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Abstract

Performing condition monitoring on rotating machines such as wind turbines, which op-

erate inherently under time-varying operating conditions, remains a challenge. The signal

components generated by incipient damage are masked by other signal components that

are not of interest and high noise levels. In this work, a new method, referred to as the

IFBIαgram, is proposed that is capable of identifying frequency bands that are rich with

diagnostic information related to specific cyclic components. This allows the optimal fre-

quency band to be determined for diagnosing the component-of-interest. It is shown on

numerical and experimental gearbox data that this method is not only capable of detecting

incipient damage, but is also robust to time-varying operating conditions. Therefore, it

can be used to independently determine the condition of different mechanical components

and it is robust to spurious transients.
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1. Introduction

Detecting incipient damage is extremely important for critical machines such as wind

turbines [1–3] and helicopters [4, 5] and remains a very challenging task. The interaction
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of various mechanical components (e.g. gear meshing) and the fact that these machines

often operate in noisy environments under time-varying operating conditions, impede the

ability of conventional fault detection techniques to perform effectively, i.e. detecting

damage early [6–8].

In a damaged machine such as a gearbox, impulses are typically generated when the

damaged part of the component such as the inner race of a bearing moves in and through

the loading zone. Due to the cyclical nature of the rotating components, these impulses

generate cyclostationary signals [9]. These impulses also excite the structure of the ma-

chine and ultimately manifest in specific spectral frequency bands [10], which are depen-

dent on the properties of the system and independent of the operating conditions. The

excitation of the spectral frequency bands at specific cyclic orders means that the signal

can be approximated as angle-time cyclostationary under time-varying speed conditions

[11–14].

Signal enhancement techniques (e.g. [15, 16]) and analysing bandlimited signals [17],

which only contain information pertaining to the component of interest, can be used to

aid incipient fault detection. Synchronous averaging [6, 18], envelope analysis [19], time-

frequency analysis and related techniques [20–23] are very popular methods to highlight the

damage components in the data of rotating machines. Techniques that aim to identify

frequency bands with diagnostic information, which can ultimately be used to obtain

bandlimited signals, are referred to as Frequency Band Identification (FBI) techniques in

this paper.

The most notable FBI tool is the spectral kurtosis, where essentially the kurtosis of

different bandlimited signals is used to identify frequency bands with impulsive information

[24, 25]. The extensive theoretical development of the spectral kurtosis in Ref. [24, 25] has

allowed its use as an FBI technique and also as a filter to amplify the impulsive information

[26]. The Short-Time Fourier Transform (STFT) can be used to estimate the spectral

kurtosis, however, the spectral kurtosis is sensitive to the window length that is used in

the STFT estimation. Hence, Antoni and Randall [24] proposed the kurtogram, where

the spectral kurtosis is estimated from the STFT, calculated for different window lengths,

and ultimately maximised to obtain the centre frequency and the bandwidth that is best

for detection. The repeated application of the STFT can be time-consuming and therefore
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Antoni [27] proposed the fast kurtogram, which uses a wavelet packet decomposition

instead of the STFT as an estimator for the spectral kurtosis to ultimately obtain the

kurtogram. The additional benefit of the fast kurtogram is that it uses a 1/3-binary tree

to obtain a feature plane with a much better resolution. The spectral kurtosis and the

kurtogram have been very successful for bearing [24] and gear fault diagnosis [26, 28].

The kurtogram, however, also has its shortcomings. It cannot distinguish between

a single transient and repetitive transients and its values are dependent on the cyclic

frequency, e.g. as the rotating speed of the machine increases, the kurtosis decreases

[24, 29]. Hence, many improvements have been proposed [29, 30]. Much research effort

has been devoted to using statistics from the frequency domain instead of the time domain

for detecting repetitive transients, such as the protrugram [30], the enhanced kurtogram

[31], the sparsogram [32], the optimised spectral kurtosis [33] and the infogram [29, 34].

Xu et al. [35] proposed the envelope-to-harmonic ratio for extracting periodic transients.

Moshrefzadeh and Fasana [36] proposed the autogram, which calculates the kurtosis of the

unbiased autocorrelation function as a feature. Borghesani et al. [37] related envelope and

kurtosis-based indices and proposed a ratio of cyclic content metric that includes informa-

tion related to the kinematics of the component-of-interest for automatic demodulation

band identification. Smith et al. [38] proposed the ICS2gram which uses an indicator

of cyclostationarity to identify frequency band with strong cyclostationary information

related to the component-of-interest. Mauricio et al. [39, 40] proposed the IESFOgram,

which uses the spectral coherence, the improved envelope spectrum and a feature to de-

termine the frequency band that results in an optimal improved envelope spectrum for

detecting specific damage components. Schmidt et al. [41] proposed a methodology to

combine historical data from a healthy machine with FBI techniques. Smith et al. [42]

recently did a comparative study between different conventional FBI methods and made

the distinction between blind (i.e. without using any prior knowledge about the kine-

matics of the machine) and targeted (e.g. techniques such as the ICS2gram [38] and the

IESFOgram [39, 40]) methods. The results indicate that the targeted methods are much

better for detecting damage [42].

However, extracting a metric such as the kurtosis from the time-domain or the cyclic

spectrum of a bandlimited signal only allows the frequency band which maximises the
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metric to be identified, e.g. the impulsivity, and does not distinguish between the different

events that contribute to the impulsivity. Hence, the identified frequency band may not

be of interest (e.g. impulsive noise) or may only be optimal to detect the most dominant

component and not necessarily the weak component-of-interest.

An FBI methodology is therefore proposed in this work to identify the optimal fre-

quency band to detect a set of predetermined cyclic components {αf} under time-varying

operating conditions. This methodology is referred to as the IFBIαgram (Information

rich Frequency Band Identification), with the subscript α emphasising that it is deter-

mined for specific cyclic components. The set of cyclic components, denoted {αf}, can for

example be the Ball-Pass Order Outer (BPOO) race component and its harmonics, i.e.

{αf} = {1 · BPOO, 2 · BPOO, 3 · BPOO}.
In summary, the benefits of the proposed IFBIαgram are as follows:

• Information rich frequency bands that are optimal too detect specific cyclic compo-

nents in the set {αf} can be automatically identified.

• The IFBIαgram can be used to detect various damage modes, which may simulta-

neously be present in the rotating machine.

• It is possible to combine the IFBIαgram with advanced signal analysis techniques

for detecting damage under time-varying operating conditions.

