
A Study of Bi-Space Search for Solving the
One-Dimensional Bin Packing Problem

Derrick Beckedahl1,2[0000−0002−0014−4288] and Nelishia
Pillay1,3[0000−0003−3902−5582]

1 University of Pretoria, Pretoria, South Africa
2 d.beckedahl@gmail.com
3 npillay@cs.up.ac.za

Abstract. Traditionally search techniques explore a single space to solve
the problem at hand. This paper investigates performing search across
more than one space which we refer to as bi-space search. As a proof of
concept we illustrate this using the solution and heuristic spaces. In pre-
vious work two approaches for combining search across the heuristic and
solution spaces have been studied. The first approach, the sequential ap-
proach, firstly explores the heuristic space to obtain complete solutions
and then applies local search to explore the solution space created by
these solutions. The second approach, the interleaving approach, alter-
nates search in the heuristic and solution space on partial solutions until
complete solutions are produced. This paper provides an alternative to
these two approaches, namely, the concurrent approach, which searches
the heuristic and solution spaces simultaneously. This is achieved by
implementing a genetic algorithm selection hyper-heuristic that evolves
a combination of low-level construction heuristics and local search move
operators that explore the space of solutions (both partial and complete).
The performance of the three approaches are compared, to one another
as well as with a standard selection construction hyper-heuristic, using
the one dimensional bin packing problem. The study revealed that the
concurrent approach is more effective than the other two approaches,
with the interleaving approach outperforming the sequential approach.
All 3 approaches outperformed the standard hyper-heuristic. Given the
potential of searching more than one space and the effectiveness of the
concurrent approach, future work will examine additional spaces such as
the design space and the program space, as well as extending the bi-space
search to a multi-space search.

Keywords: bi-space search, heuristic space, solution space, genetic al-
gorithms

1 Introduction

The vast majority of search algorithms employed when solving combinatorial
optimization problems (COPs) restrict their search to only a single search space.
For example a genetic algorithm generally searches within the solution space,



2 D. Beckedahl, and N. Pillay

while genetic programming searches within the program space. The potential
benefit of searching across two spaces can be seen in [11] where the performance
of the graph-based hyper-heuristic (GHH) improves when introducing a solution
space search. In this work we present an alternative approach to those presented
in [11], namely a simultaneous approach, in which the search across the heuristic
and solution spaces is optimised using a hybridised selection hyper-heuristic. A
comprehensive coverage of the field of hyper-heuristics can be found in [10].

Hence, we investigate three different methods of combining search in the
heuristic and solution spaces, two of which are taken from [11]. The first method
performs a greedy local search on complete solutions created by a sequence of
construction heuristics [11]. That is to say that a series of construction heuristics
is consecutively applied until a complete solution is obtained, after which the
greedy local search is applied. This method will be referred to as the sequential
search approach (SSA) in this paper.

The second method is to interleave the local search with the application of
the construction heuristics [11]. In other words, after the application of a single
construction heuristic a partial solution is obtained, on which local search is
performed until there is no improvement. The next construction heuristic in
the sequence is applied to the resulting partial solution, with the process being
repeated until a complete solution is obtained. For the remainder of this paper,
we will refer to this method as the interleaving search approach (ISA).

In [11], it was found that the ISA method performed better than the SSA
method. We hypothesize that this is due to the ISA method working on partial
solutions as opposed to on complete solutions. This study uses a hybridisation
of selection constructive and selection perturbative hyper-heuristics to optimise
the search between the heuristic and solution spaces. We hypothesize that this
approach will be an improvement on the ISA approach because, rather than forc-
ing search in the solution space at periodic intervals, the proposed method will
optimise when each space is searched. This is achieved by employing a selection
hyper-heuristic which explores the space of heuristic combinations comprising
low-level construction heuristics as well as local search operators. When a local
search operator is encountered, the search switches to the solution space by ap-
plying said operator within the solution space. We will refer to this method as
the concurrent search approach (CSA).

