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ABSTRACT 

Introduction 

Gestational diabetes mellitus (GDM) is a significant public health concern, due to its 

association with short- and long-term complications in both mothers and offspring. 

DNA methylation and single nucleotide polymorphisms (SNPs) offer potential to 

serve as molecular biomarkers, which may lead to improved detection of GDM with 

positive effects on health outcomes.  

Aim 

The aim of this study was to investigate whether DNA methylation and SNPs are 

associated with GDM and may offer potential as molecular biomarkers for GDM in 

South Africa (SA).  

Methods 

This study followed a two-pronged approach. Firstly, literature searches were 

conducted to collate and synthesise all published articles reporting on the prevalence 

of GDM in SA, the screening and diagnostic strategies used, and the current status of 

DNA methylation and SNPs as biomarkers for GDM. Secondly, we conducted 

experiments to investigate global (n=201), genome-wide (n=24) and gene-specific 

DNA methylation (n=286) of the adiponectin gene (ADIPOQ) in whole blood of 

women with and without GDM, using an Enzyme-Linked Immunosorbent Assay, a 

methylationEPIC BeadChip Array and pyrosequencing, respectively. In addition, 

genotype and allele frequencies of ADIPOQ rs266729 and rs17300539, and 
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methylenetetrahydrofolate reductase (MTHFR) rs1801133 were determined, using 

quantitative real-time PCR (n=449) and DNA sequencing for validation. 

Results 

The literature search showed that the prevalence of GDM in SA has increased over the 

years. Furthermore, it showed that the lack of uniformity in screening and diagnosis 

between and within countries hamper the accurate detection of GDM. Lastly, the 

literature search identified several studies that support the use of DNA methylation 

and SNPs as potential biomarkers for GDM. Experimentally, we showed no 

differences in global DNA methylation between GDM and non-GDM groups. 

Interestingly, global DNA methylation levels were 18% (p=0.012) higher in obese 

compared to non-obese pregnant women. Genome-wide methylation analysis 

identified 1046 differentially methylated CpG sites (associated with 939 genes) (Cut-

off threshold: M>0.06 and p<0.01). Among the top five CpG sites identified, one CpG 

mapped to the calmodulin-binding transcription activator 1 (CAMTA1) gene, which 

has been shown to regulate insulin production and secretion. Two CpG sites (-3410: 

p=0.048 and -3400: p=0.004) in the ADIPOQ promoter were hypomethylated during 

GDM in HIV negative, but not in HIV positive women. Lastly, no association between 

the ADIPOQ and MTHFR polymorphisms and GDM was observed in our population. 

Conclusion 

To our knowledge, this is the first study to investigate the association between DNA 

methylation or ADIPOQ (rs266729 and rs17300539) and MTHFR (rs1801133) 

polymorphisms and GDM in SA. Findings suggest that gene-specific, but not global 

methylation nor SNPs rs266729, rs17300539 and rs1801133, may offer potential as 

molecular biomarkers of GDM in this population. Future longitudinal studies in larger 
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samples that include both HIV negative and positive pregnant women are warranted 

to explore the candidacy of DNA methylation as molecular biomarkers for GDM. 

          Word count: 459 

Key words: Global DNA Methylation, Gene-specific Methylation, Single Nucleotide 

Polymorphism (SNP), Adiponectin (ADIPOQ), Methylenetetrahydrofolate Reductase 

(MTHFR), Molecular Biomarkers, Gestational Diabetes Mellitus (GDM), South Africa 

(SA), Human Immunodeficiency Virus (HIV).  
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SUMMARY OF THESIS 

The structure of the thesis is as follows: 

The INTRODUCTION provides a brief overview of GDM, succinctly summarising 

previous research on the study topic. Thereafter, the problem statement provides 

context to the study, and emphasises why it is important to address the problem. The 

rationale highlights the importance of conducting the study, thus justifying the 

significance. The rationale is followed by the study hypothesis, aims and objectives. 

CHAPTER 1 is a detailed review of the literature allowing deeper insight into GDM. 

The chapter begins by outlining the history of GDM and describes the prevalence and 

pathophysiology of the disease. Thereafter, the short- and long-term complications in 

both mothers and offspring are briefly reviewed, and the challenges and caveats of 

GDM screening, diagnosis and treatment strategies are discussed.  Lastly, DNA 

methylation and SNPs are discussed, together with their clinical relevance as potential 

molecular biomarkers for GDM.  

CHAPTER 2 outlines the overall study design, describes participant recruitment and 

details the inclusion and exclusion criteria that were used. In addition, this chapter 

illustrates participant selection for each empirical chapter and provides a brief 

description of the research methodologies used in these chapters. More detailed 

methods are given in the respective chapters. 

CHAPTER 3 is a review article that collates and synthesises all published articles on 

the prevalence of GDM in South Africa (SA). The review provides an update of the 

prevalence of GDM in SA and highlights treatment and management strategies 



 

xxiv 

 

currently employed in the country. The review was published in the South African 

Medical Journal: Dias S, Adam S, Rheeder P, Pheiffer C. Prevalence of and risk factors 

for gestational diabetes mellitus in South Africa. 2019;109:463-467–467. 

CHAPTER 4 is a review article that highlights the varied GDM screening and 

diagnostic strategies currently employed in SA. The review describes the evolution of 

the major GDM screening and diagnostic strategies and discusses the controversy 

surrounding  GDM screening. In addition, the review highlights novel screening and 

diagnostic methods that are being explored and makes recommendations for GDM 

screening, diagnosis and management. The review was published in the South African 

Medical Journal: Dias S, Pheiffer C, Rheeder P, Adam S. Screening and diagnosis of 

gestational diabetes mellitus in South Africa: What we know so far. 2019;109:457-462.  

CHAPTER 5 is a review article that summarises the current status of molecular 

biomarkers for GDM. This review summarises all studies that investigated SNPs and 

DNA methylation during GDM. Furthermore, the limitations of these molecular 

biomarkers, as well as future research recommendations, are discussed. The review 

was published in the International Journal of Molecular Science: Dias S, Pheiffer C, 

Abrahams Y, Rheeder P, Adam S. Molecular Biomarkers for Gestational Diabetes 

Mellitus. 2018;19(10): 2926. 

CHAPTER 6 investigates the potential of global DNA methylation to serve as a 

biomarker for GDM.  Global DNA methylation was quantified in the whole blood of 

women with or without GDM using an Enzyme-Linked Immunosorbent Assay. This 

work was published as a research article in Biomarkers: Dias S, Adam S, Wyk NV, 

Rheeder P, Louw J, Pheiffer C. Global DNA methylation profiling in peripheral blood 

cells of South African women with gestational diabetes mellitus. 2019;24:225–31. 
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CHAPTER 7 investigates genome-wide DNA methylation during GDM. DNA 

methylation was quantified in the whole blood of women with or without GDM using 

the Illumina MethylationEPIC Bead Chip Array. In addition, functional analysis of 

differentially methylated genes was conducted to identify pathways associated with 

GDM. This chapter was published as a research article in the International Journal of 

Molecular Science: Dias S, Adam S, Rheeder P, Louw J, Pheiffer C. Altered Genome-

Wide DNA Methylation in Peripheral Blood of South African Women with 

Gestational Diabetes Mellitus. 2019;20(23):5828. 

CHAPTER 8 explores the association between gene-specific methylation of the 

ADIPOQ gene and GDM in human immunodeficiency virus (HIV) negative and 

positive women. Methylation across eight CpGs within the promoter of ADIPOQ was 

quantified using pyrosequencing. In silico analyses was conducted to identify 

transcription factors that bind to CpGs with altered methylation. This chapter was 

submitted as a short report to Clinical Epigenetics: Dias S, Adam S, Abrahams Y, 

Rheeder P, Pheiffer C. Human immunodeficiency virus infection affects the 

association between adiponectin DNA methylation and gestational diabetes mellitus 

in South African women.  2019.  

CHAPTER 9 investigates the association between genetic variants and GDM. SNPs in 

adiponectin (ADIPOQ) (rs266729 and rs17300539) and methylenetetrahydrofolate 

reductase (MTHFR) (rs1801133) genes were profiled using quantitative real-time PCR. 

In addition, we explored the association between SNPs and clinical characteristics. 

Furthermore, the association between MTHFR (rs1801133) and global methylation 

was investigated. This chapter will be submitted as a research article to the Journal of 

Assisted Reproduction and Genetics:  Dias S, Adam S, Rheeder P, Pheiffer C. Genetic 



 

xxvi 

 

variants of adiponectin and methylenetetrahydrofolate reductase genes in South 

African women with gestational diabetes mellitus. 

CHAPTER 10 summarises and discusses the findings of the individual reviews and 

empirical chapters, followed by integration and synthesis of the overall thesis 

findings. We discuss the significance of the study findings, the novelty, and how the 

study findings contribute to existing knowledge, thus advancing research. Lastly, we 

discuss the potential impact of biomarkers on health systems, and highlight the 

strengths and limitations of the study, and recommendations for future research.  
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1. STUDY OVERVIEW  

Gestational diabetes mellitus (GDM) is a form of glucose intolerance that is diagnosed 

during the second or third trimester of pregnancy, that is not pre-existing or overt 

diabetes (American Diabetes Association, 2016). The prevalence of GDM is increasing 

rapidly, and in 2017 it was estimated to affect approximately 14% of pregnancies 

worldwide (International Diabetes Federation, 2017), representing about 18 million 

births. Without appropriate glucose management, GDM is associated with adverse 

maternal, foetal and perinatal complications (Alam et al., 2006; Mohammadbeigi et al., 

2013; Young & Ecker, 2013), and an increased risk of future metabolic disease in both 

mothers and offspring (Mitanchez et al., 2015). 

The oral glucose tolerance test (OGTT) conducted at 24-28 weeks of gestation is 

currently considered the gold standard for the diagnosis of GDM (IADPSG panel, 

2010). However, the test is cumbersome to conduct, is time-consuming, requires 

fasting, multiple venesections, and is associated with nausea and vomiting, often 

leading to decreased patient compliance.  Moreover, the test is expensive, resulting in 

many low- and middle-income countries using the risk factor-based selective 

screening approach, which often has poor sensitivity. The identification of simpler 

and more effective tests that can detect GDM early, may facilitate risk stratification 

and intervention strategies that could potentially lead to better management of GDM, 

thereby improving health outcomes.  

In recent years, molecular mechanisms are increasingly explored as biomarkers for 

metabolic disease. Of these, DNA methylation, an epigenetic mechanism that reflects 

the interplay between gene-environment interactions (Christensen & Marsit, 2011; 

Ling & Rönn, 2019), has attracted considerable interest.  Several studies have shown 
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that DNA methylation changes reflect metabolic adaptation during pregnancy 

(Bouchard et al., 2012; Houde et al., 2013; Cardenas et al., 2018) and may be implicated 

in the pathophysiology of GDM. Accordingly, altered DNA methylation has been 

demonstrated in maternal blood, placental tissue and cord blood of GDM-complicated 

pregnancies, supporting its potential as biomarkers for GDM (Finer et al., 2015; 

Reichetzeder et al., 2016; Haertle et al., 2017; Wu et al., 2018). In addition to DNA 

methylation, which reflects both genetics and the environment, screening for single 

nucleotide polymorphisms (SNPs) may detect genetic susceptibility to GDM and may 

be useful as biomarkers. Genetic risk variants for GDM have been identified in many 

genes (Huopio et al., 2013; Pagán et al., 2015; Popova et al., 2017; Ding et al., 2018), 

although limited studies have been conducted in SA, warranting further investigation. 

Serum biomarkers for GDM are widely investigated. Of these, adiponectin, an insulin-

sensitising adipokine (Brochu-Gaudreau et al., 2010; Ghadge, Khaire & Kuvalekar, 

2018) that progressively declines with increasing insulin resistance during pregnancy 

(Catalano et al., 2006; Bao et al., 2015), has shown great potential. Several studies 

(Ranheim et al., 2004; Worda et al., 2004; Retnakaran et al., 2010), including one 

conducted in our population (Adam et al., 2018) reported that serum adiponectin 

concentrations are lower in pregnancies complicated by GDM. However, high inter-

individual heterogeneity in adiponectin levels (Lacroix et al., 2013) hampers the 

identification of a clinically applicable threshold and its candidacy as a biomarker for 

GDM. The molecular mechanisms that regulate adiponectin expression may offer 

potential as biomarkers with improved sensitivity and specificity compared to serum 

adiponectin levels.  

It has been reported that HIV infection alters DNA methylation (Zhang et al., 2016)  

which may have implications for biomarker discovery. This is particularly relevant in 
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SA, the country with the highest prevalence globally (HSRC Press, 2018). In SA it is 

estimated that 7.9 million people are living with HIV, of whom 26.3% are women of 

reproductive age, and that one-third of all pregnancies are complicated by GDM  

(HSRC Press, 2018).  

2. PROBLEM STATEMENT  

GDM is a growing public health problem worldwide. Recently, a GDM prevalence of 

25.8% was reported in an urban setting in SA, a rate considerably higher than 

previously reported in this country (Adam & Rheeder, 2017), although, different 

diagnostic criteria could partly account for the increase observed. The short- and long-

term consequences of GDM contribute to maternal and child morbidity and mortality 

(Sheiner et al., 2019) as well as to the rising burden of non-communicable diseases, 

posing a health threat to both mothers and their offspring. It is estimated that 

approximately 30% of offspring and 50% of women with previous cases of GDM are 

predisposed to develop type 2 diabetes (T2D) in later life (Garcia-Vargas et al., 2012). 

Thus, there is a need to identify strategies to better manage GDM and improve health 

outcomes.  

3. RATIONALE  

The identification of alternative screening and diagnostic methods to traditional risk 

factor screening, which has poor predictive value in a South African population 

(Adam & Rheeder, 2017), may lead to improved detection of GDM with positive 

effects on health outcomes and costs to the health system. Molecular mechanisms offer 

potential as biomarkers for GDM. Aberrant DNA methylation has been demonstrated 

during GDM (Kang et al., 2017, 2018; Wu et al., 2018), while genetic risk variants for 
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GDM are widely reported (Huopio et al., 2013; Pagán et al., 2015; Popova et al., 2017; 

Ding et al., 2018). Thus, identification of altered DNA methylation and SNPs offer 

potential as sensitive and specific molecular biomarkers for GDM. These DNA-based 

biomarkers can be isolated from small quantities of blood, which may be more 

acceptable to patients. Furthermore, they can be detected sub-clinically, before disease 

manifestation, thus additionally have the potential to detect disease earlier, facilitating 

GDM preventative and management strategies and minimizing costs to the health 

system.  

4. HYPOTHESIS 

We hypothesised that DNA methylation and SNPs are associated with GDM and may 

offer potential to serve as molecular biomarkers for GDM in a South African 

population.  

5. AIMS AND OBJECTIVES 

An overview of the aims, objectives and methodology of the study, together with the 

thesis’s chapters, is illustrated as a flow diagram in Figure A.  

1. Main Aim 

To investigate whether DNA methylation and SNPs are associated with GDM and 

may offer potential to serve as molecular biomarkers for GDM in a South African 

population.  
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2. Specific Aims: 

o To provide an update of GDM in SA, focusing on prevalence and the screening 

and diagnostic tools used 

o To evaluate the current status of molecular biomarkers for GDM 

o To explore the association between DNA methylation and GDM in SA  

o To explore the association between SNPs and GDM in SA  

3. Objectives 

o Objective 1: 

- Collate and review all published articles reporting on the prevalence of 

GDM in SA 

- Consult with tertiary health care institutions to identify GDM screening 

and diagnostic strategies currently used in SA 

 

o Objective 2: 

- Collate and review all published studies reporting on DNA methylation 

and SNPs during GDM 

o Objective 3: 

- Assess the association between global DNA methylation and GDM 

using an Enzyme-Linked Immunosorbent Assay 

- Assess the association between gene-specific DNA methylation and 

GDM using:  

• MethylationEPIC Bead Chip Array to measure genome-wide DNA 

methylation 

• Pyrosequencing to quantify methylation in the promoter of the 

adiponectin (ADIPOQ) gene 
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o Objective 4: 

- Genotype SNPs in the adiponectin gene 

- Genotype SNPs in the methylenetetrahydrofolate reductase (MTHFR) 

gene  
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Figure A. Flow diagram illustrating aims, objectives and methodology in each chapter in the study. 



 

9 

 

 

1. CHAPTER 1 

 

 

 

 

LITERATURE REVIEW 

  



 

10 

 

TABLE OF CONTENTS 

 

CHAPTER 1………………………………………………………………………………. 9 

Literature Review 

1. History of Gestational Diabetes Mellitus ……………………………………... 11 

2. Prevalence of Gestational Diabetes Mellitus………………………………….. 12 

3. Pathophysiology of Gestational Diabetes Mellitus………………………….... 13 

4. Short- and Long-Term Complications of Gestational Diabetes Mellitus…... 14 

5. Screening and Diagnosis of Gestational Diabetes Mellitus………………….. 14 

6. Gestational Diabetes Mellitus Treatment……...………………………………. 16 

7. Recent Advances in Biomarker Discovery…………………………………….. 17 

8. Epigenetics………………………………………………………………………... 18 

9. DNA Methylation………………………………………………………………... 19 

10. Genetic Variants…………………………………………………………………. 21 

11. Current Status of Biomarkers…...………………………………………………. 22 

 

 

  



 

11 

 

1. HISTORY OF GESTATIONAL DIABETES MELLITUS 

Diabetes in pregnancy was first described in 1824 by a German physician, Heinrich 

Bennewitz, who reported intense thirst and glycosuria in a pregnant woman, in whom 

the symptoms disappeared after delivery (Bennewitz, 1824). Until the discovery of 

insulin in 1923, there was no effective treatment for the condition, which often led to 

adverse pregnancy outcomes (Walker, 1928). By the 1940s, studies reported that a 

lesser degree of hyperglycaemia during pregnancy was also a risk for adverse 

outcomes and perinatal mortality (Miller, in press; Hurwitz & Jensen, 1946; Jackson, 

1952). In 1964, John O’ Sullivan performed a 100 g 3 hr oral glucose tolerance test 

(OGTT) using a two-step screening approach in 752 second and third trimester 

pregnant women (O’Sullivan JB & Mahan CM., 1964). Using this data, John O’ Sullivan 

and statistician Claire Mahan, proposed the first statistically based criteria for 

assessing the upper limit for glycaemic normality during pregnancy (O’Sullivan JB & 

Mahan CM., 1964). This became the standard for detecting diabetes in pregnancy for 

the next decade. The modern term gestational diabetes mellitus (GDM) was first used 

by John O’ Sullivan but was not recognised universally until popularised by Norbit 

Freinkel in 1980, when he published a major paper presenting several important 

insights into the pathophysiology of glucose metabolism in both mother and foetus. 

This led to an American sponsored workshop, where the definition of GDM as 

‘glucose intolerance first diagnosed during pregnancy’ was established (Freinkel, 

1980). For many years this traditional definition of GDM was accepted regardless of 

whether glucose intolerance predated pregnancy or persisted after birth. However, 

due to the rising obesity and diabetes epidemic, more women of childbearing age are 

afflicted with type 2 diabetes (T2D), resulting in an increase in the number of pregnant 

women with undiagnosed T2D (Lawrence et al., 2008). Thus, the World Health 

Organisation (WHO) classifies women with diabetes in the first trimester as having 

T2D, while GDM represents a milder form of hyperglycaemia that occurs in the latter 
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half of pregnancy, with return to normoglycemia after birth (WHO, 2013). According 

to the American Diabetes Association (ADA), GDM is defined as diabetes diagnosed 

in the second or third trimester of pregnancy that is not pre-existing diabetes (type 1 

diabetes (T1D) or T2D) (American Diabetes Association, 2016). 

2. PREVALENCE OF GESTATIONAL DIABETES MELLITUS 

GDM is considered one of the leading causes of morbidity and mortality in mothers 

and infants worldwide (Sheiner et al., 2019). The World Health Organisation (WHO) 

classifies pre-existing diabetes or newly diagnosed T1D or T2D as severe 

hyperglycaemia during pregnancy, while GDM represents a milder form of 

hyperglycaemia. According to recent statistics, 21.3 million live births (16.2%) are 

affected by hyperglycaemia in pregnancy, of which 86.4% are due to GDM 

(International Diabetes Federation, 2017). The prevalence of GDM is rapidly 

increasing globally, ranging from 1% to 28%, depending on population characteristics 

and diagnostic criteria employed (Jiwani et al., 2012). The prevalence of GDM has been 

shown to be higher in low- and middle-income countries compared to high income 

countries where access to maternal health care is readily available (Seshiah et al., 2008; 

Jiwani et al., 2012; Kanguru et al., 2014; Goldenberg et al., 2016; Nguyen et al., 2018). 

Recently, a GDM prevalence of 25.8% was reported in an urban setting in SA, a rate 

much higher than previously reported in this country (Adam & Rheeder, 2017). 

Although different diagnostic criteria could partly account for the increased 

prevalence observed, other factors such as advanced maternal age and obesity may 

play a role. SA has an obesity crisis with ~69% of women regarded as overweight, of 

whom 42% are obese and 20% are morbidly obese (Ng et al., 2014; Statistics South 

Africa, 2017).  The obesity epidemic is spurred by urbanisation, unhealthy diets and 

physical inactivity. Obesity is considered the major risk factor for metabolic syndrome 

and hyperglycaemia, particularly among females (Pons et al., 2015).  
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3. PATHOPHYSIOLOGY OF GESTATIONAL DIABETES MELLITUS 

The exact mechanism underlying GDM pathophysiology is not completely elucidated, 

although progressive insulin resistance during pregnancy has been implicated 

(Metzger et al., 2007). During the first trimester of gestation, insulin sensitivity 

increases in order to promote the uptake of glucose into adipose stores to prepare for 

energy demands in later pregnancy (Di Cianni et al., 2003). However, as pregnancy 

progresses, an increase in placental hormones, including estrogen, progesterone, 

leptin, cortisol, placental lactogen and placental growth hormone are produced to 

facilitate nutrient transfer from mother to infant, leading to insulin resistance in 

peripheral tissues such as muscle, liver and adipose tissues (Catalano et al., 1991). 

Most women remain normoglycemic due to adequate pancreatic beta (β)-cell 

compensation with higher insulin secretion and production. However, GDM develops 

when β-cells become dysfunctional and are unable to meet the increasing insulin 

demands (Perkins, Dunn & Jagasia, 2007). A schematic diagram showing progression 

to GDM is illustrated in Figure 1.1.  

Figure 1.1. Schematic diagram illustrating progression to GDM. During pregnancy, maternal 

hormones increasse, leading to insulin resistance in peripheral tissues such as muscle, liver and adipose 

tissues. As a result, pancreatic beta (β)-cell compensated by increasing insulin secretion and 

production. However, when β-cells become dysfunctional, GDM occurs. 
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4. SHORT- AND LONG-TERM COMPLICATIONS OF GESTATIONAL 

DIABETES MELLITUS 

Without appropriate diagnosis and management, GDM is associated with adverse 

maternal (pre-eclampsia, increase in caesarean deliveries, birth trauma), foetal 

(macrosomia, hypoglycaemia, shoulder dystocia) and perinatal (respiratory distress 

syndrome, jaundice, metabolic derangements) complications (Hod et al., 1991; Hadar 

& Hod, 2013; Moore, 2018), while both mothers and their offspring are at increased 

risk of developing T2D, obesity and other metabolic conditions in later life (Kim, 

Newton & Knopp, 2002; Clausen et al., 2008; Bellamy et al., 2009; Zhao et al., 2016). 

Generally, there is a continuous positive association between higher maternal 

hyperglycaemia and increased frequency of adverse outcomes. Recent estimates 

indicate that approximately 50% of women with previous cases of GDM (Kim, 

Newton & Knopp, 2002) and 30% of offspring (Garcia-Vargas et al., 2012) are 

predisposed to develop T2D within 10 years, thus posing significant health and 

economic burdens to health systems, particularly those in under-resourced countries 

such as SA. 

