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Abstract 

Some of the world’s deadliest diseases and greatest public health challenges are zoonoses from 

wildlife, such as Ebola (Ebolavirus). Due to the increasing number of cases in recent years, it has 

been widely hypothesized that increasing human population densities and anthropogenic 

disturbance largely explain outbreaks of Ebola virus disease in humans. While studies indicate 

that ebolaviruses are likely hosted by bats (Chiroptera), their role in outbreaks of the disease 

remains unclear. We tested whether bat species richness (total and within families), human 

population density, and anthropogenic disturbance explained the occurrence of Ebola virus 

disease spillovers within Africa using both generalized linear models and Maxent models. We 

demonstrate that spillover occurred in areas with high species richness of nycterid bats and low 

levels of both anthropogenic disturbance and human population density. Outbreaks of Ebola 

virus disease have devastating effects on people and communities and our results provide an 

important step toward understanding how and where Ebola virus disease may spill over to human 

populations. 

 

Key Words: bats; biodiversity; Chiroptera; Ebola; emerging pathogens; public health; zoonotic 

disease  
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Introduction 

Zoonotic diseases originating in wildlife, such as Ebola virus disease (Ebolavirus) pose 

great challenges to global public health. When these viruses “spill over” to humans, the effects 

can be devastating, as Ebola virus disease outbreaks of 2013-2014 in West Africa (Elston et al. 

2015; Spengler et al. 2016) and 2018-2019 in the Democratic Republic of the Congo (World 

Health Organization 2019) illustrate. While the first recorded outbreak of Ebola virus disease 

occurred in 1976 (Mylne et al. 2014), our understanding of how and why spillovers occur where 

they do is poor (Groseth et al. 2007; Alexander et al. 2015), although recent studies have made 

advances in this area (Rulli et al. 2017; Wilkinson et al. 2018). Furthermore, the role that 

putative reservoirs play in the spillover of Ebola virus disease is unclear (Leendertz et al. 2015; 

Leendertz 2016; Caron et al. 2018).  

Bats (Order Chiroptera) are considered the most likely wild reservoir hosts of 

ebolaviruses (Leroy et al. 2005; Olival and Hayman 2014). There is still uncertainty and 

speculation that other species or species group may ultimately prove to be the reservoir host(s) or 

complex of hosts (Leendertz et al. 2015; Leendertz 2016; Caron et al. 2018). Nevertheless, 

exposure to ebolaviruses has been detected via serology or PCR in 10 species in 3 families of 

bats in Africa (Leroy et al. 2005; Pourrut et al. 2009; Hayman et al. 2010, 2012; Ogawa et al. 

2015; De Nys et al. 2018) and the full genome of a novel Ebolavirus species, Bombali virus 

(BOMV) has recently been isolated from bats, indicating that bats likely play an important role 

in the ecology of the virus even if other taxa are ultimately found to be the host reservoir (Caron 

et al. 2018). To date, pteropodid fruit bats have received the most attention as potential reservoir 

hosts of Ebola (Hayman et al. 2012; Pigott et al. 2014; Alexander et al. 2015; Leendertz et al. 

2015), but serological studies have detected exposure to the virus at comparable rates in bats 
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from other families (Pourrut et al. 2009; De Nys et al. 2018). Further, the recently described 

BOMV was detected in two species of molossid bat, Chaerephon pumilus and Mops condylurus 

(Goldstein et al. 2018), illustrating that there may be many as-yet-undetected non-pteropodid 

bats that host ebolaviruses. 

Anthropogenic factors, such as high human population densities and disturbance, are 

thought to be major driving forces of Ebola virus disease spillover, particularly in light of the 

increasing number of outbreaks during recent decades of extensive growth and development 

(Muyembe-Tamfum et al. 2012; Changula et al. 2014). Human population density and 

disturbance may increase rates of contact with infected hosts or alter host ecology (Plowright et 

al. 2008, 2015; Bausch and Schwarz 2014; Alexander et al. 2015; Olivero et al. 2017; Rulli et al. 

2017). However, the role of host diversity could also play a largely unexplored role in 

determining where ebolaviruses spill over. Zoonotic diseases have frequently emerged in areas 

of high biodiversity (Jones et al. 2008) and mammalian diversity appears to increase the general 

risk of zoonotic disease spillover (Allen et al. 2017). Finally, viruses with greater host diversity 

are more likely to spillover to people and the incidence of these viruses may increase where 

many host species occur in sympatry (Olival et al. 2017).   