In this work, the IFBIαgram is compared to the fast kurtogram, because the kurtogram

is a well established technique that has been used for gear and bearing diagnosis and

prognosis under constant and time-varying operating conditions [3, 24–28]. However, in

Section 4.5, a brief comparison is also made with the ICS2gram to further emphasise the

benefits of using the proposed methodology. In summary, the novel contributions of this

work are as follows:

• A novel frequency band identification technique, referred to as the IFBIαgram, is

proposed for gearbox fault diagnosis under time-varying operating conditions. The

IFBIαgram is calculated by combining the order-frequency spectral coherence with

a signal-to-noise ratio feature.
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• The repeated use of the order-frequency spectral coherence instead of the STFT

allows targeted features to be extracted that are unaffected by the bias in the esti-

mators due to the time-frequency limitations (e.g. the cyclic spectrum derived from

the STFT is a biased estimator).

• The methods are analysed on gearbox data that were acquired under time-varying

operating conditions in the presence of impulsive noise.

• In the calculation of the signal-to-noise ratio feature, it is shown that by normalising

the feature by the median instead of the average and the root-mean-square, it is

possible to have a more robust estimation of the noise level when the signal contains

much cyclostationary information.

The layout of the paper is as follows: The IFBIαgram is presented in Section 2, where-

after it is evaluated on numerical gearbox data in Section 3 and experimental gearbox

data in Section 4. In Appendix A, supporting information is provided to motivate using

the median in the feature proposed in Section 2.2, while Appendix B contains additional

information related to the numerical gearbox model used in Section 3.

2. The IFBIαgram

The process diagram of the calculation of the IFBIαgram is given in Figure 1. A

Signal
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Figure 1: An overview of the methodology that utilises the proposed IFBIαgram to obtain a bandlimited

signal which can be used for fault diagnosis. This procedure needs to be performed separately for each

measurement in the dataset.

vibration signal and the corresponding rotational speed ω(t) (or the instantaneous phase

θ(t)) of a shaft in the system are used as inputs, whereafter an Order-Frequency Spectral
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Coherence (OFSCoh) is calculated for each Window Length (WL) that is considered. The

window length is directly linked to the spectral frequency resolution of the OFSCoh and

therefore they can be used interchangeably. After the OFSCoh is calculated for a specific

WL, a feature, which is dependent on {αf}, is extracted from each spectral frequency

band of the OFSCoh and is used to construct the feature plane. Thereafter, the feature

plane is maximised to obtain the bandpass filter parameters that are used to extract the

bandlimited signal. This bandlimited signal is rich with diagnostic information pertaining

to {αf} and can be analysed to infer the condition of the machine.

A more detailed overview of each step is given in the subsequent sections.

2.1. Calculation of the OFSCoh

The Order-Frequency Spectral Coherence (OFSCoh) of the vibration signal x(t) [13]

γxx(α, f) =
S2x(α, f)

(S2xα(0, f) · S2x(0, f))1/2
, (1)

is a function of the Order-Frequency Spectral Correlation (OFSC) of the signal [13]

S2x (α, f) = lim
T→∞

1

θ (T )− θ (0)
E
{
FT (x(t))∗ · FT

(
x(t)e−jαθ(t)ω(t)

)}
, (2)

where T is the time-period of the signal, FT is the Fourier transform over a period T

and ω(t) = d
dt
θ(t). This allows the bandlimited impulses to be represented in terms of

cyclic orders α and spectral frequencies f and can therefore be used to identify informa-

tion rich frequency bands related to specific mechanical components. The OFSCoh has

been successfully used for bearing and gear fault detection under time-varying operating

conditions [13, 40, 43]. The benefit of using the OFSCoh, a normalised form of the OFSC,

is that it is able to amplify weak components in the signal [13] and is therefore ideal for

fault detection problems. Hence, it is used as a first step in this method. Utilising the

OFSCoh in this methodology ensures that it is possible to detect weak components in the

signal and it makes the method well-suited for applications under time-varying operating

conditions.

However, estimators need to be used to calculate Equation (2) for measured signals.

The Welch estimator has very good bias and variance properties when compared to other

conventional estimators [44] and is therefore used in this work. It is implemented using
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the procedure proposed in Ref. [13]. Recently, faster estimators of the spectral correlation

have been proposed in Refs. [45, 46] which would make the calculation of the IFBIαgram

more computationally efficient.

2.2. Feature extraction and feature plane construction

The objective is using the OFSCoh to determine a frequency band [f−∆f/2, f+∆f/2],

which maximises the diagnostic information related to a specific cyclic component. This is

performed by extracting a feature that is a function of {αf} from each spectral frequency

band in the OFSCoh and using the extracted features to construct a feature plane. The

estimated OFSCoh, with a frequency resolution of ∆f , is denoted γ̂xx (α, f ; ∆f). The

resulting feature plane for {αf}

Ψxx(f,∆f ; {αf}) =
∑

α∈{αf}

SNR
{
|γ̂xx (α, f ; ∆f)|2

}
, (3)

is constructed based on a signal-to-noise ratio measure

SNR {X (α)} =
A{X (α)}
G {X (α)} , (4)

where SNR {X (α)} is a measure of the signal-to-noise ratio of the spectrum X(α) at

a cyclic order of α. The dependence of the function X(α) on other parameters such

as the spectral frequency is omitted in Equation (4). The operator A{·} in Equation (4)

calculates the magnitude of the cyclic component α under consideration and G{·} estimates

the noise level at the cyclic order of α. The feature in Equation (4) can therefore be used

to identify the frequency band in which the cyclic component α is most prominent. The

metric in Equation (4) is inspired from the quality metric that was used in Ref. [41] to

estimate the diagnostic information in the Squared Envelope Spectra (SES) of a signal.

Since the analytical cyclic order may be slightly different than the actual cyclic order

and since the noise level is not available, estimators need to be used for A{·} and G{·}.
The function A{·} is estimated by assuming that for α ∈ [αf · (1−d), αf · (1 +d)] only the

signal component-of-interest is present, where d = 0.01 is used for all cases. This signal

component would be larger than the surrounding noise and therefore the maximum value

of the data in the band α ∈ [αf · (1− d), αf · (1 + d)] is assumed to be the component-of-

interest. If d 6= 0, it means that deviations from the theoretical or analytical cyclic orders

of the cyclic component-of-interest are allowed.

7



The noise level function G{·} is estimated by calculating the median in the band

α ∈ [αf−1, αf+1]. The median is calculated in this band to ensure that there are sufficient

data to properly estimate this noise level without, for example, being affected by roll-off

effects or other signal components. The range of this band can be increased, but this will

increase the computational time of the IFBIαgram and may lead to inaccurate estimations

if the noise level is a strong function of cyclic orders, e.g. if a roll-off phenomenon is present.

The median, as a method to estimate the noise level, is properly motivated in Appendix A.

The median was also used in Refs. [41, 47] to estimate the noise level in a cyclic spectrum

(e.g. SES).

Figure 2: The different components, used in the calculation of the feature in Equations (3) and (4), are

shown for the case where the cardinality of {αf} is three. The amplitudes are estimated with A and the

noise level is estimated with G, with the band that is used in the estimation of the noise level of each

harmonic being shown as well.