5. SCREENING AND DIAGNOSIS OF GESTATIONAL DIABETES 

MELLITUS 

Despite five decades of research, there is little consensus regarding the optimal GDM 

screening and diagnostic criteria (Long, 2011; Coustan, 2013). The lack of uniformity, 

both among countries and between obstetric and diabetes organisations within a 

single country, hamper the early detection and management of GDM, which 

negatively affects maternal and child health. The latest guidelines for GDM screening 

by the International Association of Diabetes in Pregnancy Study Groups (IADPSG) 

advocates for universal screening to promote appropriate treatment and improved 
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pregnancy outcomes (IADPSG panel, 2010). This implies that all pregnant women 

should be screened for GDM, regardless of risk factors (repeated glucosuria, previous 

GDM, family history of diabetes, history of stillbirth and congenital abnormalities, 

suspicion of polyhydramnios in pregnancy, obesity, previous macrosomic infant, 

history of polycystic ovarian syndrome and perinatal death, and women of South 

Asian descent) (SEMDSA, 2017). These guidelines were based on findings from the 

Hyperglycaemia and Adverse Pregnancy Outcome (HAPO) study, which assessed 

glucose concentrations and primary and secondary pregnancy complications in 23 316 

pregnant women across 9 countries. The authors showed a strong linear correlation 

between maternal blood glucose concentrations and primary adverse pregnancy 

outcomes such as birth weight and cord blood C-peptide above the 90th percentile, and 

a weaker association for caesarean delivery and neonatal hypoglycaemia,  at glucose 

concentrations previously considered normal (HAPO Study Cooperative Research 

Group et al., 2008). In addition, plasma glucose levels were associated with all five 

secondary adverse pregnancy outcomes including premature delivery, shoulder 

dystocia or birth injury, pre-eclampsia, hyperbilirubinemia and intensive neonatal 

care. In 2013, the World Health Organisation (WHO) revised their criteria, and 

endorsed those of the IADPSG (WHO, 2013). 

The oral glucose tolerance test (OGTT) conducted at 24-28 weeks of gestation, when 

insulin resistance is likely to occur (Immanuel & Simmons, 2017), is currently 

considered the gold standard for the diagnosis of GDM (IADPSG panel, 2010). 

However, this test is time consuming, requires fasting, multiple blood draws, and is 

associated with nausea and vomiting, often leading to decreased patient compliance. 

In most cases fasting during pregnancy is not possible, since women from rural 

communities must travel far distances to receive clinical health care. In countries with 

a high prevalence of HIV, multiple blood draws are considered a health hazard, as it 

increases the risk of HIV transmission. In addition, in many resource-limited 
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countries, universal screening is considered expensive and unfeasible, resulting in 

many countries using risk-factor based selective screening as the predominant 

screening strategy. Unfortunately, these risk factors have poor predictive value, 

resulting in many women with GDM not receiving appropriate treatment (O’Sullivan 

et al., 1973; Cosson et al., 2014).  In a previous study conducted in a South African 

population, Adam et al. showed that risk factors failed to identify approximately 

10.6% of pregnant women with GDM (Adam & Rheeder, 2017). Thus, there is 

significant impetus to identify simpler, affordable and more effective tests that can 

detect women at high risk of developing GDM or diagnose GDM in pregnancy.  

6. GESTATIONAL DIABETES MELLITUS TREATMENT 

Treatment and management of hyperglycaemia in pregnancy is associated with 

reduced adverse obstetric and foetal outcomes (HAPO Study Cooperative Research 

Group et al., 2008). The first line of intervention for women with GDM is through 

exercise and nutritional counselling, which includes individualised physical activity 

guidelines and a dietary meal plan, usually provided by obstetricians, 

endocrinologists, dieticians or nurse educators. However, if lifestyle modification fails 

to achieve glucose control, pharmacological therapy is initiated. Several guidelines 

including the American Diabetes Association (ADA) and American College of 

Obstetrics and Gynaecology (ACOG) recommend insulin as the preferred treatment 

for GDM as it allows tight glucose control and does not cross the placenta to a 

measurable extent (American College of Obstetrics and Gynaecology, 2018; American 

Diabetes Association, 2019). Generally, oral agents are preferred to insulin in low- and 

middle-income settings due to its ease of administration and lower cost (Kelley, 

Carroll & Meyer, 2015). Recently, metformin and glyburide have been shown to 

adequately reduce hyperglycaemia during pregnancy and improve perinatal 

outcomes (Faraci et al., 2011). In guidelines of the National Institute for Health and 
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Care Excellence (NICE), the International Federation of Gynaecology and Obstetrics 

(FIGO) and the Society of Maternal-Fetal Medicine (SMFM), metformin is considered 

as a reasonable and safe first line pharmacological therapy alternative to insulin 

(Coustan et al., in press; Walker, 2008; Hod et al., 2015), and is seen as a treatment 

choice where maternal weight gain is an issue (Bettencourt-Silva et al., 2019).  Patient-

specific factors contributes to variation and should therefore be considered when 

selecting treatment and management strategies for GDM.  

7. RECENT ADVANCES IN BIOMARKER DISCOVERY 

Pregnancy is associated with metabolic adaptations which are reflected by changes in 

the expression of maternal proteins. These proteins are detectable in the serum and 

plasma during early pregnancy and have attracted increasing interest as potential 

screening and diagnostic proteins for GDM. Several of these proteins including 

adiponectin, sex hormone-binding globulin (SHBG), C-reactive protein (CRP) and 

glycosylated fibronectin have been widely investigated as biomarkers of GDM. 

Accordingly, Lian et al. showed that is it possible to detect decreased serum 

adiponectin concentrations from as early as 9 weeks of gestation in women who 

developed GDM (Lain et al., 2008). Similarly, Nanda et al. reported lower serum 

adiponectin and SHBG levels at 11 - 13 weeks gestation in women with GDM 

compared to controls. (Nanda et al., 2011). In a study investigating predictive tools to 

identify GDM risk in obese pregnant women, White et al. showed that using a 

combination of statistical modelling consisting of clinical variables and potential 

biomarkers such as adiponectin, they were able to identify a group of high-risk obese 

women of whom approximately 50% later developed GDM (White et al., 2016). In 

addition, Rasanen et al. reported that first-trimester serum concentrations of 

glycosylated fibronectin, adiponectin and high-sensitivity CRP were significantly 

associated with GDM. The authors showed that after adjusting for maternal factors 
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and other biomarkers, glycosylated fibronectin demonstrated an independent 

association with GDM with a positive predictive value of 63%. These studies suggest 

that maternal serum and plasma proteins together with clinical variables may have 

the potential as risk stratification tools to predict GDM in high risk women (Rasanen 

et al., 2013).   

8. EPIGENETICS 

In recent years, altered epigenetic mechanisms have been postulated to underlie the 

development of many diseases, including GDM. Epigenetics is the study of  heritable 

changes in gene expression or phenotype that occurs without changes in the 

underlying DNA sequence (Bird, 2007). Each cell has a unique epigenetic signature 

which controls normal growth and development, eventually resulting in the 

phenotype of the cell and tissue. Genetics and environmental factors such as 

unhealthy diets and lack of physical activity induce epigenetic modifications that 

affect these biological systems (Mathers, Strathdee & Relton, 2010), making them 

important pathogenic mechanisms in complex multifactorial diseases. Due to their 

reversible nature, epigenetic changes may provide a window of opportunity for 

intervention strategies to prevent or reverse GDM and improve health outcomes. In 

addition, accumulating evidence suggest that intrauterine environmental exposure 

leads to persistent epigenetic modifications in developmentally important genes, that 

predisposes offspring to adverse health outcomes (Gabory, Attig & Junien, 2011). A 

number of studies focusing on the developmental origin of health and disease and 

metabolic programming have identified a link between environmental influences and 

epigenetic mechanisms such as DNA methylation, histone modifications and non-

coding RNA regulation (miRNA) (Godfrey, Costello & Lillycrop, 2016), linking these 

epigenetic changes to the future health of offspring. For example, Godfrey et al. 

showed that epigenetic promoter methylation of retinoid X receptor-a (RXRA) at birth, 
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which correlated to maternal carbohydrate intake during early pregnancy, was 

associated with childhood adiposity at 9 years of age (Godfrey et al., 2011). Similarly, 

Ruchat et al. (2013) reported that GDM alters DNA methylation of genes involved in 

metabolic disease and growth in offspring, partly explaining the association between 

GDM and macrosomia (Ruchat et al., 2013). Moreover, other studies showed that 

altered miRNA expression was associated with pregnancy complications such as 

foetal macrosomia, preterm birth and small for gestational age (Li et al., 2015; Tsai et 

al., 2017), suggesting an important role of these epigenetic mechanisms as metabolic 

and developmental regulators during pregnancy. 

9. DNA METHYLATION 

DNA methylation is the most widely studied and best characterised epigenetic 

mechanism (Barres & Zierath, 2011) that predominantly, but not exclusively occur at 

the cytosine’s within cytosine–phosphate–guanine (CpG) dinucleotides. DNA 

methylation is a biochemical process catalysed by the enzyme DNA methyltransferase 

(DNMT) that covalently adds a methyl group to the fifth carbon position of a cytosine 

residue within CpG dinucleotides, with S-adenosyl-methionine (SAM) serving as the 

methyl donor (Bird, 1980, 2002). SAM is converted to S-adenosyl-homocysteine (SAH) 

during this process. Methylation of CpG islands, which are regions with high levels 

of CpG dinucleotides primarily in the promoter regions of genes, is generally 

associated with transcriptional repression due to altered protein binding to target sites 

on DNA (Bird, 1980, 2002) (Figure 1.2). Approximately 55–90% of all CpG 

dinucleotides within CpG islands are methylated, constituting about 3% of the 

genome. DNA methylation is essential for normal developmental processes (Jin, Li & 

Robertson, 2011), and also plays an important role in regulating genes key in 

metabolic pathways such as glucose and lipid homeostasis, insulin signalling and β-

cell function and, when dysregulated, contributes to metabolic disease (Fradin et al., 
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2012; Gilbert & Liu, 2012; He, Zhang, et al., 2017). Aberrant global and gene-specific 

DNA methylation has been shown to be associated with metabolic conditions such as 

obesity (Van Dijk et al., 2015), T2D (Toperoff et al., 2012) and cardiovascular disease 

(Kim, Newton & Knopp, 2002). Evidence suggest that peripheral blood mirrors DNA 

methylation patterns in tissue, supporting its potential as biomarkers of various 

metabolic disease, including GDM (Li et al., 2012; Willmer et al., 2018). Several studies 

have demonstrated that DNA methylation is altered in the placenta and cord blood of 

women with GDM compared to women with normoglycemic pregnancies (Nomura 

et al., 2014; Finer et al., 2015; Haertle et al., 2017), thus increasing interest in screening 

maternal blood for biomarkers of GDM. 

 

 

 

 

 

 

Figure 1.2. Characteristics of DNA methylation. The cytosine dinucleotide is converted to 5’ methyl-

cytosine by the action of DNMT. Increased methylation  in the promoter region is associated with gene 

silencing. SAM: S-adenosyl-methionine; SAH: S-adenosyl-homocysteine; DNMT: DNA 

methyltransferase; CH3: Methyl group 
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10.  GENETIC VARIANTS 

Single-nucleotide polymorphisms (SNPs) are the most common type of genetic 

variations among humans and refer to alterations of individual nucleotide bases (e.g. 

thymine to cytosine (T>C)) in a DNA sequence (Figure 1.3). SNPs occur roughly in 

every one site per 300 nucleotides, which translates to over 10 million SNPs in the 

human genome (Consortium, 2007). While most SNPs are silent and do not alter the 

function and expression of genes, others are biologically functional (Sachidanandam 

et al., 2001), and can lead to altered protein function and disease. In most common 

diseases, there are multiple genetic and environmental components which contribute 

to disease susceptibility (Hirschhorn et al., 2002). Thus, the identification of SNPs that 

are associated with the risk of disease within a population could partly explain the 

underlying biological causal mechanism. Several candidate gene and genome-wide 

association studies (GWAS) provide evidence that SNPs are associated with an 

increased risk of metabolic conditions including obesity, T2D, and cardiovascular 

disease (McCarthy, 2010; De Rosa et al., 2018). Variants in more than 50 and 80 loci 

were found to be associated with obesity  (Rankinen et al., 2006) and T2D (Morris et 

al., 2012), respectively, and occur in genes that regulate glucose homeostasis and 

insulin signalling. Genetic alterations in genes responsible for metabolic changes 

during pregnancy predispose one to GDM. Several studies have highlighted genetic 

variants in common genes such as melatonin receptor 1B (MTNR1B) (Li et al., 2019), 

transcription factor 7 Like 2 (TCF7L2) (Franzago et al., 2018), receptor substrate 

1 (IRS1) (Popova et al., 2017), adiponectin (ADIPOQ) (Takhshid, Haem & 

Aboualizadeh, 2015; Pawlik et al., 2017) and glucokinase (GCK) (Han et al., 2015) 

among others (Ao et al., 2015; Fatima et al., 2016; Jamalpour et al., 2018) to be 

associated with GDM risk, suggesting that SNPs may have potential to detect genetic 

susceptibility to GDM and may be useful as biomarkers. 
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Figure 1.3. SNP characteristics. Example of a single nucleotide change from thymine to cytosine (T>C) 

in the DNA sequence. SNP: single nucleotide polymorphism 

 

11.  CURRENT STATUS OF BIOMARKERS 

Proteins such as adiponectin, SHBG, CRP and glycosylated fibronectin, and DNA 

methylation and SNPs have attracted considerable interest as biomarkers of GDM. 

Despite showing potential, they are yet to become clinically applicable. Conducting 

more studies in different populations to identify optimal cut-offs could aid their 

predictive value, while rapid technological advances could overcome challenges 

associated with high costs and availability of resources. Vigorous research in this 

research field could lead to the development of a quick, cost effective and robust point-

of-care test that could accurately identify women at high risk for GDM.  
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1. STUDY DESIGN  

1.1. Participant Recruitment 

This study forms part of a larger prospective cohort observational study on GDM 

screening, conducted at the Eyethu Yarona clinic (Lion Park Clinic) in Johannesburg, 

SA (Adam & Rheeder, 2017). The procedure for participant selection is illustrated in 

Figure 2.1. One thousand pregnant Black African women who were less than 26 weeks 

pregnant were enrolled at their first clinic visit and excluded if they had a multiple 

pregnancy, pre-existing or overt diabetes mellitus (type 1 (T1D) or type 2 (T2D) 

diabetes) or were acutely ill. Written informed consent was obtained from all 

participants. Gestational age was calculated using the last menstrual cycle reported. 

At recruitment, random glucose and glycated haemoglobin (HbA1c) levels were 

measured using a glucometer (Roche Diagnostics, Mannheim, Germany) and the 

point-of-care Afinion system (Alere Technologies, Oslo, Norway), respectively. 

Women with random glucose or HbA1c concentrations more than 11.1 mmol/L or 

6.5%, respectively, were referred for glucose management and were excluded from 

further analysis. Of the 1000 pregnant women recruited, 82 (8.2%) had foetal losses, 

163 (16.3%) moved away from the area, 194  (19.4%) were unreachable and 7 (0.7%) 

withdrew consent and did not continue with the study.  

Five hundred and fifty-four women returned within two weeks in a fasted state for 

GDM testing and blood collection. GDM was diagnosed using the 75 g 2 hr OGTT at 

24-28 weeks gestation if at least one glucose value was met (fasting plasma glucose 

≥5.1 mmol/L, 1 hr OGTT ≥10 mmol/L or 2 hr OGTT ≥8.5  mmol/L), according to the 

International Diabetes and Pregnancy Study Group (IADPSG) criteria (IADPSG panel, 

2010), and managed according to the International Federation of Gynaecology and 

Obstetrics (FIGO) recommendations with diet and lifestyle modifications, metformin 
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or insulin (Hod et al., 2015). Blood was collected for measuring fasting glucose 

concentrations (Vermaak and Partners, SA), and serum for insulin and C-reactive 

protein (CRP) concentrations (Pathcare laboratories, South Africa) and adiponectin 

concentrations using the human adiponectin enzyme-linked immunosorbent assay 

(ELISA) (Merck, Dermstadt, Germany). CRP is an acute-phase protein that is 

frequently used as marker of low-grade systemic inflammation, and elevated levels 

during pregnancy may be associated with an increased risk of GDM, while 

adiponectin, an adipose tissue-derived cytokine with insulin sensitizing properties 

have been shown to decrease in women with GDM compared to normoglycemic 

women, and may have potential as biomarkers of GDM. Moreover, human 

immunodeficiency virus (HIV) testing was offered to all pregnant women using rapid 

HIV kits, and results were confirmed with a different kit according to the guidelines 

of the SA Department of Health (National Department of Health South Africa, 2015). 

HIV positive women were treated with Atripla™; a fixed-dose coformulation of three 

anti-HIV drugs, efavirenz, emtricitabine and tenofovir given once-daily (National 

Department of Health South Africa, 2015). Anthropometric measurements were 

obtained according to standard procedures and demographic and socio-economic 

data were collected in the form of a standardised questionnaire. Whole blood was 

stored at -80 °C for DNA methylation profiling and SNP genotyping. For the studies 

presented in this thesis, 449 eligible women aged between 18 - 40 years, who had all 

data available and adequate blood samples for analysis were included.   

1.2. Global DNA Methylation – Chapter 6 

To assess the association between global DNA methylation and GDM, HIV negative 

women with (n=63) and without (n=138) GDM were selected and matched according 

to age, body mass index (BMI) and gestational age as far as possible.  
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1.3. Genome-Wide DNA Methylation – Chapter 7 

To conduct genome-wide DNA methylation analysis, a subset of HIV negative women 

with (n=12) and without (n=12) GDM were selected and matched individually 

according to age, BMI and gestational age.  

1.4. Gene-Specific DNA Methylation of The ADIPOQ Gene – Chapter 8 

To explore the association between gene-specific methylation of the ADIPOQ gene 

and GDM 95 women with (n=95) and without (n=191) GDM were selected, of whom 

181 were HIV negative (GDM: n=63 and non-GDM: n=118) and 105 were HIV positive 

(GDM: n=32 and non-GDM: n=73). One hundred and sixty-three samples were 

excluded due to insufficient serum samples for adiponectin measurement.  

1.5. SNP Genotyping – Chapter 9 

To investigate the association between genetic variants, ADIPOQ (rs266729 and 

rs17300539) and MTHFR (rs1801133), and GDM, a total of 118 women with (n=118) 

and without (n=331) GDM were selected.  

 

*Detailed descriptions of the methodologies are outlined in the respective chapters.  
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Figure 2.1. Flow diagram illustrating participant selection 
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3.  CHAPTER 3 

 

 

 

 

PREVALENCE OF AND RISK FACTORS FOR 

GESTATIONAL DIABETES MELLITUS IN 

SOUTH AFRICA 

 

 

 

Adapted from: 

Dias, S., Adam, S., Rheeder, P. & Pheiffer, C. 2019. Prevalence of and risk factors for 

gestational diabetes mellitus in South Africa. South African Medical Journal. 

109(7):463-467–467. DOI: 10.7196/SAMJ.2019.v109i7.14127. (Review article)  
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1. ABSTRACT  

Gestational diabetes mellitus (GDM) is associated with adverse maternal, foetal and 

perinatal complications. Without appropriate glucose management, women with 

GDM and their offspring have an increased risk of developing type 2 diabetes (T2D) 

and other metabolic conditions later in life, thereby, adding to the growing burden of 

non-communicable diseases (NCDs). This review provides an update of GDM in 

South Africa (SA), showing that its prevalence is increasing, and highlights treatment 

and management strategies currently employed. Although the increase in GDM 

prevalence may partly be due to less stringent diagnostic criteria, the role of the 

increasing obesogenic environment in SA is an additional factor. Future research 

should focus on reducing the rising obesity epidemic and in so doing aim to prevent 

the development of GDM in SA. Such initiatives will have a positive impact on 

decreasing maternal and child morbidity and mortality and the future burden of 

NCDs. 
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2. INTRODUCTION 

GDM, defined as glucose intolerance that is first diagnosed during the latter half of 

pregnancy, with return to normoglycemia after birth (WHO, 2013), is one of the 

leading causes of mortality and morbidity for both mothers and infants worldwide. 

Globally, approximately 16.2% (21.3 million) of live births are associated with 

hyperglycaemia in pregnancy, of which 86.4% are due to GDM, 6.2% due to pre-

existing type 1 (T1D) or type 2 diabetes (T2D), and 7.4% due to T1D and T2D first 

detected in pregnancy (International Diabetes Federation, 2017). The prevalence of 

GDM is rapidly increasing worldwide, possibly due to advanced child-bearing age 

and obesity. This is particularly concerning, since South African women are 

considered amongst the most overweight women globally (Statistics South Africa, 

2017). GDM is associated with maternal (preeclampsia, increase in caesarean 

deliveries, birth trauma), foetal (macrosomia, hypoglycaemia, shoulder dystocia), and 

perinatal (respiratory distress syndrome, jaundice, metabolic derangements) 

complications, while both mothers and their offspring are at risk for developing 

obesity, T2D and other metabolic conditions in later life. GDM thus poses a threat to 

maternal and child well-being, while its impact on the burden of non-communicable 

diseases (NCDs) is undeniable. This review provides an update of GDM in SA, 

focusing on risk factors and prevalence. Furthermore, we highlight recommendations 

for future research.   

3. RISK FACTORS FOR GESTATIONAL DIABETES MELLITUS 

The exact mechanism underlying GDM is not yet fully elucidated, although it is 

speculated that women who develop GDM may have underlying insulin resistance 

and genetic susceptibility (Perkins, Dunn & Jagasia, 2007). GDM is reported to affect 

about 14% of pregnancies globally, however, rates between 1-28% are reported in 
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different regions varying according to ethnicity (Hedderson, Darbinian & Ferrara, 

2010), geographical location (urban vs. rural) (Mwanri et al., 2014), environmental 

factors and screening and diagnostic strategies employed (Pastakia et al., 2017).  For 

example, in the USA, the prevalence of  GDM was reported to be 11.1% in Asian 

Indians and  4.1% in non-Hispanic whites (Hedderson, Darbinian & Ferrara, 2010), 

while in Tanzania, the prevalence of GDM was 1% and 8.4% in a rural and urban 

setting, respectively (Mwanri et al., 2014). A systematic review conducted in six 

African countries showed that the prevalence of GDM ranged between 0% in Tanzania 

to 13.9% in Nigeria, although these studies varied with regard to their study design 

(Macaulay, Dunger & Norris, 2014). The prevalence of GDM in SA is estimated to vary 

between 1.6 – 25.8% based on the screening and diagnostic strategies employed 

(Ranchod, Vaughan & Jarvis, 1991; Adam & Rheeder, 2017).  

Other definable risk factors that affect GDM prevalence include, repeated glucosuria, 

previous GDM, family history of diabetes, history of stillbirth and congenital 

abnormalities, suspicion of polyhydramnios in pregnancy, obesity, previous 

macrosomic infant, history of polycystic ovarian syndrome and perinatal death, and 

high risk ethnic groups (Table 3.1)  (SEMDSA, 2017). Alarmingly, the rate of obesity is 

increasing dramatically, with SA now regarded as one of the world’s most obese 

nations (Sartorius et al., 2015). According to recent statistics, approximately 69% of 

South African women are overweight or obese (Statistics South Africa, 2017). The 

increasing risk of obesity is largely due to changes in lifestyle, which have contributed 

to the increasing prevalence of T2D and metabolic syndrome, particularly among 

females (Sartorius et al., 2015). Although universal screening, whereby all pregnant 

women undergo the diagnostic 75 g oral glucose tolerance test (OGTT) at 24-28 weeks 

of gestation, has been widely advocated as the recommended screening strategy for 

GDM  (IADPSG panel, 2010), at present, selective screening based on risk factors is 

predominantly utilised in SA, as it is considered less costly than subjecting all women 
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to laboratory testing. However, risk factor-based selective screening has been found 

to have poor sensitivity and specificity in many studies (O’Sullivan et al., 1973; Cosson 

et al., 2014), including our study (Adam & Rheeder, 2017), and performs poorly as a 

screening tool for GDM. Moreover, selective screening places a high demand on 

healthcare workers to identify patients who should be screened and is often poorly 

adhered to, leading to inadequate screening and testing of GDM. 

Table 3.1. Risk factors for GDM 

BMI: Body mass index, GDM: Gestational diabetes mellitus. *BMI cut-offs vary according to ethnicity 

(SEMDSA, 2017) 

 

4. HIV AND GESTATIONAL DIABETES MELLITUS 

SA has the highest burden of the Human Immunodeficiency virus (HIV) globally, 

with 7.1 million people living with the virus (UNAIDS, 2018) and ~19% of adults (15 

– 49 years of age) affected by the disease (Shisana et al., 2014). HIV infection and 

antiretroviral therapy dysregulates glucose metabolism and is associated with an 

increased risk of glucose intolerance and metabolic disease (Dave et al., 2011, 2016; 

Noubissi, Katte & Sobngwi, 2018). There is evidence that antiretroviral therapy, 

particularly the first generation protease inhibitors induces insulin resistance in both 

• Recurrent glycosuria 

• Obesity (BMI ≥ 30 kg/m2)* 

• Family history of diabetes mellitus 

• History of GDM 

• History of polycystic ovarian syndrome 

• High risk ethnic groups (eg. South Asian descent) 

• Previous adverse pregnancy outcomes (stillbirth, congenital abnormalities,  

polyhydramnios, macrosomia etc.) 