Therefore, we compared the predictive power of bat diversity, human population density 

and anthropogenic disturbance in predicting the location of Ebola virus disease spillovers to 

humans. Understanding the associations between the potential drivers and spillovers will give us 

a better understanding of the role that host diversity (a function of both biogeographic and 

ecological factors), compared with anthropogenic factors (a function of human activity) may 

play in Ebola virus disease spillovers. To do so, we used high resolution distribution maps of 172 

African bat species. Due to the importance of reservoir hosts in constraining the presence of 
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ebolaviruses and therefore its ability to spillover to humans (Plowright et al. 2015), we predicted 

that bat species richness would be a stronger predictor of outbreaks than human population 

density and anthropogenic disturbance. 

 

Material and Methods 

Data Compilation and Spatial Analysis 

We identified the location of human Ebola virus disease outbreak points in sub-Saharan 

Africa, from 1990-2014 using the review by Mylne et al. (2014), other peer-reviewed articles, 

and reports from the World Health Organization and Centers for Disease Control and Prevention 

(Table S1). For each outbreak, we investigated the location of the initial spillover, and assumed 

that subsequent cases were the result of human-to-human transmission (Gire et al., 2014). 

We calculated potential bat species richness, human population density (individuals/km2), 

road density (km/km2), crop cover (proportion cover), and pasture cover (proportion cover) 

across Africa using Geographic Information Systems (Fig. 1). We only considered species 

richness of bats in our analysis because we wanted to understand the role of potential host 

diversity in spillover and there is compelling evidence for the role of bats as host reservoir 

(Leroy et al., 2005; Pourrut et al., 2009; Hayman et al., 2010, 2012). We only consider species 

richness because data sets for other measures, such as abundance or community composition, do 

not currently exist for African bat fauna (e.g. see Happold and Happold 2013). While multiple 

species of bat are suspected to be potential hosts of ebolaviruses due to serological exposure, 

relatively few species, especially outside the frugivorous pteropodid family, have been screened 

for it in tropical Africa. The newly-described BOMV was detected in two species of molossid 

bats (Goldstein et al. 2018) from which other ebolaviruses had never before been detected,  
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Figure 1. Maps showing distribution of A. Total bat species richness (number of species), B. Nycterid species 
richness (number of species), C. Human population density (individuals/km2), D. Road density (km/km2), E. Crop 
cover (proportion cover), and F. Pasture cover (proportion cover) . Crosses indicate locations of Ebola spillover to 
humans. The color gradient shows lowest values in gray and highest values in green.  
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although they had survived experimental inoculation (Swanepoel 1996). Further, trait-based and 

phylogenetic analyses of ebolavirus hosts predict a wide range of potential hosts in several bat 

families (Han et al. 2016). These findings suggest that additional bat species could host the virus. 

Other mammals, such as primates and duikers, may become infected by Ebola are considered 

dead-end hosts (Olival and Hayman 2014) and we therefore did not consider them in our 

analyses.  

We measured human population density (people/km2) because greater human population 

densities are generally hypothesized to increase the risk of zoonotic disease spillover (Mahy and 

Brown 2000; Weiss and McMichael 2004; Jones et al. 2008) and specifically may increase the 

risk of Ebola virus disease (Rulli et al. 2017), as the probability of contact with an infected host 

increases with population density. We used the Gridded Population of the World (GPW) version 

3 for the year 2000 to measure human population density (Center for International Earth Science 

Information Network 2005; Balk et al. 2006). This data set was intended to be used to assess the 

number of people at risk of infectious disease throughout the world. It is based on the highest 

resolution census data available for each country. The census data from irregularly shaped 

administrative areas were then converted to regularly-shaped grids (Balk et al. 2006). 

Anthropogenic disturbance is hypothesized to increase the risk of zoonotic disease 

spillover, including Ebola virus disease (Bausch and Schwarz 2014; Olivero et al. 2017; Rulli et 

al. 2017) especially in remote areas (Wolfe et al. 2005). We measured road density (km/km2), 

crop cover (proportion cover), and pasture cover (proportion cover) as proxies for disturbance. 