The work presented here differs from previous work in that a multi-point
search technique has been used when searching the two spaces (as opposed to
the single-point search techniques employed in [11]), as well as using a different
problem domain, namely the one-dimensional bin packing problem (1BPP) from
the cutting and packing class of problems. This domain was chosen as it is
a well-researched problem domain, with numerous variations, that are directly
applicable to industry [8,13]. The results show that the CSA method performs the
best across the benchmark problem instances, with the second best performing
being the ISA method.

The main contribution of the research presented in this paper is an alternative
approach for search across the heuristic and solution spaces, which performs



A Study of Bi-Space Search for Solving 1BPP 3

better than previous approaches applied for this purpose. This study also further
emphasizes the potential of bi-space search as opposed to restricting the search
to a single search space. The remainder of this paper is organized as follows.
Section 2 details the different approaches, followed by the experimental setup in
Section 3. Experimental results and analyses are provided in Section 4. Finally
conclusions and future work are given in Section 5.

2 Bi-Space Search Algorithms

The hyper-heuristic was implemented using a Genetic Algorithm (GA) for the
high level heuristic, with the GA employing the generational control model and
tournament selection. Algorithm 1 details the pseudocode for the GA, which was
implemented using the EvoHyp [9] toolkit.

Algorithm 1 Genetic Algorithm Pseudocode

1: Create initial population
2: for i← 1, N do . N = number of generations
3: Evaluate the population
4: Select parents of the next generation
5: Apply the genetic operators (mutation and crossover)
6: end for

The following subsections describe each of the three approaches that were
implemented, namely the SSA (Section 2.1), ISA (Section 2.2) and CSA (Sec-
tion 2.3) approaches.

2.1 Sequential Search Approach (SSA)

The SSA approach is implemented by using a selection hyper-heuristic to search
through combinations of low-level construction heuristics. The construction heuris-
tics are used to build a complete solution, which is used as a starting point
for a search in the solution space (local search). Each combination of low-level
heuristics is evaluated by firstly applying it to create a solution. Local search is
then applied to that solution, and the objective value of the resulting solution
is used as the fitness of the combination. This fitness value is used to guide
the hyper-heuristic search toward finding an optimal solution to the problem at
hand. Algorithm 2 provides pseudocode for evaluating an individual in the SSA
approach.

2.2 Interleaving Search Approach (ISA)

The ISA approach is implemented by using a selection hyper-heuristic to search
through a space consisting of sequences of low-level construction heuristics (the



4 D. Beckedahl, and N. Pillay

Algorithm 2 SSA Evaluate

1: for i← 1, n do . n = length of heuristic sequence
2: Apply ith construction heuristic in the sequence
3: end for
4: repeat
5: Apply perturbative heuristic
6: until no improvement in solution quality

heuristic space). The fitness of a particular heuristic sequence is determined
as follows. After the application of a single heuristic within the sequence, the
resulting partial solution is used as a starting point for local search (search in the
solution space). As previously mentioned, an exhaustive local search, i.e. until
there is no improvement, is performed on this partial solution [11]. After the local
search has been conducted on the partial solution, the next construction heuristic
in the sequence is applied. This procedure is repeated until a complete solution
is obtained, with a final exhaustive local search being performed on the complete
solution. The fitness of the solution resulting from this procedure is used as the
fitness value for the heuristic sequence being evaluated. The pseudocode for this
evaluation process is detailed in Algorithm 3.

Algorithm 3 ISA Evaluate

1: for i← 1, n do . n = length of heuristic sequence
2: Apply ith construction heuristic in the sequence
3: repeat
4: Apply perturbative heuristic
5: until no improvement in (partial) solution quality
6: end for

2.3 Concurrent Search Approach (CSA)

The CSA approach is implemented as a hybrid selection hyper-heuristic which
searches through both constructive and perturbative low-level heuristics, i.e.
a hybridisation of a selection constructive and a selection perturbative hyper-
heuristic. The fitness of a heuristic sequence is determined by consecutively ap-
plying each heuristic within the sequence. When the perturbative heuristic is
encountered within the sequence, then a single step of the local search proce-
dure is performed, on the solution obtained from the application of all previous
heuristics in the current sequence. This can be either a partial or complete solu-
tion. The fitness of the resulting solution is used as the fitness for the heuristic
sequence. The reason for only performing a single step of the local search pro-
cedure is that the higher level search is meant to determine when each space is
searched, as well as for how long the space is searched. Hence if multiple steps of



A Study of Bi-Space Search for Solving 1BPP 5

the local search procedure are required, then the perturbative heuristic will ap-
pear multiple times within the sequence. Algorithm 4 details how an individual
is evaluated in the CSA approach, where the heuristic in Line 2 can be either
constructive or perturbative.