The different components of Equation (3) are visualised in Figure 2 for the OFSCoh

in a specific spectral frequency band. Even though the OFSCoh is used in this example,

the feature in Equation (4) can be combined with the Squared Envelope Spectrum (SES)

of a processed signal as a simple method to perform fault trending, i.e. Equation (3) is

calculated for the SES instead of the OFSCoh. This is similar to the quality metric used

in Ref. [41].

2.3. Feature plane maximisation

The feature plane can be constructed by calculating the feature in Equation (3) for

different spectral frequency bands f and different frequency resolutions ∆f , obtained by

using different window lengths in the estimation of the OFSCoh. The objective is to find
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the frequency band [f −∆f/2, f + ∆f/2], which is optimal to detect the cyclic orders in

the set {αf}, with

arg max
f,∆f

Ψxx(f,∆f ; {αf}). (5)

Hence, the spectral frequency f and the spectral frequency resolution ∆f (or equivalently

the window length) that maximise the feature plane are identified and then used to design a

bandpass filter. The filtered or bandlimited signal x(t; f,∆f), obtained after applying the

bandpass filter to the original signal, can subsequently be analysed to infer the condition

of the machine.

2.4. Analysis of the bandpass filtered signal

There are many signal processing and analysis methods that can be used to interrogate

raw and filtered signals for damage [10, 48]. The Synchronous Average of the Squared

Envelope (SASE) for a given period Φ0

sx(ϕ; Φ0) =
1

N0

N0−1∑
k=0

|x(ϕ+ k · Φ0)|2, (6)

can be used to detect the synchronous patterns in the instantaneous power of the order

tracked signal, attributed to the impulses that are generated from the damaged component.

The SASE is also very useful to visualise the condition of the gear and to evaluate the

extent of the damage [17, 18, 49]. The period of the SASE in rotations, i.e. Φ0/(2π), is

the reciprocal of the fundamental cyclic order of the component-of-interest.

The SES [19]

SES(α; f,∆f) = F
ϕ→α

{
E
{
|x (t(ϕ); f,∆f)|2

}}
, (7)

is one of the most powerful techniques for bearing diagnostics [10, 19] and can be used

for gear diagnostics [41] as well. This can be used to determine the presence of specific

damage components in the signal and to support the inferences made with the SASE.

The spectral coherence is a two-dimensional representation of a signal in terms of the

spectral frequencies and the cyclic frequencies. However, it is simpler to use a spectrum

when inferring the condition of the machine and therefore the Enhanced Envelope Spec-

trum (EES)

EES(α) =
1

fs/2

∫ fs/2

0

|γxx(α, f)|2df, (8)
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can be used. The integration over the whole frequency band [0, fs/2] could mask weak

components in the spectrum and therefore the Improved Envelope Spectrum (IES) [14]

IES(α; f,∆f) =
1

∆f

∫ f+∆f/2

f−∆f/2

|γxx(α, f)|2df, (9)

can be used to highlight the weak components better if the frequency range of integration,

i.e. [f −∆f/2, f + ∆f/2], is carefully selected. However, the frequency band needs to be

specified before the IES can be calculated. In this work, the estimated frequency band,

obtained with a FBI method, is also used to select the IES in Section 4.3.

Even though the raw and filtered signals are used in this paper, signal enhancing

techniques such as Cepstrum Pre-Whitening (CPW) [16] and the Generalised Synchronous

Average (GSA) [15] can be used to remove the healthy deterministic components (e.g.

gear mesh components) and retain the random components attributed to damage. This is

illustrated in Section 4.3.2, where the EES and the IES are calculated from the OFSCoh

of the CPW signal to diagnose the gears.

In the next section, the proposed IFBIαgram is investigated and compared to the fast

kurtogram on numerical gearbox data.

3. Numerical investigation

In this section, the proposed IFBIαgram is compared to the fast kurtogram on numer-

ical gearbox data generated with a phenomenological gearbox model. An overview of the

phenomenological gearbox model and the considered data are given in Section 3.1, where-

after the IFBIαgram is investigated in Section 3.2 and the fast kurtogram is investigated

in Section 3.3. The main purposes of this investigation are to illustrate the following:

• The proposed method can be used to detect weak components that are masked by

more dominant components.

• The proposed method can distinguish between repetitive and non-repetitive tran-

sients.
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3.1. Phenomenological gearbox model

The phenomenological gearbox model proposed in Ref. [19] is considered in this work.

The casing vibration signal

x(t) = FSb · xb(t) + xdgd(t) + xn(t) + ximp(t), (10)

is decomposed in terms of a baseline bearing component xb(t); a bearing fault severity fac-

tor FSb, which increases the magnitude of the bearing components; a damaged component

attributed to distributed gear damage xdgd(t); a broadband noise component xn(t) and a

bandlimited noise component ximp(t). The bandlimited noise or impulsive noise compo-

nent is used to test the robustness of the FBI methods to the presence of spurious impulse

components (i.e. impulsive information not related to the machine components of interest)

and is only present for some clearly indicated measurements. Bandlimited impulses are for

example expected for machines that operate in noisy environments, where impacts caused

by nearby processes may excite the resonances of the gearbox under consideration or the

resonances of nearby machines.

Detailed information regarding the different signal components, such as the signal-to-

noise ratio can be found in Appendix B, with the important information highlighted here.

The fundamental cyclic order of the BPOO is 4.12, while the fundamental cyclic order

of the distributed gear damage component is 1.0 shaft order. The bearing component

and the distributed gear damage components are centred in the spectrum at 7kHz and

1.3kHz, respectively. The distributed gear damage component is scaled to ensure that it

is significantly more dominant than the bearing component for FSb = 1 in the SES and

therefore impedes the detection of the weak bearing component. The bandlimited noise

component ximp is centred at 12 kHz.

The simulated data are generated under time-varying speed conditions and constant

load conditions. The rotational speed ω(t) is generated with a stochastic function, with

samples from the function shown in Figure 3 to ensure that the speed of each generated

signal is unique.

The casing vibration signal is presented in Figure 4 for two cases; the signal in Figure

4(i) is without the presence of the bandlimited impulses (i.e. ximp(t) = 0 for t ∈ R) and

the signal in Figure 4(ii) contains the term ximp(t). The two bandlimited impulses are
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Figure 3: The rotational speed samples ω(t) that are used to generate the vibration data analysed in

Section 3.

very prominent in Figure 4(ii) at 3 and 9 seconds respectively. The bandlimited impulsive
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Figure 4: The casing vibration signal for the case without bandlimited noise added to the system (i.e.

ximp(t) = 0 for t ∈ R) and for the case where bandlimited noise was added to the signal.

noise is not periodic, but introduces significant energy to a narrow frequency band around

12 kHz and therefore impedes the frequency band identification process.

Hence, the objective is to detect the weak bearing component in the presence of the

dominant distributed gear damage component and the potential presence of impulsive

noise, while the gearbox is operating under time-varying conditions.