 

35 

 

pregnant and non-pregnant women (Jao et al., 2013). The risk of developing GDM is 

shown to be more common in HIV-infected women receiving combined antiretroviral 

therapy, especially with the use of protease inhibitors (Martí et al., 2007; Soepnel et al., 

2017). Although, protease inhibitors have been replaced by non-nucleoside reverse 

transcription inhibitors, which are considered safer, they too affect glucose 

homeostasis (Brown et al., 2005), thus require further investigation. Current data in 

SA show no association between HIV infection and antiretroviral therapy with GDM 

(Adam & Rheeder, 2017).  

5. COMPLICATIONS OF GESTATIONAL DIABETES MELLITUS 

GDM is associated with adverse short- and long-term pregnancy outcomes in both 

mothers and their offspring (Table 3.2). A study conducted on 57 629 GDM women  

reported that the prevalence of caesarean delivery, macrosomia, pre-term birth and 

pre-eclampsia was 27.8%, 15.7%, 8.4% and 2.6%, respectively (Billionnet et al., 2017). 

Foetal macrosomia is a common adverse obstetric outcome, affecting ~15-45% of 

neonates born to women with GDM, and is associated with an increased risk of 

caesarean delivery, shoulder dystocia, respiratory distress syndrome and neonatal 

hypoglycaemia (Kc, Shakya & Zhang, 2015; Ovesen et al., 2015). Furthermore, ~50% 

of women with GDM will develop T2D within 10 years (Kim, Newton & Knopp, 2002), 

while increasing evidence show that women with GDM have a 56% higher risk of 

developing cardiovascular disease (Kramer, Campbell & Retnakaran, 2019), and an 

increasing risk of metabolic syndrome in later life (De Souza, Ray & Retnakaran, 2011). 

GDM is associated with an abnormal intrauterine environment that negatively affects 

the long-term health of offspring, possibly through epigenetic changes. It is estimated 

that children born to mothers with GDM have an 8-fold increased risk of developing 

T2D and prediabetes compared to children born to mothers with normoglycemic 

pregnancies (Clausen et al., 2008). Treatment of GDM improves outcome, thus the 
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detection and appropriate management of GDM is critical to prevent pregnancy 

complications. However, a challenge which hampers the early detection and 

management of GDM is the current lack of global consensus on GDM screening and 

diagnosis, which varies between countries and institutions. Recently, a study 

conducted by Meek et al. found that women who were diagnosed with GDM 

according to the stringent International Association of Diabetes in Pregnancy Study 

Group (IADPSG) criteria, but were missed when using the National Institute for 

Health and Care Excellence (NICE) criteria, had a substantial risk of obstetric 

complications such as macrosomia, caesarean section and polyhydramnios (Meek et 

al., 2015). 

Table 3.2. Adverse outcomes associated with GDM 

 Mother Offspring 

 

 

 

 

Short-term 

Spontaneous miscarriage 

Pre-eclampsia/ 

Pregnancy-induced hypertension 

Infections (e.g. urinary tract, puerperal 

sepsis) 

Caesarean delivery 

Preterm delivery 

Polyhydramnios 

Post-partum haemorrhage 

Macrosomia 

Shoulder dystocia – birth trauma 

Premature birth – metabolic 

complications (hypoglycaemia, 

hypocalcaemia) 

Polycythaemia/Jaundice 

Respiratory distress syndrome 

Cardiomyopathy/Arrhythmias 

Stillbirth 

 

Long-term 

Weight gain/obesity 

GDM in subsequent pregnancies 

Type 2 diabetes 

Cardiovascular disease 

Metabolic syndrome 

Obesity 

Type 1 diabetes  

Type 2 diabetes 

Metabolic syndrome 
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6. PREVALENCE OF GESTATIONAL DIABETES MELLITUS IN 

SOUTH AFRICA 

SA is undergoing an epidemiological transition characterised by an increase in NCDs 

due to urbanisation, nutritional transition towards a diet consisting of high fat and 

refined sugars and sociocultural factors involving the perception of overweight as a 

measure of success and beauty. Approximately 69% of South African women are 

overweight, 40% are obese and 20% are morbidly obese (Ng et al., 2014; Statistics 

South Africa, 2017), and are considered amongst the most overweight women 

globally, particularly women of reproductive age. Accordingly, GDM has rapidly 

increased in SA, with prevalence ranging from 1.6% to 25.8% between 1969 to 2018 

(Table 3.3). The first GDM prevalence study was conducted in 1969 amongst Indian 

women from Kwazulu-Natal using the 100 g OGTT and a prevalence of 23.8% and 

8.3% was reported in women with and without risk factors, respectively (Notelovitz, 

1969). In 1979, using risk factor screening and the 50 g OGTT, a GDM prevalence of 

3% was reported in women of mixed ethnic ancestry in the Western Cape (Jackson & 

Coetzee, 1979). Using the World Health Organisation (WHO) 1985 diagnostic criteria, 

Ranchod et al. reported a GDM prevalence of 1.6% and 3.8% in women of Indian and 

mixed ethnic ancestry, respectively in Kwazulu-Natal (Ranchod, Vaughan & Jarvis, 

1991). A population-based study conducted in rural Limpopo, reported a GDM 

prevalence of 8.8% in black women using the WHO 1999 diagnostic criteria 

(Mamabolo et al., 2007), while a study of overweight and obese pregnant women of 

mixed ethnic ancestry in Johannesburg, Gauteng, reported a GDM prevalence of 1.8% 

using random and fasting glucose concentrations (Basu, Jeketera & Basu, 2010). More 

recently, using the IADPSG criteria, a high prevalence of GDM (25.8%) was reported 

in black women from Johannesburg (Adam & Rheeder, 2017). The largest GDM 

prevalence study conducted in SA to date, found a GDM prevalence of 9.1% in black 
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women from Johannesburg using the revised WHO 2013 diagnostic criteria, which 

uses the same diagnostic cut-off criteria as the IADPSG criteria (Macaulay et al., 2018). 

The significantly higher prevalence observed by Adam et al. compared could be due 

to an over estimation of GDM prevalence as  some women in the GDM group may 

have had pre-existing or overt diabetes.  

Disparities in the prevalence of GDM was observed between these studies, which may 

be due to the different screening and diagnostic criteria used. More recent studies 

using the less stringent IADPSG or WHO 2013 criteria (Adam & Rheeder, 2017; 

Macaulay et al., 2018) show an increased prevalence of GDM compared to older 

criteria, which used higher glucose thresholds (Notelovitz, 1969; Jackson & Coetzee, 

1979; Ranchod, Vaughan & Jarvis, 1991; Mamabolo et al., 2007; Basu, Jeketera & Basu, 

2010). Thus, although the increased prevalence of GDM may partly be due to 

diagnostic criteria, the role of the increasing obesogenic environment in SA should not 

be underestimated (Statistics South Africa, 2017). Other factors, such as geographical 

setting, maternal age, study size, population and environmental differences could also 

account for the disparities in prevalence across studies (Adam & Rheeder, 2017; 

Macaulay et al., 2018). 
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Table 3.3. GDM prevalence studies conducted in South Africa 

Author Ethnicity 
Sample 

size 
Setting 

Gestational 

age 

Screening 

criteria 
Diagnostic criteria Threshold cut-off Prevalence (95%, CI) 

(Notelovitz, 

1969) 
Indian 568 

King Edward 

VIII hospital, 

Durban 

All trimesters Risk factors 

Institutional 

protocol 

100 g OGTT 

‡Venous blood 

Normal = mean ± 2 SD 

GDM > mean ± 2 SD 

Without risk factors 

8.3% (5.4-12.0) 

With risk factors 

23.8% (18.8-29.4) 

(Jackson & 

Coetzee, 

1979) 
Mixed 558 

Groote Schuur 

Hospital, Cape 

Town 

All trimesters Risk factors 

Institutional 

protocol 

50 g OGTT 

‡Capillary blood 

Fasting ≥5.5 mmol 

1 h glucose ≥10 mmol/L 

2 h ≥6.7 mmol/L 

3.0% (1.8-4.7) 

(Ranchod, 

Vaughan & 

Jarvis, 1991) 

Indian & 

Coloured 
1717 

Northdale 

hospital, 

Pietermaritzbur

g 

All trimesters 75 g GCT 

WHO 1985 

 

 

 

 

DPSG EASD 

75 g OGTT 

Venous blood 

Fasting ≥7.8 mmol/L & 

2 hr glucose ≥11.1 

mmol/L 

 

Venous blood 

Fasting ≥5.2 mmol/L & 

2 hr glucose ≥9 mmol/L 

WHO: 3.8% (2.9-4.8) 

 

 

 

DPSG EASD 1.6% (1.0-

2.2) 
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(Mamabolo 

et al., 2007) 
Black 262 Rural Limpopo 28-36 weeks 

No 

screening 

WHO 1999 

75 g OGTT 

 

Venous blood 

IGT: 

Fasting <7 mmol/L & 

2 hr glucose ≥7.8 

mmol/L 

Diabetes: 

Fasting ≥7 mmol/L & 

2 hr glucose 11.1 

mmol/L 

8.8% (6.0-12.9) 

(Basu, 

Jeketera & 

Basu, 2010) 
Mixed 767 

Charlotte 

Maxeke 

Johannesburg 

Academic 

hospital, 

Johannesburg 

23-32 weeks Risk factors 

Institutional 

protocol 

 

Fasting ≥8 mmol/L or 

Random glucose ≥11 

mmol/L 

 

1.8% (1.0-2.9) 

(Adam & 

Rheeder, 

2017) 
Black 554 

Level 1 clinic, 

Johannesburg 
24-28 weeks 

Risk factor 

or no 

screening 

IADPSG 

75 g OGTT 

 

 

NICE 

75 OGTT 

Fasting ≥5.1 mmol/L 

1 hr ≥10 mmol/L 

2 hr ≥8.5 mmol/L 

 

Fasting ≥5.6 mmol/L 

2 hr ≥7.8 mmol/L 

Universal testing 

25.8% (22.2-29.7) 

Selective testing 15.2% 

(12.3-18.4) 

 

Universal testing 

16.9% (13.9-20.4) 

Selective testing 9.9% 

(7.6-12.7) 
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DPSG, Diabetes in Pregnancy Study Group; EASD, European Association for the Study of Diabetes; IADPSG, International Association of Diabetes in Pregnancy 

Study Group; NICE, National Institute for Health and Care Excellence; OGTT, Oral glucose tolerance test; WHO, World Health Organisation. Selective testing 

refers to risk factor screening: advanced maternal age, obesity, family history of diabetes mellitus, glycosuria, certain ethnicities and prior adverse pregnancy 

outcomes. Normal calculated as the mean ± 2 SD, and all values outside that range were considered GDM (technique described by Herbert and Bournes and 

King (Wootton, 1974). ‡Institutional protocol 

 

 

WHO 1999 

 

 

 

 

 

 

 

Venous blood 

IGT: 

Fasting <7 mmol/L & 

2 hr glucose ≥7.8 

mmol/L 

Diabetes: 

Fasting ≥7 mmol/L & 

2 hr glucose 11.1 

mmol/L 

 

Universal testing 7.2% 

(5.2-9.7) 

Selective testing 3.6% 

(2.2-5.5) 

 

 

(Macaulay et 

al., 2018) 
Black 1906 

Chris Hani 

Baragwanath 

Hospital, 

Soweto, 

Johannesburg 

24-28 weeks 
No 

screening 

WHO 2013 

75 g OGTT 

Fasting ≥5.1 mmol/L 

1 hr ≥10 mmol/L 

2 hr ≥8.5 mmol/L 

 

9.1% (7.9-10.5) 
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7. TREATMENT 

Management and treatment of GDM are important to reduce adverse pregnancy 

outcomes and improve maternal and neonatal health (HAPO Study Cooperative 

Research Group et al., 2008). In SA, pregnant women with GDM are referred to the 

nearest secondary or tertiary hospital for management and treatment (Muhwava et 

al., 2018). At the tertiary level, management of GDM is through counselling and health 

education provided by obstetricians, endocrinologists, dieticians or nurse 

educators. The primary form of intervention for women with GDM is lifestyle 

modification, which involves counselling regarding diet and physical activity. A 

dietary meal plan is provided, which entails reduced sugar and starch intake, 

increased protein intake and reduced total calorie intake (Muhwava et al., 2018). 

However, in disadvantaged settings, these lifestyle changes are difficult to adhere to 

owing to the high cost of healthy food and lack of understanding and social support. 

A more sustainable approach is to counsel patients on how to reduce the glycaemic 

index of staple foods. The glycaemic index of carbohydrate-rich foods (e.g. potatoes, 

pap, pasta, rice) can be reduced by cooking, cooling and reheating, or by adding fats 

or acids such as lemon juice or vinegar (Kinnear et al., 2011).  

Pharmacological therapy is initiated for women who fail to reach their glucose targets 

using diet and exercise. In SA, metformin is the drug of choice to treat GDM, while 

glyburide is used when metformin and insulin are not available. Although insulin is 

invasive and used only if metformin fails, it is effective, allows tight glucose control 

and is considered safe, as it does not cross the placenta. Generally, oral agents are 

preferred to insulin because of ease of administration, although studies conducted in 

other settings showed no substantial differences in major outcomes when comparing 

their benefits and risks (Nicholson et al., 2009; Rowan et al., 2009).  
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8. CURRENT PERSPECTIVES AND FUTURE RECOMMENDATIONS 

• The rate of obesity is rising dramatically, consequently increasing the prevalence 

of GDM globally and in SA  

• Untreated GDM negatively affects maternal and child health 

• GDM increases the risk of developing T2D and other non-communicable diseases 

later in life 

• Future research should focus on reducing obesity and preventing the 

development of  GDM 

9. CONCLUSION 

The prevalence of GDM is rapidly increasing in SA and is becoming a major public 

health concern. Without appropriate glucose management, GDM is associated with 

adverse pregnancy outcomes and an increased risk of future metabolic conditions in 

mothers and their offspring, further contributing to the growing burden of NCDs. 

Although the significant increase in the prevalence of GDM observed in recent SA 

studies may be attributed to the lower diagnostic thresholds used, the role of the 

increasing obesogenic environment should not be underestimated. Future research 

should focus on reducing the rising obesity epidemic and in so doing aim to prevent 

the development of GDM. Such initiatives will have a positive impact on decreasing 

maternal and child morbidity and mortality and the future burden of NCDs.   
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4.  CHAPTER 4 

 

 

 

SCREENING AND DIAGNOSIS OF 

GESTATIONAL DIABETES MELLITUS IN 

SOUTH AFRICA: WHAT WE KNOW SO FAR 

 

 

 

Adapted from: 

Dias, S., Pheiffer, C., Rheeder, P. & Adam, S. 2019. Screening and diagnosis of 

gestational diabetes mellitus in South Africa: What we know so far. South African 

Medical Journal. 109(7):457-462–462. DOI: 10.7196/SAMJ.2019.v109i7.14064. (Review 

article)  
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1. ABSTRACT 

The early detection and management of gestational diabetes mellitus (GDM) present 

an ideal opportunity to decrease perinatal complications and adverse long-term 

health outcomes in mothers and their offspring. This review describes the major GDM 

screening and diagnostic strategies used worldwide, including novel screening and 

diagnostic methods that are being explored. It highlights the varied screening and 

diagnostic strategies currently employed in South Africa (SA). The lack of uniform 

GDM diagnostic criteria and variation in clinical practice hamper early detection and 

management of GDM, which negatively affects maternal and child health. We 

recommend that a SA diabetes-in-pregnancy study group, comprising interested 

obstetricians, physicians, endocrinologists, public health specialists, dieticians and 

scientists, be established to make evidence-based recommendations on affordable, 

accessible and applicable GDM screening and diagnostic and management strategies.  
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2. INTRODUCTION 

GDM is defined as glucose intolerance that is first diagnosed during the second or 

third trimester of pregnancy, that is not pre-existing or overt diabetes (American 

Diabetes Association, 2016). The prevalence of GDM has significantly increased over 

the last 20 years (Ferrara, 2007), and in 2017 the International Diabetes Federation 

(IDF) estimated that approximately 14% of pregnancies are affected by GDM 

depending on diagnostic criteria used and the population studied (International 

Diabetes Federation, 2017). The World Health Organisation (WHO) classifies pre-

existing diabetes or newly diagnosed type 1 (T1D) or type 2 (T2D) diabetes as severe 

hyperglycaemia during pregnancy, while GDM represents a milder form of 

hyperglycaemia that occurs in the latter half of pregnancy and usually resolves after 

delivery (WHO, 2013). Without appropriate glucose management, GDM is associated 

with perinatal complications and an increased risk for future metabolic disease in both 

mothers and their offspring.  

The early detection and treatment of GDM are effective in preventing these adverse 

outcomes; therefore, universal screening and diagnosis of GDM are widely advocated 

as a strategy to promote appropriate treatment and improve pregnancy outcomes. The 

oral glucose tolerance test (OGTT) conducted at 24 - 28 weeks of gestation is currently 

considered the gold standard for the diagnosis of GDM (IADPSG panel, 2010; WHO, 

2013). However, the test is cumbersome to conduct, as well as time-consuming, 

expensive and unfeasible in many low- and middle-income countries, resulting in 

many countries using risk factor-based selective screening. The lack of uniformity in 

GDM diagnosis and variations in clinical practice hamper its early detection and 

management, which negatively affects maternal and child health. Therefore, the 

identification of simple, cost-effective, sensitive and specific biomarkers, which do not 
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require fasting and multiple sampling, may offer potential as screening and diagnostic 

tools and have become a major focus in GDM research. This review describes the 

major GDM screening and diagnostic strategies used worldwide, including novel 

screening and diagnostic methods that are being explored. It highlights the varied 

screening and diagnostic strategies currently employed in SA. We also discuss 

challenges associated with these strategies and offer recommendations for future 

research. 

3. SCREENING TESTS 

The terms screening and diagnosis are often confusingly used interchangeably (Sacks, 

2014). Screening tests identify asymptomatic GDM in apparently healthy pregnant 

women, facilitating diagnosis and management (Hartling et al., 2012). A negative 

screening test will obviate the need for the cumbersome OGTT, the gold standard for 

GDM diagnosis, which is costly and is associated with multiple sampling, nausea and 

vomiting. Currently screening for GDM is done by using traditional risk factors 

(Adam & Rheeder, 2017), the 50 g glucose challenge test (GCT) or an OGTT (Sacks, 

2014). A number of other novel screening tests are being explored including fasting 

plasma glucose (Agarwal, 2016), glycated haemoglobin (HbA1c) (Khalafallah et al., 

2016), cytokines (Abell et al., 2015) and molecular biomarkers (Dias et al., 2018), which 

will be discussed in more detail below. Screening for traditional risk factors remain 

the cornerstone of screening strategies in low-and middle-income countries due to 

costs and ease. However, several studies (Miailhe et al., 2015; Agbozo et al., 2018; 

Matta-Coelho et al., 2018) including ours (Adam & Rheeder, 2017) have reported that 

risk factors have poor predictive value and fail to identify a large percentage of women 

with GDM, limiting their use. Adam et al. reported that risk factors failed to identify 

~10.6% of pregnant women with GDM in SA (Adam & Rheeder, 2017). The GCT is 
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commonly used to screen for GDM in the USA and involves administering a 50 g 

glucose load to pregnant women at 24 - 28 weeks of gestation, irrespective of fasting. 

If their 1 h plasma glucose concentrations exceed predetermined cut-off values, 

usually 7.2 mmol/L or 7.8 mmol/L, they are referred for GDM diagnosis. In 2010, the 

International Association of Diabetes in Pregnancy Study Groups (IADPSG) 

advocated for ‘no screening’ or ‘universal testing’, where all pregnant women 

undergo the diagnostic 75 g OGTT at 24 - 28 weeks of gestation (IADPSG panel, 2010). 

In addition, the IADPSG decreased the threshold for diagnosing GDM (Table 1). These 

recommendations were based on findings from the Hyperglycaemia and Adverse 

Pregnancy Outcome (HAPO) study that showed a linear correlation between maternal 

blood glucose concentrations and adverse pregnancy outcomes, even at glucose 

concentrations previously considered normal (HAPO Study Cooperative Research 

Group et al., 2008). The HAPO study assessed glucose concentrations and pregnancy 

complications in 23 316 pregnant women across 9 countries; therefore, the IADPSG 

considered this evidence sufficient to alter the diagnostic criteria for GDM. A few 

years later, the WHO endorsed the IADPSG universal testing strategy, but remains 

sceptical owing to poor quality of evidence, increased costs and the possibility of 

overdiagnosis (Sacks et al., 2018). Globally, there is no accepted screening criteria for 

GDM, and universal testing for diagnosing GDM remains the recommended strategy, 

although its implementation varies across countries and institutions.   

4. DIAGNOSIS  

The OGTT is the gold standard for GDM diagnosis. However, its use is not 

standardised worldwide and varies according to availability and access of 

standardised laboratories, resources, cost and GDM risk. The main issues of 

contention are whether a one-step or two-step procedure, which includes prior 
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screening is used, glucose load (75 g or 100 g), duration of test (2 h or 3 h), glucose cut-

off values, and whether diagnosis is based on one or two high glucose values (Sacks 

et al., 2018). GDM diagnosis has evolved considerably over the years with older 

criteria based mainly on managing long-term health outcomes, while the more recent 

criteria focus on adverse perinatal outcomes. The landmark screening and diagnostic 

criteria for GDM are shown in Figure 4.1. In 1964, O’Sullivan and Mahan (O’Sullivan 

JB & Mahan CM., 1964) proposed a two-step approach, which involved screening with 

the GCT, followed by a confirmatory 100 g 3 h OGTT in women who tested positive 

for screening. The National Diabetes Data Group (NDDG) (National Diabetes Data, 

1979) and Carpenter and Coustan (Carpenter & Coustan, 1982) revised these criteria 

in 1979 and 1984, respectively, correcting for the higher glucose concentrations in 

plasma compared with venous blood that was originally used by O’Sullivan and 

Mahan (O’Sullivan JB & Mahan CM., 1964). In 1985, the WHO recommended that a 75 

g 2 h OGTT be performed to diagnose GDM, using the same thresholds as those for 

diagnosing diabetes in non-pregnant women (WHO, 1985). In 1999, the WHO revised 

their diagnostic criteria for GDM to include impaired glucose tolerance (IGT) and 

diabetes (WHO, 1999). The American Diabetes Association (ADA) adopted the 

Carpenter and Coustan (Carpenter & Coustan, 1982)  criteria and recommended 

testing for GDM at 24 - 28 weeks of gestation using either a one-step approach with 

the 100 g OGTT or a two-step procedure with the GCT, followed by a diagnostic 100 

g OGTT (American Diabetes Association, 2004). In the final report of the Pan 

American Conference on Diabetes and Pregnancy, the Latin American Diabetes 

Association (LADA) criteria were proposed for the diagnosis of GDM in selected 

countries of South America, using a two-step approach with a 75 g 2 h OGTT (Final 

report of the Pan American Conference, 2015). In 2010, as previously described, the 

IADPSG proposed universal testing, where a one-step 75 g 2 h OGTT is conducted for 

all pregnant women at 24 - 28 weeks of  gestation (IADPSG panel, 2010). In 2013, the 
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WHO revised their criteria and endorsed those of the IADPGS (WHO, 2013). The 

National Institute for Health and Care Excellence (NICE) criteria are based on the 

WHO 1999 criteria, where GDM is diagnosed as IGT using the 75 g 2 h OGTT (NICE 

guidelines, 2015). They have not adopted the new recommended IADPSG/WHO 2013 

diagnostic criteria, as evidence suggests relatively small differences in clinical 

outcomes and increased cost implications (Jacklin et al., 2017). Currently, the 

International Federation of Gynaecology and Obstetrics (FIGO) guidelines (Hod et al., 

2015) recommend the use of a glucometer for point-of-care diagnosis of GDM in 

limited-resource settings due to its low cost, ease of use and ability to diagnose and 

treat GDM at the earliest possible opportunity. However, a study investigating the 

performance of the glucometer for diagnosis of GDM compared to the gold standard 

laboratory test showed poor correlation and reproducibility when GDM was 

diagnosed using the FIGO criteria (Adam & Rheeder, 2018).  
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Figure 4.1. The evolution of GDM screening and diagnosis between 1964 and 2015. FPG: Fasting 

plasma glucose, OGTT: Oral glucose tolerance test 
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Care Excellence
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5. NOVEL SCREENING AND DIAGNOSTIC STRATEGIES 

5.1. Glucose 

The measurement of fasting glucose concentrations has shown promise as a screening 

(Agarwal, Punnose & Dhatt, 2004) and diagnostic test (Adam & Rheeder, 2017; 

Macaulay et al., 2018); however, the test still requires pregnant women to be in a fasted 

state and return to the clinic to obtain their laboratory results (Agarwal, 2016).  

Measurement of random glucose and HbA1c levels obviates the need for fasting and 

have been explored as alternative screening and diagnostic tests (Amreen et al., 2018). 