Algorithm 4 CSA Evaluate

1: for i← 1, n do . n = length of heuristic sequence
2: Apply ith heuristic in the sequence
3: end for

3 Experimental Setup

As previously stated, each of the bi-space search approaches were implemented
for the one-dimensional bin packing problem (1BPP) domain, using the Scholl [13]
benchmark data sets. These data sets are grouped into three broad categories,
namely easy, medium and hard4. The complete benchmark consists of a total
of 1210 problem instances, separated into groups of 720, 480 and 10 for easy,
medium and hard respectively.

The heuristic space consists of sequences of construction heuristics for the
1BPP. In our implementation, each sequence of heuristics is represented by a
string of characters, where each character corresponds to a low-level heuristic
(or a local search operator in the case of the CSA approach). Each sequence is
used to construct a solution in the solution space, the fitness of which is used as a
measure of the quality of the heuristic sequence. The fitness of the solutions was
calculated using the function proposed by Falkenauer [4], which is to minimize:

fBPP = 1 −
∑N

i=1(Fi/C)2

N
(1)

where N is the number of bins, Fi the sum of the item sizes in the ith bin and
C the capacity of each bin. The following low-level construction heuristics were
used [10]:

– First-Fit Decreasing: The items to be packed are sorted in descending
order, the first item in the list is placed in the first bin in which it fits. If
the item does not fit into an existing bin, a new bin is created and the item
placed inside.

– Best-Fit Decreasing: The items to be packed are sorted in descending
order, the first item in the list is placed in the bin with the least residual
capacity after the item has been packed. If the item does not fit into an
existing bin, a new bin is created and the item placed inside.

4 A full explanation of the datasets and their respective classes can be found at
https://www2.wiwi.uni-jena.de/Entscheidung/binpp/index.htm

https://www2.wiwi.uni-jena.de/Entscheidung/binpp/index.htm


6 D. Beckedahl, and N. Pillay

– Next-Fit Decreasing: The items to be packed are sorted in descending
order, the first item in the list is placed in the current bin if possible, else
the item is placed in a new bin.

– Worst-Fit Decreasing: The items to be packed are sorted in descending
order, the first item in the list is placed in the bin with the most residual
capacity after the item has been packed. If the item does not fit into an
existing bin, a new bin is created and the item placed inside.

The parameter values were tuned such that the performance of the GA would
be as general as possible, in order to ensure that no approach had an advantage
over any other. It was found that there were no changes when using larger
values for the population size. A lower number of generations was found not
to converge, whilst convergence occurred before reaching the generation limit
when using higher values. Similar observations were made for changes in the
application rates. It was found that convergence took longer to occur when a
limit was imposed for the maximum depth of the offspring. Likewise for higher
limits on the mutation depth. All approaches used the parameter values reported
in Table 1.

Table 1. Table showing the parameter values used for the GA for all three approaches.

Parameter Value

Population Size 500
Tournament Size 5

No. of Generations 75
Mutation Rate 0.15
Crossover Rate 0.85

Max. Depth of Init. Pop. 10
Max. Depth of Offspring No Limit
Max. Mutation Depth 5

Search within the solution space was conducted through the use of a local
search operator, which was adapted from [7]. This operator was chosen due to
its popularity within the literature [1,7]. Algorithm 5 details the implementation
of this operator. In cases where there are multiple swaps which would lead to
a reduced residual capacity (free space) for a bin, the swap which leads to the
greatest reduction is made. Similarly, for bins where no swaps are possible there
is no action taken. When applying the local search operator on partial solutions,
only the items which had been packed, i.e. only those items in the bins within
the partial solution, were considered when attempting to make improvements. In
addition to this, the operator was only applied in cases where two or more bins
were present (no action was taken otherwise). The reasoning behind this is that
in cases of only a single bin, the effect of Algorithm 5 would be the equivalent of
unpacking the items in the bin and repacking them using the First Fit Descending