3.2. Results with the IFBIαgram

The IFBIαgram proposed in Section 2 is investigated for the cases where bandlimited

noise is either absent or present, and for two bearing fault severities, namely FSb = 1

and FSb = 2. For FSb = 2, the bearing components are on average twice as large as

the bearing components for FSb = 1 under the same operating conditions. The aim is to

determine the optimal frequency band for detecting the BPOO component and therefore

{αf} = {4.12, 8.24, 12.36} is used in Equation (3) to construct the feature planes.
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The feature planes in Figure 5 are shown for the case where the bearing, the distributed

gear damage and the noise components are generated from the same functions, but either

without bandlimited noise or with bandlimited noise added to the signal. The identified

(i) Without bandlimited noise
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Figure 5: The casing vibration signal is shown for a bearing with a FSb = 1 with the bandlimited impulsive

noise term absent (see Figure 5(i)) or present (see Figure 5(ii)). The data are not presented on the same

scales.

frequency bands (i.e. in the titles in Figures 5(i) and 5(ii)) are the frequency bands that

maximise Equation (3) and takes into account the local signal-to-noise characteristics of

the component-of-interest in the different frequency bands.

The feature planes in Figures 5(i) and 5(ii) look in principle the same; the IFBIαgram

is not adversely affected by the presence of the bandlimited impulses or the distributed

gear damage and identifies the frequency band at 7kHz correctly. The identified frequency

bands are used to automatically design a bandpass filter for each signal, with the bandpass

filtered signal compared to the raw signals in subsequent analyses.

The SES of the raw and filtered signals, with the latter obtained with the IFBIαgram,

are shown in Figure 6 for the case without any bandlimited noise present in the signal,

i.e. ximp = 0 for t ∈ R. The distributed gear damage component, located at 1 shaft

order and its harmonics, dominates the SES of the raw signal in Figure 6(i) and masks the

weak bearing component. However, by optimising the constructed feature plane to detect

the cyclic orders of the BPOO and its two harmonics, it is possible to clearly detect the

bearing component. The contributions of the distributed gear damage component can be

completely removed with the bandpass filter, as seen in Figure 6(iii), because it does not

manifest in the same spectral frequency band as the bearing.

In the case where FSb = 2, the bearing component is significantly more prominent
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Figure 6: The Squared Envelope Spectra (SES) of the raw and filtered signals, with the latter obtained

with the proposed method, are presented for two Fault Severity (FS) factors of the bearing. Bandlimited

noise was not added to the signal.

in the SES of the raw signal and is not a challenge to detect. However, after applying

the SES of the filtered signal in Figure 6(iv), the bearing component has a much better

signal-to-noise ratio and is easier to interpret without the other interfering components.

The same analysis is performed for the case where the bandlimited noise component

was present in the casing signal. The SES of these signals are shown in Figure 7. The raw

signals in Figures 7(i) and 7(iii) have higher noise levels at the low-frequencies than the

results in Figures 6(i) and 6(iii) due to the bandlimited impulses. However, the IFBIαgram

is still able to extract the diagnostic information from the vibration signal and makes the

bearing damage easy to detect as seen in Figure 7(ii) and 7(iv).

3.3. Results with the fast kurtogram

The fast kurtogram [27] is investigated on exactly the same datasets as in the previ-

ous section and is used to benchmark the IFBIαgram. The kurtogram is constructed by

calculating the kurtosis of different bandlimited signals [27], i.e.

K (f,∆f) =

〈
|x(t, f ; ∆f)|4

〉
〈
|x(t, f ; ∆f)|2

〉2 − 2, (11)
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Figure 7: The Squared Envelope Spectra (SES) of the raw and filtered signals, with the latter obtained

with the proposed method, are presented for two Fault Severity (FS) factors of the bearing. Bandlimited

noise was added to the signal.

where the bandlimited signal associated with the band [f −∆f/2, f + ∆f/2] is denoted

x(t, f ; ∆f). The fast kurtogram performs the decomposition of the signal into the feature

plane more efficiently, with a very fine grid being achieved as well.

The kurtogram is shown for the signals without bandlimited noise and with bandlim-

ited noise in Figures 8(i) and 8(ii). In Figure 8(i), the kurtogram contains large values

around the area of 1.3kHz, which indicates that the distributed gear damage component

dominates the kurtogram, while the bearing component is not detected. However, if the
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Figure 8: The fast kurtogram feature plane of the signal without bandlimited noise added to the casing

signal is presented in Figure 8(i) and the kurtogram for the case where bandlimited noise was added to

the casing signal is presented in Figure 8(ii). The data are not presented on the same scales.
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Figure 9: The Squared Envelope Spectra (SES) of the filtered signals, with the band determined with the

fast kurtogram. Bandlimited impulsive noise was not added to the casing vibration signal.

bandlimited noise term, i.e. ximp(t), is non-zero in the casing vibration signal, the kur-

togram is maximised by the bandlimited noise term, while both the gear and the bearing

components remain undetected.

The SES of vibration signals without the bandlimited noise are investigated first with

the results shown in Figure 9. The SES in Figure 9(i) corroborates the result in Figure 8(i);

the distributed gear component dominates the kurtogram and is therefore very prominent

in the filtered signal, while the weak bearing component remains undetected in the SES

of the filtered signal.

If the magnitude of the bearing impulses are doubled, i.e. FSb = 2, the bearing

impulses dominate the kurtogram and is therefore present in the bandlimited signal as

seen in Figure 9(ii). Hence, the kurtogram will only identify the frequency band of the

bearing, if the impulses generated by the bearing damage have the most impulsiveness,

i.e. if the damage is well developed.

However, if bandlimited impulsive noise ximp(t) is introduced in the signal, it is the most

dominant component in the kurtogram as seen in Figure 8(ii). Therefore, the frequency

band that is identified by the kurtogram is associated with the bandlimited impulsive noise.

This influence of the bandlimited noise component on the SES is shown in Figure 10. The

filtered signal does not contain any information related to the bearing and the distributed

gear component, but only information related to the bandlimited impulse component.

3.4. Discussion: Kurtogram and IFBIαgram

Hence, in summary, the kurtogram identifies the frequency band with the most domi-

nant kurtosis, irrespective of the periodicity of the component and most importantly the
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Figure 10: The Squared Envelope Spectra (SES) of the filtered signals, with the filtering band determined

with the fast kurtogram. Bandlimited impulsive noise was added to the casing vibration signal.

machine component that generates the component. The FBI methods that use metrics

based on the periodicity of the signal component, would only maximise the component

that has the highest periodicity according to a criterion, e.g. sparsity or negentropy, and

may not necessarily detect the incipient damage components. The IFBIαgram is robust

to impulsive noise, but also allows us to optimise the detection of very specific cyclic

components, as defined in the set {αf}.
In the next section, the IFBIαgram and the kurtogram are investigated on experimental

gearbox data.

