOD FOR UNCONSTAINED AND CONSTRAINED PROBLEMS C
C C
C

C

C

C

C

C

C

PROGRAMMED BY H.P.J.BOLTON

UNIVERSITY OF PRETORIA

DEPARTMENT OF MECHANICAL ENGINEERING

THIS VERSION: 22 AUGUST 2000

C

C

C

C

C

C

C
C C
C ** C

PROGRAM MASTER
IMPLICIT REAL*8(A-H,0-Z),INTEGER(I-N)
INCLUDE 'params.inc'

C ******************* STANDARD PARALLEL DECLARATIONS***************** C
include' .. /include/fpvm3.h'
integer i, info, nproc, nhost, msgtype
integer mytid, iptid, dtid, tids(128),me
character*18 nodename, host
character*8 arch

C ******************* STANDARD PARALLEL DECLARATIONS***************** C
DOUBLE PRECISION X(MAXSIZ),BL(MAXSIZ),BU(MAXSIZ)
DOUBLE PRECISION GF(MAXSIZ),XMIN(MAXSIZ)
DOUBLE PRECISION C(MAXCON),H(MAXCON)
double precision probil(15)
integer nmaxfunct(128),nmaxgradt(128)
double precision contrn(15),contrr(15)
double precision tcontrn(15),tcontrr(15)
character*! converged*!
dimension iprobmap(56)
COMMON /PRIORI/ FAPRIORI
COMMON /PRDATA/ NPROB
dimension nalgori~hm(15)
data nalgorithm /1,3,5,6,10,14,15,16,17,19,20,21,25,26,27/
data iprobmap /1,2,4,6,8,10,13,22,23,24,25,26,

& 47,48,49,
&

&

&

&

&

&

&

27,28,38,39,
29,30,31,32,33,
34,35,36,37,
44,45,46,
0,0,0,
o,o,o,o,o,o,o,o,o,o,o,o,o,o,o,
50,51,52,53,54,55,56/

103

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

C
C********************** RECEIVE PROBLEM INFORMATION FROM DATAFILE**** C

NAMELIST / INLIG / METHOD,MULTIJANEE,MAXITER,MINITER
&,PROBSTOP,NREPEATS,NBPROB,NEPROB,FSELLE,CONVERG,nproc

OPEN (UNIT=23, FILE='datafile.inp', STATUS='OLD')
REWIND(23)
READ (23, NML = INLIG)
CLOSE(23)

C********************** RECEIVE PROBLEM INFORMATION FROM DATAFILE**** C
call timer (time01)

C ***************** INITIALIZE THE MPPVM WITH SLAVES**************** C
call pvmfmytid(mytid) ! give master an id (mtid=mytid)
call pvmfconfig(nhost, narch, dtid, host, arch, speed, info)
nhost=nproc
write(*,*) nhost,' hosts detected in configuration.'

C ***************** INITIALIZE THE MPPVM WITH SLAVES**************** C
C ***************** INITIALIZE THE RANDOM NUMBER GENERATOR*********** C

OPEN(UNIT=20,FILE='random.def')
READ(20,*) ISEED
READ(20,*) JSEED
CLOSE(20)
iseed = 1802
jseed = 9373
CALL RMARIN(ISEED,JSEED)
ISEED=ISEED+7
IF (ISEED.GT.31328) THEN
ISEED=ISEED-31328
ENDIF
JSEED=JSEED+3
IF (JSEED.GT.30081) THEN
JSEED=JSEED-30081
ENDIF
OPEN(UNIT=20,FILE='random.def')
WRITE(20,*) ISEED
WRITE(20,*) JSEED
CLOSE(20)

C ***************** INITIALIZE THE RANDOM NUMBER GENERATOR*********** C
C ***************** INITIALIZE THE OUTPUT FILES********************** C

OPEN(1,FILE='results.out')
WRITE(6,3000)
WRITE(i,3000)
WRITE(i,2000)
open (65,file='averages.out',status='unknown')
open (70,file='variables.out',status='unknown')
OPEN(UNIT=45,FILE='algprob.out')
OPEN(UNIT=55,FILE='contribute.out')
write(55,1201) (nalgorithm(ki),ki=1,15)
write(45,1202) (nalgorithm(ki),ki=1,15)