A Study of Bi-Space Search for Solving 1BPP 7

Algorithm 5 Local Search Operator

1: free ← items from least filled bin

2: for i← 1, n do . n = number of remaining bins
3: Swap two items packed in the ith bin with two items in free if the residual

capacity of the bin is reduced after the swap
4: end for

5: for i← 1, n do . n = number of remaining bins
6: Swap two items packed in the ith bin with one item in free if the residual

capacity of the bin is reduced after the swap
7: end for

8: for i← 1, n do . n = number of remaining bins
9: Swap one item packed in the ith bin with one item in free if the residual capacity

of the bin is reduced after the swap
10: end for

11: while free contains items do
12: remove the first item from free and pack it using the First Fit Descending

construction heuristic
13: end while

construction heuristic. We felt that in such cases this would have negatively
impacted on the performance of the hyper-heuristic search, particularly in the
case of the ISA approach.

The performance of each of the three approaches was compared to one an-
other, as well as with a standard GA searching only the heuristic space (GAHH),
using the non-parametric Friedman test with the Nemenyi post-hoc test, as pro-
posed by [2].

3.1 Technical Specifications

The simulations were performed using the Centre for High Performance Com-
puting’s (CHPC) Lengau cluster5. A total of 30 runs were performed for each
problem instance, per approach, using an average of 12 compute threads/ cores
(at a clock speed of 2.6 GHz) per run. The simulations were set up such that
there were no restrictions on the memory.

4 Results and Analysis

In this section, the results obtained from each of the three approaches outlined
previously are compared with each other as well as with those from a standard
GAHH (searching only the heuristic space). For each of the four approaches,

5 https://www.chpc.ac.za/index.php/resources/lengau-cluster

https://www.chpc.ac.za/index.php/resources/lengau-cluster


8 D. Beckedahl, and N. Pillay

the number of problem instances which were solved to optimality, the number
of problem instances which were solved to near-optimality (one bin more than
the optimum), and the number of problem instances that were more than one
bin from the optimum are all reported in Section 4. The results are grouped
according to the data set categories (easy, medium and hard), with the best
performing approach in bold.

Table 2. Table showing the number of problem instances, for each of the data set
categories, which were solved to optimality or near-optimality (one bin from the opti-
mum), for each of the methods tested. The results in bold are for the best performing
algorithm.

Prob. Set Algorithm No. Opt % at Opt No. (Opt-1) Sum No. Rem

GAHH 590 81.9 % 82 672 48
Easy SSA 626 86.9 % 63 689 31
(720) ISA 632 87.8 % 79 711 9

CSA 673 93.5 % 44 717 3

GAHH 242 50.4 % 121 363 117
Medium SSA 281 58.5 % 94 375 105

(480) ISA 371 77.3 % 67 438 42
CSA 428 89.2 % 40 468 12

GAHH 0 00.0 % 0 0 10
Hard SSA 0 00.0 % 0 0 10
(10) ISA 2 20.0 % 6 8 2

CSA 6 60.0 % 4 10 0

GAHH 832 68.8 % 203 1035 175
Total SSA 907 75.0 % 157 1064 146
(1210) ISA 1005 83.1 % 152 1157 53

CSA 1107 91.5 % 88 1195 15

The performance of the approaches was ranked for each problem instance,
where the performance was assessed based on the number of bins in the found
solution relative to the known optimum. Solutions that were closest to the known
optimum were assigned the highest rank (a value of 1, indicating the best per-
forming approach), with solutions furthest from the optimum receiving the lowest
rank (a value of 4). In the cases of ties, the average rank was assigned. Table 3
shows an example of the rank assignments for some of the problem instances.