4. Experimental investigations

In this section, the IFBIαgram is compared to the kurtogram on experimental gearbox

data. An overview of the experimental setup and a description of the data under consid-

eration are given in Section 4.1, whereafter conventional analysis techniques are used to

interrogate the data for the presence of damage in Section 4.2, the IFBIαgram is applied

to the data in Section 4.3 and the kurtogram is applied to the data in Section 4.4. The

purpose of this investigation is to show the following:

• The IFBIαgram works on experimental gearbox data acquired under time-varying

operating conditions.

• The IFBIαgram can be used for gear damage detection, fault localisation and fault

trending.

• The IFBIαgram can be combined with advanced signal analysis techniques such as

the IES for fault detection.
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4.1. Overview of experimental setup

The experimental data were acquired from a gearbox setup located in the Centre for

Asset Integrity Management (C-AIM) laboratory at the University of Pretoria. The ex-

perimental gearbox setup, seen in Figure 11, consists of an electrical motor that drives the

system, an alternator which dissipates the rotational energy, and three helical gearboxes.

The centre helical gearbox is referred to as the test gearbox and is monitored for damage.

Various sensors were placed on the test gearbox, with the axial component of a tri-axial

Figure 11: The experimental setup that was used to generate data in this work is presented with the

important components highlighted. The tri-axial accelerometer, used to acquire the vibration data, and

the optical probe, used to measure the tachometer signal, both located on the back of the gearbox, are

also presented. S1, S2, S3, S4 refers to the four shafts of the system.

accelerometer, located on the back of the bearing casing of the test gearbox, used for

monitoring. The rotational speed of the system is acquired from an optical probe and a

zebra-tape shaft encoder. The geometrical imperfections of the zebra tape shaft encoder

are attenuated by using a Bayesian geometrical compensation procedure [50]. All the data

were acquired with an Oros OR35 data acquisition system. The accelerometer data were

sampled at 25.6 kHz and the tachometer signal was sampled at 51.2 kHz.

The helical test gearbox contains a gear that rotates at 1.0 shaft order and a pinion

that rotates at 1.85 shaft orders, with the shaft orders measured with respect to the input

shaft of the gearbox on which the zebra tape shaft encoder is located (i.e. S2 in Figure

11(a)). A table of the different frequencies of the system is provided in Table 1.
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Table 1: Normalised rotational speed and gear mesh frequencies of the system in Figure 11. All values

were normalised with the speed of shaft S2.

Gearbox 1 Gearbox 2 Gearbox 3

Rotational speed: Input 4.93 1.0 1.85

Rotational speed: Output 1.0 1.85 9.125

Meshing frequencies 74 37 136.9

The pinion was healthy for the duration of the test, but one of the teeth of the gear

was seeded with damage as seen in Figure 12(i) before the experiment. The gearbox was

operated with the operating conditions shown in Figure 13 for approximately 20 days

whereafter the gear tooth failed. The gear with the missing tooth is shown in Figure

12(ii).

(i) Before (ii) After

Figure 12: The gear before the fatigue test with the seeded damage and the gear after the fatigue test are

presented.

Twenty measurements, spaced evenly along the testing period was investigated to not

only evaluate the ability of the IFBIαgram to extract diagnostic information for fault

detection and fault localisation, but also show that it is possible to perform fault trending

with the diagnostic metrics extracted from the filtered signals.

4.2. Conventional signal analysis techniques

The Power Spectral Density (PSD) and the Synchronous Average (SA) are investigated

in this section to see whether it is possible to detect the gear damage in Figure 12 with

conventional signal analysis techniques. The synchronous average is calculated with N0 =
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Figure 13: The speed and load that were present at the input shaft of the test gearbox during the

measurements of the fatigue test.

46 for the gear and with N0 = 86 for the pinion, where N0 is the number of rotations

used for averaging. The PSD and SA are presented in Figure 14 for two healthy and two

damaged measurements. It is not possible to discern between the PSD of the healthy
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Figure 14: The Power Spectral Densities (PSD) and the Synchronous Average (SA) of the raw data are

presented in Figures 14(i) and 14(iii) for two measurements. The label H means that the pinion and

gear were healthy and D(M = 15) indicates that it is the 15th measurement of the twenty measurements

in the damaged dataset. The data are shifted in Figures 14(ii) and 14(iv) to make it easier to view the

results. In Figure 14(i), the following abbreviations are used: S2: Shaft 2, S4: Shaft 2, GM: Gear Mesh.

For the position of S2 and S4, see Figure 11.

and the damaged data in Figure 14(i). Even the gear mesh component at 37 orders and

the shaft components of the damaged signals are approximately the same as the healthy

signals. The SA performs slightly better than the PSD, with some indication of the damage
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seen in Figure 14(iv) at approximately 135 degrees for the two damaged measurements.

However, it is not very easy to detect the damage and the change in the condition of the

gear between measurement 5 and 15 is not evident in Figure 14.

It is difficult to detect the gear damage with conventional methods as seen in Figure

12. This is attributed to the high noise levels and the fact that helical gears are used.

The helical gears have high contact ratios and therefore when compared to spur gears, a

smaller reduction in gear mesh stiffness is expected as a gear tooth deteriorates. Hence,

conventional methods are ill-suited for diagnosing these gears and therefore it is necessary

to use more sophisticated methods.

4.3. Proposed method

The gear and the pinion are monitored in this section to show that it is possible to

discern between an healthy pinion and a gear with localised damage. Hence, for the gear,

the feature in Equation (3) is calculated for the set {αf} = {1.0, 2.0, 3.0} and for the

pinion, the feature is calculated for the set {αf} = {1.85, 3.70, 5.55}.
The constructed feature planes are shown in Figure 15 for the gear and the pinion. The
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Figure 15: The feature planes that are obtained for the gear and the pinion with the IFBIαgram. The

5th and 15th measurements are under consideration. The data are not presented on the same scales.
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large features of the gear are concentrated in a narrow resonance band at approximately

500Hz, while the feature plane of the pinion is much more uniform. The filtered signals for

the gear and pinion are automatically calculated for the twenty measurements and analysed

in subsequent sections. The filtered signal analyses are presented in the following sections:

The Synchronous Average of the Squared Envelope (SASE) is investigated in Section 4.3.1,

the Squared Envelope Spectrum (SES), the Enhanced Envelope Spectrum (EES) and the

Improved Envelope Spectrum (IES) are investigated in Section 4.3.2 and the fault trending

capabilities of the proposed method are investigated in Section 4.3.3.

4.3.1. Synchronous Average of the Squared Envelope (SASE)

The SASE of the raw and the SASE of the filtered signals are compared in Figure 16

for measurement number five of the twenty considered measurements. The filtered signals

shown in this section was obtained by firstly calculating the IFBIαgram, then maximising

it, whereafter the signal is filtered as shown in Figure 1. The SASE is calculated with
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Figure 16: The Synchronous Average of the Square Envelope (SASE) is shown for the raw and the filtered

signals, with the latter obtained with the proposed method. This was performed for measurement number

5 of the 20 measurements considered.