We used road density because it is considered a strong indicator of anthropogenic disturbance 

(Gill et al. 1996; Forman and Alexander 1998; Sanderson et al. 2002). In addition to serving as a 

proxy for disturbance, roads also facilitate the movement of people into and across these remote 



8 
 

areas, increasing both contact with potential disease vectors and facilitating the spread of 

diseases among people after the initial spillover event (Patz et al. 2004; Wolfe et al. 2005). We 

also measured crop and pasture cover because these are two of the principle forms of land cover 

change in sub-Saharan Africa (Ellis and Ramankutty 2008; Ramankutty et al. 2008; Brink and 

Eva 2009) and are not captured by increased density of roads.  

We used the Global Roads Open Access Data Set (gROADS) (Center for International 

Earth Science Information Network 2013) to measure road density. This data set is based on 

merging existing global and country-level data sets of roads, filling gaps, and adjusting topology 

using Google Earth imagery (Center for International Earth Science Information Network 2013). 

We used the Global Agricultural Lands data sets for both crop cover and pasture cover 

(Ramankutty et al. 2008, 2010a, b). Both of these data sets were based on remote sensing 

imagery from multiple satellites, as well as census data at multiple spatial scales (Ramankutty et 

al. 2008). We obtained the population density, road density, crop cover, and pasture cover data 

sets from the Socioeconomic Data and Applications Center (http://sedac.ciesin.columbia.edu/). 

To test if diversity of the bat community was correlated with the probability of 

Ebolavirus disease outbreaks, we determined the bat species richness across sub-Saharan Africa. 

To do so, we compiled distributions for all bat species for which ≥ 5 records exist in Africa 

(n=172) based on data taken from literature, which included 14,145 unique locality-species 

records (see Monadjem et al. 2018). These records are based on museum specimens that have 

been reported in > 140 publications (all cited in Monadjem et al. 2018). For each species, we 

used Maxent (Phillips et al. 2006) to model the predicted suitable habitat space under present 

climatic conditions. We ran models at a resolution of approximately 5 km (2.5 arc min) using all 

19 BIOCLIM variables from the WorldClim database (Hijmans et al. 2005), as bioclimatic 

http://sedac.ciesin.columbia.edu/
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conditions are important for determining bat species’ distributions (McCain 2007; Rebelo et al. 

2010), as well as altitude (Hijmans et al. 2005), altitudinal roughness, and ecoregions as 

classified by Olson et al. (2001) (Monadjem et al. 2010, 2018). Because the use of highly 

correlated layers may lead to model over-fitting, we also ran these Maxent models after 

removing redundant BioClim variables with a principal components analysis (PCA) in R version 

3.0.1 (R Core Team 2013) using the package FactoMineR (Lê et al. 2008). (See Table S2 for list 

of final BioClim variables included in these Maxent models.) We divided occurrence data into 

training and testing sets for a 10-fold cross-validation, testing each model on identical withheld 

data via the area under the receiver operating characteristic curve (AUC) test statistic. Each 

model was set to use auto features for the analyses based on the number of records for each 

species (Phillips and Dudík 2008).  

Using predictions from presence-only Maxent models to quantify species richness based 

on “stacked” distribution models (S-SDM) requires truncating probabilities to 0/1 data. We 

selected species-specific thresholds that maximized the sum of sensitivity and specificity, which 

has been argued to be an appropriate technique for presence-only data (Liu et al. 2013). With this 

information, we then summed 0/1 data to quantify species richness of all bat species considered 

as well as species richness of ten different bat families. We did this to determine if some families 

might have more influence in explaining spillover events than others. Ebolaviruses have been 

detected in ten species in three different families (Table S3). However, only a limited number of 

species have been screened and it is still unclear which species or families are the most likely 

reservoir hosts. We also summed the richness of all non-pteropodid species, to determine the 

influence of dietary niche (insectivorous vs. frugivorous) in explaining spillover events. (All 

frugivorous species in the study area are in the pteropodid family.)  
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Statistical Analysis 