104

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

C ***************** INITIALIZE THE OUTPUT FILES********************** C
C

C

C

C

NRPROBS=O TOTAL NUMBER OF PROBLEMS DONE
NFAIL=O TOTAL NUMBER OF FAILURES TO CONVERGE
NTNFEVALS=O TOTAL NUMBER OF NORMILIZED FUNCTION EVALUATIONS
NTFEVAL=O TOTAL OF PURE FUNCTION EVALUATIONS
NTGRADFEVALS=O TOTAL OF FUNC EVALS DUE TD GRAD VECT EVALS

DO 140,NRI=NBPROB,NEPROB

NAVEFEVALS=O
NAVECOMP=O
FMINAVE=O
NAVER=O
NAVEN=O
do ki=i,15
tcontrn(ki)=O.dO
tcontrr(ki)=O.dO
enddo
NCONVERG=O

AVERAGE NUMBER OF FUNCTION EVALS
AVERAGE NUMBER OF COMPOUND EVALS
AVERAGE FUNCTION VALUE
NUMBER OF TIMES R
NUMBER OF TIMES N

AVERAGE NUMBER OF CONVERGENGE
NPROB=iprobmap(NRI) ! PROBLEM NUMBER BEING OPTIMIZED

CALL GETPROBNO (N,BL,BU,NI,NE) ! VERKRY PROBLEEM INLIGTING
C ******************** PROBLEM REPEATS LOOP BEGIN******************** C

DO 138,JJ=i,NREPEATS
call timer (time!)
do kn=i,128

nmaxfunct(kn)=O
nmaxgradt(kn)=O

enddo
do ki=i,15
contrn(ki)=O.dO
contrr(ki)=O.dO
enddo
NGRADEVAL=O
NFUNCEVAL=O
NRPROBS=NRPROBS+1
ndoprob=O
write(45,*) 'Prob.=' ,nprob,' Nr = ',jj

C ******************** STARTING PROBABILITIES FOR ALGORITHMS
if (ni.eq.0.and.ne.eq.O) then
probil(1)=0.15DO PROB THAT MBB-BFGS
probil(2)=0.15DO PROB THAT BFGS
probil(3)=0.05DO PROB THAT SQSD99
probil(4)=0.0DO PROB THAT ETDPC99
probil(5)=0.00DO PROB THAT CARROL-GA
probil(6)=0.07DO PROB THAT BOLTON-GA
probil(7)=0.00DO PROB THAT CONSTRAINED MBB-BFGS

105

********* C

IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

C

C

probil(8)=0.05DO PROB THAT CONSTRAINED LEAPFROG
probil(9)=0.05DO PROB THAT LEAPFROG
probil(10)=0.07DO PROB THAT MOCKUS
probil(11)=0.06DO PROB THAT PARTICLE SWORM
probil(12)=0.10DO PROB THAT CLUSTERING
probil(13)=0.1DO PROB THAT POLACK RIBIER
probil(14)=0.05DO PROB THAT DYNAMIC-Q
probil(15)=0.1DO PROB THAT MBB-POLACK RIBIER

else
probil(1)=0.0DO PROB THAT MBB-BFGS
probil(2)=0.0DO PROB THAT BFGS
probil(3)=0.0DO PROB THAT SQSD99
probil(4)=0.25DO PROB THAT ETOPC99
probil(5)=0.0DO PROB THAT CARROL-GA
probi1(6)=0.0DO PROB THAT BOLTON-GA
probil(7)=0.25DO PROB THAT CONSTRAINED MBB-BFGS
probil(8)=0.25DO PROB THAT CONSTRAINED LEAPFROG
probil(9)=0.0DO PROB THAT LEAPFROG
probil(10)=0.0DO PROB THAT MOCKUS
probil(11)=0.0DO PROB THAT PARTICLE SWORM
probil(12)=0.0DO PROB THAT CLUSTERING
probil(13)=0.0DO PROB THAT POLACK RIBIER
probil(14)=0.25DO PROB THAT DYNAMIC-Q
probil(15)=0.0DO PROB THAT MBB-POLACK RIBIER

endif
******************** STARTING PROBABILITIES FOR ALGORITHMS

IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN

IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN
IS CHOSEN

********* C

C ************** SNYMAN-FATTI STOPPING CONDITION LOOP BEGIN********** C
J=O

C

NR=1
20 continue

nodename = 'slave'
arch = '*' · ! '*' random slave calling
call pvmfspawn(nodename, PVMDEFAULT, arch, nproc, tids, numt)
nmaxtids=tids(nproc)

