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Abstract
For m ≥ 4 even, the duals of p-ary codes, for any prime p, from adjacency matrices 
for the m-ary 2-cube Qm

2
 are shown to have subcodes with parameters [m2, 2m − 2,m] 

for which minimal PD-sets of size m
2
 are constructed, hence attaining the full error-

correction capabilities of the code, and, as such, the most efficient sets for full per-
mutation decoding.
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1 Introduction

In [14] binary codes generated by the row span of adjacency matrices of the graphs 
from the m-ary n-cube Qm

n
 with adjacency defined by the Lee metric, were studied, 

and some notable results were obtained when n = 2 and m is odd, in which case the 
codes are LCD. In particular, minimal s-PD-sets were obtained (i.e. of size s + 1 ) 
for s ≤ t − 1 , where t is the error correcting capability of the code. Such sets are as 
efficient in decoding as is possible for permutation decoding, so it is useful to find 
them, in particular to find them up to s = t , for the codes for which that is possible. 
Here we look at the p-ary codes for n = 2 and m ≥ 4 even, and any prime p, and find 
subcodes of Cp(Q

m
2
) for which PD-sets of minimal size t + 1 are found.
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We follow the standard definition of the graphs, known as Lee graphs, as in, for 
example  [5]: for m, n ≥ 2 positive integers, and R = {0, 1,… ,m − 1} with addi-
tion and multiplication as in the ring of integers modulo m, Zm , or possibly the 
field �m if m is a prime power, the graph � = (V ,E) on Qm

n
 , has V = Rn , the set 

of n-tuples with entries in R, with adjacency defined by x =< x0, x1,… , xn−1 > 
adjacent to y =< y0, y1,… , yn−1 > if there exists an i, 0 ≤ i ≤ n − 1 , such that 
xi − yi ≡ ±1 (mod m) and xj = yj for all j ≠ i . It follows that �  is regular of degree 
2n.

In this study we examine specific subcodes of the dual of the p-ary codes from 
the adjacency matrices of these graphs when n = 2 and m ≥ 4 is even. This follows 
work done in  [14] for which the main results were for binary codes when m ≥ 5 is 
odd, specifically for Qm

2
 . Some of the results from that paper generalize immediately 

to the p-ary case.
Since for m = 2, 3 the graph is the Hamming graph, the codes of which have been 

widely studied (see [6–9, 15], for example) we take m ≥ 4.
A summary of our main result is:

Theorem 1 Let � = Qm
2
 where m ≥ 4 is even, and let C = Cp(� ) , where p is any 

prime. Then C⟂ contains a subcode D of parameters [m2, 2m − 2,m]p for which the 
nested set

of automorphisms is an s-PD-set of minimal size s + 1 for the code D, for 
2 ≤ s ≤ t =

m

2
− 1 with information set I  where

here 𝜏<a,b> ∶< x, y >↦< x + a, y + b > . For s = t =
m

2
− 1 , this is a minimal PD-set 

for full error correction for D.
Further, D⟂ is an [m2,m2 − 2m + 2, 2]p code, and D is LCD if p ∤ m.

The code D is described in Proposition 1, and the rest of the proof of the the-
orem is in Proposition  2. These follow after Sect.  2 giving the terminology and 
background.

2  Background concepts and terminology

The notation for codes and codes from graphs is as in [1]. For an incidence 
structure D = (P,B,J) , with point set P , block set B and incidence J  , the code  
CF(D) = Cq(D) of D over the finite field F = �q is the space spanned by the inci-
dence vectors of the blocks over F. If Q ⊆ P , then the incidence vector of Q is writ-
ten vQ , or vx if Q = {x} . For any w ∈ FP and P ∈ P , w(P) denotes the value of w at 
P.