To understand the relationships between bat species richness, human population density, 

anthropogenic disturbance, and the probability of spillover events, we compared outbreak 

locations to 10,000 background (random) locations throughout sub-Saharan Africa. We 

generated random points using the function “sampleRandom” in the package raster (Hijmans and 

van Etten 2012) in R. We chose the number of random points to represent the continuous nature 

of the variables throughout the study area (Renner et al. 2015). We ran models with different 

number of background points, starting with 100,000, 50,000, and then in decreasing increments 

of 10,000 background points until reaching 10,000. We observed no difference in standard errors 

between models using any of the different quantities of background points and therefore used 

10,000 background points (Renner et al. 2015). We evaluated bat diversity, human population 

density, road density, crop cover, and pasture cover at a scale of 25 km for every outbreak and 

background point. Twenty-five km2 was the finest spatial resolution we could obtain for where 

actual spillover events occurred based on descriptions of the index case and that person’s 

movements prior to showing symptoms. 

We evaluated the associations of bat species richness, population density, and 

anthropogenic disturbance with Ebola virus disease outbreaks using species distribution models. 

Modeling frameworks that focus on presence-only or presence-background data, including 

certain specifications of Maxent and generalized linear models (Phillips et al. 2006; Elith et al. 

2006), approximate the inhomogeneous point process model (IPPM) (Renner et al. 2015). Here 

we use GLMs and Maxent, specifying them to approximate the inhomogeneous point process 

model. Generalized linear models (GLMs) are widely used in ecological modeling (Austin 2002) 

and have been applied to disease ecology (e.g. Luis et al. 2013; Morand et al. 2013). Maxent is a 
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widely used modeling approach that tends to perform well, in terms of model predictions, 

relative to other common modeling approaches (Phillips et al. 2006; Elith et al. 2006). We fit 

GLMs as infinitely weighted logistic regression to approximate the IPPM with a binomial 

distribution, with weights set to 1 for presence points and 106 for background points as described 

by Renner et al. (2015). In order to use Maxent as an IPPM, we ensured that duplicates within 

grid cells were not removed. In addition, we only considered linear, quadratic and hinge features 

in modeling (Renner et al. 2015). 

We initially ran both the GLM and Maxent models with five variables: total bat species 

richness, human population density, road density, crop cover, and pasture cover. Before running 

the models, we checked for correlation between these five variables using the “layerStats” 

function in the package raster (Hijmans and van Etten 2012). Correlation for all pairs was <0.27, 

including population density and road density (r = 0.22) (Table S4). For the GLM, we examined 

the 95% confidence intervals on the estimates of each variable. We then ran separate GLM 

models using only variables from the first model whose 95% confidence interval did not include 

0. We also ran GLMs with the species richness of each individual family as the explanatory 

variable. For comparison, we also ran models with a single variable from the initial model 

(human population density, road density, crop cover, and pasture cover). We then identified the 

most parsimonious model using Akaike information criterion corrected for small samples sizes 

(AICc) (Table 1). We considered the model with the lowest AICc the best model and considered 

models within 2 units as competing models (Burnham and Anderson 2002).  
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Table 1. Model selection results for generalized linear models. We also show the intercept, degrees of freedom (df), 
loglikelihood, Akaike Information Criterion corrected for small sample size (AICc), delta AICc and model weights 
for each GLM. “+” indicates additive terms. 

Model (Intercept) df logLik AICc delta weight 

Nycterid richness + Pasture -20.3 3 -438.6 883.1 0.0 0.92 
Pteropodid richness + Pasture -20.0 3 -441.3 888.7 5.52 0.06 
Bat richness + Pasture -20.0 3 -443.1 892.2 9.12 0.01 
Vespertilionid richness + Pasture -19.8 3 -443.8 893.6 10.47 0 
Insectivorous bat richness + Pasture -19.9 3 -443.8 893.7 10.53 0 
Molossid bat richness + Pasture -19.7 3 -444.5 895.0 11.88 0 
Rhinopomatid richness + Pasture -19.0 3 -445.1 896.1 13.00 0 
Bat richness + Human population density + Road density + 
Crop + Pasture -20.0 6 -442.3 896.7 13.52 0 
Hipposiderid richness + Pasture -19.5 3 -447.0 900.1 16.94 0 
Emballonurid richness + Pasture -19.5 3 -447.5 901.0 17.91 0 
Rhinolophid richness + Pasture -19.4 3 -448.0 902.0 18.83 0 
Pasture -19.2 2 -449.1 902.3 19.13 0 
Miniopterid richness + Pasture -19.3 3 -448.3 902.7 19.54 0 
Megadermatid richness + Pasture -19.2 3 -448.8 903.5 20.38 0 
Road density -20.1 2 -460.0 923.9 40.81 0 
Population density -20.0 2 -460.2 924.5 41.33 0 
Crop -19.9 2 -460.3 924.6 41.51 0 