As proposed by [2], the non-parametric Friedman test was used to deter-
mine if there is a statistically significant difference in the average ranks of
each algorithm. Using the values provided in Table 4, the F-statistic evalu-
ates to FF = 61.10934. Using 4 algorithms across 1210 problem instances, the
value of FF is distributed according to the F-distribution with 4 − 1 = 3 and
(4 − 1) × (1210 − 1) = 3627 degrees of freedom. For an α-level of 5%, this



A Study of Bi-Space Search for Solving 1BPP 9

Table 3. Table showing example rank assignments for each algorithms’ performance.

Prob. Instance Algorithm Bins to Opt. Rank

N4C3W4 R

GAHH 5 4
SSA 2 3
ISA 1 2
CSA 0 1

N3C3W4 Q

GAHH 2 3.5
SSA 2 3.5
ISA 1 2
CSA 0 1

leads to a critical value of F0.05(3, 3627) = 2.60736, and we can therefore re-
ject the null hypothesis which states that the algorithms are equivalent (since
FF > F0.05(3, 3627)).

Table 4. Table showing the average rank and its square for each method implemented.
Averages were calculated across all problem instances.

Algorithm Avg. Rank (Avg. Rank)2

GAHH 2.82397 7.97479
SSA 2.63719 6.95477
ISA 2.34174 5.48373
CSA 2.19711 4.82728

Proceeding with the Nemenyi post-hoc test, for an α-level of 5% the critical
difference evaluates to CD = 0.13484. Therefore any two algorithms are signif-
icantly different if their corresponding average ranks differ by at least 0.13484.
The differences in the average ranks between each of the methods are presented
in Table 5. From Table 5 one can see that the performance of each of the ap-
proaches are significantly different from one another, as all the values are greater
than the critical difference.

The average runtimes per problem instance for each of the approaches imple-
mented are reported in Table 6, from which one can see that there is a consider-
able increase in the runtimes when incorporating local search into the algorithm.
From Table 6 one can see that the SSA has, on average, more than double the
runtime of the GAHH, with the ISA and CSA taking considerably longer than
the SSA. However, as previously mentioned, the CSA approach significantly
outperforms the three other approaches and, as can be seen from Table 6, has
over half the runtime of the next best performing approach. Although the CSA



10 D. Beckedahl, and N. Pillay

Table 5. Table showing the differences in average ranks between each of the methods
implemented.

GAHH SSA ISA CSA

GAHH - 0.18678 0.48223 0.62686
SSA 0.18678 - 0.29545 0.44008
ISA 0.48223 0.29545 - 0.14463
CSA 0.62686 0.44008 0.14463 -

Table 6. Table showing the average runtime per problem instance, for each of the four
approaches implemented. The averages across each of the problem difficulty categories
are reported, as well as the average across all problem instances.

Problem Average Runtime per Problem Instance
Category GAHH SSA ISA CSA

Easy 13.5 s 21.6 s 53 min 5.5 s 13 min 37.5 s
Medium 6.0 s 30.6 s 41 min 47.3 s 26 min 29.8 s
Hard 12.7 s 34.4 s 16 min 37.4 s 29 min 21.1 s
Total 10.5 s 25.3 s 48 min 18.4 s 18 min 51.6 s

produces the best quality solutions, it cannot be ignored that the runtime is
considerably longer than either the SSA or GAHH approaches (over 40 and 100
times longer respectively). Therefore, it is necessary to consider the required
quality of solutions, as well as any time constraints that may be present for ob-
taining said solution (i.e.: obtaining “good enough” solutions relatively quickly
versus long runtimes to obtain optimal solutions).

4.1 Comparison with the State of the Art

As the main aim of this research is not to compete with state of the art ap-
proaches at this stage, but rather to provide an alternative approach for bi-space
search, a very simple local search operator has been used to explore the solution
space. Hence, we do not expect the approaches presented in the paper to out-
perform state of the art approaches. However, for the sake of completeness we
present a comparison of the performance of our approach against those taken
from the literature. These include:

– HI-BP [1]: uses complex heuristics that both construct and improve solutions

– PERT-SAWMBS [5]: uses complex heuristics that both construct and im-
prove solutions

– EXON-MBS-BFD [3]: uses a grouping genetic algorithm together with com-
plex construction heuristics



A Study of Bi-Space Search for Solving 1BPP 11

– GGA-CGT [12]: uses a grouping genetic algorithm to explore the solution
space

– IPGGA [6]: uses a grouping genetic algorithm to explore the solution space

The number of problem instances that were solved to optimality are presented
in Table 7 for each of these methods.