C ********************* CHECK FOR SPAWNING PROBLEMS****************** C
if(numt .lt. nproc) then

print*, 'trouble spawning' ,nodename
print*, 'Check tids for error code'
call shutdown(numt, tids)

endif
C ********************* CHECK FOR SPAWNING PROBLEMS****************** C
C

C ********************* SEND DATA FOR EACH SLAVE********************* C
do indexslave = 1, nproc

C

call GETRANDOM (N,X,bl,bu) GET RANDOM STARTING VECTOR

106

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

C
if(MULTIJANEE.eq.1) then
call CHOOSEMETHOD(METHOD,probil) DETERMINE OPT. ALGORITHM USED
endif

C
call pvmfinitsend(PVMDEFAULT, info)
call pvmfpack(INTEGER4,nproc 1, 1, info)

call pvmfpack(INTEGER4,tids , nproc, 1, info)

call pvmfpack(INTEGER4,iseed 1, 1, info)

call pvmfpack(INTEGER4,jseed 1, 1, info)

call pvmfpack(INTEGER4,n 1, 1, info)

call pvmfpack(INTEGER4,nprob 1, 1, info)

call pvmfpack(INTEGER4,ni 1, 1, info)

call pvmfpack(INTEGER4,ne 1, 1, info)

call pvmfpack(INTEGER4,j 1, 1' info)

call pvmfpack(REALS,fmin 1, 1, info)

call pvmfpack(REALS,bl 20, 1, info)

call pvmfpack(REALS,bu 20, 1, info)

call pvmfpack(REALS,xmin 20, 1, info)

call pvmfpack(REALS,ndoprob 1, 1, info)

call pvmfpack(INTEGER4,jj 1, 1, info)

call pvmfpack(REALS, x 20, 1, info)

call pvmfpack(INTEGER4,METHOD 1, 1, info)

C
msgtype = 1
itoid = tids(indexslave)

call pvmfsend(itoid,msgtype,info)
enddo

C ********************* SEND DATA FOR EACH SLAVE *********************
C
C ********* RECEIVING OF OPTIMIZATION RESULTS FROM SLAVES BEGIN******
C

do 30 i=1,maxiter
khi=O

291 continue
khi=1+khi

C

C

C ********************* RECEIVE RESULTS FROM SLAVE no.
msgtype = 2

me********** C

call pvmfrecv(-1, msgtype, info)
C

call pvmfunpack(INTEGER4,me
call pvmfunpack(INTEGER4,ntids
call pvmfunpack(INTEGER4,NtGRADEVAL
call pvmfunpack(INTEGER4,NtFUNCEVAL
call pvmfunpack(REALS, x
call pvmfunpack(REALS, f
call pvmfunpack(REALS, dummy
call pvmfunpack(INTEGER4,method

107

'
1, 1, info)

'
1, 1, info)

'
1, 1, info)

' 1' 1, info)

,20, 1, info)

'
1, 1, info)

'
1, 1, info)

'
1, 1, info)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

C ********************* RECEIVE RESULTS FROM SLAVE no.= me********** C

C

if (ntids.lt.tids(1)) goto 291 ! discard pipeline data
CALL FUN(N,X,F)
j=j+1
nmaxfunct(me)=nmaxfunct(me)+NtFUNCEVAL
nmaxgradt(me)=nmaxgradt(me)+NtGRADEVAL

INDIVIDUAL EVALUATIONS
INDIVIDUAL EVALUATIONS

write(45,367) (probil(kl),kl=1,15)
C

C ************** CHECK IF SOLUTION FALLS WITHIN BOUNDS*************** C
DD KI=1,N
IF ((X(KI)-BU(KI)).GT.1.d-6) f=1.d99
IF ((BL(KI)-X(KI)).GT.1.d-6) f=1.d99
ENDDD

C ************** CHECK IF SOLUTION FALLS WITHIN BOUNDS*************** C
C ************** CHECK IF SOLUTION DOES NOT VIOLATE CONSTRAINTS****** C

if (ne.gt.0) then
call coneq(n,ne,x,h)

do ik=1,ne
if (dabs(h(Ik)).gt.1.d-6) f=1.d99

enddo
endif
if (ni.gt.O) then

call conin(n,ni,x,c)
do ik=1,ni

endif

if (c(Ik).gt.1.d-6)
enddo

f=1.d99

C ************** CHECK IF SOLUTION DOES NOT VIOLATE CONSTRAINTS****** C
C

C ************* TEST FOR GLOBAL MINIMUM FOUND SOFAR ******
kl=O

71 kl=kl+1
if (method.ne.nalgorithm(kl)) goto 71
contrn(kl)=contrn(kl)+1.d0
F=F-DUMMY
FVERSKIL=DABS(F-FMIN)
IF (J.EQ.1) THEN