The codes here are linear codes, and the notation [n, k, d]q will be used for a q-ary 
code C of length n, dimension k, and minimum weight d, where the weight wt (v) 

S = {𝜏<2i,0> ∣ 0 ≤ i ≤ s}

I = {< 0, i >∣ i ∈ R} ∪ {< 1, i >∣ i ∈ R ⧵ {m − 2,m − 1}}.
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of a vector v is the number of non-zero coordinate entries. Vectors in a code are also 
called words. For two vectors u, v the distance d (u, v) between them is wt(u − v) . 
The support, Supp(v) , of a vector v is the set of coordinate positions where the entry 
in v is non-zero. So |Supp(v)| = wt(v) . A generator matrix for C is a k × n matrix 
made up of a basis for C, and the dual code C⟂ is the orthogonal under the standard 
inner product (, ), i.e. C⟂ = {v ∈ Fn ∣ (v, c) = 0 for all c ∈ C} . The hull, Hull(C) , of 
a code C is the self-orthogonal code Hull(C) = C ∩ C⟂ . If Hull(C) = {0} then C and 
C⟂ are linear codes with complementary dual (LCD) codes. A check matrix for C 
is a generator matrix for C⟂ . The all-one vector will be denoted by � , and is the vec-
tor with all entries equal to 1, and sometimes written �� if it has length m. A con-
stant vector is a non-zero vector in which all the non-zero entries are the same. Two 
linear codes are isomorphic (or permutation isomorphic) if they can be obtained 
from one another by permuting the coordinate positions. An automorphism of a 
code C is an isomorphism from C to C. The automorphism group will be denoted 
by Aut(C) , also called the permutation group of C, and denoted by PAut(C) in [11].

The graphs, � = (V ,E) with vertex set V and edge set E, discussed here are undi-
rected with no loops. If x, y ∈ V  and x and y are adjacent, we write x ∼ y , and xy for 
the edge in E that they define. The set of neighbours of x ∈ V  is denoted by N(x), 
and the valency of x  is |N(x)|. �  is regular if all the vertices have the same valency.

An adjacency matrix A = [ax,y] for �  is a symmetric |V| × |V| matrix with 
rows and columns labelled by the vertices x, y ∈ V  , and with ax,y = 1 if x ∼ y in 
�  , and ax,y = 0 otherwise. The row corresponding to x ∈ V  in A will be denoted 
by rx . In the following, we may simply identify rx with the support of the row, so 
rx = {y ∣ x ∼ y} = N(x) . The code over a field F of �  will be the row span of an 
adjacency matrix A for �  , and written as CF(A) , CF(� ) , or Cp(A) , Cp(� ) , respec-
tively, if F = �p.

2.1  The graphs Qm
n

The graphs are defined in Sect. 1. For any x ∈ Rn , xi denotes the ith coordinate of x, 
for 0 ≤ i ≤ n − 1.

For a ∈ Rn , a =< a0, a1,… , an−1 > , the translation �a is the map defined on 
x =< x0, x1,… , xn−1 > by

If �i ∈ Sn for 0 ≤ i ≤ n − 1 , then the map � is defined by

where the symmetric group Sn is acting on the n symbols 0, 1,… , n − 1.
For any i such that 0 ≤ i ≤ n − 1 , the map �i is defined by

where −xi = m − xi.

(1)𝜏a ∶ x ↦< x0 + a0, x1 + a1,… , xn−1 + an−1 > .

(2)𝜎−1 ∶ x ↦< x0𝜎0 , x1𝜎1 ,… , xn−1𝜎n−1 >

(3)𝜇i ∶ x =< x0,… , xi−1, xi, xi+1,⋯ >↦< x0,… , xi−1,−xi, xi+1,⋯ >,
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It is easy to verify that the translations �a for a ∈ Rn and the permutations � , for 
all �i , and �i for all i, are automorphisms of �  , and that Aut(� ) is both vertex and 
edge transitive.

Qm
n
 is the cartesian product (Qm

1
)◻,n of n copies of Qm

1
 . If An,m denotes the adja-

cency matrix for Qm
n
 where the elements of R are labelled naturally, and the 

n-tuples likewise, we have A2,m = A1,m ⊗ Im + Im ⊗ A1,m (Kronecker product) and 
An,m = A1,m ⊗ Imn−1 + Im ⊗ An−1,m . Since the matrix A1,m will be m × m of the form

the matrix for An,m has the form

where I is the mn−1 × mn−1 identity matrix.
As was noted in [14, Corollary 3], the graphs Qn

m
 are bipartite if m is even.