HbA1c, a measurement of the amount of glucose bound to haemoglobin, is currently 

the gold standard for long-term blood glucose monitoring. However, it is affected by 

factors such as ethnicity, anaemia, haemodilation or other blood disorders that 

hamper its accuracy as a diagnostic tool in both non-pregnancy and pregnancy 

(Hughes, Rowan & Florkowski, 2016; Amreen et al., 2018; Nguyen et al., 2019). While 

studies have reported various HbA1c cut-off values in different populations, the ideal 

cut-off values for the diagnosis of GDM have not been accurately defined and 

validated (Agarwal et al., 2001; Hird et al., 2016). Thus, although these tests do not 

require fasting and are convenient, fast, simple, inexpensive and can be done at point-

of-care, the results are inconsistent, with low sensitivity and specificity, and has not  

been successful to date.  

Other novel strategies investigated in the South African population include the 

‘breakfast test’– a non-standardised glucose load administered to pregnant women – 

instead of the OGTT (Marais et al., 2018). Because of the variability in carbohydrate 

content with a non-standardised glucose load (Marais et al., 2016), the breakfast test 

was revised to include a standardised carbohydrate content that is equivalent to the 



 

54 

 

75 g OGTT. Marais et al. (Marais et al., 2018) reported a correlation between blood 

glucose values obtained using the designed breakfast test and values obtained using 

the OGTT. These and other results suggest that a standardised breakfast test that is 

more palatable than the OGTT may offer an alternative method for assessing 

hyperglycaemia during pregnancy (Sutherland et al., 1989; Rey, 1997; Ramezani, 

2008). 

5.2. Serum Proteins 

Adaptation to metabolic stress during pregnancy is reflected by changes in the 

expression of maternal proteins. These proteins are readily detected in plasma or 

serum and have recently attracted considerable interest as potential screening and 

diagnostic proteins for GDM. Several studies have reported on the potential of 

maternal plasma or serum biomarkers, such as adiponectin, sex hormone-binding 

globulin (SHBG), C-reactive protein (CRP) and glycosylated fibronectin, to serve as 

biomarkers for GDM (Smirnakis et al., in press; Nanda et al., 2011; Rasanen et al., 

2013). Nanda et al. (Nanda et al., 2011) reported that maternal serum adiponectin and 

SHBG levels at 11 - 13 weeks of gestation were lower in women with GDM than in 

controls. Similarly, Smirnakis et al. (Smirnakis et al., in press) reported lower levels of 

serum SHBG and higher levels of CRP during the first and second trimesters in 

pregnant women who subsequently developed GDM. Furthermore, glycosylated 

fibronectin, adiponectin, CRP and human placental lactogen (hPL) concentrations at 

5 - 13 weeks of gestation were shown to be associated with GDM (Rasanen et al., 2013). 

Together, these studies demonstrate that maternal proteins represent a promising 

first- and second-trimester screening test to identify women at risk of developing 

GDM. Further prospective studies are required to investigate the clinical applicability 

of these biomarkers.  
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5.3. Genetics  

Variants in genes regulating glucose homeostasis are increasingly being implicated in 

the pathogenesis of GDM and thus present candidates for biomarkers of disease 

pathophysiology (Wu et al., 2016). To date, genetic studies have identified 8 genes 

commonly associated with the development of GDM in more than 2 independent 

populations. While genetic variants have been identified in other genes associated 

with GDM, these were demonstrated in single populations only (Dias et al., 2018). The 

genes identified in more than 2 independent populations include transcription factor 

7-like 2 (TCF7L2), adiponectin (ADIPOQ), melatonin-receptor 1B gene (MTNR1B), 

glucokinase (GCK), glucokinase regulator (GCKR), fat mass and obesity-associated 

(FTO), insulin-receptor substrate 1 (IRS1) and potassium voltage-gated channel 

subfamily Q member 1 (KCNQ). Due to variation across different populations, further 

studies are needed to confirm the association between risk alleles and GDM. Further 

analysis in diverse ethnic groups is required to examine whether these risk variants 

can be used as biomarkers to predict the development of GDM. Despite the association 

between genetics and GDM, the important role of the environment in GDM 

susceptibility is increasingly being recognised. 

5.4. Epigenetics 

Epigenetics is defined as changes in gene expression that occur without changes in the 

underlying DNA sequence (Christensen & Marsit, 2011). These changes reflect gene-

environment interactions and are increasingly being implicated in the 

pathophysiology of metabolic diseases (Gu et al., 2013; Martín-Núñez et al., 2014). 

Epigenetic mechanisms include DNA methylation, chromatin and histone 

modifications, and non-coding RNAs such as microRNAs (miRNAs). DNA 

methylation is the most widely studied and best characterised epigenetic mechanism, 
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and refers to the addition of a methyl group to the fifth carbon position of a cytosine 

nucleotide, often leading to transcriptional repression (Lim & Maher, 2010). DNA 

methylation plays a key role in regulating genes involved in metabolic adaptation 

during pregnancy (Houde et al., 2013), and aberrant DNA methylation is implicated 

in the pathophysiology of GDM. Altered DNA methylation patterns have been 

demonstrated in maternal blood, placental tissue and cord blood of GDM complicated 

pregnancies, thus supporting its potential as biomarkers (Lesseur et al., in press; 

Ruchat et al., 2013; Nomura et al., 2014; Finer et al., 2015; Reichetzeder et al., 2016; 

Haertle et al., 2017).  

Wu et al. (Wu et al., 2018) demonstrated that two genes, Hook microtubule-tethering 

protein 2 (HOOK2) and retinol dehydrogenase 12 (RDH12), are differentially 

methylated in placenta and whole blood of women with GDM. Interestingly, the 

changes in methylation status of these genes in whole blood occurred prior to the 

development of GDM, supporting their potential as screening biomarkers of GDM. In 

a study investigating maternal and cord blood in pregnant women and their offspring, 

Kang et al. (Kang et al., 2017) identified 200 genes that were differentially methylated 

in women with GDM compared to controls. Conversely, our recent study showed no 

differences in global DNA methylation between pregnant women with GDM and 

those with normoglycemia in SA (Dias, Adam, Wyk, et al., 2019). Global DNA 

methylation is a robust marker for overall genomic methylation; therefore, our failure 

could be due to subtle methylation differences between GDM and control groups. 

Perhaps, a more targeted approach using genome-wide gene-specific DNA 

methylation should be considered. Together, these studies show that altered DNA 

methylation in different biological material plays an important role the 

pathophysiology of GDM and offer opportunities as biomarkers. 
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MiRNAs, another epigenetic mechanism that is widely explored as biomarkers for 

GDM (Ge et al., 2015), have been shown to post transcriptionally regulate genes 

involved in diverse biological processes including glucose homeostasis (Bartel, 2004). 

Placental miRNA expression reflects metabolic adaptation, with aberrant expression 

observed during GDM. Interestingly, the expression of many of these altered miRNAs 

is mirrored in serum or plasma, thus offering potential as biomarkers for GDM. Zhao 

et al. (Zhao et al., 2011) reported that the expression of miR-29a and miR-222, miRNAs 

that are involved in insulin sensitivity, glucose homeostasis and beta-cell function, are 

decreased in serum of Chinese women with GDM compared with pregnant women 

without GDM. Pheiffer et al. (Pheiffer et al., 2018) similarly reported that the 

expression of miR-222 is decreased in the serum of South African women with GDM. 

They also reported the decreased expression of miR-20a, which was a significant 

predictor of GDM. Conversely, Tagoma et al. (Tagoma et al., 2018) reported increased 

expression of plasma-derived miR-222 in Finnish women with GDM compared with 

controls, while miR-20a was increased in Chinese women with GDM compared with 

controls (Zhu et al., 2015). Furthermore, many studies have demonstrated that 

placenta-specific miRNAs are altered in pregnancy complications, such as pre-

eclampsia, macrosomia, preterm delivery, pregnancy loss and small-for-gestational-

age babies, which further supports the use of miRNAs as predictive biomarkers for 

adverse pregnancy outcomes (Barchitta et al., 2017; Guarino et al., 2018). 

GDM creates an abnormal intrauterine environment that negatively affects the long-

term health of offspring, possibly through in utero programming of epigenetic 

mechanisms such as DNA methylation and miRNAs (El Hajj et al., 2013; Tryggestad 

et al., 2016; Haertle et al., 2017; Tsai et al., 2017). Using genome-wide methylation 

analysis, Heartle et al. (Haertle et al., 2017) identified 65 CpG sites associated with 52 

genes that were differentially methylated in foetal cord blood from GDM and control 
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pregnancies. Of these, five candidate genes that play a role in metabolic pathways 

associated with oxidative damage, cardiovascular complications, glucose and amino 

acid metabolisms and adipocyte differentiation were validated. El Hajj et al. showed 

gene-specific methylation changes in the maternally imprinted MESH gene and non-

imprinted glucocorticoid receptor (NR3C1) gene in both cord blood and placental 

tissue of GDM groups compared with controls (El Hajj et al., 2013). Recently, altered 

miRNA expression in the cord blood of offspring was shown to be associated with 

foetal complications (Tsai et al., 2017). Tryggestad et al. indicated that seven miRNAs 

were upregulated in human umbilical vein endothelial cells from infants born to 

mothers with GDM (Tryggestad et al., 2016). Despite their stability, relative ease of 

quantification and affordability, DNA methylation and miRNAs present several 

challenges that hinder their reproducibility across studies. Future research should 

explore risk scoring systems that can be used to combine molecular markers with 

maternal risk indicators to develop a clinical prediction tool for GDM.  

6. SCREENING AND DIAGNOSIS IN SOUTH AFRICA 

The four most common diagnostic criteria used in SA are the IADPSG/WHO 

2013/FIGO, NICE, American College of Obstetricians and Gynaecologists (ACOG) 

and WHO 1999 criteria (Table 4.1). In 2017, the Society for Endocrinology, Metabolism 

and Diabetes of South Africa (SEMDSA) endorsed the IADPSG/WHO 2013 criteria 

and universal testing of all pregnant women (SEMDSA, 2017). However, the use of 

the IADPSG/WHO 2013 criteria is still being debated, as many clinicians consider 

these unfeasible in low- and middle-income countries such as SA. Their view is that it 

leads to overdiagnosis, and places a high demand on costs, workload and resources. 

Therefore, many local and regional health facilities continue to use risk-factor, 
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selective IADPSG/WHO 2013, NICE, ACOG or WHO 1999 criteria (Table 4.2) 

(McIntyre et al., 2015). 

Table 4.1. Diagnostic criteria for GDM commonly used in South Africa. 

Organisation 
Glucose 

load (g) 

0 hr 

glucose 

(mmol/L) 

1 hr 

glucose 

(mmol/L) 

2 hr 

glucose 

(mmol/L) 

3 hr 

glucose 

(mmol/L) 

Values 

for 

diagnosis 

IADPSG/WHO/FIGO 75 5.1 10 8.5 - ≥1 

NICE 75 5.6 - 7.8 - ≥1 

ACOG 100 5.3 10 8.6 7.8 ≥2 

WHO 1999 75 7.0 - 7.8 - ≥1 

ACOG, The American Congress of Obstetricians and Gynaecologists; FIGO, Federation of Gynaecology 

and Obstetrics; IADPSG, International Association of Diabetes in Pregnancy Study Groups; NICE, The 

National Institute for Health and Care Excellence; WHO, World Health Organisation; OGTT, oral 

glucose tolerance test. 
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Table 4.2. Current approach to GDM screening at selected Academic Centres in South Africa (Personal 

Communication). 

Institution Testing 
Diagnostic 

Criteria 

Level of 

Screenin

g 

Glucometer vs. 

Laboratory 

#GDM 

Management 

UP Selective 
IADPSG/WHO 

2013 

Clinic & 

Hospital 

Glucometer & 

Laboratory 
Tertiary hospital 

WITS Selective NICE Hospital Laboratory Tertiary hospital 

UKZN 

Selective & 

universal for: RK 

Khan hospital - 

Indian 

IADPSG/WHO 

2013 
Hospital Laboratory Tertiary hospital 

UCT Selective 
IADPSG/WHO 

2013 
Hospital Laboratory Tertiary hospital 

US Selective NICE 
Clinic & 

hospital 
Glucometer Tertiary hospital 

UFS Selective 
IADPSG/ WHO 

2013 

Clinic & 

hospital 

Glucometer & 

Laboratory 
Tertiary hospital 

SMU Selective 
¥Modified 

WHO 
Hospital Laboratory Tertiary Hospital 

Walter 

Sisulu 
Selective 

IADPSG/WHO 

2013 
Hospital Laboratory Tertiary Hospital 

SMU, Sefako Makgatho Health Sciences University; UCT, University of Cape Town; UFS, University of 

Free State; UKZN, University of KwaZulu-Natal; UP, University of Pretoria; US, University of 

Stellenbosch; Wits, University of the Witwatersrand; WHO, World Health Organisation; IADPSG, 

International Association of Diabetes in Pregnancy Study Group; NICE, National Institute for Health 

Care Excellence; Selective: based on risk factors; Universal, all women get an OGTT. #All women are 

referred to a tertiary hospital for management of GDM with a positive OGTT. ¥Modified WHO refers 

to the institute’s own version of the WHO criteria, which has not yet been published. 
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7. CURRENT PERSPECTIVES AND FUTURE RECOMMENDATIONS 

 

8. CONCLUSIONS 

We have highlighted the varied screening and diagnostic strategies currently 

employed in SA. Although universal screening and diagnosis of GDM are widely 

advocated as a strategy to promote appropriate treatment and improve pregnancy 

outcomes, it is not feasible in many low-and middle-income countries, resulting in 

many countries using risk factor-based selective screening. The lack of uniform GDM 

screening and diagnostic criteria and variation in clinical practice negatively affect 

maternal and child health. There is limited evidence to support one approach over the 

other. There is a need for longitudinal studies across SA to investigate the association 

between diagnostic criteria and pregnancy outcomes, as well as long-term outcomes 

in mothers and their offspring. We recommend that a SA diabetes-in-pregnancy study 

group, comprising interested obstetricians, physicians, endocrinologists, public health 

specialists, dieticians and scientists, be established to co-ordinate such initiatives and 

• Early screening and diagnosis of GDM improves health outcomes  

• Although the OGTT is the gold standard for diagnosis, there is no consensus 

and GDM diagnosis is not standardised 

• Novel screening and diagnostic strategies offer potential as biomarkers of 

GDM, but are yet to achieve clinical applicability 

• Future longitudinal studies across SA are required to assess the risks and 

benefits of diagnostic criteria and pregnancy outcomes 

• Experts are needed to establish and co-ordinate such initiatives and to make 

evidence-based recommendations on GDM screening and diagnosis 
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to make evidence-based recommendations on GDM screening, diagnosis and 

management.   
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5.  CHAPTER 5  

 

 

 

 

MOLECULAR BIOMARKERS FOR 

GESTATIONAL DIABETES MELLITUS 

 

 

 

Adapted from: 

Dias S, Pheiffer C, Abrahams Y, Rheeder P, Adam S. Molecular Biomarkers for 

Gestational Diabetes Mellitus. Int J Mol Sci 2018;19. doi:10.3390/ijms19102926. (Review 

Article).  
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1. ABSTRACT 

Gestational diabetes mellitus (GDM) is a growing public health problem worldwide. 

The condition is associated with perinatal complications and an increased risk for 

future metabolic disease in both mothers and their offspring. In recent years, 

molecular biomarkers have received considerable interest as screening tools for GDM. 

The purpose of this review is to provide an overview of the current status of single 

nucleotide polymorphisms (SNPs), DNA methylation and microRNAs as biomarkers 

for GDM. PubMed, Scopus and Web of Science were searched for articles published 

between January 1990 and August 2018. The search terms included ‘gestational 

diabetes mellitus’, ‘blood’, ‘single nucleotide polymorphism (SNP)’, ‘DNA 

methylation’, and ‘microRNAs’ including corresponding synonyms and associated 

terms for each word. This review updates current knowledge of the candidacy of these 

molecular biomarkers for GDM with recommendations for future research avenues. 
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2. INTRODUCTION  

GDM is defined as glucose intolerance that is first diagnosed during the latter half of 

pregnancy, with return to normoglycemia postpartum (WHO, 2013). The prevalence 

of GDM is increasing worldwide, with approximately 14% of pregnancies affected by 

GDM (International Diabetes Federation, 2017). The condition is associated with 

perinatal complications and an increased risk for future metabolic disease in both 

mothers and their offspring. The oral glucose tolerance test (OGTT) is considered the 

gold standard for the diagnosis of GDM. However, the test is cumbersome to conduct, 

requires fasting, multiple blood draws, and its association with nausea and vomiting 

leads to decreased patient compliance. Furthermore, the OGTT is conducted between 

24-28 weeks of gestation (IADPSG panel, 2010; WHO, 2013), presenting a small 

window of opportunity to implement interventions to improve pregnancy outcomes. 

Earlier detection of GDM may lead to improved management, possibly preventing 

pregnancy complications. The identification of sensitive and specific biomarkers, 

which may offer potential for risk prediction and intervention strategies, has thus 

become a major focus in GDM research. Several studies have provided evidence for 

genetic predisposition to GDM (Wu et al., 2016), while gene-environment interactions 

could explain the population-specific variation in GDM prevalence (Pheiffer et al., 

2018). Consequently, single nucleotide polymorphisms (SNPs) and epigenetic 

mechanisms are widely explored as molecular biomarkers for GDM.  

The purpose of this review is to provide an overview of the current status of SNPs and 

the two most commonly investigated epigenetic mechanisms, DNA methylation and 

microRNAs (miRNAs), as molecular biomarkers for GDM. Three major databases, 

PubMed, Scopus and Web of Science were searched for studies published between 

January 1990 and August 2018 that investigated SNPs, DNA methylation and 



 

67 

 

miRNAs in the blood of women with GDM. Blood was selected as it is easily accessible 

as part of routine antenatal care. The search terms included ‘gestational diabetes 

mellitus’, ‘blood’, ‘single nucleotide polymorphism (SNP)’, ‘DNA methylation’ and 

‘microRNAs’, including corresponding synonyms and associated terms for each word 

(Appendix, Table A1). Articles were selected if they reported case-control studies that 

investigated GDM in association with SNPs, DNA methylation or miRNAs in 

maternal blood, plasma or serum, and were conducted in humans. This review will 

begin with an overview of GDM, followed by a brief description of the characteristics 

of ideal biomarkers. Thereafter, studies profiling SNPs and DNA methylation in 

whole blood, and miRNAs in whole blood, plasma or serum of women with GDM are 

summarised, and the limitations of these molecular biomarkers are discussed. Finally, 

the current status of GDM biomarkers will be discussed, along with recommendations 

for future research.  

3. OVERVIEW OF GESTATIONAL DIABETES MELLITUS 

The exact mechanism underlying the development of GDM is not completely 

understood, however, it is speculated that women who develop GDM are unable to 

meet the increasing demand for insulin production during pregnancy (Barbour et al., 

2007). GDM is associated with an increased risk of short-and long-term pregnancy 

complications. Women with GDM have a higher risk for pre-eclampsia, caesarean 

section and birth injury, while postpartum complications to offspring include 

macrosomia, shoulder dystocia, hyperinsulinemia, hypoglycaemia and 

hyperbilirubinemia (Alam et al., 2006; Mohammadbeigi et al., 2013; Young & Ecker, 

2013). In the long-term both mothers and their offspring are predisposed to metabolic 

conditions such as obesity, type 2 diabetes (T2D) and cardiovascular disease 

(Mitanchez et al., 2015). Estimates are that approximately 30% of offspring (Garcia-
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Vargas et al., 2012) and more than 70% of women with previous GDM (Kim, Newton 

& Knopp, 2002) are predisposed to develop type T2D in later life, thus posing a 

significant health and economic burden to health systems. 

Recently, several studies have provided evidence that early detection and treatment 

of GDM improve health outcomes (Duran et al., 2014). Consequently, universal 

screening for GDM is advocated by most international organisations (McIntyre et al., 

2015). However, only women who have traditional risk factors for GDM (obesity, 

ethnicity, advanced maternal age, glycosuria and previous adverse pregnancy 

outcomes) (Zhang, Rawal & Chong, 2016; Adam & Rheeder, 2017), are recommended 

for the OGTT in resource limited settings. Unfortunately, these risk factors have poor 

predictive value, resulting in many women with GDM not receiving appropriate 

treatment (Miailhe et al., 2015). Thus, there is significant impetus to identify 

biomarkers of GDM. Serum proteins such as adiponectin, insulin, sex hormone 

globulin, C-reactive protein and glycosylated fibronectin have been widely studied 

(Smirnakis et al., in press; Nanda et al., 2011; Rasanen et al., 2013; Adam & Rheeder, 

2017), while the diagnostic utility of glycated haemoglobin (HbA1c) has also been 

explored (Renz et al., 2015). However, none of these potential biomarkers have yet 

achieved clinical applicability. Evidence for genetic susceptibility (Zhang et al., 2013) 

and dysregulated epigenetic regulation, in particular DNA methylation (Haertle et al., 

2017) and miRNAs (Guarino et al., 2018), is increasingly being reported during GDM, 

sparking interest in their use as molecular biomarkers.  

4. CHARACTERISTICS OF IDEAL BIOMARKERS 

Biomarkers are indicators of normal biological processes that can be used to detect 

disease or other biological states of organisms. They are considered to be clinically 
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useful because they can potentially predict or diagnose disease, give insight into the 

pathophysiology of disease and can be used to monitor pharmacological responses to 

therapeutic intervention or predict clinical outcome (Strimbu & Tavel, 2010). Recent 

advancements in molecular biology have led to the development of molecular 

biomarkers that are easily measured in biological fluids such as whole blood, plasma 

and serum. The ideal biomarker should be cost effective and reproducible, easily 

accessible through non-invasive methods, stably expressed in biological fluids, 

sensitive to relevant changes in disease state, provide early detection of disease before 

clinical symptoms arise, and have the ability to differentiate between disease 

pathologies (Etheridge et al., 2011; Sahu et al., 2011). Commercial kits for SNPs 

(Huijsmans et al., 2007), DNA methylation (Mikeska & Craig, 2014) and miRNAs 

(Hydbring & Badalian-Very, 2013) are already clinically available for a number of 

other disorders. 

5. SINGLE NUCLEOTIDE POLYMORPHISMS 

Single nucleotide polymorphisms (SNPs) refer to alterations in the DNA sequence at 

individual nucleotide bases. They are the most common genetic variation, with over 

10 million SNPs present in the human genome (Consortium, 2007). In most cases SNPs 

are silent, not altering the function or expression of genes (Sachidanandam et al., 

2001), while others are biologically functional, and can lead to altered protein function 

and disease. The search for SNPs that influence disease susceptibility and outcome is 

a field of active research. Several studies have provided evidence that SNPs are 

associated with metabolic conditions including obesity, T2D and cardiovascular 

disease (McCarthy, 2010). Variants in more than 50 and 80 loci have been found to be 

associated with obesity (Rankinen et al., 2006) and T2D (Morris et al., 2012), 
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respectively, and occur in genes that regulate glucose homeostasis and insulin 

signalling.  

5.1. Single Nucleotide Polymorphisms and Gestational Diabetes Mellitus 

Genetic variants are increasingly being implicated in the pathogenesis of GDM (Wu 

et al., 2016). Evidence suggest that genetic alterations in genes responsible for 

metabolic changes during pregnancy predispose to GDM. In this review, a total of 76 

studies were identified that investigated SNPs during GDM, using the search terms 

previously stated. However, to increase the likelihood of reporting a true association, 

only SNPs investigated in two or more populations were reported. Thirty-six SNPs 

investigated in 52 studies met the inclusion criteria and are summarised in Table 5.1. 

Genetic studies of the Transcription factor 7 like 2 (TCF7L2) gene, which is arguably 

one of the most important T2D susceptibility genes (Hattersley, 2007), have produced 

varying results in GDM (Papadopoulou et al., 2011; Huopio et al., 2013; Stuebe et al., 

2013; Reyes-López, Pérez-Luque & Malacara, 2014; Pagán et al., 2015; Michalak-

Wojnowska et al., 2016; Anghebem-Oliveira, Martins, et al., 2017; Popova et al., 2017; 

Ding et al., 2018; Franzago et al., 2018). TCF7L2 encodes a transcription factor, which 

is involved in the Wnt signalling, an important pathway that regulates glucose 

homeostasis. Twenty studies conducted in diverse populations have screened four 

SNPs (rs7903146, rs4506565, rs7901695 and rs12255372) in the TCF7L2 gene. Four of 

the eight studies that investigated rs7903146 showed an association between the T 

allele and GDM (Papadopoulou et al., 2011; Huopio et al., 2013; Ding et al., 2018; 

Franzago et al., 2018). The other studies failed to observed an association between 

rs7903146 and GDM, possibly due to small samples size and lack of statistical power. 