Table 7. Table showing the number of instances solved to optimality for the CSA
approach compared with those taken from the literature.

Method Easy (/720) Medium (/480) Hard (/10)

HI-BP 720 480 10
PERT-SAWMBS 720 480 10
EXON-MBS-BFD 667 412 8
GGA-CGT 720 480 10
IPGGA 720 480 10
CSA 673 428 6

From Table 7 one can see that the proposed CSA approach does not compare
well with the state of the art. Only the EXON-MBS-BFD is outperformed by
the CSA, and only for the easier categories. This is to be expected because the
GGA-CGT, EXON-MBS-BFD and IPGGA all implement a grouping genetic
algorithm [12,3,6], which is a modification of the canonical GA for the express
purpose of solving grouping problems [6], such as the 1BPP. In addition to this,
the majority of the optimisation for the CSA occurs in the heuristic space. The
CSA only implements very simple heuristics and move operator as opposed to
the more complex heuristics used by HI-BP and PERT-SAWMBS. Hence it is
understandable that the CSA performs poorly when compared with the state of
the art. Future work will look at incorporating more robust search techniques,
such as those used in the state of the art approaches, for exploring the search
space, in the bi-space search.

Furthermore, from the no free lunch theorem it is known that the perfor-
mance of methods differs according to the problem domain and search space.
With this in mind, future work will investigate the effectiveness of selecting a
search technique according to the search space and problem domain at hand, as
well as including additional spaces such as the design space (ie: a multi-space
search).

5 Conclusions and Future Work

A new alternative approach to bi-space search was proposed, namely the concur-
rent search approach (CSA). This approach was investigated using the heuris-



12 D. Beckedahl, and N. Pillay

tic and solution spaces, and its performance was compared with two other ap-
proaches taken from the literature (termed the sequential search approach (SSA)
and interleaving search approach (ISA)), as well as with a purely heuristic space
search (implemented using a GA). The Scholl benchmark datasets for the one
dimensional bin packing problem were used.

Experimental results showed each of the approaches’ performance were sig-
nificantly (within the 95% confidence interval) different from one another, with
the newly proposed approach being the best performing. All the bi-space search
approaches outperformed the single-space search, thus highlighting the potential
benefits of bi-space search.

Although there is a significant improvement in the quality of the solutions
obtained, there is also a considerable increase in the runtimes, particularly when
performing local search during the solution construction process (the ISA and
CSA approaches). It is to be noted that although these approaches have longer
runtimes, the proposed CSA runs over 2.5 times faster than the ISA taken from
the literature. Hence, careful consideration needs to be taken with respect to
both the desired quality of solutions (“good enough” versus optimal solutions)
and the time available in which to find said solutions (upper bounds on the
runtime).

Results from the CSA approach were also compared with state of the art
approaches for the one-dimensional bin packing problem (1BPP). The intent
when implementing the CSA approach was not to solve the 1BPP, thus the CSA
did not perform as well as the state of the art, as was expected. Future work
will investigate adapting/selecting the search technique according to the current
search space at hand, as well as the use of techniques such as neighbourhood
landscape analysis to better decide when to search a given space. Search across
more than two spaces (ie: a multi-space search) will also be investigated.

Acknowledgements

This work was funded as part of the Multichoice Reasearch Chair in Machine
Learning at the University of Pretoria, South Africa. The authors acknowledge
the Centre for High Performance Computing (CHPC), South Africa, for provid-
ing computational resources toward this research.