2.2  Permutation decoding

Permutation decoding involves finding a set of automorphisms of a code called 
a PD-set and was first developed by MacWilliams  [18], and is described fully in 
MacWilliams and Sloane  [19, Chapter  16, p.  513] and Huffman  [11, Section  8]. 
In [12] and [17] the definition of PD-sets was extended to that of s-PD-sets for 
s-error-correction:

Definition 1 If C is a t-error-correcting code with information set I  and check set C , 
then a PD-set for C is a set S of automorphisms of C which is such that every t-set 
of coordinate positions is moved by at least one member of S into the check posi-
tions C.

For s ≤ t an  s -PD-set is a set S of automorphisms of C which is such that every 
s-set of coordinate positions is moved by at least one member of S into C.

The algorithm for permutation decoding is as follows: for a t-error-correcting 
[n, k, d]q code C with check matrix H in standard form, so that a generator matrix can 
be written G = [Ik|A] where H = [−AT |In−k] , for some A, and the first k coordinate 
positions correspond to the information symbols. Let S = {g1,… , gs} be the PD-set. 

A1,m =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 ⋯ 0 0 1

1 0 1 0 ⋯ 0 0 0

0 1 0 1 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 1 0 1

1 0 0 0 ⋯ 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

,

(4)An,m =

⎡
⎢⎢⎢⎢⎢⎢⎣

An−1,m I 0 0 ⋯ 0 I

I An−1,m I 0 ⋯ 0 0

0 I An−1,m I ⋯ 0 0

⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ I An−1,m I

I 0 0 0 ⋯ I An−1,m

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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Any vector v of length k is encoded as vG. Suppose x is sent and y is received and 
at most t errors occur. Compute the syndromes H(ygi)

T for i = 1,… , s until an i is 
found such that the weight of this vector is t or less. Compute the codeword c that 
has the same information symbols as ygi and decode y as cg−1

i
.

Since this algorithm uses the PD-set as a sequence, the elements of the set S can 
be indexed by {1, 2,… , |S|} so that elements that will correct a small number of 
errors occur first. Thus if nested s -PD-sets are found for all 1 < s ≤ t then we can 
order S as follows: find an s-PD-set Ss for each 0 ≤ s ≤ t such that S0 ⊂ S1 … ⊂ St 
and arrange the PD-set S as a sequence in this order:

(Usually one takes S0 = {id}.)
There is a bound on the minimum size that a PD-set S may have, due to Gor-

don [4], from a formula due to Schönheim [20], and quoted and proved in [11]:

Result 1 If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r = n − k , 
then

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the formula 
and G(s) for G(t).

We note the following result from [13, Lemma 1]:

Result 2 If C is a t-error-correcting [n, k, d]q code, 1 ≤ s ≤ t , and S is an s-PD-set of 
size G(s) then G(s) ≥ s + 1 . If G(s) = s + 1 then s ≤ ⌊ n

k
⌋ − 1.

Thus a set of size s + 1 to correct s errors is a minimal set for s-error correction. 
Such sets for some cases where G(t) = t + 1 have been found for sporadic codes, but 

an infinite class for binary codes with parameters [
(
n

2

)
, n − 1, n − 1]2 from the tri-

angular graphs T(n) with n odd are found in [16]. Here t = n−3

2
 and PD-sets of size 

t + 1 =
n−1

2
 were found. Minimal sets up to s = t − 1 have been found in various 

papers, for example:[10, 13].
A simple argument yields that the worst-case time complexity for the decod-

ing algorithm using an s-PD-set of size z on a code of length n and dimension k is 
O(nkz) . Thus clearly the size z of the PD-set is important, and for any s this is at best 
s + 1 , and thus t + 1 for full error correction.