FMIN=F
DD JJK=1,N
XMIN(JJK)=X(JJK)
ENDDO
NR=1
CALL VNORM (gfnorm,gf,N)
contrr(kl)=contrr(kl)+1.d0

ELSEIF (F.LT.FMIN) THEN
IF (FVERSKIL.LT.FSELLE) THEN

NR=NR+1

CALCULATE GRADIENT VECTOR NORM

108

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

contrr(kl)=contrr(kl)+1.d0
ELSE

NR=1
do ki=1,15
contrr(ki)=O.dO
enddo
contrr(kl)=contrr(kl)+1.d0

ENDIF
FMIN=F
DO JJK=1,N
XMIN(JJK)=X(JJK)
ENDDO
CALL VNORM (gfnorm,gf,N)

ELSEIF (FVERSKIL.LT.FSELLE) THEN
NR=NR+1
contrr(kl)=contrr(kl)+1.d0
ENDIF

CALCULATE GRADIENT VECTOR NORM

C ************* TEST FOR GLOBAL MINIMUM FOUND SOFAR ******

C

C

C

C

C **

QNR=CONVPROB(J,NR) ! CALCULATE FATTI CONVERGENCE PROBABILITY

write(70,5001) nprob,jj,j,rne,rnethod,f,NtFUNCEVAL,NtGRADEVAL,qnr
&,(x(i),i=1,n)

IF (QNR.lT.PROBSTOP.OR.J.LT.MINITER) then

call GETRANDOM (N,X,bl,bu) ! GET RANDOM STARTING VECTOR
if(MULTIJANEE.eq.1) then
call CHOOSEMETHOD(METHOD,probil) ! DETERMINE OPT. ALGORITHM USED
endif

SEND DATA TO SPECIFIC SLAVE AFTER RECEIVING RESULTS FROM SLAVE ** C
call pvmfinitsend(PVMDEFAULT, info)

call pvmfpack(INTEGER4,nproc 1, 1, info)

call pvmfpack(INTEGER4,tids , nproc, 1, info)

call pvmfpack(INTEGER4,iseed 1, 1, info)
call pvmfpack(INTEGER4,jseed 1, 1, info)

call pvmfpack(INTEGER4,n 1, 1, info)

call pvmfpack(INTEGER4,nprob 1, 1, info)

call pvmfpack(INTEGER4,ni 1, 1, info)

call pvmfpack(INTEGER4,ne 1, 1, info)

call pvmfpack(INTEGER4,j 1, 1, info)

call pvmfpack(REAL8,fmin 1, 1, info)

call pvmfpack(REAL8,bl , 20, 1, info)

call pvmfpack(REAL8,bu , 20, 1, info)

call pvmfpack(REAL8,xmin , 20, 1, info)

call pvmfpack(REAL8,ndoprob 1, 1, info)

call pvmfpack(INTEGER4,jj 1, 1, info)

109

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

C

call pvmfpack(REAL8, x
call pvmfpack(INTEGER4,METHOD

msgtype = 1
itoid=tids(me)
call pvmfsend(itoid,msgtype,info)

, 20, 1, info)
1, 1, info)

C ** SEND DATA TO SPECIFIC SLAVE AFTER RECEIVING RESULTS FROM SLAVE** C
else

do kill=1, nproc
call pvmfkill(tids(kill),info)

enddo
goto 312

endif
30 continue

KILL SLAVES AFTER CONVERGED

C ********* RECEIVING OF OPTIMIZATION RESULTS FROM SLAVES END******** C
C ************** SNYMAN-FATTI STOPPING CONDITION LOOP END************ C

312 continue
C ****************** TEST FOR CONVERGENCE TO KNOWN SOLUTION********** C

IF (DABS(FAPRIORI).LT.FSELLE) THEN
FPRIORIVERSKIL=DABS(FMIN-FAPRIORI)
ELSE
FPRIORIVERSKIL=DABS((FMIN-FAPRIORI)/FAPRIORI)
ENDIF
IF (FPRIORIVERSKIL.GT.CONVERG) THEN
NFAIL=NFAIL+1
CONVERGED='N'
ELSE
CONVERGED='C'
ENDIF
IF (FMIN.LT.(FAPRIORI-CONVERG)) THEN
CONVERGED='L'
ENDIF