 

For the Maxent model, the initial model also included total bat species richness, human 

population density, road density, crop cover, and pasture cover. We evaluated the percent 

contribution of each variable. We then ran a second model that included the variables that 

contributed >5% to the initial model and also added the richness of each individual bat family 

and insectivorous bat richness. We then again evaluated the percent contribution of each variable 

to the model (Table 2). 
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Table 2. Variable contribution for Maxent models including the Percent Contribution and Permutation Importance. 
Model Variable Percent 

Contribution 
Permutation 
Importance 

Simple Maxent Pasture 56.9 52.7 
 Bat richness 32.8 40.2 
 Population density 7.8 6.3 
 Crop 2.6 0.7 
 Road density 0.0 0.1 
Maxent with Bat Families Nycterid richness 51.2 57.5 
 Pasture 35.0 17.7 
 Population density 4.9 5.3 
 Rhinopomatid richness 3.0 13.7 
 Emballonurid richness 2.5 0.6 
 Hipposiderid richness 1.5 1.3 
 Molossid richness 0.9 0.4 
 Insectivorous bat richness 0.5 2.6 
 Rhinolophid richness 0.2 0.4 
 Vespertilionid richness 0.2 0.5 
 Pteropodid richness 0.1 0.0 
 Megadermatid richness 0.0 0.0 
 Bat richness 0.0 0.0 
 Miniopterid richness 0.0 0.0 

 

We assessed predictive accuracy of the top GLM and Maxent models using 4-fold cross 

validation with an equal number of presence points in each fold and report the Area Under the 

Curve (AUC), sensitivity, specificity, the True Skill Statistic (TSS), and kappa (Hanley and 

McNeil 1982; Allouche et al. 2006). For the GLM, we used the mean model prediction from all 

folds as the threshold when calculating sensitivity and specificity because the probabilities were 

small. For the Maxent model, the optimal threshold was based on maximizing sensitivity and 

specificity. We ran all models in program R (R Core Team 2013), using the base package for 

GLM models and package dismo for Maxent model (Hijmans et al. 2013). 
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Results 

We identified 22 spillover events of Ebola virus disease from 1990 – 2018 (Table S1). 

Across sub-Saharan Africa, human population density ranged from 0 to 3114.4 people/km2, and 

road density ranged from 0.0 to 23.6 km/km2. Both proportion crop cover and proportion pasture 

cover ranged from 0.0 – 1.0. Bat species richness ranged from 0 – 79 species (Fig. 1). 

The initial GLM model, which included total bat species richness, human population 

density, road density, crop cover, and pasture cover identified bat species richness and pasture 

cover as the best predictors, with bat richness having a positive effect on the relative probability 

of spillover (β = 0.04 ± 0.01, 95% confidence interval: 0.02 – 0.06), while pasture cover had a 

negative effect (β = -6.69 ± 2.58, 95% CI: -13.09 – -2.86) (Fig. 2). These were the only 

predictors in the model whose 95% confidence intervals did not include 0 (crop cover: -1.77 ± 

1.78, 95% CI: -6.30 – 1.01;  human population density: -0.0002 ± 0.002, 95% CI: -0.006 – 0.001; 

road density: -0.13 ± 0.30, 95% CI: -0.57 – 0.65).  

Next, we ran separate models with only: bat species richness and pasture cover; the 

richness of each bat family and pasture cover; and insectivorous bat species richness and pasture 

cover. Model selection of GLM’s showed that the model with nycterid bat species richness was 

the top model (β = 0.39 ± 0.09, 95% confidence interval: 0.22 – 0.56) (Table 3; Fig. 2). There 

were no competing models: model weight was 0.92 and ∆AICc between the nycterid richness 

model and the next-best model (pteropodid richness) was 5.52. The nycterid richness model also 

had relatively high predictive accuracy (AUC = 0.86; TSS = 0.75) (Table 3). 
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Table 3. Top models for Ebola spillover based on generalized linear and Maxent models, showing the Area Under 
the Curve (AUC), Sensitivity, Specificity, and True Skill Statistic (TSS) for both model types. Beta (β), 95% 
Confidence Interval (CI) and p values are shown for the GLM only. 