Equation (6), with either the order tracked raw signal or the order tracked filtered signal

being used. The SASE of the gear was calculated by setting Φ0 = 1 and for the pinion

Φ0 = 0.541. In Figure 16, the raw signals are dominated by the presence of spurious
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impulses, i.e. they are not related to the condition of the gear, and therefore impede the

condition monitoring process. However, the SASE of the filtered signals is much more

intuitive; the gear contains prominent localised damage in the vicinity of 135 degrees,

while the pinion is healthy.

The SASE of the raw and filtered signals are shown for measurement number 15 in

Figure 17. The gear damage progressed from measurement 5 to 15 and therefore the
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Figure 17: The Synchronous Average of the Squared Envelope (SASE) is shown of the raw and filtered

signals, with the filtered signal obtained with the proposed method. This was performed for measurement

number 15 of the 20 measurements considered.

damage is much more prominent in Figure 17(ii), while the pinion remains in healthy

condition in Figure 17(iv). This is in contrast to the results of the raw signal, i.e. the

SASE of the raw signal of the gears in Figure 17(i) and Figure 17(iii) are influenced by

spurious impulses, which impedes the detection of the gear damage.

The slight fluctuations in the SASE of the pinion in Figures 16(iv) and 17(iv) are

attributed to the non-synchronous impulses of the gear manifesting in the statistics of the

pinion as well. However, it is clear from the results that the SASE can be used to visualise

the condition of the gear, i.e. only a small portion of the gear is damaged.
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4.3.2. Envelope spectra: SES, EES and IES

The SES is one of the most popular techniques for detecting periodicities in the in-

stantaneous power of the signal and the damaged gear components would manifest at 1.0

shaft order and a damaged pinion component would manifest at 1.85 shaft orders. The

SES of the raw and filtered signals are shown in Figure 18 for measurement number 5.

The raw signal does not reveal any signal components related to the gear nor the pinion,

while there are other signal components which impede the interpretation of the results.

The impulses that impeded the SASE of the raw signals, manifest at 5.72 shaft orders.

In contrast, the proposed method performs exceptionally well in extracting the damaged
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Figure 18: The Squared Envelope Spectra (SES) of the raw and filtered signals that were obtained with

the proposed method. The SES of the filtered signal, obtained by maximising for the gear and pinion, are

shown in Figures 18(ii) and 18(iv), respectively. The results are shown for measurement number 5 of the

20 considered.

components and therefore the signal components attributed to the gear damage are clearly

seen in the filtered signals, while the pinion does not provide strong evidence that it is

damaged.

The SES of the second signal, measurement number 15, is shown in Figure 19 for

the raw and filtered signals. The SES of the raw signals still do not contain any clear

diagnostic information and therefore cannot be used to infer the condition of the gears.

However, the gear components are even larger in the SES of the filtered when compared
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Figure 19: The SES of the raw and filtered signals, with the latter obtained with the proposed method,

are shown for measurement number 15 of the 20 considered.

to Figure 19, i.e. a change in condition is evident.

A very interesting result is observed in the SES of the filtered signal for the pinion

shown in Figure 19(iv). There are no clear pinion components located at 1.85 shaft

orders, which indicates that the pinion is healthy. However, the dominant components

at 1.0 shaft order and its harmonics indicate that the filtered signal contains information

related to the gear as well. This emphasises that the filtered signal is optimal to detect

specific cyclic orders, but might not be independent of other damage modes and therefore

care should be taken when using statistics such as the RMS or kurtosis of the filtered

signals to infer the conditions of specific components.

The EES and the IES, calculated with Equations (8) and (9) respectively, are presented

in Figure 20 for the same measurements as the SES investigations. However, instead of

calculating the OFSCoh of the raw signal, the OFSCoh was calculated with a signal that

was whitened with the CPW procedure as discussed in Ref. [16]. This is to further

emphasise that signal enhancing tools can be used with the IFBIαgram. The IES is

calculated with the frequency band that is estimated with the IFBIαgram for the gear, i.e.

{αf} = {1.0, 2.0, 3.0}. The EES of the two measurements do not contain any information

related to the component of the gear, while being rich with other signal components. In

contrast, the IES is very rich with diagnostic information pertaining to the gear with very
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Figure 20: The Enhanced Envelope Spectrum (EES) and the Improved Envelope Spectrum (IES) are

shown for measurements 5 and 15. The Improved Envelope Spectra are calculated by using the frequency

bands that were identified by the IFBIαgram for the gear.

distinct harmonics seen at a shaft order of 1 and its harmonics. Therefore, the IFBIαgram

can be used to calculate the IES for detecting very specific damage components.

4.3.3. Fault trending

Even though it is extremely important to detect faults early, it is equally very important

to be able to detect changes in the condition of the components. Therefore, in this section,

the suitability of the filtered signal for fault trending is investigated. The SASE of the

raw and the filtered signals are presented in Figure 21 over the twenty measurements to

visualise the deterioration of the gear. The noise in Figure 21(i) is dominant and impedes

the ability to infer the condition of the gear and it also makes it difficult to observe changes

in the condition of the gear.
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Figure 21: The Synchronous Averages of the Squared Envelope (SASE) of the raw and the filtered signals

are shown for the twenty measurements considered.

The filtered signal in Figure 21(ii) performs significantly better than the raw signal in
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Figure 21(i). The SASE contains only information related to the gear component, with

the gear damage and the increasing severity of the damage easily seen.

The benefits of using the IFBIαgram are further emphasised by the results in Figure

22 as well. The SES of the raw signals in Figure 22(i) do not contain any clear diagnostic

information pertaining to the gear, while the 1.0 shaft order component and its harmonics

are clearly seen in the SES of the filtered signal in Figure 22(ii).
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Figure 22: The Squared Envelope Spectra (SES) of the raw and the processed signals, obtained with

the proposed method by using the cyclic order set of the gear, are shown for the twenty measurement

numbers.

Usually in condition monitoring, a one-dimensional metric such as the RMS or the

kurtosis is utilised for change detection. However, the kurtosis and RMS can lead to

misleading results when determining changes in specific mechanical components. The

feature calculated with Equation (4) can be used on the SES with a similar procedure as

Ref. [41] for fault trending. This means that
∑

α∈{αf} SNR {SESx (α)} , is calculated to

detect changes in the signal-to-noise ratio of specific components in the SES. This metric

is calculated for the raw and filtered signals and is presented in Figure 23.