(Reyes-López, Pérez-Luque & Malacara, 2014; Pagán et al., 2015; Michalak-

Wojnowska et al., 2016). Both studies investigating rs4506565 reported an association 
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between the T allele and GDM (Pagán et al., 2015; Ding et al., 2018). One of the five 

studies investigating rs7901695 found an association between GDM and the T allele in 

American Caucasians (Stuebe et al., 2013), while one study found that the C allele, 

rather than the T allele was associated with GDM in a large Swedish population 

(Papadopoulou et al., 2011). The three studies that did not show an association had 

relatively small sample sizes (Pagán et al., 2015; Michalak-Wojnowska et al., 2016; 

Anghebem-Oliveira, Martins, et al., 2017). Of the five studies investigating rs12255372, 

two showed an association between the T allele and GDM, one was conducted in a 

large Swedish population and the other in a small Mexican population 

(Papadopoulou et al., 2011; Reyes-López, Pérez-Luque & Malacara, 2014). However, 

these results were not replicated in studies conducted in Russian, Spanish nor 

Brazilian populations (de Melo et al., 2015; Pagán et al., 2015; Popova et al., 2017) of 

moderate size, suggesting that ethnic or other confounding factors underlie these 

differences. The T-allele is associated with decreased insulin production and altered 

hepatic gluconeogenesis (Pilgaard et al., 2009), and therefore is a good candidate for 

further research in larger cohorts, despite these conflicting results obtained in these 

studies.  

Adiponectin, an adipokine that regulates glucose and lipid metabolism (Bouchard et 

al., 2012; Bao et al., 2015), has been associated with GDM in many studies. Three SNPs 

within the adiponectin (ADIPOQ) gene, rs1501299, rs266729 and rs2241766, were 

investigated in ten studies. Markedly, seven studies that investigated rs266729 (Liang 

et al., 2010; Pawlik et al., 2017) and rs2241766 (Low et al., 2011; Beltcheva et al., 2014; 

Han et al., 2014; Takhshid, Haem & Aboualizadeh, 2015) found that the G allele was 

associated with GDM in various populations, while one study found no association 

between either rs266729 or rs2241766 and GDM in a Brazilian population 

(Gueuvoghlanian-Silva et al., 2012). Both of the studies investigating rs1501299 



 

72 

 

showed no association between this SNP and GDM (Beltcheva et al., 2014; Pawlik et 

al., 2017).  

The melatonin receptor 1B gene (MTNR1B) encodes one of the receptors for melatonin, 

a hormone that is involved in regulating circadian rhythms, insulin signalling and 

glucose metabolism, amongst others (Sun et al., 2018). Two SNPs rs10830963 and 

rs1387153 within the MTNR1B gene were investigated. Eight of the nine studies that 

screened rs10830963 showed that the G-allele was associated with an increased risk 

for GDM in several Caucasian (Huopio et al., 2013; Stuebe et al., 2013; Popova et al., 

2017; Rosta et al., 2017; Tarnowski, Malinowski, Safranow, et al., 2017a; Ding et al., 

2018), as well as in Chinese and South Korean populations (Kim et al., 2011; Li et al., 

2019). However, Wang et al. found that this SNP was not associated with GDM in a 

different Chinese population (Wang et al., 2011). The three studies that investigated 

rs1387153 reported an association between the T allele and GDM (Kim et al., 2011; 

Popova et al., 2017; Ding et al., 2018). Variants in MTNR1B, particularly the G allele of 

rs10830963 was previously shown to be associated with increased fasting glucose 

concentrations and reduced beta-cell function in Caucasians (Prokopenko et al., 2009).  

Glucokinase (GCK) and the Glucokinase receptor (GCKR) play critical roles in glucose 

processing in the liver (Iynedjian, 2009). Two variants, rs1799884 and rs4607517, 

within the GCK gene were studied for GDM. For rs1799884, the minor allele, reported 

as either T (Popova et al., 2017) or A (Han et al., 2015) was associated with an increased 

risk of GDM. Tarnowski et al. also showed a trend towards a significant association 

between the T allele and risk of GDM in a Polish population (Tarnowski, Malinowski, 

Pawlak, et al., 2017). However, a large study in a Finnish population showed no 

association between rs1799884 and GDM (Huopio et al., 2013). No association between 

rs4607517 and GDM was observed (Wang et al., 2011; Huopio et al., 2013). Within the 
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GCKR gene, the C allele of rs780094 was associated with an increased risk of GDM in 

Malaysian, American Caucasian and Brazilian populations (Stuebe et al., 2013; 

Anghebem-Oliveira, Webber, et al., 2017; Jamalpour et al., 2018), but not in studies 

conducted in Polish or Finnish populations (Huopio et al., 2013; Tarnowski, 

Malinowski, Pawlak, et al., 2017). The C allele was increased in women with GDM 

from the Polish population, but this did not reach significance due to lack of statistical 

power.  

The association between genetic variants within the fat mass and obesity-associated 

(FTO) gene and metabolic syndrome is widely reported (Wang, Dong, et al., 2012). 

FTO encodes an alpha-ketoglutarate dependent dioxygenase, that plays a role in 

adipocyte development and function (Merkestein & Sellayah, 2015). Three SNPs 

within the FTO gene have been studied for GDM. Of the six studies investigating 

rs9939609, one study in a Finnish population found an association between the A allele 

and an increased risk for GDM (Huopio et al., 2013), another study in a small Spanish 

population found an association between the T allele and GDM (Pagán et al., 2015), 

while four studies reported no association (de Melo et al., 2015; Popova et al., 2017; 

Saucedo et al., 2017; Franzago et al., 2018). Discrepancies between the studies are 

possibly due to ethnic and genotyping method differences. None of the studies 

investigating rs8050136 and rs1421085 found an association between these SNPs and 

GDM (de Melo et al., 2015; Anghebem-Oliveira, Martins, et al., 2017; Saucedo et al., 

2017). 

Insulin receptor substrate 1 (IRS1) is a protein that plays a key role in transmitting 

signals from the insulin and insulin-like growth factor-1 receptors to intracellular 

pathways that are associated with insulin response and risk of T2D (Gual, Le 

Marchand-Brustel & Tanti, 2005). Two genetic variants, rs1801278 and rs7578326, 
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within IRS1 have been investigated during GDM. For rs1801278 the T allele was 

associated with an increased risk of GDM (Alharbi et al., 2014) in a Saudi Arabian, but 

not in a Russian population (Popova et al., 2017), while for rs7578326 the G allele was 

associated with a decreased risk of GDM in a Austro-Hungarian population (Rosta et 

al., 2017), but not in a Finnish population (Huopio et al., 2013). As previously stated, 

these conflicting results may be due to population and genotyping method 

differences.  

Potassium Voltage-Gated Channel Subfamily Q Member 1 (KCNQ1) plays a role in 

insulin secretion, and variants of KCNQ1 are associated with decreased insulin 

secretion and increased susceptibility to T2D (Yasuda et al., 2008). Two variants, 

rs2237895 and rs2237892, were investigated in different populations in four studies. 

In both variants, the C allele was associated with an increased risk of GDM (Kwak et 

al., 2010; Ao et al., 2015; Fatima et al., 2016). The Solute Carrier Family 30 Member 8 

(SLC30A8) genes encodes a zinc transporter protein that plays a role in insulin 

secretion and variants of the gene are associated with T2D risk (Flannick et al., 2014). 

Rs13266634 was investigated in four studies with varying results. One study showed 

that the T allele was associated with a decreased risk of GDM in an Austro-Hungarian 

population, while the C allele was found to be associated with an increased risk of 

GDM in a Chinese and Swedish population (Liang et al., 2010; Dereke et al., 2016; 

Rosta et al., 2017). A large Finnish population showed no association between 

rs13266634 and GDM (Huopio et al., 2013). 

As illustrated in Table 5.1, SNPs in 15 other genes were investigated in two studies, 

however, these showed either a positive association in one study only, or no 

association with GDM. Of these, SNPs within nine genes, CDK5 Regulatory Subunit 

Associated Protein 1 Like (CDKAL1), Calpain 10 (CAPN10), Potassium Voltage-Gated 
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Channel Subfamily J Member 11 (KCNJ11), Retinol Binding Protein 4 (RBP4), Group-

Specific Component (GC), Serine/Threonine Kinase 11 (STK11), Macrophage 

Migration Inhibitory Factor (MIF), Cyclin Dependent Kinase Inhibitor 2A/2B 

(CDKN2A/2B) and Insulin Like Growth Factor 2 mRNA Binding Protein 2 (IGF2BP2), 

were associated with GDM in one population only, while SNPs within six genes, CD36 

Molecule (CD36), Peroxisome Proliferator Activated, Receptor Gamma 2 (PPARG2), 

Vitamin D Receptor (VDR), Cell Division Cycle 123 Homolog/Calmodulin Dependent 

Protein Kinase ID (CDC123/CAMK1D), Interleukin 10 (IL-10) and Tumour Necrosis 

Factor-Alpha (TNF-α) were not associated with GDM in any of the populations 

investigated. 

5.2. Limitations of Single Nucleotide Polymorphisms 

There are inherent limitations in genetic association studies, particularly in studies of 

polygenic and multifactorial diseases such as GDM. As stated above, these limitations 

include inadequate sample size to detect statistically significant associations, and 

differences in allele frequencies and disease aetiology between ethnicities, which may 

explain why many genetic associations are not reproducible across populations. 

Furthermore, GDM diagnosis is not standardised internationally, thus different 

diagnostic criteria could have contributed to the discordant results observed between 

studies. Importantly, genetic variants do not solely contribute to the development of 

complex diseases and it is widely believed that disease arise due to the interaction of 

genetic predisposition and environmental factors (Welter et al., 2014). Thus, to 

accurately assess risk of GDM, biological and environmental factors, such as maternal 

age and diet (Popova et al., 2017), should be considered together with genetic variants. 

Despite the variable results obtained across studies, many of the variants found to be 

associated with GDM, are also associated with T2D, supporting their biological 



 

76 

 

plausibility. Therefore, while the aetiology of GDM may differ from T2D, the genetic 

pathways through which the symptoms manifest are likely to overlap. In this review, 

only studies that profiled SNPs in DNA extracted from whole blood were reported 

on. However, the use of less invasive sources of genetic material such as buccal swabs 

is acknowledged (Andraweera et al., 2017). Furthermore, this review only included 

SNPs reported in two or more studies, and may have overlooked other important 

SNPs possibly associated with GDM. Thus, illustrating the importance of using the 

correct keywords and search terms for literature screening. 
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Table 5.1. Studies reporting on single nucleotide polymorphisms profiled in two or more populations with Gestational diabetes mellitus. 

Author Gene 
SNP 

identification 
Country 

Detection 

method 
Case/control 

Associated allele or 

genotype 

Risk for 

GDM 

(Ding et al., 2018) TCF7L2 rs7903146 Denmark & USA  qRT-PCR 2636/6086 T allele Increased 

(Franzago et al., 2018)   Italy  HRM 104/124 T allele Increased 

(Popova et al., 2017)   Russia  qRT-PCR 278/179 No association - 

(Michalak-Wojnowska et 

al., 2016) 
  Poland  qRT-PCR 50/26 No association - 

(Pagán et al., 2015)   Spain  Sequencing 45/25 No association - 

(Reyes-López, Pérez-

Luque & Malacara, 2014) 
  Mexico  RFLP 90/108 No association - 

(Papadopoulou et al., 

2011) 
  Sweden  qRT-PCR 826/1185 T allele Increased 

(Huopio et al., 2013)   Finland  MassARRAY 533/407 T allele Increased 

(Ding et al., 2018)  rs4506565 Denmark & USA qRT-PCR 2636/6086 T allele Increased 

(Pagán et al., 2015)   Spain  Sequencing 45/25 T allele Increased 

(Anghebem-Oliveira, 

Martins, et al., 2017) 
 rs7901695 Brazil  qRT-PCR 127/125 No association - 
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(Michalak-Wojnowska et 

al., 2016) 
  Poland  qRT-PCR 50/26 No association - 

(Pagán et al., 2015)   Spain  Sequencing 45/25 No association - 

(Stuebe et al., 2013)   USA / African American 

(AA) & Caucasian (C) 
MassARRAY 

26/362 (AA) & 56/843 

(C) 

No association (AA) 

T allele (C) 

- 

Increased  

(Papadopoulou et al., 

2011) 
  Swedish  qRT-PCR 805/1116 C allele Increased 

(Popova et al., 2017)  rs12255372 Russia  qRT-PCR 278/179 No association - 

(de Melo et al., 2015)   Brazil  qRT-PCR 200/200 No association - 

(Pagán et al., 2015)   Spain Sequencing 45/25 No association - 

(Reyes-López, Pérez-

Luque & Malacara, 2014) 
  Mexico  RFLP 90/108 T allele Increased 

(Papadopoulou et al., 

2011) 
  Swedish  qRT-PCR 826/1185 T allele Increased 

(Pawlik et al., 2017) ADIPOQ rs1501299 Poland  qRT-PCR 204/207 No association - 

(Beltcheva et al., 2014)   Bulgaria qRT-PCR 130/130 No association - 

(Pawlik et al., 2017)  rs266729 Poland  qRT-PCR 204/207 G allele Increased 
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(Beltcheva et al., 2014)   Bulgaria  qRT-PCR 130/130 G allele Increased 

(Liang et al., 2010)   China 
MassArray & 

Gene chip  

50/80 

24/24 
G allele Increased 

(Gueuvoghlanian-Silva 

et al., 2012) 
  Brazil RFLP 79/169 No association - 

(Takhshid, Haem & 

Aboualizadeh, 2015) 
 rs2241766 Iran  RFLP 65/70 G allele Increased 

(Han et al., 2014)   China  RFLP 128/140 G allele Increased 

(Beltcheva et al., 2014)   Bulgaria  qRT-PCR 130/130 G allele Increased 

(Low et al., 2011)   Malaysia RFLP 26/53 G allele Increased 

(Gueuvoghlanian-Silva 

et al., 2012) 
  Brazil RFLP 79/169 No association - 

(Ding et al., 2018) MTNR1B rs10830963 Denmark and USA  qRT-PCR 2636/6086 G allele Increased 

(Li et al., 2019)   China  Sequencing 215/243 G allele Increased 

(Tarnowski, Malinowski, 

Safranow, et al., 2017a) 
  Poland  qRT-PCR 204/207 G allele Increased 

(Rosta et al., 2017)   Hungary & Austria  KASP 287/533 G allele Increased 
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(Popova et al., 2017)   Russia  qRT-PCR 278/179 G allele Increased 

(Stuebe et al., 2013)   
USA African American 

(AA) & Caucasian (C) 
MassARRAY 

26/362 (AA) & 

 56/843 (C) 

No association (AA) 

G allele (C) 

- 

Increased 

(Wang et al., 2011)   China  qRT-PCR 725/1039 No association - 

(Kim et al., 2011)   South Korea  qRT-PCR 928/990 G allele Increased 

(Huopio et al., 2013)   Finland  MassARRAY 533/407 G allele Increased 

(Ding et al., 2018)  rs1387153 Denmark & USA  qRT-PCR 2636/6086 T allele Increased 

(Popova et al., 2017)   Russia  qRT-PCR 278/179 T allele Increased 

(Kim et al., 2011)   South Korea  qRT-PCR 928/990 T allele Increased 

(Tarnowski, Malinowski, 

Pawlak, et al., 2017) 
GCK rs1799884 Poland  qRT-PCR 204/207 No association - 

(Popova et al., 2017)   Russia  qRT-PCR 278/179 T allele Increased 

(Han et al., 2015)    China  
PCR Invader 

assay 
948/975 A* allele Increased 

(Huopio et al., 2013)   Finland  MassARRAY 533/407 No association - 

(Wang et al., 2011)  rs4607517 China  qRT-PCR 725/1039 No association - 
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(Huopio et al., 2013)   Finland  MassARRAY 533/407 No association - 

(Jamalpour et al., 2018) GCKR rs780094 Malaysia  MassARRAY 267/855 C allele Increased 

(Tarnowski, Malinowski, 

Pawlak, et al., 2017) 
  Poland  qRT-PCR 204/207 No association - 

(Anghebem-Oliveira, 

Webber, et al., 2017) 
  Brazil  qRT-PCR 127/125 C allele Increased 

(Stuebe et al., 2013)   USA / African American 

(AA) & Caucasian (C) 
MassARRAY 

26/362 (AA) &  

56/843 (C) 

No association 

C allele 

- 

Increased  

(Huopio et al., 2013)   Finland MassARRAY 533/407 No association - 

(Franzago et al., 2018) FTO rs9939609 Italy  HRM 104/124 No association - 

(Saucedo et al., 2017)   Mexico  qRT-PCR 80/80 No association - 

(Popova et al., 2017)   Russia  qRT-PCR 278/179 No association - 

(de Melo et al., 2015)   Brazil  qRT-PCR 200/200 No association - 

(Pagán et al., 2015)   Spain  Sequencing 45/25 T allele Increased 

(Huopio et al., 2013)   Finland  MassARRAY 533/407 A allele Increased 

(Saucedo et al., 2017)  rs8050136 Mexico  qRT-PCR 80/80 No association - 
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(de Melo et al., 2015)   Brazil  qRT-PCR 200/200 No association - 

(Saucedo et al., 2017)  rs1421085 Mexico  qRT-PCR 80/80 No association - 

(Anghebem-Oliveira, 

Martins, et al., 2017) 
  Brazil  qRT-PCR 127/125 No association - 

(Popova et al., 2017) IRS1 rs1801278 Russia  qRT-PCR 278/179 No association - 

(Alharbi et al., 2014)   Saudi Arabia  RFLP 200/300 T allele Increased 

(Huopio et al., 2013)  rs7578326 Finland  MassARRAY 533/407 No association - 

(Rosta et al., 2017)   Hungary & Austria KASP 287/533 G allele Decreased 

(Fatima et al., 2016) KCNQ1 rs2237895 Pakistan 
RFLP / 

sequencing 
208/429 C allele Increased 

(Kwak et al., 2010)   South Korea  qRT-PCR 869/632 No association - 

(Ao et al., 2015)  rs2237892 China  MassARRAY 562/453 C allele Increased 

(Kwak et al., 2010)   South Korea  qRT-PCR 869/632 C allele Increased 

(Rosta et al., 2017) SLC30A8 rs13266634 Hungary & Austria  KASP 287/533 T allele Decreased 

(Dereke et al., 2016)   Sweden  RFLP 776/511 C allele Increased 

(Huopio et al., 2013)   Finland  MassARRAY 533/407 No association - 



 

83 

 

(Liang et al., 2010)   China 
MassArray & 

Gene chip  

50/80 

24/24 
C allele Increased 

(Noury et al., 2018) CDKAL1 rs7754840 Egypt  qRT-PCR 47/51 No association - 

(Rosta et al., 2017)   Hungary & Austria KASP 287/533 C allele Increased 

(Popova et al., 2017)   Russia  qRT-PCR 278/179 No association - 

(Wang et al., 2011)   China  qRT-PCR 725/1039 No association - 

(Huopio et al., 2013)   Finland  MassARRAY 533/407 No association - 

(Castro-Martínez et al., 

2018) 
CAPN10 SNP43 Mexico  

qRT-PCR & 

RFLP 
116/83 No association - 

(Leipold et al., 2004)   Austria  RFLP 100/100 No association - 

(Castro-Martínez et al., 

2018) 
 SNP63 Mexico  

qRT-PCR & 

RFLP 
116/83 No association - 

(Leipold et al., 2004)   Austria  RFLP 40/40 C allele Increased 

(Huopio et al., 2013)   Finland  MassARRAY 533/407 No association - 

(M et al., 2018) KCNJ11 rs5219 India  RFLP 230/240 T allele Increased 

(Popova et al., 2017)   Russia  qRT-PCR 278/179 No association - 
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(Huopio et al., 2013)   Finland  MassARRAY 533/407 No association - 

(Saucedo et al., 2014) RBP4 rs3758539 Mexico  qRT-PCR 100/100 No association - 

(Ping et al., 2012)   China  LDR 505/687 G allele Increased 

(Hiraoka et al., 2011)   
USA / Caucasian (C) & 

Filipino (F) & Pacific 

Islander (PI) 

qRT-PCR 

88 C, 82 F, and 19 PI / 

315 C, 286 F, and 32 

PI 

No association - 

(Shi et al., 2016) GC rs16847024 China MassARRAY 964/1021 T allele Increased 

(Wang et al., 2015)   China  qRT-PCR 692/802 No association - 

(Alharbi et al., 2015) STK11 rs8111699 Saudi Arabia  RFLP 200/300 No association - 

(Bassols et al., 2013)   Spain  qRT-PCR 243/318 G allele Decreased 

(Aslani et al., 2011) MIF rs1007888 Iran  PCR-SSP 147/169 G allele Increased 

(Huopio et al., 2013)   Finland  MassARRAY 533/407 No association - 

(Noury et al., 2018) CDKN2A/2B rs10811661 Egypt /Egyptian qRT-PCR 47/51 No association - 

(Ye et al., 2016)   Poland / Caucasian qRT-PCR 204/207 C allele Decreased 

(Huopio et al., 2013)   Finland / Caucasian MassARRAY 533/407 No association - 

(Popova et al., 2017) IGF2BP2 rs4402960 Russia  qRT-PCR 278/179 No association - 
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(Wang et al., 2015)   China  qRT-PCR 725/1039 T allele Increased 

(Huopio et al., 2013)   Finland  MassARRAY 533/407 No association - 

(Bartáková et al., 2018) CD36 rs1527479 Czech Republic  qRT-PCR 293/70 No association - 

(Yang et al., 2018)   China  qRT-PCR 209/215 No association - 

(Franzago et al., 2018) PPARG2 rs1801282 Italy  HRM 104/124 No association - 

(Anghebem-Oliveira, 

Martins, et al., 2017) 
  Brazil  qRT-PCR 127/125 No association - 

(Shi et al., 2016) VDR rs739837 China  MassARRAY 964/1021 No association - 

(Wang et al., 2015)   China  qRT-PCR 692/802 No association - 

(Tarnowski, Malinowski, 

Safranow, et al., 2017b) 

CDC123/CA

MK1D 
rs1277970 Poland  qRT-PCR 204/207 No association - 

(Huopio et al., 2013)   Finland  MassARRAY 533/407 No association - 

(Gueuvoghlanian-Silva 

et al., 2012) 
IL-10 rs1800896 Brazil RFLP 79/169 No association - 

(Montazeri, Nalliah & 

Radhakrishnan, 2010) 
  Malaysia RFLP 110/102 No association - 
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(Gueuvoghlanian-Silva 

et al., 2012) 
TNF-α rs1800629 Brazil RFLP 79/169 No association - 

(Montazeri, Nalliah & 

Radhakrishnan, 2010) 
  Malaysia RFLP 110/102 No association - 

RFLP - Restriction fragment length polymorphism of PCR amplified fragments; KASP - Kompetitive Allele Specific PCR; qRT- PCR - Quantitative real-time 

PCR (TaqMan allelic discrimination assay); LDR - Ligase detection reaction; HRM - High resolution melt-curve analysis; MassARRAY - Sequenom MassARRAY 

iPLEX platform; PCR invader assay - Invasive cleavage reaction which uses a structure-specific flap endonuclease. *A is the minor allele also reported as T . 