References

1. Alvim, A.C., Ribeiro, C.C., Glover, F., Aloise, D.J.: A hybrid improvement heuris-
tic for the one-dimensional bin packing problem. Journal of Heuristics 10(2), 205–
229 (Mar 2004). https://doi.org/10.1023/b:heur.0000026267.44673.ed

2. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine learning research 7(Jan), 1–30 (2006)

3. Dokeroglu, T., Cosar, A.: Optimization of one-dimensional bin packing problem
with island parallel grouping genetic algorithms. Computers & Industrial Engi-
neering 75, 176–186 (Sep 2014). https://doi.org/10.1016/j.cie.2014.06.002

https://doi.org/10.1023/b:heur.0000026267.44673.ed
https://doi.org/10.1016/j.cie.2014.06.002


A Study of Bi-Space Search for Solving 1BPP 13

4. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of
Heuristics 2(1), 5–30 (1996). https://doi.org/10.1007/bf00226291

5. Fleszar, K., Charalambous, C.: Average-weight-controlled bin-oriented heuristics
for the one-dimensional bin-packing problem. European Journal of Operational
Research 210(2), 176–184 (Apr 2011). https://doi.org/10.1016/j.ejor.2010.11.004

6. Kucukyilmaz, T., Kiziloz, H.E.: Cooperative parallel grouping genetic algorithm
for the one-dimensional bin packing problem. Computers & Industrial Engineering
125, 157–170 (Nov 2018). https://doi.org/10.1016/j.cie.2018.08.021

7. Levine, J., Ducatelle, F.: Ant colony optimization and local search for bin packing
and cutting stock problems. Journal of the Operational Research Society 55(7),
705–716 (jul 2004). https://doi.org/10.1057/palgrave.jors.2601771

8. López-Camacho, E., Terashima-Marin, H., Ross, P., Ochoa, G.: A unified hyper-
heuristic framework for solving bin packing problems. Expert Systems with Appli-
cations 41(15), 6876–6889 (nov 2014). https://doi.org/10.1016/j.eswa.2014.04.043

9. Pillay, N., Beckedahl, D.: EvoHyp - a Java toolkit for evolutionary algorithm hyper-
heuristics. In: 2017 IEEE Congress on Evolutionary Computation (CEC). pp. 2706–
2713 (June 2017). https://doi.org/10.1109/CEC.2017.7969636

10. Pillay, N., Qu, R.: Hyper-Heuristics: Theory and Applications. Natural Computing
Series, Springer International Publishing (2018). https://doi.org/10.1007/978-3-
319-96514-7

11. Qu, R., Burke, E.K.: Hybridizations within a graph-based hyper-heuristic frame-
work for university timetabling problems. Journal of the Operational Research
Society 60(9), 1273–1285 (sep 2009). https://doi.org/10.1057/jors.2008.102

12. Quiroz-Castellanos, M., Cruz-Reyes, L., Torres-Jimenez, J., S., C.G., Huacuja,
H.J.F., Alvim, A.C.: A grouping genetic algorithm with controlled gene trans-
mission for the bin packing problem. Computers & Operations Research 55, 52–64
(Mar 2015). https://doi.org/10.1016/j.cor.2014.10.010

13. Scholl, A., Klein, R., Jürgens, C.: Bison: A fast hybrid procedure for exactly solv-
ing the one-dimensional bin packing problem. Computers & Operations Research
24(7), 627–645 (jul 1997). https://doi.org/10.1016/s0305-0548(96)00082-2

https://doi.org/10.1007/bf00226291
https://doi.org/10.1016/j.ejor.2010.11.004
https://doi.org/10.1016/j.cie.2018.08.021
https://doi.org/10.1057/palgrave.jors.2601771
https://doi.org/10.1016/j.eswa.2014.04.043
https://doi.org/10.1109/CEC.2017.7969636
https://doi.org/10.1007/978-3-319-96514-7
https://doi.org/10.1007/978-3-319-96514-7
https://doi.org/10.1057/jors.2008.102
https://doi.org/10.1016/j.cor.2014.10.010
https://doi.org/10.1016/s0305-0548(96)00082-2

	A Study of Bi-Space Search for Solving the One-Dimensional Bin Packing Problem