The metrics of the raw signals of the gear and the pinion remain approximately constant

for all measurements, which erroneously indicates that the gear and pinion are both in

a healthy condition. However, when investigating the metrics of the filtered signals, it

can be observed that the metric of the gear actually changes considerably over time, while

remaining constant for the pinion. Therefore, by combining the metric in Equation (4) with

the SES of the filtered signal, it is possible to separately detect changes in the condition of

the gear and the pinion. This is important for large gearboxes such as applications where

girth gears and pinions are separately ordered.
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Figure 23: The fault trending metrics, which combines Equation (4) with the SES, are presented for the

raw and filtered signals. The metric for the gear is calculated with {αf} = {1.0, 2.0, 3.0}, and the metric

for the pinion is calculated with {αf} = {1.85, 3.70, 5.55}.
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Figure 24: The feature plane, obtained with the fast kurtogram, is shown for measurement number 15.

4.4. Fast kurtogram

The fast kurtogram is investigated on the same data as the previous section to further

illustrate the benefits of using the IFBIαgram. The kurtogram is shown in Figure 24 for the

same signal investigated in Figure 15. The repetitive transients, which adversely affected

the SASE and SES results in the raw signal, manifest in the higher frequency bands and

dominate the kurtogram. Even though these repetitive transients are cyclostationary,

they are not associated with the specific components under consideration, and therefore

impedes detecting the damaged gear components.

The adverse influence of the repetitive transients are further seen in Figure 25, where

the SASE and SES of the filtered signals are presented over all the measurements. The

limited diagnostic information in the SASE of the raw signal, presented in Figure 21(i),

is completely removed by the kurtogram as seen in Figure 25(i). The SES indicates that

the impulsive information seen in the SASE and identified by the kurtogram is attributed

to the repetitive transients which have a fundamental cyclic order of 5.72.

Lastly, similarly to the previous section, the fault trending capabilities of the feature
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Figure 25: The Synchronous Averages of the Squared Envelope (SASE) and the Squared Envelope Spectra

(SES) of the filtered signals are presented for the measurements considered.

in Equation (4), calculated for the SES of raw and filtered signals, are investigated and

shown in Figure 26 for the gear. Since the filtered signal only contains information related
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Figure 26: The feature, defined by Equation (4), is calculated with the SES for the cyclic orders associated

with the gears.

to the repetitive transients at 5.72 orders, the feature presented in Figure 26 does not

contain any changes in the gear component. Hence, the kurtogram is adversely affected

by the presence of the repetitive transients not related to the gearbox, which results in

the gear damage and the gear failure to be undetected.

4.5. ICS2gram

The ICS2gram is another method that can be used to search for frequency bands

related to a set of cyclic orders α ∈ {αf} [38, 42]. The feature [38, 42]

ICS2(f,∆f ; {αf}) =
∑

α∈{αf}

|SES(α; f,∆f)|2
|SES(0; f,∆f)|2 , (12)

is calculated from the Squared Envelope Spectrum (SES) of the bandlimited signal denoted

x(t; f,∆f). In the paper by Smith et al. [42], the averaged speed was used to calculate
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Figure 27: The feature plane, obtained with the ICS2gram, is presented for the case where {αf} =

{1.0, 2.0, 3.0}.

the ICS2gram based on frequency-frequency representation of the signal. However, this is

a poor approximation under time-varying speed conditions and therefore to ensure that a

fair comparison is made, the authors compared the proposed method against the Order-

Frequency based ICS2gram. This is estimated by firstly calculating the Order-Frequency

Cyclic Modulation Spectrum (OFCMS) [14], which is used to estimate the SES of different

spectral frequency bands, whereafter Equation (12) was applied on each frequency band

separately. The motivation behind using the OFCMS is to ensure that the feature is

consistent under time-varying speed conditions and the comparison with the proposed

IFBIαgram is fair.

The motivation behind this investigation is to further emphasise the benefits of the

proposed method. The resulting feature plane obtained for only the damaged gear is

shown in Figure 27 for measurement 15, which is also considered in Figures 15 and 24.

The 500 Hz frequency band seen in Figure 15 is also prominent in the ICS2gram, however,

the ICS2gram is dominated by the noise in the higher frequency bands clearly highlighted

in Figure 27. This results in the wrong frequency bands to be identified in the signal.

The SES and the SASE of the resulted filtered signals are shown in Figure 28, for

the same signals shown in Figure 21, 22 and 25. It is evident from the SASE and SES

identified by the ICS2gram that the wrong frequency band was detected for most cases.

This is attributed to the noise in the estimated cyclic spectra of the high spectral frequency

bands. Hence, the proposed IFBIαgram performs much better than the kurtogram and

the ICS2gram on the detecting the gear damage in this dataset.

It is possible that if the log-envelope spectrum is investigated instead of the SES, the
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Figure 28: The Synchronous Averages of the Squared Envelope (SASE) and the Squared Envelope Spectra

(SES) of the filtered signals, obtained with the ICS2gram, are presented for the measurements considered.

ICS2gram would be more robust to non-Gaussian noise. However, the log of the OFSCoh

can also be used in the calculation of the IFBIαgram and therefore for the purposes of

this comparison it is not investigated. It is therefore clear that the new proposed feature,

discussed in Section 2.2, has much potential for detecting components-of-interest.

4.6. Calculation time of the IFBIαgram

Most of the calculation time of the IFBIαgram is attributed to the calculation of the

spectral correlation for the set of spectral coherences in Figure 1. The computational

time is dependent on the estimator, the considered cyclic order ranges and the cyclic

order resolution that is required. In this work, the spectral correlation is estimated with

a Welch estimator due to its good bias and variance properties. The average calculation

time of different spectral coherences are given in Table 2 for the experimental data in

Section 4.1.

Table 2: The average calculation time of the spectral coherence with a Welch estimator, for a single α

but all frequencies f , are presented as a function of window length Nw for the experimental gearbox data.

The vibration data contained on average 496000 samples and were sampled at 25.6 kHz. The functions

are implemented in Python 3.5.4 on a computer with an Intel Core i7 2.50 GHz CPU and 16 GB of RAM.

Nw 16 32 64 128 256 512

Time [s] 15.30 7.73 4.58 2.55 1.73 1.27

This resulted in the calculation of the IFBIαgram for both gears to be approximately

2.5 hours for the window lengths in Table 2. However, the computational time of the
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IFBIαgram can be significantly improved if the code is optimised and if more computa-

tional efficient methods such as the cyclic modulation spectrum [14] or the fast and faster

spectral correlation estimators [45, 46] are used. For example, if the asymptotic results in

Ref. [45] are used, then the computational gain of the fast spectral correlation over the

Welch estimator is L/(2 · R), where L is the signal length and R is the block shift in the

short-time Fourier transform. This means that the computational time of each spectral

correlation can theoretically be reduced by a factor between 968 and 15489 for the data

in Table 2 when using the fast spectral correlation instead of the Welch estimator. These

estimators will be used to calculate the IFBIαgram in future investigations.