C ****************** TEST FOR CONVERGENCE TO KNOWN SOLUTION********** C
IF (CONVERGED.EQ.'C'.OR.CONVERGED.EQ.'L') THEN

C

NCONVERG=NCONVERG+1
ENDIF
ntotalmaxfunk=O
ntotalmaxgrad=O
ntotalmaxnorm=O
do kn=1, 128
nnorme=nmaxfunct(kn)+n*nmaxgradt(kn)
if (nnorme.gt.ntotalmaxnorm) then
ntotalmaxnorm=nnorme
if (nmaxfunct(kn).gt.ntotalmaxfunk) then

ntotalmaxfunk=nmaxfunct(kn)
ntotalmaxgrad=nmaxgradt(kn)
endif
enddo

110

! normalized cost

normalized cost
normalized cost
normalized cost
function evaluations

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

NFUNCEVAL=ntotalmaxfunk
NGRADEVAL=ntotalmaxgrad

C ************* UPDATE NUMBER OF FUNCTION EVALUATION TOTALS********** C
NTFEVAL=NTFEVAL+NFUNCEVAL
NFEVAL=NFUNCEVAL+(N)*NGRADEVAL
NTNFEVALS=NTNFEVALS+NFEVAL
NTGRADFEVALS=NTGRADFEVALS+(N)*NGRADEVAL
NAVEFEVALS=NAVEFEVALS+NFUNCEVAL
NAVECOMP=NAVECOMP+NFUNCEVAL+(N)*NGRADEVAL
NAVER=NAVER+NR
NAVEN=NAVEN+J
FMINAVE=FMINAVE+FMIN
IF (JJ.EQ.1) THEN
FBEST=FMIN
ELSEIF (FMIN.LT.FBEST) THEN
FBEST=FMIN
ENDIF

FUNCTION COST
COMPOUND COST

C ************* UPDATE NUMBER OF FUNCTION EVALUATION TOTALS********** C
c ************************* PRINTING RESULTS************************* C

call timer(time2)
elapsed=(time2-time1)
fdifference=DABS(FMIN-FAPRIORI)
write(*,2OO1) nprob,fmin,NFUNCEVAL,NGRADEVAL,NFEVAL,NR,J,

& converged,elapsed
IF (N.LE.11)

& write(i,1OOO) nprob,n,converged,fmin,fdifference,gfnorm,NFUNCEVAL
&,NGRADEVAL,nr,j,NCONVERG,qnr,(xmin(i),i=1,N)

IF (N.GT.11)
& write(i,1OO1) nprob,n,converged,fmin,fdifference,gfnorm,NFUNCEVAL
&,NGRADEVAL,nr,j,NCONVERG,qnr,(xmin(i),i=1,1O)

c ************************* PRINTING RESULTS************************* C
do ki=1,15
tcontrn(ki)=tcontrn(ki)+contrn(ki)
tcontrr(ki)=tcontrr(ki)+contrr(ki)
enddo

138 ENDDO
C ******************** PROBLEM REPEATS LOOP END********************** C

NAVER=idnint(dble(NAVER)/dble(NREPEATS))
NAVEN=idnint(dble(NAVEN)/dble(NREPEATS))
Qdum=CONVPROB(NAVEN,NAVER) ! CALCULATE CONVERGENCE PROBABILITY
WRITE(65,665) nprob,NAVEFEVALS/NREPEATS,NAVECOMP/NREPEATS

&,NREPEATS-NCONVERG,NAVER,NAVEN,Qdum
&,dabs(FMINAVE/DBLE(NREPEATS)-FAPRIORI),dabs(FBEST-FAPRIORI)

do ki=1,15
tcontrn(ki)=tcontrn(ki)/dble(NREPEATS)
tcontrr(ki)=tcontrr(ki)/dble(NREPEATS)

enddo
write(55,3467) nprob,(tcontrr(ki),tcontrn(ki),ki=1,15)

111

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

140 ENDDO

C ******************* SUMMARY OF ANALYSIS RESULTS******************** C
call timer (time02)
elapsed=(time02-time01)
write(6,2002) NTFEVAL,NTFEVAL/NRPROBS,nfail,elapsed,NTGRADFEVALS,