Model Best Model AU
C 

Sensitivity Specificity TSS Kappa β 95% CI P 

GLM Nycterid richness 
+ Pasture 

0.86 0.95 0.80 0.75 0.02 0.39 
-5.53 

0.22 – 0.56 
-11.56 – -1.96 

< 0.001 
0.02 

Maxent Bat families 0.82 0.82 0.83 0.65 0.02 - - - 
 

 

Figure 2. Response of relative probability of Ebola spillover according to generalized linear 
models (GLM) (A, B, C) and Maxent models (D, E, F) to total bat species richness, nycterid species richness, and 
pasture cover. Predictions are shown in solid lines. For GLMs, 95% confidence intervals are shown in gray shading. 
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In the initial Maxent model, pasture cover, which was negatively associated with 

spillover, had the greatest contribution at 56.9% while bat species richness contributed, 32.8%, 

with a positive association. Human population density contributed 7.8% and was negatively 

associated with spillovers, and road density contributed 0%. Similarly, permutation importance 

was highest for pasture cover (52.7%), followed by bat richness (40.2%), human population 

density (6.3%), road density (0.7%), and crop pasture (0.1%) (Table 2). In the next Maxent 

model (which included total bat species richness, the richness of each bat family, the richness of 

insectivorous bats, pasture cover, and human population density) nycterid bat richness made the 

highest contribution at 51.2%. Pasture cover contributed 35.0% and was negatively associated 

with spillovers. All other variables combined contributed only 13.8%, with each variable 

contributing <5%. Nycterid bats also had the highest permutation importance at 57.5%, followed 

by pasture cover (17.7%) (Table 2). This Maxent model also had relatively high predictive 

accuracy (AUC = 0.82, TSS = 0.65) (Table 3). 

 

Discussion 

Our models consistently showed that Ebola virus disease spillovers were associated with 

areas of high bat richness and reduced pasture cover. The only association we found with 

anthropogenic disturbance was a negative relationship with pasture cover, indicating that 

spillovers are more likely to occur where pasture cover is low. Neither human population 

density, road density, nor crop cover was a strong predictor of spillover events in any models 

(Table 1, Table 2). Among specific bat families, we found that spillover was associated with 

areas of high nycterid species richness. The GLM including nycterid richness had a model 

weight over 0.9 and nycterid richness made the greatest contribution by far in the Maxent model. 
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The richness of other bat families made only marginal contributions. Our models had high 

predictive accuracy comparable to previous studies (Pigott et al., 2014, 2016).  

Increasing human population densities and anthropogenic disturbance have been widely 

cited as major drivers of zoonotic disease spillover in general (Daszak 2000; Daszak et al. 2001; 

Jones et al. 2008; Plowright et al. 2015; Brierley et al. 2016). These factors have also been 

suggested as potential drivers of Ebola virus disease spillovers (Daszak 2000), including the 

2013-2014 outbreak (Bausch and Schwarz 2014; Changula et al. 2014; Laporta and Laporta 

2014; Alexander et al. 2015; Olivero et al. 2017) and have frequently been referred to in popular 

media reports (Wilkinson and Leach 2015). Rulli et al. (2017) found that within West and 

Central Africa, outbreaks occurred in areas with higher human population density and forest 

fragmentation (although not complete loss), compared to average levels in the region. On the 

other hand, our analysis shows that at the continental scale, even relatively remote areas with low 

population densities and little anthropogenic disturbance may still have an elevated risk of Ebola 

virus disease spillover if potential bat species richness is high. This discrepancy may be due to 

the difference in spatial scale between this study and Rulli et al. (2017) (continental vs. regional). 

While locations where Ebola virus disease spillover occurred may have higher population 

density than other areas in the region, these are not large cities or population centers. Modelling 

by Wilkinson et al. (2018) also indicates that many areas at high risk of Ebola virus disease 

spillover have low human population density. 

In addition, our study used covariate data from a single point in time while Rulli et al. 