5. Conclusions

In this work, the IFBIαgram is proposed for automatically identifying frequency bands

that are rich with diagnostic information pertaining to specific mechanical components

under time-varying operating conditions. By identifying these frequency bands and using

this information with sophisticated signal analysis techniques, it is possible to detect weak

signal components due to incipient damage on the components-of-interest. The IFBIαgram

is compared to the kurtogram on numerical and experimental data, where it is shown that

the IFBIαgram allows the following:

• Incipient damage detection, identification of the damaged components and detection

of changes in the condition of different components.

• Identification of optimal bands for detecting weak components can be determined

despite the presence of other dominating components such as impulsive noise or more

severely damaged components.

• Effective condition monitoring under time-varying operating conditions.

Ultimately, the success of this method is ascribed to the SNR feature that is used on each

spectral frequency band of the order-frequency spectral coherence. The spectral coherence

is capable of highlighting weak components in the signal under time-varying operating

conditions and it does not suffer from the same limitations as time-frequency based cyclic

spectrum estimators; while the signal-to-noise ratio feature is capable of finding spectral
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frequency bands were the component-of-interest is most prominent in the cyclic spectrum.

This has the additional benefit that this feature is robust to high noise levels in the cyclic

spectrum.
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Appendix A. Motivation for the median

In Equation (4), the amplitude of the signal component is divided by the estimated

noise level to measure the signal-to-noise ratio of specific components in a spectrum. The

noise level in the spectrum at a specific cyclic order α needs to be estimated from the

data. In Section 2.2, it is proposed that the data in the band α ∈ [αf − 1, αf + 1] can

be used to estimate the noise level at αf . Different signal components may be present in

this cyclic order band, which can result in the noise level to be overestimated when using

a metric that is sensitive to these harmonics. Also, if the band is chosen too small (to

minimise the number of signal components in this band), then too few data points might

be available to properly estimate the noise level. Hence, the suitability of the average,

median and Root-Mean-Square (RMS) to estimate the noise level is investigated on a

synthetic dataset where the noise level is known.

A synthetic signal

y(t) = κ · x(t) + n(t), (A.1)

is used to compare the performance of the considered metrics, where κ is a factor which

increases the contribution of the deterministic function x(t) and n(t) is Gaussian noise.

The function

x(t) =
N∑
k=1

sin(2 · π · t · f0 · k), (A.2)

is used to generate the deterministic function, where N = 20 and f0 = 100 Hz. The power

spectral density of the signal y(t), denoted Py(f) and the power spectral density of the

noise n(t), denoted Pn(f) are used to compare the suitability of three metrics, namely the

average, the median and the RMS to estimate the noise level of n from y.
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The performance of the each metric is quantified with the Logarithm of the Absolute

Difference (LAD)

LAD = log |S(Py(f))− S(Pn(f))|, (A.3)

between the metric S (e.g. median) of the power spectral density of y, denoted Py and

the metric S of the power spectral density of n, denoted Pn for different κ. If the LAD

is small, it indicates that the metric S is able to estimate the noise level accurately from

the full signal y and is independent of the signal components κ · x(t).

The results are shown in Figure A.29 for the three considered metrics. It can be seen
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Figure A.29: The Logarithm of the Absolute Difference (LAD) between a metric of the PSD of signal y

and the metric of the PSD of the signal n.

that the average and the RMS are only able to estimate the noise level well for very small

κ, i.e. when the contribution of κ·x(t) is negligible in Equation (A.1). This means that the

average and the RMS are sensitive to the presence of signal components in the frequency

band that is used to estimate the noise level.

In contrast to the average and RMS, the median is very insensitive to the magnitude

of κ. This indicates that the median is unaffected by the signal components and can

therefore be used to obtain a more reliable estimate of noise level. Hence, the median is

used in this work to estimate G in Equation (4).

Appendix B. Numerical gearbox model

The casing vibration signal in Equation (10) can be decomposed in terms of a dis-

tributed gear damage component, a bearing component, a broadband noise component
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and a filtered noise component. An overview of each component is given in this section,

but more information can be found in [19].

The distributed gear damage component

xdgd(t) = M (ω(t)) · hdgd(t)⊗

εn(t) ·
Ndgd∑
k=1

Adgdk sin
(
θ(t) · k + φdgdk

) , (B.1)

where εn(t) is sampled from a zero-mean Gaussian distribution with a unit variance, θ(t) =∫ t
0
ω(τ)dτ is the instantaneous phase of the shaft, M (ω) = ω2 simulates the dependence

of the amplitude of the signal to speed, and hdgd is a single degree-of-freedom impulse

response function with a natural frequency of 1300 Hz and a damping ratio of 0.05. There

are Ndgd harmonics of the distributed gear damage component in the signal, with the

amplitude and phase of the kth harmonic denoted Adgdk and φdgdk respectively.

The baseline bearing component

xb(t) = M(ω(t)) · hb(t)⊗
(

Nb∑
k=1

δ (t− Tk)
)
, (B.2)

consists of the same modulation function M(t) as the distributed gear damage component.

The single degree-of-freedom impulse response function hb has a damping ratio of 0.05 and

a natural frequency of 7.0 kHz. The Dirac function δ(t) = 1 if t = 0 and 0 otherwise. The

time-of-arrival of the kth bearing impulse Tk is a function of the instantaneous phase of

the shaft, the geometry of the bearings as well as slippage effects [11, 19].

The broadband noise component

xn(t) = M(ω(t)) · εn(t), (B.3)

consists of a zero-mean Gaussian noise component εn(t) with a unit variance and the

influence of speed on the noise level M(ω) = ω2.

Lastly, the bandlimited signal component

ximp(t) = himp(t)⊗ (ε(t; 3, 3.01) + ε(t; 9, 9.01)) , (B.4)

consists of a bandpass impulse response function that passes the frequency content between

10.5 kHz and 13.5 kHz and two functions in the form of ε(t; t1, t2). The function ε(t; t1, t2)

contains zero-mean Gaussian noise for t ∈ [t1, t2] and is zero otherwise. This signal is only

included in the casing signal for some of the datasets, as clearly highlighted in the results.
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The casing vibration signal is shown with the distributed gear damage component, the

bearing component and the rotational speed component in Figure B.30. The dependence

of the amplitude of the signals to changes in speed, is evident in the results.

(i) (ii)

(iii) (iv)

Figure B.30: The casing vibration signal, distributed gear damage component, the bearing component

and the rotational speed of the input shaft of the gearbox are presented for a FSb = 1.

Some statistics of the casing vibration signal and its components are given in Table

B.3.

Table B.3: The statistics of the different signal components are shown for FSb = 1. The SNRdb is defined

as 10 · log10 (Ei/En) where Ei is the energy of signal component i and En is the energy of the noise

component.

Statistics xc xdgd xb xn ximp

Kurtosis 3.556 6.716 95.236 0.667 1500.236

RMS 1.402 0.925 0.150 1.008 0.263

SNRdb - -0.748 -16.574 0 -11.684
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