& NTNFEVALS/NRPROBS
write(1,2002) NTFEVAL,NTFEVAL/NRPROBS,nfail,elapsed,NTGRADFEVALS,

& NTNFEVALS/NRPROBS
epsmch1=dpmeps()
epsmch=1.d-15
write(6,*) Machine precision= ',epsmch1

Machine precision= ',epsrnch1 write (1, *)
write(6,*)
write (1, *)
write(6,*)
write (1, *)

Current precision= ',epsrnch
Current precision= ',epsrnch

' '
' '

C ******************* SUMMARY OF ANALYSIS RESULTS******************* C
CLOSE(65)
CLOSE(1)
close(70)
CLOSE(45)
CLOSE(55)
call pvmfexit(info) ! leave PVM before exiting

STOP
C ********************** FORMATS FOR WRITE*************************** C

367 format(1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,'
&,1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,'
&,1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,' ',1f5.2,'
&)

665 format(' AVE. PROBLEM= ',i4,' FUNG= ',i9,
&'COMPOUND= ',i9,' #FAIL= ',i4,' r =',i2,' n =',i3,
&' qnr=' ,f7.4,' FMINAVE=',e12.5,' FBEST=',e12.5)

1000 format (i3,i4,4x,a1,1x,3e14.5,2i6,1i3,' /' ,2i4,f7.4,11e14.5)
1001 format (i3,i4,4x,a1,1x,3e14.5,2i6,1i3,' /',2i4,f7.4,10e14.5,

& ' ... etc. . .. ')
1201 format ('

&,' Alg.',12,'
& '

'
Alg.', 12,'

' , 'Alg. ' , 12,'
Alg.', 12,'
Alg.',12,'

Alg. ',12,'
Alg.',12,'
Alg.',12,'

& , ' Alg. ' , 12, ' Alg. ' , 12, ' Alg. ' , 12, '
1202 format('Alg.',12,' Alg.',12,' Alg.',12

& , ' Alg. ' , 12, ' Alg. ' , 12, ' Alg. ' , 12, ' Alg. ' , 12
& , ' Alg.', 12,' Alg. ', 12,' Alg. ', 12,' Alg.', 12
&,' Alg.',12,' Alg.',12,' Alg.',12,' Alg.',12)

2000 format ('No. n Conv f-* lf-*-fal
& 'llg-*11 Nf1 Nf2',
& r I n # p
&

&

Variables x_i-*',/,
108 (' - '))

112

Alg.' ,I2
Alg.', 12
Alg. ',I2
Alg.' ,12)

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

2001 FORMAT(' Pr# ',I2,': Fopt = ',e12.5,' nfe = ',i7,i8,i9,
& i3,' / ' , i4, ' ' , A1, ' ' , 1f 5. 2, 's')

2002 FORMAT(/,' Summary:',/,' nfe_tot = ',I9,'; nfe_ave = ',i5,
& '; #failures= ',i3,'; ttime = ',1f7.2,'s',//
& Gradient evaluations= ',i12,/,
& Normalized cost = ',i12,/)

3000 FORMAT (/,1X,' UNCONSTRAINED AND CONSTRAINED OPTIMIZATION VIA MULT
&I-ALGORITHM IMPLEMENTATION
&',//,
& '
&ld', / /,
& '

& '
& '
& '

Copyright (c) June 2000 by Manie Bolton and Albert Groenwo

All Commercial Rights Reserved',/,
Use of this program for purposes other than',/,

EDUCATION, RESEARCH and DEMONSTRATION',/,
is Unprofessional and Illegal',//)

3467 format ('Pr. = ' , I2, ' I ' , 1f 4. 1, ' ' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1
& '

'
& '

'
& '

'
&, '

I ' , 1f 4. 1, '
I ', 1f4 .1,'
I', 1f4.1,'
I ' , 1f 4. 1, '

' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1
' , 1f4 .1, ' I ' , 1f4. 1,' ' , 1f 4 .1,' I ' , 1f4. 1, ' ' , 1f4 .1
' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1
' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1, ' I ' , 1f 4. 1, ' ' , 1f 4. 1

& , ' I ', 1f4 .1,' ', 1f4 .1)
5001 FORMAT(' Pr# ',I2,' Nr# ',I2,' r# ',I3,' sl# ',I3,' Alg# ',I2

&,': Fopt = ',e12.5,
&' nfe = ',i7,i8,' qnr = ',f7.4,' x = ',10e14.5)