(2017) analyzed the amount of fragmentation from the year 2000 to the year of each outbreak. It 

is possible that considering population growth or changes in crop and pasture cover over time 

might alter our findings. Nevertheless, population density and connectivity can clearly affect the 
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size and scope of an epidemic once human-to-human transmission has begun (Pigott et al. 2014; 

Alexander et al. 2015). 

Other types of local disturbance that we could not measure could play a role in spillover. 

For example, culling of bats has been shown to increase the prevalence of the related filovirus 

Marburg virus (MARV) in bat hosts (Amman et al. 2014), which could then lead to increased 

risks of spillover to humans (Plowright et al. 2015, 2017). Similar mechanisms could potentially 

lead to spillover of ebolaviruses. 

The association between high bat diversity and Ebola virus disease spillover to humans 

may be due to the fact that the virus appears able to infect a wide range of bat species 

(Swanepoel 1996; Leroy et al. 2005; Pourrut et al. 2009; Hayman et al. 2010, 2012), which 

means that areas of high bat diversity provide many potential hosts for the virus. In general, 

viruses with broad host breadth appear to have higher potential to spillover and infect humans 

(Olival et al. 2017). Therefore, ebolaviruses may persist where potential bat host diversity is 

higher and perhaps incidentally spillover to people in these areas. 

To date, most research linking bats to ebolaviruses has focused on pteropodid fruit bats 

(Leendertz et al. 2015), the first live wild animals in which ebolaviruses were detected (Leroy et 

al. 2005). Ebolaviruses have not yet been detected in nycterid bats: only one study reports testing 

them for the virus (Leirs et al. 1999), while an additional study reports testing them for MARV 

(Swanepoel et al. 2007). Both studies examined only one species (Nycteris hispida) of the 15 

nycterid species that occur on the continent. Further research on this family could clarify whether 

nycterid bats do in fact play a role in Ebola virus disease spillover to humans. 

Some researchers have pointed to bushmeat as a possible mechanism of spillover, either 

through the direct consumption of bats or more commonly through the consumption of putative 
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intermediate hosts, such as primates or duikers (Boumandouki et al. 2005; Nkoghe et al. 2005, 

2011a; Leroy et al. 2009; Kamins et al. 2011; Alexander et al. 2015). While pteropodid fruit bats 

are the bats most commonly consumed bats (Mickleburgh et al. 2009; Kamins et al. 2011), other 

species, including nycterids are also eaten, although far less frequently (Anti et al. 2015; 

Mildenstein et al. 2016). Given the long history and widespread consumption of bushmeat, it has 

been argued that spillovers of Ebola virus disease would be more frequent if bushmeat 

consumption was the primary mechanism (Wilkinson and Leach 2015). However, if 

consumption of a less commonly hunted group, such as the nycterids, is a driver, this could help 

explain the relative rarity of spillover events.  It must also be noted that spillover may not always 

lead to widespread epidemics; recent evidence suggests exposure to ebolaviruses may be 

common in some regions (Becquart et al. 2010; Nkoghe et al. 2011b; Mulangu et al. 2018) and 

some infections may be misdiagnosed as other febrile illnesses (Schoepp et al. 2014) or not 

detected or reported at all, especially when the initial cluster of cases is small (Glennon et al. 

2019). 

Humans may also come into contact with bats in other contexts apart from bushmeat. 

Many bat species, including nycterids, roost in man-made structures, such as abandoned houses, 

tunnels, or culverts (Fenton and Thomas 1980; Fenton et al. 1993; Monadjem 2005; Monadjem 

et al. 2010). In some areas, people may frequently enter caves in which bats roost and are 

familiar with nycterid bats (Anti et al. 2015). Several transmissions of MARV have been linked 

to entering caves where the bat species Rousettus aegyptiacus, known to host MARV, roosts 

(Fujita et al. 2009; Adjemian et al. 2011). Similar contact between people and nycterid bats could 

also occur in either natural caves or anthropogenic structures in which they roost. Alternatively, 

nycterid bats, which typically roost in caves or hollow trees, may interact in their roosting sites 
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with obligate cave-dwelling pteropodids such as R. aegyptiacus and Myonycteris angolensis 

(Monadjem et al. 2010). Transmission of ebolaviruses may therefore follow a complicated 

pathway that starts with bats coinhabiting the same roosts. 