3  The codes

Let � = (V ,E) = Qm
2
 , m ≥ 4 even, R = {0, 1,… ,m − 1} , and C = Cp(� ) , p prime. 

Recall that row r<x,y> denotes the row of an adjacency matrix for �  corresponding to 
the vertex < x, y >.

S = [S0, (S1 − S0), (S2 − S1),… , (St − St−1)].

(5)|S| ≥
⌈
n

r

⌈
n − 1

r − 1

⌈
…

⌈
n − t + 1

r − t + 1

⌉
…

⌉⌉⌉
= G(t).
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Lemma 1 For m even, m ≥ 4 , and any prime p, let

Then w = vS1 − vS2 ∈ C⟂.

Proof We need to show that (r<a,b>,w) ≡ 0 (mod p) for every < a, b >∈ V  . Now the 
non-zero entries in r<a,b> , i.e. the neighbours of < a, b > , are

Suppose r<a,b> meets Supp(w) = S1 ∪ S2 = Λ . Without loss of generality, suppose 
< a + 1, b >∈ S1 . Then a + 1 = 2i and b = 2i , so a = 2i − 1 and b − 1 = 2i − 1 , so 
< a, b − 1 >∈ S2 . Thus (r<a,b>,w) ≡ 0 (mod p) . If Supp(r<a,b>) does not meet Λ then 
obviously (r<a,b>,w) ≡ 0 (mod p) . This completes the proof.   ◻

Corollary 1 For m even, m ≥ 4 , and any prime p, the minimum weight of C⟂ is m.

Proof The lemma shows that there are words of weight m so the minimum weight 
is at most m. Now the proof of [14, Lemma 3.5] generalizes to hold for any p if it 
is modified to say that the minimum weight is at least m. The argument does not 
depend on the code being binary, or on m being even or odd.   ◻

Similar to [14, Proposition 1] we have the following, where the automorphisms 
𝜏<a,b> and �i are defined in Eqs. (1) and (3):

Proposition 1 For m even and m ≥ 4 , and p any prime, � = (V ,E) = Qm
2
 , 

C = Cp(� ) , let

and u0 = vS1 − vS2 . Write ui = u0𝜏<i,0> for i ∈ R , and vi = u0𝜏<i,0>𝜇0 = ui𝜇0 for 
i ∈ R . Let U = {ui, vi ∣ i ∈ R} . Then, over �p , D = ⟨U⟩ ⊆ C⟂ has dimension 2m − 2 , 
D is a [m2, 2m − 2,m]p code, and D⟂ is a [m2,m2 − 2m + 2, 2]p code.

Further, if p = 2 then D is self-orthogonal. For p odd, if p ∤ m then 
Hull(D) = {0} ; if p|m then dim(Hull(D)) = 2m − 6.

For m ≥ 6 , the words in U and their scalar multiples are the only words of weight 
m in D.

Proof Clearly |U| = 2m and each point < a, b > is in the support of exactly one ui , 
viz. ua−b and one vj , viz. v−a−b . Thus 

∑
i∈R ui =

∑
i∈R vi , and the dimension of D is at 

most 2m − 1 . Notice that a − b and −a − b are both even or both odd.
If we arrange the points in V by first placing those with both entries even, 

then those with both entries odd, then those with the first entry even and the 
second odd, and finally those with the first entry odd and the second even, 
we see that 

∑
i even ui =

∑
i even vi and that likewise 

∑
i odd ui =

∑
i odd vi . These 

S1 = {< 2i, 2i >∣ 0 ≤ i ≤
m

2
− 1}, S2 = {< 2i + 1, 2i + 1 >∣ 0 ≤ i ≤

m

2
− 1}.

{< a ± 1, b >,< a, b ± 1 >}.