C ********************** FORMATS FOR WRITE*************************** C
END

C ** C
C C
C

C

C

FUNCTION:CALCULATE THE SNYMAN-FATTI
STOPPING CRITERIA CONVERGENCE PROBABILITY

C

C

C

C ** C
FUNCTION CONVPROB(j,nr)
IMPLICIT REAL*8 (A-H,0-Z)
DATA ONE /1.DO/
na=1 ! na = beta distribution B(a,b) parameter a
nb=5 ! nb = beta distribution B(a,b) parameter b
CONVPROB=1.d0
DO K=O,j-1
CONVPROB=CONVPROB*(2*j-nr+nb-1-K)/(2*J+nb+na-1-K)
ENDDO
CONVPROB=1.DO-CONVPROB
RETURN
END

C ** C
C C

subroutine shutdown(nproc, tids)
C C

113

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

C ** C
integer nproc, tids(*)
do 10 i=1, nproc

call pvmfkill(tids(i), info)
10 continue

call pvmfexit(info)
stop

return
end

KILL ALL SPAWNED TASKS

KILL MYSELF

C ** C
C

C
C
C

SUBROUTINE CHOOSEMETHOD(METHOD,probil)

DETERMINES WHICH OPTIMIZATION ALGORITH WILL BE USED

C

C
C
C

C ** C
IMPLICIT REAL*8 (A-H,0-Z),INTEGER(I-N)
double precision probil(15),sumprob(15)
dimension nalgorithm(15)
integer ntimesalg(15)
data nalgorithm /1,3,5,6,10,14,15,16,17,19,20,21,25,26,27/

C
do kim=1,15
if(kim.eq.1) then
sumprob(1)=probil(1)
else
sumprob(kim)=sumprob(kim-1)+probil(kim)
endif

enddo
if (sumprob(15).gt.1.000000001d0.or.sumprob(15).lt.0.989d0) then
write(*,*) 'prob.gt.1',sumprob(15)

write(*,*) 'sumprob',(sumprob(kl),kl=1,15)
stop
endif

CALL RANMAR(P,1)
ialg=O

10 ialg=ialg+1
IF (P.LE.sumprob(ialg)) THEN

METHOD=nalgorithm(ialg)
ELSE
GOTO 10
ENDIF

return
end

C ********************************END******************************* C
C ** C

114

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

F.4 Slave program for parallel optimization infrastruc­
ture

C ** C
C ** C
C

C SLAVE PROGRAM FOR PARALLEL OPTIMIZATION BY H.P.J.BOLTON
C

C
C C
C ** C
C ** C

PROGRAM SLAVE
c ************************ STANDARD DECLARATIONS********************* C

IMPLICIT REAL*8(A-H,O-Z),INTEGER(I-N)
include' .. /include/fpvm3.h'
integer info, mytid, mtid, msgtype, me
integer tids(128)

c ************************ STANDARD DECLARATIONS********************* C
INCLUDE 'params.inc'

C

C

C

C

DOUBLE PRECISION X(MAXSIZ),XMIN(MAXSIZ)
DOUBLE PRECISION BL(MAXSIZ),BU(MAXSIZ),GF(MAXSIZ)
COMMON /KGRADEVAL/ NGRADEVAL
COMMON /KFUNCEVAL/ NFUNCEVAL
COMMON /PRDATA/ NPROB
COMMON /DUMVAL/ DUMMY
COMMON /ntimess/ jj
COMMON /nslavess/ me

call pvmfmytid(mytid)
call pvmfparent(mtid)

1 continue
NGRADEVAL=O
NFUNCEVAL=O

GET SLAVE ID
GET MASTER ID

*************** RECEIVE DATA FROM MASTER(mtid) ********************* C
msgtype = 1
call pvmfrecv(mtid, msgtype, info)

call pvmfunpack(INTEGER4,nproc 1, 1, info)

call pvmfunpack(INTEGER4,tids , nproc, 1, info)

call pvmfunpack(INTEGER4,iseed 1, 1, info)

call pvmfunpack(INTEGER4,jseed 1, 1, info)

call pvmfunpack(INTEGER4,n 1, 1' info)

call pvmfunpack(INTEGER4,nprob 1, 1, info)

call pvmfunpack(INTEGER4,ni 1' 1, info)

call pvmfunpack(INTEGER4,ne 1, 1, info)

call pvmfunpack(INTEGER4,j 1, 1, info)

call pvmfunpack(REAL8,fmin 1, 1, info)