It is possible that nycterid diversity is associated with Ebolavirus disease spillover 

because these bats could also interact with intermediate hosts, such as primates or ungulates, 

from whom spillover to humans then occurs (Leroy et al. 2004; Olival and Hayman 2014; 

Alexander et al. 2015). In addition to caves or anthropogenic structures, some nycterids may 

roost in the abandoned burrows of other animals, such as aardvarks (Monadjem et al. 2009) or in 

vegetation (Rosevear 1965). Using these types of roosts may lead other animals to have contact 

with ebolaviruses if nycterid bats secrete the virus in feces, urine, or saliva. However, since 

ebolaviruses have not yet been detected in nycterid bats, this is highly speculative.  

Our study does not incorporate bat abundance because data on bat population sizes across 

Africa do not currently exist (Happold and Happold 2013). While abundance  could play a role 

in prevalence of the virus as well as rates of contact with humans (Plowright et al. 2015, 2017), 

studies of rodent-borne zoonotic diseases show little or no effect of host abundance on spillover 

to humans (Davis et al. 2005). Nevertheless, further localized studies on bat diversity, 

abundance, community composition, and prevalence of ebolaviruses near spillover locations and 

across a gradient of biodiversity could provide more evidence of how these factors affect 

ebolavirus prevalence, transmission between bats, and spillover to humans.  

Bat species richness is correlated with species richness of mammals in general (Schipper 

et al. 2008) as well as with other taxa (Willig et al. 2003). Thus, it is possible that the pattern of 

Ebola virus disease outbreaks is linked to the diversity of taxa other than bats (or nycterids). 

These other taxa could include intermediate hosts from which humans can then be infected with 
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Ebola virus disease, such as primates or ungulates (Leroy et al. 2004; Olival and Hayman 2014), 

which could confound our results. It has also been suggested that insects could play a role in the 

ecology of ebolaviruses  (Leendertz 2016; Dutto et al. 2016; Caron et al. 2018) and a recent 

study suggested that even fruit bats could acquire viruses from arthropods (Bennett et al. 2019). 

However, most current evidence still supports bats, not other wildlife, as reservoir hosts (Olival 

and Hayman 2014).  

It is also possible that areas of high nycterid richness may coincide with some other 

geographic or environmental characteristic that explains Ebola virus disease spillover. Nycterid 

species are insectivorous and often forage in riparian areas (Fenton et al. 1990, 1993; Monadjem 

et al. 2010). Leendertz (2016) proposed a potential connection between riparian habitats and 

ebolaviruses, possibly through yet-unknown aquatic or semi-aquatic invertebrate hosts which 

may also be prey for insectivorous bat species, such as nycterids. Therefore, areas of high 

nycterid richness could indicate areas with extensive riparian habitats that are home to a still-

undiscovered host or areas where interspecies transmission occurs.  

While much uncertainty surrounds the ecology of ebolaviruses, monitoring of bats and 

other taxa in these areas of high nycterid richness, might help isolate mechanisms of spillover 

and prevent future epidemics. Such research should also support the protection of bat populations 

and their habitats, which could prevent future spillover events (Schneeberger and Voigt 2016). 

Further education on the benefits bats bring can also temper the fear that reporting on bat-borne 

disease may provoke (Schneeberger and Voigt 2016; López-Baucells et al. 2018). Despite their 

ability to host diverse viruses, bats also provide essential ecosystem services, such as insect 

population control, seed dispersal, and pollination, that benefit both people and the ecosystems 

we inhabit (Kunz et al. 2011; Ghanem and Voigt 2012; Schneeberger and Voigt 2016).  
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Our results show that Ebola virus disease outbreaks occurred in areas of high bat species 

richness, in particular areas with high richness of nycterid bats, while human population density 

and anthropogenic disturbance could not explain where spillover occurs. Thus far, studies 

analyzing patterns of Ebola virus disease outbreaks, predicting areas of future outbreak risk, or 

determining the zoonotic niche of the virus typically only consider a small subset of bat species 

and have not considered this family (Pigott et al. 2014, 2016; Alexander et al. 2015). Hence, we 

suggest that studies of the ecology and epidemiology of these viruses should be expanded to 

encompass more species of bats, including nycterids (Leendertz 2016).  
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