TCF7L2 - Transcription Factor 7 Like 2; ADIPOQ - Adiponectin; MTNR1B - Melatonin Receptor 1B; CAPN10 - Calpain 10; CDKAL1- CDK5 Regulatory Subunit 

Associated Protein 1 Like; CDKN2A/2B - Cyclin Dependent Kinase Inhibitor 2A / 2B; FTO - Fat Mass And Obesity Associated; GC - Group-Specific Component 

(Vitamin D Binding Protein); GCK - Glucokinase; GCKR - Glucokinase Regulator; IGF2BP2 - Insulin Like Growth Factor 2 mRNA Binding Protein 2; IRS1 - 

Insulin Receptor Substrate 1; KCNJ11 - Potassium Voltage-Gated Channel Subfamily J Member 11; KCNQ1- Potassium Voltage-Gated Channel Subfamily Q 

Member 1; RBP4 - Retinol Binding Protein 4; SLC30A8 - Solute Carrier Family 30 Member 8; STK11 - Serine/Threonine Kinase 11; MIF - Macrophage Migration 

Inhibitory Factor; CD36 - CD36 Molecule; PPARG2 - Peroxisome Proliferator Activated Receptor Gamma 2; VDR - Vitamin D Receptor; CDC123/CAMK1D - 

Cell Division Cycle 123 Homolog / Calmodulin Dependent Protein Kinase I; IL-10 -  Interleukin 10; TNF-α – Tumour Necrosis Factor Alpha.
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6. DNA METHYLATION 

DNA methylation, the most widely studied and best characterised epigenetic 

mechanism, occurs by the addition of a methyl group to the fifth carbon position of a 

cytosine residue within CpG dinucleotides (Lim & Maher, 2010). The process is 

catalyzed by the enzyme DNA methyltransferase (DNMT), with S-adenosyl-

methionine serving as the methyl donor. Methylation of CpG islands, which are 

regions with high levels of CpG dinucleotides primarily in the promoter regions of 

genes, is generally associated with transcriptional repression due to altered protein 

binding to target sites on DNA (Bird, 1980, 2002). DNA methylation is a reversible 

process (Wu & Zhang, 2017). Ten-eleven translocation (TET) methylcytosine 

dioxygenases are able to cause the oxidation and demethylation of methylated 

cytosine to 5-hydroxymethylcytosine (Wu & Zhang, 2017), which is associated with 

gene activation. Recently, DNA methylation of CpG poor islands have been identified 

downstream of active promoters, either within (intragenic) or between (intergenic) 

genes, although the role of methylation in these regions are not fully elucidated 

(Pheiffer et al., 2016). Approximately 55-90% of all CpG dinucleotides within CpG 

islands are methylated, constituting about 3% of the genome. Global DNA 

hypomethylation is associated with genomic and chromosomal instability, while 

DNA methylation within the promoters of genes is generally associated with gene 

silencing. Both aberrant global and gene-specific DNA methylation has been shown 

to be associated with metabolic conditions such as obesity (Van Dijk et al., 2015), T2D 

(Toperoff et al., 2012) and cardiovascular disease (Kim et al., 2010). Thus, 

characterization of altered DNA methylation during disease processes could give 

insight into the pathophysiology of disease, and reveal novel diagnostic, prognostic, 

and therapeutic targets.  
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6.1. DNA Methylation and Gestational Diabetes Mellitus 

DNA methylation during pregnancy plays a key role in modulating the 

transcriptional potential of the genome, and is known to affect gene expression 

pathways associated with a range of pathophysiological processes such as GDM 

(Bouchard et al., 2012; Houde et al., 2013). Several studies have demonstrated that 

DNA methylation is altered in the placenta and cord blood of women with GDM 

compared to women with normoglycemic pregnancies (Ruchat et al., 2013; Nomura 

et al., 2014; Finer et al., 2015; Reichetzeder et al., 2016). Intrauterine exposure to GDM 

leads to long lasting effects in the offspring and increases risk of disease in later life, 

possibly mediated by DNA methylation (El Hajj et al., 2013; Pinney, 2015). 

Importantly, it has been demonstrated that physiological and DNA methylation 

changes that occur during pregnancy are reflected in whole blood (Chim et al., 2008), 

thus increasing interest in screening maternal blood for biomarkers of GDM. DNA 

methylation profiling in pregnancies complicated by GDM is a relatively new research 

field, with limited studies conducted in maternal whole blood. Studies that have 

investigated DNA methylation in whole blood of women with GDM are summarised 

in Table 5.2. 

Global DNA methylation provides an estimate of overall genomic methylation and is 

relatively easy and cost-effective to measure (Kurdyukov & Bullock, 2016). Currently, 

the only study that has investigated global DNA methylation during GDM was 

conducted in our laboratory (Dias, Adam, Wyk, et al., 2019). The study showed that 

global DNA methylation was not associated with GDM in a SA population, 

suggesting that the method may be too crude to detect subtle glucose intolerance and 

that gene-specific methylation is warranted in this population. Genome-wide DNA 

methylation profiling in maternal blood during GDM has been conducted using 
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methylation bead chip arrays (Enquobahrie et al., 2015; Kang et al., 2017; Wu et al., 

2018). Methylation bead chip arrays can interrogate between 27,000 - 850,000 CpG sites 

across the genome at a single nucleotide resolution. In one of the earliest studies using 

bead chip arrays, Enquobahrie et al. reported that DNA methylation changes occurred 

early during pregnancy in six women with repeat pregnancies, one of which were 

complicated by GDM (Enquobahrie et al., 2015). They reported that 17 CpG sites were 

hypomethylated and 10 CpG sites were hypermethylated between GDM and normal 

pregnancies within the same women. Novel genes related to these CpG sites were 

found to be associated with cell cycle, cell morphology, cell assembly, cell organisation 

and cell compromise. Subsequently, using a newer bead chip array containing more 

CpG sites, Kang et al. showed that 200 CpGs corresponding to 151 genes, were 

differentially methylated in women with GDM (n=8) compared to controls (n=8). 

Amongst the differentially methylated genes were interleukin-6 (IL-6) and 

interleukin-10 (IL-10), which are key pro-inflammatory and anti-inflammatory 

cytokines, respectively (Kang et al., 2017). These cytokines function in a wide variety 

of inflammatory-associated diseases, including obesity and T2D. Moreover, a different 

study by Kang et al. showed that decreased methylation of IL-10 during GDM was 

associated with increased serum IL-10 concentrations at the end of pregnancy (Kang 

et al., 2018). IL-10 serum concentrations have been shown to vary during pregnancy, 

suggesting that this cytokine plays an important role in the development of GDM. In 

another study using bead chip arrays, 100 differentially methylated CpG sites 

corresponding to 66 genes were identified in women with GDM (n=11) compared to 

controls (n=11) (Wu et al., 2018). Using more stringent statistical criteria to prioritize 

methylation sites, a total of five CpG sites within the Constitutive photomorphogenic 

homolog subunit 8 (COPS8), phosphoinositide-3-kinase, regulatory subunit 5 

(PIK3R5), 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), coiled-coil domain 
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containing 124 (CCDC124) and chromosome 5 open reading frame 34 (C5orf34) genes, 

were identified and validated using pyrosequencing. Since blood for DNA 

methylation profiling was collected prior to GDM diagnosis, these CpG sites may 

prove useful as predictive biomarkers for GDM. However, their candidacy as 

biomarkers require validation in larger studies. 

6.2. Limitations of DNA Methylation 

Although studies show that DNA methylation has potential as a diagnostic and 

prognostic biomarker, they are not without limitations (Levenson & Melnikov, 2012). 

Several factors including small sample size, lack of validation, differences in ethnicity, 

method of quantification and timing of methylation analysis during pregnancy, 

hinder reproducibility of findings across studies. Another  limitation of the studies 

included in this review is the use of whole blood, which consist of a mixture of cell 

types such as lymphocytes, erythrocytes and platelets, and may confound methylation 

analysis (Reinius et al., 2012). Thus, future studies should consider purification of 

blood cell populations to separate specific cell types. Currently, there is no consensus 

on the best method to use for DNA methylation analysis. While global DNA 

methylation can easily be measured using crude DNA preparations, it is a measure of 

overall genomic methylation and does not offer the resolution required to detect 

subtle DNA methylation differences within genes (Dahl & Guldberg, 2003). In 

contrast, locus-specific DNA methylation such as bead chip arrays and 

pyrosequencing are expensive, requiring sophisticated equipment and bioinformatics 

expertise.  
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Table 5.2. Studies investigating DNA methylation in whole blood during Gestational diabetes mellitus. 

Author Study design Country Detection method Main finding 

(Dias, Adam, 

Wyk, et al., 2019) 

63 GDM and 138 controls 

(~ 26 weeks gestation) 

South Africa Global DNA methylation 

using MDQ1 Imprint DNA 

Quantification Kit* 

No difference in global DNA methylation 

between women with or without GDM. 

Global DNA methylation was associated 

with obesity and serum adiponectin 

concentrations. 

(Enquobahrie et 

al., 2015) 

6 women with 2 

consecutive pregnancies 

with & without GDM 

(<20 weeks gestation) 

United States Illumina 

HumanMethylation27 

BeadChip 

17 CpG sites were hypomethylated and 10 

CpG sites were hypermethylated 

in relation to GDM status 

(Kang et al., 2017) 8 GDM and 8 controls 

(end of pregnancy) 

Taiwan Illumina Infinium 

HumanMethylationEPIC 

BeadChip 

200 differentially methylated CpGs 

corresponding to 151 genes identified in 

women with GDM compared to controls 

(Kang et al., 2018) 8 GDM and 24 controls 

(end of pregnancy) 

Taiwan MethyLight qRT-PCR assay Decreased methylation of IL-10 during 

GDM, which was associated with increased 

serum IL-10 concentrations 

(Wu et al., 2018) 11 GDM and 11 controls 

(12-16 weeks gestation) 

United 

Kingdom 

Illumina 

HumanMethylation450 

BeadChip (450K) array and 

bisulfite pyrosequencing 

100 differentially methylated CpGs 

corresponding to 66 genes were identified. 

Differential DNA methylation at 5 CpGs 

were validated in 8 of the 11 GDM women 

qRT-PCR: Quantitative real-time PCR; GDM: Gestational diabetes mellitus. *Sigma-Aldrich 
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7. MICRORNAS 

MiRNAs are short, highly conserved non-coding RNA molecules approximately 22 

nucleotides in length that are powerful mediators of biological function. They regulate 

gene expression through post-transcriptional mechanisms by binding to the 3’ 

untranslated region (UTR) of messenger RNA (mRNA) inducing gene silencing 

through translational repression or mRNA degradation (Brennecke et al., 2005). This 

interaction is dependent on the complementarity of the miRNA to the ‘miRNA seed 

region’, a region of 7 or 8 nucleotides contained within 3’ UTR of mRNA. MiRNA 

binding requires a number of nucleotides to match the sequence flanking the seed 

region to direct the specificity of miRNA:mRNA interactions (Lewis, Burge & Bartel, 

2005; Peterson et al., 2014). Since their initial discovery in Caenorhabditis elegans in 1993 

(Lee, Feinbaum & Ambros, 1993), over 2000 miRNAs have been identified in humans 

and is believed to regulate about one third of the genome (Hammond, 2015).  

MiRNAs are master regulators that control many biological processes including cell 

proliferation, differentiation, apoptosis and development (Du, 2005). Moreover, they 

regulate genes involved in metabolic processes such as glucose homeostasis, insulin 

signaling, pancreatic beta cell function, lipid metabolism and inflammation 

(Sliwinska, Kasinska & Drzewoski, 2017). Their dysregulation have been reported 

during many metabolic conditions, including obesity, T2D and cardiovascular disease 

(Papageorgiou et al., 2012; He, Ding, et al., 2017; Iacomino & Siani, 2017). Although 

they exert their function intracellularly, several studies have identified extracellular 

circulating miRNAs, which has sparked interest in their use as biomarkers of disease 

(Creemers, Tijsen & Pinto, 2012). Circulating miRNAs are associated with various 

complexes such as lipoproteins, exosomes, apoptotic bodies, microvesicles and 

ribonucleoproteins such as Ago1-4 or nucleophosphin 1 (NPM1), which serve to 
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protect these miRNAs from nuclease degradation, and act as carriers to transport them 

to their target mRNAs. This suggests that miRNA function in cell-to-cell 

communication, regulating gene expression in neighbouring cells by either acting 

locally (paracrine or autocrine signalling) or at a distance (endocrine/exocrine) 

(Creemers, Tijsen & Pinto, 2012; Turchinovich, Weiz & Burwinkel, 2012). 

7.1. MicroRNAs and Gestational Diabetes Mellitus  

MiRNAs are important metabolic and developmental regulators during pregnancy 

and have been shown to play a role in the development of GDM. In 2013, genome-

wide analysis demonstrated that more than 600 miRNAs are expressed in the placenta 

(Chen & Wang, 2013). Recently, Poirier et al. reviewed placental miRNAs that are 

dysregulated during pregnancy and GDM (Poirier et al., 2017). The placenta plays an 

important role in maternal metabolic adaptation to pregnancy, and differential 

expression of placental miRNAs are believed to partly underlie these physiological 

changes. Placental miRNAs are released into maternal circulation (Chim et al., 2008), 

thus these miRNAs hold potential as biomarkers of placental dysfunction and GDM. 

Studies reporting circulating miRNA expression during GDM are summarised in 

Table 5.3. 

In 2011, Zhao et al. were the first to profile the expression of serum miRNAs during 

GDM (Zhao et al., 2011). Using Taqman low density arrays, followed by confirmation 

with individual qRT-PCR, they identified three miRNAs, miR-132, miR-29a and miR-

222, that were significantly downregulated in Chinese women with GDM (n=24) 

compared to controls (n=24) (Zhao et al., 2011). The differential expression of miR-29a 

and miR-222 were validated in an internal and two external validation cohorts. These 

miRNAs are thought to play a role in glucose homeostasis, insulin sensitivity and 

beta-cell function (Zhao et al., 2011). Several studies in other populations have 
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replicated these experiments with conflicting results. Recently, Pheiffer et al. reported 

decreased expression of miR-132, miR-29a and miR-222 in the serum of South African 

women with GDM (n=28) compared to controls (n=53), however, only the latter was 

statistically significant (Pheiffer et al., 2018). These findings demonstrate that the 

expression of these serum miRNAs is shared across South African and Chinese 

populations. In contrast to Zhao et al., Tagoma et al. showed that miR-222 was 

increased in plasma of women with GDM (n=13) compared to controls (n=9) (Tagoma 

et al., 2018). Wander et al., observed no differences in the expression of miR-222 or 

miR-29a in the plasma of American Caucasian women with GDM (n=36) compared to 

controls (n=80) (Wander et al., 2017). These discrepancies may be due to differences in 

biological samples used (serum or plasma), gestational age, or other unknown factors 

not accounted for.    

Zhu et al. used high-throughput sequencing and qRT-PCR to investigate miRNAs in 

pooled plasma samples of Chinese women with (n=10) or without (n=10) GDM 

between 16-19 weeks of gestation. Five miRNAs (miR-16, miR-17, miR-19a, miR-19b, 

miR-20a) were significantly upregulated in GDM compared to controls (Zhu et al., 

2015). Bioinformatic analysis revealed that the targets of these miRNAs are associated 

with the MAPK, insulin, TGF-β and mTOR signalling pathways, providing insight 

into the role of these miRNAs in GDM. Cao et al. investigated miR-16, miR-17 and 

miR-20a in a larger cohort of Chinese women at 16-19 weeks, 20-24 weeks and 24-28 

week of gestation and found sustained increased expression in the plasma of women 

with GDM (n=85) compared to controls (n=72) at all the measured time points. 

However, they did not observe differences in the expression of miR-19a and miR-19b 

(Cao et al., 2017), as previously reported by Zhu et al. More recently, Pheiffer et al. 

reported conflicting results. The expression of all five miRNAs were decreased in 
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South African women with GDM, however, only the decreased expression of miR-20a 

was statistically significant (Pheiffer et al., 2018).  

Functional analyses of these miRNAs have provided support for their role in the 

development of GDM (He, Bai, et al., 2017; Sebastiani et al., 2017; Lamadrid-Romero 

et al., 2018; Stirm et al., 2018). Many other miRNAs have been reported to exhibit 

altered expression during GDM, although these were identified in single studies only 

(Table 5.3).  

7.2. Limitations of Circulating microRNA Profiling 

The studies reviewed above highlight several miRNA candidates as biomarkers for 

GDM. However, the results are often discordant, possibly due to the different sample 

types and size, gestational age and the methods of analysis used.  

Differences in miRNA expression have been reported in serum and plasma, 

suggesting that factors during the coagulation process could influence expression 

(Wang, Yuan, et al., 2012). Currently, there is no consensus on the best quantification 

method to use when profiling circulating miRNAs. Different methods of 

quantification are known to vary in sensitivity and specificity (Dias et al., 2017), which 

may impact the accuracy and interpretation of the data. Moreover, data normalization 

presents a significant challenge for the analysis of circulating miRNA profiling. 

Although strategies using exogenous miRNAs such as C. elegans miR-39 have proven 

to be less variable than endogenous reference genes, no ideal normalization strategy 

exists (Schwarzenbach et al., 2015). Thus, standardised guidelines for miRNA 

profiling would aid in the biological interpretation of miRNA data. 
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Table 5.3. Studies investigating circulating microRNAs during gestational diabetes mellitus. 

Author Study design Country 
Biological 

source 

Detection 

method 

Up- 

regulated 

Down-

regulated 

No 

significant 

change 

Normalization 

control 

(Zhao et 

al., 2011) 

24 GDM and 24 controls 

(16-19 weeks gestation); 

36 GDM and 36 controls 

(Internal validation) 

16 GDM and 16 controls 

(External validation) 

China Serum Taqman low 

density array, 

qRT-PCR 

- miR-29a 

miR-132 

miR-222 

- Cel-miR-39 

(exogenous 

control) 

(Pheiffer 

et al., 

2018) 

28 GDM and 53 controls 

(13-31 weeks gestation) 

South Africa 

 

Serum qRT-PCR 

 

- miR-20a 

miR-222 

miR-16 

miR-17 

miR-19a 

miR-19b 

miR-29a 

miR-132 

Cel-miR-39 

(exogenous 

control) 

(Tagoma 

et al., 

2018) 

13 GDM and 9 controls 

(23-31 weeks gestation) 

Estonia Plasma qRT-PCR let-7e 

let-7g 

miR-100 

miR-101 

- - Cel-miR-39 

(exogenous 

control) 
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miR-146a 

miR-8a 

miR-195 

miR-222 

miR-23b 

miR-30b 

miR-30c 

miR-30d 

miR-342 

miR-423 

miR-92a 

(Wander 

et al., 

2017) 

 

36 GDM and 80 controls 

(7-23 weeks gestation) 

United states Plasma qRT-PCR miR-155 

miR-21 

 miR-146b 

miR-517 

miR-222 

miR-210 

miR-518a 

miR-29a 

miR-223 

miR-126 

Cel-miR-39 

(exogenous 

control) and miR-

423 (endogenous 

control) 
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(Zhu et 

al., 2015) 

10 GDM and 10 controls 

(16-19 weeks gestation) 

China Plasma Ion Torrent 

sequencing, 

qRT-PCR 

miR-16 

miR-17 

miR-19a 

miR-19b 

miR-20a 

 

- - miR-221 

(endogenous 

control) 

(Cao et al., 

2017) 

85 GDM and 72 controls 

(16-20, 20-24 and 24-28 

weeks gestation) 

China Plasma qRT-PCR miR-16 

miR-17 

miR-20a 

- miR-19a 

miR-19b 

RNU6 

(endogenous 

control) 

(Sebastian

i et al., 

2017) 

21 GDM and 10 controls 

(24-33 weeks gestation) 

Italy Plasma qRT-PCR miR-330 - miR-548c miR-374 

miR-320 

(endogenous 

control) 

(Stirm et 

al., 2018) 

30 GDM and 30 controls 

(24-32 weeks gestation) 

Germany Whole blood qRT-PCR miR-340 - - RNU6B 

(endogenous 

control) 

(He, Bai, 

et al., 

2017) 

20 GDM and 20 controls China Whole blood qRT-PCR 

 

- miR-494 - 

 

RNU6 

(endogenous 

control) 
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(Lamadrid

-Romero 

et al., 

2018) 

67 GDM and 74 controls 

(16-20, 20-24 and 24-28) 

Not reported Serum qRT-PCR miR-183 

miR-200b 

miR-125b 

miR-1290 

- - Cel-miR-39 

(exogenous 

control) 
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8. CURRENT PERSPECTIVES AND FUTURE RECOMMENDATIONS 

Advances in molecular biology have resulted in the identification of several molecular 

biomarkers for disease. Of these, genetic variants, DNA methylation and miRNAs are 

widely studied during GDM (Shaat & Groop, 2007; Georgiou et al., 2008; Moen et al., 

2017). These molecular markers are stably expressed in biological fluids  and hold 

potential as diagnostic or prognostic biomarkers of GDM. As reviewed above, many 

studies have provided evidence to support the use of these markers as biomarkers of 

GDM. However, despite these favourable results, molecular biomarkers face many 

challenges, which hinder their candidacy as biomarkers, and that must be addressed 

before they can be used clinically. As outlined above, SNPs, DNA methylation and 

miRNAs are all impacted by ethnicity and environmental factors. Furthermore, 

technical challenges during analysis contribute to inaccurate data and lack of 

reproducibility. Thus, standardization of analytical methods is critical when profiling 

molecular biomarkers. Moreover, large prospective cohort studies, conducted in 

populations with different ethnicities and environmental factors, are warranted to 

identify robust markers that are not influenced by these factors. The ideal biomarker 

for GDM would most likely be a combination of several molecular biomarkers to 

overcome the lack of sensitivity and specificity of individual factors. For example, a 

single miRNA regulates up to 200 different genes (Krek et al., 2005), thus miRNAs 

found to be associated with GDM, are non-specific and may possibly be involved in 

other conditions as well. To increase the predictive power of molecular biomarkers, 

future studies should consider using a combination of these markers in risk 

stratification models for predicting GDM risk. 
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9. CONCLUSION 

GDM is a growing public health problem worldwide. The short and long-term 

consequences of GDM are likely to have an immediate negative impact on health 

systems and in addition, present a major reservoir of future disease. Screening and 

treatment of GDM leads to improved pregnancy outcomes (Duran et al., 2014), thus 

universal screening is widely advocated as a strategy to prevent adverse 

consequences. A growing body of evidence support the use of SNPs, DNA 

methylation and miRNAs as biomarkers that could aid in the early detection of GDM, 

thus facilitating intervention strategies to better manage GDM and improve health 

outcomes. Despite their potential, these molecular biomarkers face several challenges 

that need to be addressed before they can become clinically applicable. However, 

rapid technological advances could overcome these challenges and lead to the 

development of a quick, cost effective point-of-care test that could accurately identify 

women at high risk for GDM during early pregnancy. The establishment of an 

international body to standardize analytical conditions for molecular biomarkers, and 

large prospective cohort studies in different populations are required.  
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6.  CHAPTER 6 

 

 

 

GLOBAL DNA METHYLATION PROFILING IN 

PERIPHERAL BLOOD CELLS OF SOUTH 

AFRICAN WOMEN WITH GESTATIONAL 

DIABETES MELLITUS 

 

 

Adapted from: 

Dias, S., Adam, S., Van Wyk, N., Rheeder, P., Louw, J. & Pheiffer, C. 2019. Global DNA 

methylation profiling in peripheral blood cells of South African women with 

gestational diabetes mellitus. Biomarkers. 24(3):225–231. DOI: 

10.1080/1354750X.2018.1539770. (Original Article)  
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1. ABSTRACT 

Background/Objective: Recently, several studies have reported that DNA 

methylation changes in tissue are reflected in blood, sparking interest in the potential 

use of global DNA methylation as a biomarker for gestational diabetes mellitus 

(GDM). This study investigated whether global DNA methylation is associated with 

GDM in South African women. 

Methods: Global DNA methylation was quantified in peripheral blood cells of 

women with (n=63) or without (n=138) GDM using the MDQ1 Imprint® DNA 

Quantification Kit. 

Results: Global DNA methylation levels were not different between women with or 

without GDM and were not associated with fasting glucose nor insulin 

concentrations. However, levels were 18% (p=0.012) higher in obese compared to non-

obese pregnant women, and inversely correlated with serum adiponectin 

concentrations (p=0.005).  

Discussion: Contrary to our hypothesis, global DNA methylation was not associated 

with GDM in our population. These preliminary findings suggest that despite being a 

robust marker of overall genomic methylation that offers opportunities as a 

biomarker, global DNA methylation profiling may not offer the resolution required to 

detect methylation differences in the peripheral blood cells of women with GDM. 

Moreover, global DNA methylation in peripheral blood cells may not reflect changes 

in placental tissue. Further studies in a larger sample are required to explore the 

candidacy of a more targeted approach using gene-specific methylation as a 

biomarker for GDM in our population. 



 

105 

 

2. CLINICAL SIGNIFICANCE 

• The prevalence of GDM is rapidly increasing globally 

• The 75 g 2 hr oral glucose tolerance test remains the gold standard for GDM 

diagnosis, however, several challenges hamper its use 

• Risk factor-based screening has poor sensitivity for detecting GDM  

• Thus, a more robust, non-invasive, simple and cost-effective screening tool is 

needed  

• Altered DNA methylation patterns in peripheral blood cells holds potential as 

a biomarker for GDM screening 

3. INTRODUCTION 

GDM, defined as glucose intolerance that is first diagnosed during the latter half of 

pregnancy, with return to normoglycemia after birth (WHO, 2013), is a significant 

source of morbidity and mortality. In SA, a middle-income country, the prevalence of 

GDM has rapidly increased over the last few years  (Mamabolo et al., 2007; Adam & 

Rheeder, 2017; Macaulay et al., 2018), paralleling the rising obesity epidemic. Recently, 

it was reported that 69% of South African women over the age of 15 years were either 

overweight or obese (Statistics South Africa 2017), a serious cause for concern since 

obesity is a major risk factor for the development of GDM. GDM is associated with 

adverse perinatal outcomes (Jensen et al., 2000) and increases susceptibility to future 

metabolic disorders in both mothers and their offspring (Damm, 2009), thus posing a 

significant burden to the already struggling and over-burdened South African health 

system. 