115

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

C
C

call pvmfunpack(REALS,bl
call pvmfunpack(REALS,bu
call pvmfunpack(REALS,xmin
call pvmfunpack(REALS,ndoprob
call pvmfunpack(INTEGER4,jj
call pvmfunpack(REALS,x
call pvmfunpack(INTEGER4,METHDD

*************** RECEIVE DATA FROM MASTER(mtid)
************** DETERMINE WHICH SLAVE AM I

DO I=1, nproc
IF (tids(I).EQ.mytid) me= I

ENDDD

(1

20, 1, info)

20, 1, info)

20, 1, info)

1, 1, info)

1, 1, info)

20, 1, info)

1' 1, info)

********************* C
- nproc) ************* C

c ************** DETERMINE WHICH SLAVE AM I (1 - nproc) ************* C
C ***************** INITIALIZE THE RANDOM NUMBER GENERATOR*********** C

ISEED=ISEED+me
IF (ISEED.GT.3132S) THEN
ISEED=ISEED-3132S
ENDIF
JSEED=JSEED+me
IF (JSEED.GT.300S1) THEN
JSEED=JSEED-300S1
ENDIF
CALL RMARIN(ISEED,JSEED)

C ***************** INITIALIZE THE RANDOM NUMBER GENERATOR*********** C
C

C ############# PERFORM OPTIMIZATION WITH CHOSEN METHOD############## C
call optimize(METHOD,NI,NE,n,f,x,gf,j,bl,bu,fmin,xmin)

C ############# PERFORM OPTIMIZATION WITH CHOSEN METHOD############## C
C

C *********************** SEND RESULTS BACK TO MASTER**************** C
call pvmfinitsend(PVMDEFAULT, info)

C

C

C
C

call pvmfpack(INTEGER4,me 1, 1, info)

call pvmfpack(INTEGER4,tids(me) 1, 1, info)

call pvmfpack(INTEGER4,NGRADEVAL 1, 1, info)

call pvmfpack(INTEGER4,NFUNCEVAL 1, 1, info)

call pvmfpack(REALS, x 20, 1, info)

call pvmfpack(REALS, f 1, 1, info)

call pvmfpack(REALS, dummy 1' 1, info)

call pvmfpack(INTEGER4,method 1, 1, info)

msgtype = 2
call pvmfsend(mtid, msgtype, info)

*********************** SEND RESULTS BACK TO MASTER **************** C
GOTO 1
call pvmfexit(info)
STOP

leave PVM before exiting

116

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

END
C ********************************END******************************* C
C ** C

117

	Parallel competing algorithms in global optimization
	Abstract
	iii

	Opsomming
	v

	Acknowledgements
	Contents
	viii
	ix
	x

	List of figures
	List of tables
	xiii

	Chapter 1: Introduction
	p002
	p003
	p004

	Chapter 2: On global stopping criteria
	p006
	p007
	p008
	p009
	p010
	p011
	p012
	p013

	Chapter 3: Multiple local searches in global optimization
	p015
	p016
	p017
	p018
	p019
	p020

	Chapter 4: Genetic algorithm
	p022
	p023
	p024
	p025
	p026
	p027
	p028
	p029

	Chapter 5: Particle swarm optimization
	p031
	p032
	p033

	Chapter 6: Multiple parallel local searches in global optimization
	p035
	p036

	Chapter 7: Parallel competing algorithms in global optimization
	p038
	p039
	p040
	p041
	p042
	p043
	p044

	Chapter 8: Constrained global optimization
	p046
	p047
	p048
	p049
	p050
	p051
	p052

	Chapter 9: Slope stability analysis
	p054
	p055
	p056
	p057
	p058
	p059
	p060
	p061
	p062

	Chapter 10: Conclusions and recommendations
	p064

	Bibliography
	p066
	p067
	p068
	p069

	Appendix A
	p071
	p072
	p073

	Appendix B
	p075
	p076

	Appendix C
	p078

	Appendix D
	p084
	p085
	p080
	p081
	p082
	p083

	Appendix E
	p087
	p088
	p089

	Appendix F
	p091
	p092
	p093
	p094
	p095
	p096
	p097
	p098
	p099
	p100
	p101
	p102
	p103
	p104
	p105
	p106
	p107
	p108
	p109
	p110
	p111
	p112
	p113
	p114
	p115
	p116
	p117