S1 = {< 2i, 2i >∣ 0 ≤ i ≤
m

2
− 1}, S2 = {< 2i + 1, 2i + 1 >∣ 0 ≤ i ≤

m

2
− 1},
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two relations are independent so dim(D) ≤ 2m − 2 . Now proceed as in the 
proof of [14, Proposition  1]: suppose w =

∑m−1

i=0
�iui +

∑m−1

i=0
�ivi = 0 . Then 

w(< a, b >) = 0 = 𝛼a−b + 𝛽−a−b , for all a,  b, and taking a = 0 this shows that 
�i = −�i for all i, so w =

∑m−1

i=0
�i(ui − vi) = 0. Since �a−b = −�−a−b = �−a−b , we 

have �c = �−c−2b for all c, b and hence �a is constant over a even and over a odd. 
Thus w = �

∑
i even(ui − vi) + �

∑
i odd(ui − vi) = 0 . Each of these sums is already 

zero so we have no new relations and dim(D) = 2m − 2.
For Hull(D) , suppose w =

∑
i∈R �iui +

∑
i∈R �ivi ∈ D ∩ D⟂ . Then 

(w, ui) = (w, vi) = 0 for all i ∈ R . Clearly (ui, ui) = (vi, vi) = m for all i, and 
(ui, uj) = (vi, vj) = 0 for all i ≠ j . Suppose < x, y >∈ Supp(ui) ∩ Supp(vj) . Then it 
is easy to show that < x +

m

2
, y +

m

2
>∈ Supp(ui) ∩ Supp(vj) , that the supports of ui 

and vj meet exactly twice, and that i and j are both even or both odd. Furthermore 
if < x, y >∈ Supp(ui) ∩ Supp(vj) then < x + j − i, y >∈ Supp(uj) ∩ Supp(vi) . Con-
versely, if i, j are both even or both odd, then ui and vj have precisely two points in 
common in their supports.

If p = 2 then clearly D is self-orthogonal from what was said above, so 
Hull(D) = D . For p odd, taking first p ∤ m and i even, w ∈ D ∩ D⟂ as above, we have 
(w, ui) = m�i + 2

∑
j even �j = 0 , and thus, since p ∤ m , �i = � for all even i. Likewise 

�i = � for all odd i. Taking (w, vi) = 0 gives �i = � for i even and �i = � for i odd. 
Then since m�i + 2

∑
j even �j = 0 we have m� + 2

m

2
� = 0 , so � = −� and similarly 

� = −� . Thus w = �
∑

i even(ui − vi) + �
∑

i odd(ui − vi). Since we showed above that 
each of the two sums is zero, we have also w = 0 , proving that D ∩ D⟂ = {0}.

Now take p|m. Again if w =
∑

i∈R �iui +
∑

i∈R �ivi ∈ D⟂ then 
(w, ui) = m�i + 2

∑
j even �j = 0 , and since m�i = 0 , we have 

∑
j even �j = 0 , and 

likewise 
∑

j even �j = 0 , 
∑

j odd �j = 0 and 
∑

j odd �j = 0 . Thus, in particular, all 
the words ui − uj and vi − vj where i,  j are both even or both odd, will be in D⟂ . 
Thus ⟨Hull(D), u0, u1, v0, v1⟩ = D and hence dim(Hull(D)) ≥ 2m − 6 . To show it 
is exactly this, note that ⟨Hull(D), u0⟩ contains all the ui for i even, but not ui for 
i odd, since if u1 = �u0 + w , where w ∈ Hull(D) then u1 − �u0 ∈ Hull(D) and 
thus (u1 − �u0, vi) = 0 , for all i and this is not possible as vi cannot meet both u0 
or u0 . In a similar way one can argue that v0 ∉ ⟨Hull(D), u0, u1⟩ , and then that 
v1 ∉ ⟨Hull(D), u0, u1, v0⟩ . Thus dim(Hull(D)) = 2m − 6.

That D has minimum weight m follows from Corollary  1 since D ⊆ C⟂ and 
does have words of weight m. That D⟂ has minimum weight 2 follows as in the 
binary case, except that if m ≡ 2 (mod 4) then v<0,0> + v

<
m

2
,
m

2
>
∈ D⟂ , while if 

m ≡ 0 (mod 4) , v<0,0> − v
<

m

2
,
m

2
>
∈ D⟂.