The oral glucose tolerance test (OGTT), conducted between 24-28 weeks of gestation 

is the gold standard for the diagnosis of GDM (WHO, 1999). However, the test is 
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cumbersome to conduct and has several challenges including high costs, requirement 

for fasting, multiple blood draws, and is associated with nausea and vomiting. 

Currently, universal screening for GDM is recommended for all pregnant women 

(Hod et al., 2015). However, due to limited resources, selective screening based on 

traditional GDM risk factors such as obesity (body mass index (BMI) ≥30 kg/m2), 

advanced maternal age (>35 years), family history of diabetes, history of GDM, 

previous macrosomia (baby weighing ≥4000 g), glycosuria, or previous adverse 

pregnancy outcomes (congenital abnormalities, unexplained still birth or recurrent 

pregnancy loss) is often performed in low and middle income countries. 

Unfortunately, these risk factors have poor sensitivity for detecting GDM in our 

population (Adam & Rheeder, 2017), resulting in a large number of GDM cases being 

missed. The identification of simple and cost-effective biomarkers to detect women 

with GDM could offer an alternative to the OGTT. Although a number of circulating 

biomarkers such as adiponectin, sex hormone binding globulin, C-reactive protein 

(CRP) and glycosylated fibronectin have been explored as biomarkers for GDM, none 

have yet achieved clinical applicability (Smirnakis et al., in press; Nanda et al., 2011; 

Rasanen et al., 2013; Adam et al., 2018).   

Epigenetics reflect gene-environment interactions and is increasingly being 

implicated in the pathophysiology of metabolic diseases (Gu et al., 2013; Martín-

Núñez et al., 2014). DNA methylation, the most widely studied and best characterised 

epigenetic mechanism, refers to the addition of a methyl group to the fifth carbon 

position of a cytosine residue within CpG dinucleotides, often leading to 

transcriptional repression (Lim & Maher, 2010). The process is reversible thus offering 

opportunities for risk stratification and intervention and has accordingly received 

considerable interest as biomarkers of disease. Although both gene-specific and global 

DNA methylation profiling have been explored, global DNA methylation, which 
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gives an estimate of overall genomic methylation can be quantified using non-

invasive, inexpensive and simple methods, thus making it an attractive target for 

biomarker discovery. Several studies have reported that global DNA methylation is 

altered during hyperglycaemia (Matsha et al., 2016; Pinzón-Cortés et al., 2017) and in 

placental tissue of women with GDM (Nomura et al., 2014; Reichetzeder et al., 2016). 

Interestingly, hyperglycaemia-related DNA methylation changes in blood have been 

reported to correlate with changes observed in pancreatic β-cells and insulin 

responsive tissue such as skeletal muscle, liver and adipose tissue, thus, offering 

opportunities to use peripheral blood for DNA methylation analysis (Heyn & Esteller, 

2012; Dayeh et al., 2016; Geach, 2016). We hypothesised that global DNA methylation 

in peripheral blood cells of black South African women is altered during GDM, and 

accordingly has potential as a biomarker for GDM in our population. 
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4. MATERIALS AND METHODS 

4.1. Participants 

The study was approved by the Health Sciences Ethics Committee of the University 

of Pretoria (180/2012). This research forms part of larger study investigating screening 

strategies for GDM in a South African population (Adam & Rheeder, 2017).  One 

thousand pregnant women of black ethnicity, who were less than 26 weeks pregnant 

and who had a singleton pregnancy were recruited at a primary care clinic in 

Johannesburg, SA. Written informed consent was obtained from all participants. At 

recruitment, random glucose and glycated haemoglobin (HbA1c) levels were 

measured using a glucometer (Roche Diagnostics, Mannheim, Germany) and the 

point-of-care Afinion system (Alere Technologies, Oslo, Norway), respectively. 

Women with random glucose or HbA1c concentrations more than 11.1 mmol/L or 

6.5%, respectively, were excluded. All women included in the study were requested 

to return within two weeks for fasting blood glucose measurements, and whole blood 

and serum collection. Of the 1000 women who were recruited, only 554 were 

scheduled for the 75 g 2 hr OGTT at 24-28 weeks of gestation due to foetal loss, 

migration, loss to follow up and withdrawal of consent (Figure 6.1). For this case 

control study, women with (n=63) and without (n=138) GDM, who were Human 

Immunodeficiency Virus (HIV) negative were selected and matched according to age, 

BMI and gestational age as far as possible.  
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Figure 6.1. Flow diagram for study participants. For the current study, women with (n=63) or without 

(n=138) GDM were selected from a prospective cohort study in which 1000 pregnant women were 

recruited 

 

4.2. Clinical and Biochemical Characteristics 

Demographic information was obtained from a standardised questionnaire and 

anthropometric measurements were assessed according to standard procedures 

(Adam et al., 2018). The  OGTT was conducted according to the International 

Association of Diabetes in Pregnancy Study Group (IADPSG) criteria (IADPSG panel, 

2010). Briefly, women were given a 75 g glucose drink to ingest, and blood was 

collected for glucose measurements at 0 hr, 1 hr and 2 hr. At the time of OGTT, HbA1c 

concentrations were measured again by an accredited laboratory (Vermaak and 

Partners, Pretoria, South Africa). For comparative analysis, GDM was classified using 

the National Institute for Health and Care Excellence (NICE) and the World Health 

Organisation (WHO) 1999 criteria (Table 6.1) (WHO, 1999; NICE guidelines, 2015). 

Participants recruited

n=1000 Excluded n=446
• Fetal loss (n=82)

• Migrated from area (n=163)

• Loss to follow-up (n=194)
• Withdrew consent (n=7)

Eligible participants

n=389

Excluded n=165
• HIV positive (n=160)

• Unknown HIV (n=5)

Selected for study

GDM (n=63)

No GDM (n=138)

Excluded n=188
• Individual matching

- Age

- BMI
- Gestational age

OGTT performed 

n=554
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Fasting insulin and C-reactive protein (CRP) concentrations were measured in stored 

serum samples (Pathcare laboratories, Cape Town, South Africa). Serum adiponectin 

concentrations were quantified using the human adiponectin enzyme-linked 

immunosorbent assay (ELISA) (Merck, Darmstadt, Germany). The homeostatic model 

assessment (HOMA), a measure of insulin resistance was calculated using the 

equation: (fasting glucose in mmol/L x fasting insulin in mIU/mL)/22.5, using fasting 

plasma glucose and fasting serum insulin concentrations. Whole Blood for DNA 

methylation analysis was stored at -80o C.  

 

Table 6.1. GDM diagnostic criteria commonly used in South Africa 

 

 

 

aTime after ingesting 75 g glucose drink; OGTT: oral glucose tolerance test; hr: hour; GDM: gestational 

diabetes mellitus; Impaired glucose tolerance: elevated glucose levels during pregnancy, that is not 

high enough to be classified as pre-existing or overt diabetes; IADPSG: International Association of 

Diabetes in Pregnancy Study Group; NICE: National Institute for Health and Care Excellence; WHO: 

World Health Organisation (WHO, 1999; IADPSG panel, 2010; NICE guidelines, 2015).  
bOne or more of these values are used to diagnose GDM. 
cGDM diagnosed using impaired glucose tolerance. 

 

4.3. Global DNA Methylation 

DNA was extracted from 2 ml of stored whole blood in Ethylenediaminetetraacetic 

acid (EDTA) tubes using the QIAmp DNA Blood Midi Kit according to the 

manufacturer’s instructions (Qiagen, Hilden, Germany), and concentrations were 

measured using the Qubit Fluorometer dsDNA Broad Range Assay Kit (Invitrogen, 

Carlsbad, USA) according to the manufacturer’s protocol. Global DNA methylation 

 Glucose concentration (mmol/L) 

Timea IADPSGb NICEb WHO 1999c 

0 hr OGTT ≥ 5.1 ≤ 7.0 ≥ 5.6 ≤ 7.0 

1 hr OGTT ≥ 10 - - 

2 hr OGTT ≥ 8.5 ≤ 11.1 ≥ 7.8 ≥ 7.8 
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was quantified using the MDQ1 Imprint® Methylated DNA Quantification Kit 

according to the manufacturer’s instructions (Sigma-Aldrich, St. Louis, USA) as 

previously described (Pheiffer et al., 2014). Briefly, 100 ng of DNA was allowed to bind 

to the ELISA plate, where after the methylated fraction of DNA was detected using a 

5-methylcytosine monoclonal antibody, and the absorbance was measured at 450 nm 

on a BioTek® ELX 800 plate reader (BioTek Instruments Inc., Winooski, USA). Global 

DNA methylation levels were calculated relative to the methylated positive control 

which was included in the kit. All samples were analysed in duplicate.  

4.4. Statistical Analysis 

Statistical analysis was conducted using STATA 14 (StataCorp, Texas, USA). Data 

were expressed as the mean ± standard error of the mean (SEM), or as the median and 

interquartile range (25th and 75th percentiles) for data that were not normally 

distributed. Categorical data were expressed as count (n) and percentage (%). The 

Shapiro-Wilk test was used to test for normality. The unpaired student t test or the 

Mann-Whitney test was used to compare variables across GDM groups, and the Chi-

square test was used to analyse categorical variables. Spearman’s rank correlation (rs) 

was used to evaluate the relationship between global DNA methylation and serum 

adiponectin concentrations. A p≤0.05 was considered statistically significant.  
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5. RESULTS 

The clinical characteristics of participants are presented in Table 6.2.  As expected, 

fasting blood glucose (p<0.001), 1 hr OGTT (p<0.001), 2 hr OGTT (p<0.001) and HbA1c 

(p=0.008) concentrations were significantly higher in women with GDM compared to 

women without GDM. Similarly, fasting insulin (p=0.067) and HOMA (p<0.001) levels 

were increased in women with GDM. In contrast, women with GDM had lower 

concentrations of serum adiponectin than women without GDM (p=0.018).  

Since the extent of hyperglycaemia may influence the association between global DNA 

methylation and GDM, GDM was classified using IADPSG, WHO and NICE criteria. 

Glucose concentrations differed significantly between women with GDM compared 

to women without GDM, using all three diagnostic criteria (Table 6.3). Fasting plasma 

glucose values were significantly lower in women with GDM using the WHO criteria 

compared to the IADPSG (p=0.014) and NICE (p=0.005) criteria, while the 2 hr OGTT 

values were significantly higher in women with GDM using the WHO criteria 

compared to the IADPSG criteria and NICE criteria (p<0.001) (Table 6.3). 

However, no difference in global DNA methylation levels between women with or 

without GDM were observed when the different diagnostic criteria were used (p>0.05) 

(Figure 6.2 a-c). Global DNA methylation levels were 18% (p=0.012) higher in obese 

compared to non-obese pregnant women (Figure 6.3) and were inversely correlated 

with serum adiponectin concentrations (rs=-0.243, p=0.005) (Figure 6.4). 
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Table 6.2. Clinical characteristics of the study population stratified according to GDM using the 

IADPSG criteria 

Variable GDM (n=63) No GDM (n=138) p-value 

Age (years)a 28.0 (24.0-32.0) 28.0 (24.0-32.0) 0.810 

BMI (kg/m2)a 27.4 (23.4-31.2) 25.8 (23.5-29.8) 0.180 

Fasting glucose (mmol/L)a 5.5 (5.2-5.9) 4.3 (4.0-4.6) <0.001 

OGTT 1 hr (mmol/L)a 6.5 (5.5-8.3) 5.5 (4.7-6.5) <0.001 

OGTT 2 hr (mmol/L)a 6.1 (5.2-7.2) 5.2 (4.6-5.9) <0.001 

HbA1c (%)b 5.2 (0.4) 5.1 (0.3)    0.008 

Fasting insulin (mIU/L)a 6.5 (4.8-9.4) 5.7 (3.8-8.0) 0.067 

HOMAa 1.6 (1.2-2.4) 1.1 (0.8-1.7) <0.001 

C-reactive protein (mg/L)a 6.9 (3.7-9.9) 5.4 (3.1-8.5) 0.209 

Adiponectin (µg/ml)a 7.6 (4.9-11.8) 9.8 (6.6-14.7) 0.018 

Education: n (%)c 

<grade 12 

≥grade 12 

 

29.0 (46.7) 

33.0 (53.3) 

 

66.0 (49.6) 

67.0 (50.4) 

 

0.769 

Risk factors: n (%)c 

None 

≥1 Risk factors n (%) 

 

27.0 (42.8) 

36.0 (57.2) 

 

79.0 (57.3) 

59.0 (42.7) 

 

0.143 

BMI: body mass index; OGTT: oral glucose tolerance test; HbA1c: glycated haemoglobin; HOMA: 

homeostatic model assessment. Data are expressed as the amedian (25th–75th percentiles); bmean ± 

standard error of the mean or as ccount (percentage). P-values for continuous data were calculated 

using the Mann-Whitney or the unpaired student t test. P-values for categorical data were calculated 

using the Chi-square test.  
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Table 6.3. GDM defined using the IADPSG, NICE and WHO 1999 diagnostic criteria 

*Time after ingesting 75 g glucose drink; ‡significant difference between women with or without GDM 

in each diagnostic criteria; similar superscripts indicate significant difference between groups; OGTT: 

oral glucose tolerance test; hr: hour; GDM: gestational diabetes mellitus; IADPSG: International 

Association of Diabetes in Pregnancy Study Group; NICE: National Institute for Health and Care 

Excellence; WHO: World Health Organisation (WHO, 1999; IADPSG panel, 2010; NICE guidelines, 

2015). Data are expressed as median (25th–75th percentiles). 

 

  

Glucose concentration (mmol/L) 

 IADPSG NICE WHO 1999 

Time* GDM No GDM p-value‡ GDM No GDM p-value‡ GDM No GDM p-value‡ 

n 63 138  41 160  13 188  

0 hr 

OGTT 

5.5 

(5.2-5.9)a 

4.3 

(4.0-4.6) 
<0.001 

5.8 

(5.5-6.0)b 

4.4 

(4.0-4.8) 
<0.001 

5.2 

(4.7-5.4)a,b 

4.5 

(4.1-5.1) 
<0.05 

1 hr 

OGTT 

6.5 

(5.5-8.3) 

5.5 

(4.7-6.5) 
<0.001 - -  - -  

2 hr 

OGTT 

6.1 

(5.2-7.2)c 

5.2 

(4.6-5.9) 
<0.001 

6.6 

(5.6-8.0)d 

5.3 

(4.7-5.9) 
<0.001 

8.6 

(8.0-9.7)c,d 

5.3 

(4.7-6.0) 
<0.001 
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Figure 6.2. Global DNA methylation levels according to GDM status. Global DNA methylation was 

measured in the peripheral blood of women with or without GDM according to the IADPSG (GDM: 

n=63; non-GDM: n=138) (a), the NICE (GDM: n=41; non-GDM: n=160) (b) and the WHO (GDM: 

n=13; non-GDM: n=188) (c) criteria, using the MDQ1 Imprint® Methylated DNA Quantification 

Kit. Global DNA methylation levels were calculated relative to the methylated positive control which 

was included in the kit. Data are represented as the mean ± standard error of mean (SEM)  
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Figure 6.3. Global DNA methylation levels varies according to obesity status.  Global DNA 

methylation was measured in the peripheral blood of obese (n=51) and non-obese (n=138) pregnant 

women using the MDQ1 Imprint® Methylated DNA Quantification Kit. Global DNA methylation 

levels were calculated relative to the methylated positive control which was included in the kit. Data 

are represented as the mean ± standard error of mean (SEM) 

 

 

 

 

 

 

 

Figure 6.4. Global DNA methylation is inversely correlated with serum adiponectin concentrations. 

Each data point represents an individual (n=139) and indicates global DNA methylation levels relative 

to a methylated positive control and adiponectin concentration. 
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6. DISCUSSION 

This study investigated whether global DNA methylation profiling has potential as a 

screening tool for GDM in black South African women. Contrary to our hypothesis, 

global DNA methylation levels in peripheral blood cells of black South African 

women were not associated with GDM. The IADPSG criteria is stringent, and the 

failure to observe differences in methylation between women with or without GDM 

may be due to small glucose concentration differences between groups. However, no 

difference in methylation was observed when GDM was classified according to NICE 

and WHO criteria, where glucose concentration differences between women with or 

without GDM were more pronounced. Previous studies have reported that global 

DNA methylation is associated with GDM (Nomura et al., 2014; Reichetzeder et al., 

2016), however, these were conducted on placental tissue and used different methods 

to quantify global DNA methylation, possibly accounting for the discrepancies 

observed. Biological source affects global DNA methylation (Reinius et al., 2012), thus 

our failure to observe an association between GDM and global DNA methylation 

could be due to the use of peripheral blood cells rather than placenta. Furthermore, 

using liquid chromatography–mass spectrometry Reichetzeder et al. demonstrated 

that placental DNA methylation was increased during GDM (Reichetzeder et al., 

2016), while using a luminometric methylation assay Nomura et al. reported that 

placental DNA methylation is decreased during GDM (Nomura et al., 2014), 

illustrating that method of quantification influences results. The ELISA, as used in this 

study, offers several advantages over other methods of quantifying global DNA 

methylation. It is cost-effective and does not require specialized equipment and 

expertise, making it more amenable for screening in low-and middle income countries 

(Kurdyukov & Bullock, 2016). Several studies have reported that the ELISA is able to 

detect aberrant global DNA methylation patterns during disease (Nakano, Boyle & 
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Firestein, 2012; Keller et al., 2014; Kagohara et al., 2015; Ramos et al., 2016), and in 

response to environmental factors (Guerrero-Preston et al., 2010; Tellez-Plaza et al., 

2014; Ivorra et al., 2015; Sánchez, Reynoso-Camacho & Salgado, 2015). 

Global DNA methylation levels were higher in obese compared to non-obese pregnant 

women. It has been widely reported that global DNA methylation is associated with 

obesity (Cash et al., 2011; Jintaridth et al., 2013; Piyathilake et al., 2013; Na et al., 2014), 

however studies in pregnant women are limited (Herbstman et al., 2013; Nomura et 

al., 2014). Consistent with our results, Nomura et al. reported that global DNA 

methylation was higher in obese compared to non-obese pregnant women (Nomura 

et al., 2014). However, in contrast to our findings, Herbstman et al. reported that global 

DNA methylation is decreased during pre-pregnancy obesity, while Michels et al. 

failed to see an association between global DNA methylation and obesity (Michels, 

Harris & Barault, 2011; Herbstman et al., 2013). These findings confirm the variability 

in assessing global DNA methylation levels according to biological source and 

methods of quantification. 

Intriguingly, global DNA methylation was inversely correlated with serum 

adiponectin concentrations. Adiponectin is an adipokine with insulin-sensitising 

properties, which is dysregulated during obesity and metabolic disease (Cao, 2014). 

Similar to our findings, several studies have reported that adiponectin concentrations 

are decreased during GDM (Lacroix et al., 2013; Pala et al., 2015; Adam et al., 2018). 

Recently, it was reported that altered methylation at the adiponectin gene (ADIPOQ) 

locus is inversely correlated with circulating adiponectin concentrations during 

pregnancy (Bouchard et al., 2012), and is associated with decreased ADIPOQ gene 

expression levels in adult offspring of women with GDM (Houshmand-Oeregaard et 

al., 2017). To further explore the significance of the association between global DNA 
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methylation and adiponectin, pyrosequencing of ADIPOQ is currently being 

conducted in our laboratory. 

Although quantification of global DNA methylation is a robust method to assess 

overall genomic DNA methylation, and has potential as a biomarker to facilitate risk 

stratification and intervention (Ramos et al., 2016), it may not offer the resolution 

required to detect subtle methylation differences in women with or without GDM. 

Furthermore, although the ELISA used in this study may offer several advantages for 

biomarker screening, validation using techniques such as liquid chromatography-

electrospray ionization/multi-stage mass spectrometry (LC-ESI/MS/MS), which was 

demonstrated to be a stable and reliable method to detect global placental DNA 

methylation (Dwi Putra et al., 2014), would support the clinical applicability of ELISA 

screening. Another limitation of the study is the use of peripheral blood cells, which 

consists of a mixture of different cell types such as erythrocytes, lymphocytes and 

platelets which may confound methylation analysis (Reinius et al., 2012). Future 

studies should consider purification of blood cell populations to separate specific cell 

types (Reinius et al., 2012). Although DNA methylation in dysglycaemia-related 

tissues may be reflected in blood (Heyn & Esteller, 2012; Bacos et al., 2016; Dayeh et 

al., 2016), it should be noted that DNA methylation is considered to be highly tissue 

specific, and may not reflect changes in placental tissue. 

It has been widely reported that DNA methylation is affected by environmental 

factors such as diet, smoking, alcohol consumption and physical activity (Joubert et 

al., 2012; Lim & Song, 2012; Ling & Rönn, 2014; Pauwels et al., 2017; Miyake et al., 

2018). Thus, the lack to account for these environmental factors, pose a significant 

limitation to our study. However, women were recruited from the same community 

with similar life experiences, suggesting that they were likely to have similar 
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environmental exposures. In addition, women with and without GDM were not 

matched for age, BMI and gestational age when re-classifying them according the 

NICE and WHO 1999 criteria, which may have potential impact on DNA methylation 

patterns, and therefore presents another limitation.  

7. CONCLUSION 

Contrary to our hypothesis, global DNA methylation was not associated with GDM 

in our population. These preliminary findings suggest that despite being a robust 

marker of overall genomic methylation that offers opportunities as a biomarker, 

global DNA methylation profiling may not offer the resolution required to detect 

subtle methylation differences in the peripheral blood cells of women with GDM. 

Further studies in a larger sample are required to explore the candidacy of a more 

targeted approach using gene-specific methylation as a biomarker for GDM in our 

population. To our knowledge, this is the first study to investigate the association 

between global DNA methylation and GDM in SA.   
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7.  CHAPTER 7 

 

 

ALTERED GENOME-WIDE DNA 

METHYLATION IN PERIPHERAL BLOOD OF 

SOUTH AFRICAN WOMEN WITH 

GESTATIONAL DIABETES MELLITUS 

 

 

 

Adapted from: 

Dias, S., Adam, S., Rheeder, P., Louw, J. & Pheiffer, C. 2019. Altered Genome-Wide 

DNA Methylation in Peripheral Blood of South African Women with Gestational 

Diabetes Mellitus. International Journal of Molecular Sciences. 20(23):5828. DOI: 

10.3390/ijms20235828. (Original Article)  
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1. Abstract 

Increasing evidence implicate altered DNA methylation in the pathophysiology of 

gestational diabetes mellitus (GDM). This exploratory study probed the association 

between GDM and peripheral blood DNA methylation patterns in South African 

women. Genome-wide DNA methylation profiling was conducted in women with 

(n=12) or without (n=12) GDM using the Illumina Infinium HumanMethylationEPIC 

BeadChip array. Functional analysis of differentially methylated genes was conducted 

using Gene Ontology and Kyoto encyclopaedia of genes and genomes pathway 

analyses. A total of 1046 CpG sites (associated with 939 genes) was differentially 

methylated between GDM and non-GDM groups. Enriched pathways included GDM-

related pathways such as insulin resistance, glucose metabolism and inflammation. 

DNA methylation of the top five CpG loci showed distinct methylation patterns in 

GDM and non-GDM groups and was correlated with glucose concentrations. Of these, 

one CpG site mapped to the calmodulin binding transcription activator 1 (CAMTA1) 

gene, which have been shown to regulate insulin production and secretion and may 

offer potential as an epigenetic biomarker in our population. Further validation using 

pyrosequencing and conducting longitudinal studies in large sample sizes and in 

different populations are required to investigate their candidacy as biomarkers of 

GDM. 
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2. INTRODUCTION 

GDM is defined as diabetes diagnosed in the second or third trimester of pregnancy 

that is not pre-existing or overt diabetes (American Diabetes Association, 2016). The 

prevalence of GDM is increasing, affecting approximately 14% of pregnancies globally 

(International Diabetes Federation, 2017), although rates vary between <1% and 28% 

according to the diagnostic criteria employed and population studied (Jiwani et al., 

2012). GDM is associated with maternal (preeclampsia, caesarean section and birth 

injuries), foetal (macrosomia, shoulder dystocia, hyperinsulinemia, hypoglycaemia, 

hyperbilirubinemia) and perinatal (respiratory distress syndrome, metabolic 

derangements and jaundice) complications (Hod et al., 1991; Hadar & Hod, 2013; 

Moore, 2018),  while both mothers and their offspring are at an increased risk of 

developing metabolic disease in later life (Kim, Newton & Knopp, 2002; Clausen et al., 

2008; Zhao et al., 2016). Current estimates indicate that more than 50% of women with 

GDM develop type 2 diabetes (T2D) within 10 years, making GDM a strong predictor 

of T2D (Kim, Newton & Knopp, 2002; Damm et al., 2016). The identification of women 

with GDM who are at risk of developing T2D allows the introduction of timely 

measures to prevent or better manage disease progression.  