To show that for m ≥ 6 the words in U and their scalar multiples are the only 
words of weight m, we can proceed as in the proof of [14, Lemma 3.5]. Thus sup-
pose w ∈ D has support S and |S| = m . We use the fact (w, u) = 0 for all the weight-2 
words in D⟂ , and (w, rX) = 0 for all X ∈ V  . Notice also that for any < a, b >∈ V  , 
< a, b >∼< x, y > if and only if < a +

m

2
, b +

m

2
>∼< x +

m

2
, y +

m

2
>.

Taking < 0, 0 >∈ S , we must also have <
m

2
,
m

2
>∈ S , from the obser-

vation above. All the rows rX ∋< 0, 0 > must meet S again at least once, 
so considering the four rows containing < 0, 0 > , we need to include 
< 1, 1 >,< −1,−1 > or < 1,−1 >,< −1, 1 > to achieve this. Then also 
< 1 +

m

2
, 1 +

m

2
>,< −1 +

m

2
,−1 +

m

2
> or < 1 +

m

2
,−1 +

m

2
>,< −1 +

m

2
, 1 +

m

2
> 
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must be included for the weight-2 vectors in D⟂ . This will cover the rows through 
<

m

2
,
m

2
>.

If m = 6 these six vertices give the support of u0 if we make the first choice, and 
v0 if we make the second. Without loss of generality, let us make the first choice, so 
we have S = Supp(u0) . If w is not a multiple of u0 then we could produce a word of 
smaller weight in D. This proves the result for m = 6 . Proceeding to m ≥ 8 , we need 
to consider the rows through < 1, 1 > and we see that including < 2, 2 >∼< 1, 1 > , 
and < 2 +

m

2
, 2 +

m

2
> is required. If m = 8 we have u0 again.

We now proceed inductively, as in the proof of [14, Lemma 3.5] where at each 
stage we need to include a neighbour of the vertex < i, i >∈ S for smallest i for 
which < i + 1, i + 1 > is not included. The steps are similar to the proof of [14, 
Lemma 3.5], except that in that lemma m could be odd, and the code was binary.

This completes the proof for m ≥ 6 . For m = 4 there are more words of weight 
4, for all p. For example, from Magma [2, 3] computations, the word with support 
{< 0, 0 >,< 2, 2 >,< 0, 2 >,< 2, 0 >} is in D, but clearly not in U .   ◻

Extending the result obtained in Proposition 3 of [14], we have the following:

Proposition 2 For � = Qm
2
 where m ≥ 4 is even, R = {0,… ,m − 1} , and D = ⟨U⟩ 

over �p , p a prime, where U is as in Proposition 1: 

1. the set

is an information set for D.
2. For s ≤ m−2

2
 , the set of s + 1 automorphisms

is an s-PD-set of minimal size s + 1 for the code D with information set I  as 
given in Eq. (6). For s = m

2
− 1 , the full error correction property of the code is 

attained.

Proof The proof follows the same lines as that of Lemma  4.1 and Proposition  3 
of [14].

First we show that I  is an information set. Use the notation of Proposition  1. 
Consider the generators of the code D, viz. u0,… , um−1, v0,… , vm−1 , and write them 
as rows of a 2m × m2 generating matrix for D, but with the rows in the order

and columns in the natural order < 0, 0 >,< 0, 1 >,… ,< m − 1,m − 1 > . We 
consider only the first 2m columns, from < 0, 0 > to < 1,m − 1 > as we know 
D has dimension 2m − 2 . Then the non-zero entries in these columns are: 
u0 ∋< 0, 0 >,− < 1, 1 > ; um−1 ∋ − < 0, 1 >,< 1, 2 > ; um−2 ∋< 0, 2 >,− < 1, 3 > ; 
… ; u1 ∋ − < 0,m − 1 >,< 1, 0 > ; v0 ∋< 0, 0 >,− < 1,m − 1 > ; 
vm−1 ∋ − < 0, 1 >,< 1, 0 > ; … ; v1 ∋ − < 0,m − 1 >,< 1,m − 2 >.

(6)I = {< 0, i >∣ i ∈ R} ∪ {< 1, i >∣ i ∈ R ⧵ {m − 2,m − 1}}

(7)S = {𝜏<2i,0> ∣ 0 ≤ i ≤ s}

u0, um−1, um−2,… , u1, v0, vm−1, vm−2,… , v1,
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Now use the first m rows, which have leading entries alternat-
ing ±1 at < 0, 0 >,… ,< 0,m − 1 > to remove the similar lead-
ing entries in the second set of m rows, with the new ordered rows 
u0, um−1,… , u1, v

∗

0
= v0 − u0, v

∗

m−1
= vm−1 − um−1,… , v∗

1
= v1 − u1.

Consider now the lower m rows starting with v∗
0
 , and columns starting at 

< 1, 0 > , we have v∗
0
∋< 1, 1 >,− < 1,m − 1 > ; v∗

m−1
∋< 1, 0 >,− < 1, 2 > ; 

v∗
m−2

∋ − < 1, 1 >,< 1, 3 > ; … ; v∗
1
∋< 1,m − 2 >,− < 1, 0 > . Reorder these rows 

as v∗
m−1

, v∗
m−2

,… , v∗
1
, v∗

0
 . Now replace the row of v∗

1
 by v∗∗

1
= v∗

1
+ v∗

m−3
+ v∗

m−1
 which 

is zero in all the columns of < 1, i > , and replace v∗
0
 by v∗∗

0
= v∗

0
+ v∗

m−4
+ v∗

m−2
 which 

is also zero in the columns of < 1, i >.There are leading entries ±1 in the columns 
< 1, 0 >,… < 1,m − 2 > , and thus we have an information set, since we already 
know the dimension is 2m − 2.

By Proposition 1, D is an [m2, 2m − 2,m]p code and can correct t = m−2

2
 errors. It 

is quite straightforward to show that the bound G(t) in Eq. (5) is m
2
= t + 1 . Result 2 

tells us that if G(s) = s + 1 then s ≤ ⌊ m2

2m−2
⌋ − 1 which is m

2
− 1 = t here. Thus we 

take s ≤ m−2

2
 and show that the set S of Eq. (7) of size s + 1 will correct s errors.

If all the s errors are in I  then any non-identity element of S will take them all 
into C , and if all the s errors are in C then the identity 𝜏<0,0> will keep all the errors in 
C . Since any number of errors in I  can be corrected by any non-identity element of 
S, we assume there are s − 1 errors in C and one in I  . If we prove our result for such 
a set it will follow for any smaller number.

Suppose the errors in C occur at er =< ir, jr > for 1 ≤ r ≤ s − 1 , with e0 ∈ I  the 
error in I  . So 1 ≤ ir ≤ m − 1 for 1 ≤ r ≤ s − 1 . Since 𝜏<2i,0> = (𝜏<2,0>)

i , we see that 
the set of images of ir under the elements of S are all distinct and all have the same 
parity. Thus any set of s images ir + 2i , for 1 ≤ i ≤ s can contain 0 or 1 only once. 
There are s − 1 points er , so considering the s sets of images of these points under 
non-identity elements of S, i.e. {e𝜏<2i,0>r ∣ 1 ≤ r ≤ s − 1} for 1 ≤ i ≤ s , there must be a 
value of i such that neither 0 nor 1 is in that image, i.e. the points are all in C . This 
𝜏<2i,0> will move the full set of s error positions to C.

Thus S is an s-PD-set for s ≤ t of s + 1 elements, and in particular, for s = t we 
have a set of size t + 1 =

m

2
 for full error correction. Furthermore, the set is nested by 

the natural order.1   ◻

Thus the full proof of Theorem 1 is complete.   ◻
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1 Professor H.-J. Kroll has shown us a shorter, more compact, proof that the given set provides for full 
error correction.
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