Epigenetic mechanisms are increasingly being implicated in the pathophysiology of 

metabolic diseases, including GDM (Smith & Ryckman, 2015). DNA methylation, the 

most widely studied and best characterised epigenetic marker is a reversible process 

that refers to the addition of a methyl group to the fifth carbon position of a cytosine 

residue within a cytosine-phosphate-guanine (CpG) dinucleotide, and regulates gene 

expression through transcriptional mechanisms (Lim & Maher, 2010). Altered global 

and gene-specific DNA methylation are observed in the placenta of women with GDM 

(El Hajj et al., 2013; Reichetzeder et al., 2016). DNA methylation is a tissue specific 
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process, although recent evidence suggests that peripheral blood reflects DNA 

methylation in tissue (Willmer et al., 2018), while several studies report that maternal 

blood reflects pregnancy-associated DNA methylation changes (Enquobahrie et al., 

2015; Kang et al., 2017; Wu et al., 2018), supporting its potential as epigenetic 

biomarkers for GDM.  

DNA methylation during GDM has been studied using various techniques such as 

Enzyme Linked Immunosorbent Assays, Whole-genome bisulfite sequencing, 

Methylated DNA immunoprecipitation sequencing, Liquid chromatography coupled 

with mass spectrometry, Pyrosequencing, Bead Chip arrays  and Methyl Light PCR 

(Reichetzeder et al., 2016; Haertle et al., 2017; Kang et al., 2017; Moen et al., 2017; Wu 

et al., 2018; Dias, Adam, Wyk, et al., 2019).  Due to its comparatively low cost 

compared to sequencing, reproducibility and high sample throughput, Bead Chip 

arrays are currently the most widely used technique for genome-wide DNA 

methylation profiling (Pidsley et al., 2016; Nakabayashi, 2017). The current Bead Chip 

array version, the HumanMethylationEPIC, allows the interrogation of >850,000 CpG 

sites across the genome, enriched for promoters and enhancer sequences, covering 

99% of RefSeq genes (McCartney et al., 2016). Previous versions, the 

HumanMethylation450 and HumanMethylation27, measured >480,000 and >27,000 

CpG sites, respectively across the genome (Nakabayashi, 2017).  

In South Africa (SA), the prevalence of GDM has increased from about 1.6% – 25.8% 

in recent years (Ranchod, Vaughan & Jarvis, 1991; Adam & Rheeder, 2017). The 

possible increase in future T2D cases will place a major burden on the already 

overburdened health system and creates an urgent need to identify preventative 

strategies. DNA methylation has attracted considerable interest as biomarkers that 

could facilitate risk stratification and offer opportunities for intervention strategies to 
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prevent or delay the development of T2D after pregnancy (Gillberg & Ling, 2015). The 

aim of this study is to explore the potential of DNA methylation to serve as biomarkers 

of GDM in black South African  women. Genome-wide DNA methylation profiling 

was conducted in the peripheral blood of women with (n=12) or without (n=12) GDM 

using the Illumina methylationEPIC Bead Chip array. Functional analysis of 

differentially methylated genes was conducted to identify pathways associated with 

GDM in the South African  population 

.  
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3. MATERIALS AND METHODS  

3.1. Study Participants 

Ethical approval for this study was granted by the University of Pretoria Health 

Sciences Ethics Committee (180/2012). The study was conducted according to the 

Declaration of Helsinki and all women gave written informed voluntary consent after 

the procedures had been fully explained in the language of their choice. One thousand 

pregnant women attending a primary care clinic in Johannesburg, SA were enrolled 

in the study. At recruitment, demographic and socio-economic data were obtained in 

the form of a standardised questionnaire and risk factors for GDM, i.e. advanced 

maternal age (age ≥35 years), obesity (BMI ≥30 kg/m2), family history of diabetes 

mellitus, delivery of a previous baby more than four kilograms, glucosuria, previous 

recurrent pregnancy loss, stillbirth, or birth of a baby with congenital abnormalities) 

were assessed (Adam & Rheeder, 2017). Patients with pre-existing diabetes mellitus 

(Type 1 diabetes (T1D) and T2D) and those who were more than 26 weeks pregnant 

were excluded. At their first visit, random glucose and glycated haemoglobin (HbA1c) 

concentrations were measured. Women with random glucose and HbA1c 

concentrations less than 11.1 mmol/L and 6.5%, respectively, were requested to fast 

overnight and return to the clinic within two weeks.  At this time, a 75 g oral glucose 

tolerance test (OGTT) was conducted, and GDM was diagnosed if at least one glucose 

value was met (fasting plasma glucose ≥5.1 mmol/L, 1 hr OGTT ≥10 mmol/L or 2 hr 

OGTT ≥8.5  mmol/L), according to the International Association of Diabetes in 

Pregnancy Study Group (IADPSG) criteria (IADPSG panel, 2010). Blood for 

measurement of adiponectin, C-reactive protein (CRP) and DNA methylation was 

collected at the first visit (<26 weeks of gestation) and stored at -80 oC. For this sub-

study, a subset of women with (n=12) and without (n=12) GDM were selected for 

genome-wide DNA methylation analysis (Figure 7.1). The inclusion criteria were 
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pregnant women ≥1840 years of age, black ethnicity, human immunodeficiency virus 

(HIV) negative and women with a singleton pregnancy. All women were matched 

according to age, BMI and gestational age as far as possible.  

 

 

Figure 7.1. Flow diagram for study participants. For the current study, a subset of women with (n=12) 

and without GDM (n=12) were selected from a larger prospective cohort study. 
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3.2. DNA Extraction 

Genomic DNA was extracted from 2 ml of peripheral blood collected in 

Ethylenediaminetetraacetic acid (EDTA) tubes using the QIAamp DNA Blood Midi 

Kit (Qiagen, Hilden, Germany), as previously described (Dias, Adam, Wyk, et al., 

2019). Briefly, white blood cells were lysed and loaded onto the QIAamp Midi column, 

bound DNA was washed and then eluted from the column membrane using 300 µl of 

elution buffer and centrifuged at 4500 x g for 2 mins.  DNA concentration was 

measured using the Qubit Fluorometer (Invitrogen, Carlsbad, CA, USA) and the 

Quanti-iT dsDNA Broad Range assay kit (ThermoFisher, Massachusetts, USA). One 

microgram  of DNA in a volume of 45 µl was frozen and shipped on dry ice, as 

instructed by the University of Southern California Molecular Genomics Core 

(https://uscnorriscancer.usc.edu/core/molgen/)  for genome-wide DNA methylation 

analysis using the Illumina Infinium HumanMethylationEPIC BeadChip (USC 

Molecular Genomics Core, Los Angeles, USA).  

3.3. Genome-Wide DNA Methylation Profiling 

Genome-wide DNA methylation profiling was conducted using the Illumina’s 

Infinium HumanMethylationEPIC Bead Chip (HumanMethylationEPIC, Illumina 

Inc., San Diego, USA) according to manufacturer’s instructions. Bisulfite conversion 

of 500 ng genomic DNA was performed using the Illumina-specific EZ DNA 

methylation kit (D5001, Zymo Research, Orange, USA), and quality control was 

conducted by quantitative real time PCR and melt curve analysis. Bisulfite converted 

DNA was amplified up to 1000-fold with DNA polymerase during the incubation step 

in the Illumina hybridization oven at 37 oC. Amplicons were then fragmented to 300-

600 bp products, precipitated with isopropanol and loaded onto Illumina Infinium 

HumanMethylationEPIC Bead Chips prepared for hybridization in the capillary flow-

https://uscnorriscancer.usc.edu/core/molgen/
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through chamber (Human MethylationEPIC, Illumina Inc.), according to the Infinium 

protocol (Illumina, Inc, n.d.). After annealing to locus-specific 50-mer probes, a single 

base extension occurs at the base immediately adjacent to the interrogated CpG site. 

Products were fluorescently labelled with either dinitrophenol-labelled 

ddATP/ddTTP or biotin-labelled ddCTP/ddGTP, depending on the methylation state 

of the interrogated CpG site. Fluorescence intensity was measured with the Illumina 

iScan system (iScan Control Software v.3.3.28) and was based on the ratio of 

methylated probe intensities and the overall intensity (sum of methylated and 

unmethylated probe intensities). The methylation scores were represented as raw 

beta- (β) values and were exported as 48 IDAT files.  

3.4. Processing and Analysis of the Human MethylationEPIC Bead Chip 

Array 

Data analysis was conducted by Partek (Partek, St. Louis, USA). IDAT files were 

imported to Partek (R) Genomics Suite (R) v.7.18.0803 software. Functional 

normalization with normal-exponential out-of-band (NOOB) background correction 

and dye correction was used (Fortin et al., 2014). Quality control was performed across  

all imported probes (865,859) for each sample.  All samples passed the quality control, 

and those with detection p<0.01 were included in the analysis. Thereafter, β-values for 

imported probes were plotted and no outliers were detected, indicating that the data 

were technically sound. In addition, a histogram was used to illustrate distribution of 

methylation β-values across all CpG sites in each sample. Data filtering was conducted 

to remove polymorphic probes (n=22,139), cross-hybridising probes (n=40,762), non-

CpG probes (n=1) and probes overlapping both the polymorphic and cross-

hybridising probe lists (n=1,721) (Figure 3), according to McCartney et al. (McCartney et 

al., 2016). The clean data set consisted of 801,236 probes (referred to as CpG sites). 

Exploratory analysis was performed using principal component analysis (PCA). Cell 
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count estimation was performed empirically using methylation data from sorted 

blood cells using the ‘Estimate Cell Count’ function in the minfi package in R (Aryee 

et al., 2014). The function is based on a modification of the original method by 

Houseman et al. (Houseman et al., 2012) and the R package FlowSorted.Blood.450k 

(Jaffe, 2019). No differences in cell composition were identified, and cell composition 

was deemed unlikely to be a confounder (Figure S4). Therefore, cell composition was 

not corrected for in further analysis.   

Following data processing, β-values were converted to M-values (log2 ratio 

[methylated signal intensity/unmethylated signal intensity]) to account for 

heteroscedasticity and allow for analyses assuming a Gaussian distribution (Du et al., 

2010). M-values have a range of -∞ to +∞, with a value close to 0 indicating similar 

intensities between methylated and unmethylated probes. Positive M-values 

represent hyper-, while negative M-values represent hypo-methylation. M-values 

were then standardised (converted to Z-scores) to perform hierarchical clustering, 

using Euclidean distance and average linkage criteria for visualization of methylation 

signatures.  

3.5. Functional Enrichment Analysis 

All differentially methylated CpG sites were annotated to genes using the reference 

sequence database (RefSeq) build 87 and were subjected to functional analysis using 

Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis and Gene 

Ontology (GO) grouping categories (biological process, cellular component, and 

molecular function). The results of enriched pathways were ranked by enrichment 

scores to identify overrepresented pathways and then sorted by factor score to 

consider those pathways with the most significant p-value. A high enrichment score 

indicates that a significant number of the differentially methylated genes within a 
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pathway are present, while factor score enables comparison of pathways with similar 

enrichment scores between GDM and non-GDM groups.  

3.6. Statistical Analysis 

Participant characteristics were tested for normality using the Shapiro-Wilk test in 

STATA 14 (StataCorp, College Station, USA). Normally distributed data are expressed 

as the mean ± standard error of the mean (SEM), or as the median and interquartile 

range (25th and 75th percentiles) for data that were not normally distributed. An 

unpaired t-test or the Mann-Whitney test was used to compare variables across GDM 

groups. Categorical variables were analysed using the Chi-square test or the Fisher’s 

exact test if the frequency was <5. A p≤0.05 was considered statistically significant. 

Due to the matched case control study design, a two-way analysis of variance ANOVA 

(one factor was the GDM status and the other was the pairing ID), was used to identify 

differentially methylated sites. To investigate the association between GDM and 

differentially methylated CpGs, univariate and multivariate generalised linear 

regression models were tested and adjust for confounding factors. Pearson’s rank 

correlation (r) was used to evaluate the relationship between specific CpG DNA 

methylation (β-values; 0-1, as a percentage of methylated to unmethylated) states and 

clinical parameters.  Pathway enrichment was based on the current publicly available 

human database, GRCh38, and statistical significance was calculated using Fisher’s 

exact test. An enrichment score ≥3 was considered significant (p<0.05). 
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4. RESULTS 

4.1. Study Participants 

Participant characteristics are presented in Table 7.1. As expected, no difference in age, 

gestational age and BMI was observed between women with or without GDM. 

Women with GDM had significantly higher fasting (p<0.001) and 1 hr OGTT (p<0.01) 

glucose concentrations compared to women without GDM, while 2 hr OGTT (p=0.07) 

glucose concentrations showed a trend towards significance. In addition, fasting 

insulin concentrations, homeostatic model of assessment (HOMA), CRP levels were 

higher in women with GDM compared to women without GDM, although these were 

not statistically significant. No difference between groups were observed for HbA1c 

and adiponectin concentrations, nor for common risk factors (advanced maternal age 

(age ≥35 years), obesity (BMI ≥30 kg/m2), family history of diabetes mellitus, delivery 

of a previous baby more than four kg, glucosuria, previous recurrent pregnancy loss, 

stillbirth, or birth of a baby with congenital abnormalities), as well as education and 

employment status. 
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Table 7.1. Participant characteristics 

BMI: body mass index; OGTT: oral glucose tolerance test; HbA1c: glycated haemoglobin; HOMA: 

homeostatic model assessment calculated according to the formula: fasting insulin (mIUL) x fasting 

glucose (mmol/L)/22.5; Risk factors: advanced maternal age (age >35 years), obesity (BMI >30 kg/m2), 

family history of diabetes mellitus, delivery of a previous baby more than four kilograms, glucosuria, 

previous recurrent pregnancy loss, stillbirth, or birth of a baby with congenital abnormalities. *One 

participant had missing data for education. Data are expressed as the amean ± standard error of the 

mean, as  bmedian (25th–75th percentiles) or as  ccount (percentage). p-values for continuous data were 

calculated using the Mann-Whitney or the unpaired student t test. p-values for categorical data were 

calculated using Chi-square test or Fisher’s exact test if frequency was <5.  

Variables Non-GDM (n=12) GDM (n=12) p-value 

Age (years)a 27.3 (0.3) 27.3 (0.3) 1.00 

Gestational age (weeks)a 19.3 (1.5) 19.3 (2.0) 1.00 

BMI (kg/m2)a 27.1 (1.3) 27.6 (1.1) 0.77 

Fasting glucose (mmol/L)a 4.3 (0.1) 5.5 (0.1) <0.001 

1 hr OGTT (mmol/L)a 5.2 (0.3) 6.6 (0.4) 0.01 

2 hr OGTT (mmol/L)a 5.2 (0.3) 5.8 (0.3) 0.07 

HbA1c (%)a 5.1 (0.1) 5.1 (0.1) 0.85 

Fasting insulin (mIU/L)b 8 (7.5-9.0) 10.2 (6.3-12.7) 0.65 

HOMAb 1.6 (1.6-1.8) 2.6 (1.5-2.9) 0.31 

Adiponectin (µg/ml)b 10.4 (7.3-23.8) 9.7 (4.7-12.0) 0.28 

C-reactive protein (mg/L)a 7.1 (1.2) 7.7 (1.1) 0.75 

Risk factors: n (%)c 

None 

≥1 risk factor 

 

10 (83.3) 

2 (16.7) 

 

7 (58.3) 

5 (41.8) 

 

0.37 

*Education: n (%)c 

<grade 12 

≥grade 12 

 

7 (63.6) 

4 (36.4) 

 

5 (41.7) 

7 (58.3) 

0.29 

Employment: n (%)c 

None 

Formal/informal employment 

 

8 (66.7) 

4 (33.3) 

 

7 (58.3) 

5 (41.7) 

1.00 
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4.2. Genome-Wide DNA Methylation Profiling 

The average detection p-values for all probes were calculated for each sample and are 

presented in supplementary Figure S1. Each sample showed p-values below the usual 

cut-off of 0.01, indicating that all samples passed the quality control. In addition, box 

and whisker plots showed concordance across samples without any outliers, 

suggesting good quality and consistency of samples (Figure 7.2). Median β-values 

ranged between 0.79 and 0.83 across the 24 samples.  A histogram of β-values showing 

the frequency distribution of CpG methylation across all samples is illustrated in 

Figure S2. A clear separation between GDM and non-GDM groups is evident in the 

PCA score plot, with characteristic DNA methylation profiles aggregating together 

within the same group (Figure 7.3). The first three PCAs explain 27.6% of the variance 

observed. The β-values were then converted to M-values for statistical analysis. To 

identify differentially methylated CpG sites between GDM and non-GDM 

pregnancies, data were filtered using the criteria shown in Figure 7.4. An M-value cut-

off threshold between >0.4 and >0.6 was explored in this study, which is within the 

threshold range suggested by Du et al (Du et al., 2010). In the first filtering step a M-

value difference of >0.4 or <-0.4 and unadjusted p<0.01 was used, to permit 

comparison between differentially methylated probes. Further filtering steps 

including M-values which ranged between >0.5 or <-0.5 and >0.6 or <-0.6 with 

unadjusted p<0.01 were assessed. We identified 1046 differentially methylated CpG 

loci with M-value differences of >0.6 or <-0.6 and unadjusted p<0.01 (Table S1). To 

facilitate a more stringent analysis, a false discovery rate (FDR) <0.1 was added, which 

did not identify any significant probes. Hierarchical clustering was performed to 

determine whether these methylation patterns could distinguish between women 

with or without GDM. The heatmap in Figure 7.5 illustrates that there are distinct 

methylation patterns between the GDM and non-GDM groups.  
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Figure 7.2. Box and whisker plots of β-values. Each box represents a sample (n=24). The median β-

value is 0.042  with a minimum and maximum range of 0.785 and 0.827 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. Principal component analysis (PCA) between GDM and non-GDM groups.  Each dot 

represents a sample. Centroids (black) connect samples from the respective GDM (blue) or non-GDM 

(red) group and indicate the center of distribution. The first three PCAs explain 27.6% of the variance 
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Figure 7.4. Filtering criteria for the identification of CpGs differentially methylated between GDM and 

non-GDM groups. A total number of 801,236 probes, derived through the removal of polymorphic, 

cross-hybridizing and non-CpG probes were used for analysis. FDR - false discovery rate; M-values 

closest to 0 indicate similar methylation intensities between probes 

 

 

 

 

 

 

Probes removed (n=64,623):
• Polymorphic probes (n=22,139)
• Cross-hybridising (n=40,762)
• Common probes between polymorphic and cross-hybridising lists (n=1,721)
• Non-CpG probe (n=1)
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M-value > 0.6 or < -0.6; 
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939 unique genes
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Figure 7.5. Heatmap showing methylation signatures of 1046 CpG sites in women with/without GDM. 

DNA methylation across 1046 CpG sites in each sample was analysed using Euclidean distance for 

both rows (observations) and columns (features) and average linkage criteria. Samples are shown in 

rows and are clustered in GDM (green) and non-GDM (orange) groups. Standardised M-values are 

depicted using a blue (hypomethylation in GDM) to red (hypermethylation in GDM) methylation 

gradient 

 

Of the 1046 differentially methylated CpG loci, 148 CpG sites (14.2%) were 

hypermethylated and 898 CpG sites (85.8%) were hypomethylated in women with 

GDM compared to women without GDM. To increase the likelihood of identifying 

differentially methylated promoters, probes located 5 kbp upstream or up to 3 kbp 

downstream of the transcription start site were also included as promoter regions. The 

frequency of all CpG sites analysed and differentially methylated CpG sites in relation 

to their genomic location is shown in Figure 7.6. Of the differentially methylated 

CpGs, 16.3% were associated with 5’-untranslated regions (UTR), 49.7% with 

promoters, 6.2% with coding domain sequences (CDS), 19.1% with introns, 4.0% with 



 

139 

 

non-coding regions, 2.1% with 3’-UTRs and 4.6% with intergenic regions. 

Differentially methylated CpG sites were annotated to 939 unique genes using RefSeq 

build 87 (Table S2). The top five significantly differentially methylated CpG sites 

selected for further analysis, were associated with four unique genes, including Solute 

Carrier Family 9 Member A3 (SLC9A3), Male-Enhanced Antigen 1; Kelch domain-

containing protein 3 (MEA1;KLHDC3), Calmodulin Binding Transcription Activator 1 

(CAMTA1) and RAS P21 Protein Activator 3 (RASA3), and one unknown gene. The 

probe ID, location, gene region and direction of methylation (GDM vs. non-GDM), as 

well as the nearest gene/regulatory region for the unknown gene is shown in Table 

7.2. Of the differentially methylated CpG sites, cg22985016 and cg16306629 was shown 

to be significantly hypermethylated, while cg21910650, cg23643951 and cg07966372 

was significantly hypomethylated in GDM compared to non-GDM groups. The 

association between GDM and the top five CpG sites remained significant for each 

CpG after linear regression adjusting for age BMI and gestational age (Table 7.3). To 

examine the degree to which DNA methylation levels at these CpGs are associated 

with clinical characteristics of GDM, Pearson’s correlation analysis was performed 

(Table 7.4). For cg22985016 and cg16306629, a positive correlation between DNA 

methylation and fasting glucose concentrations was observed, while methylation at 

cg21910650, g23643951 and cg07966372 was inversely correlated with glucose 

concentrations. Furthermore, DNA methylation at cg22985016 and cg16306629 was 

correlated with 1 hr glucose, while methylation at cg07966372 was negatively 

correlated with fasting insulin concentrations. When adjusting for GDM, the 

association between the five CpGs and fasting glucose concentrations and between 

cg22985016 and cg16306629 and 1 hr OGTT was no longer significant, while he 

association between cg07966372 and fasting insulin remained significant (Table S3).  
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Figure 7.6. Relative frequency of all CpGs analysed (black bars) and differentially methylated CpGs 

identified in our study (white bars) in relation to genomic location across the genome. UTR- 

untranslated region; CDS- coding domain sequence
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Table 7.2. The top five significantly differentially methylated CpG sites between GDM and non-GDM groups 

*nearest gene/regulatory region of cg16306629. ↑ - hypermethylation and ↓ - hypomethylation between GDM vs. non-GDM group

Probe ID Location Gene symbol Gene name Region p-value Methylation 

cg22985016 Chr5:492187-524227 SLC9A3 Solute Carrier Family 9 Member A3 Intron 1.84E-07 ↑ 

cg21910650 Chr6:42976841- 

42986722 

MEA1;KLHDC3 Male-Enhanced Antigen 1;Kelch domain-containing 

protein 3 

Promoter/5’UTR 3.23E-06 ↓ 

g23643951 Chr1:7151432-7309551 CAMTA1 Calmodulin Binding Transcription Activator 1 Intron 4.46E-06 ↓ 

cg16306629 Chr8:119121060-

119129059 

COLECT10* Collectin Subfamily member 10* Enhancer* 9.22E-06 ↑ 

07966372 Chr13:114782770-

114898099 

RASA3 RAS P21 Protein Activator 3 5’UTR/Intron 9.75E-06 ↓ 
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Table 7.3. Linear regression analysis of gestational diabetes mellitus and the top five significantly 

differentially methylated CpG sites, adjusting for age, body mass index and gestational age 

aUnivariate linear regression: Association between CpG-specific methylation and GDM. bMultivariate 

linear regression:  Adjusting for age (years), body mass index (kg/m2) and gestational age (weeks); CI 

– Confidence interval 

 

 

 

Table 7.4. Correlation analysis showing the association between DNA methylation and fasting plasma, 

1 hr OGTT, 2 hr OGTT and fasting insulin for the top five differentially methylated CpG sites 

OGTT: oral glucose tolerance test; SLC93A: Solute Carrier Family 9 Member A3; MEA1;KLHDC3: Male-

Enhanced Antigen 1;Kelch domain-containing protein 3; CAMTA1: Calmodulin Binding Transcription 

Activator 1; Unknown: gene nearest to this region is called Collectin Subfamily member 10; RASA3: 

RAS P21 Protein Activator 3. Pearson’s correlation coefficient (rho) is shown with significance at p<0.05. 

  aUnivariate bMultivariate 

CpG site Coefficient 95% CI 
 

p-value Coefficient 95% CI 
 

p-value 

cg22985016 (SLC93A) 0.028 0.019; 0.037 <0.001 0.028 0.019; 0.037 <0.001 

cg21910650 (MEA1;KLHDC3) -0.088 -0.117; -0.058   <0.001 -0.087 -0.118; -0.056 <0.001 

cg23643951 (CAMTA1) -0.056 -0.070; -0.042  <0.001 -0.056 -0.071; -0.042 <0.001 

cg16306629 (Unknown) 0.274 0.183; 0.366  <0.001 0.275 0.192; 0.359 <0.001 

cg07966372 (RASA3) -0.015 -0.025; -0.004  0.006 -0.015 -0.026; -0.004 0.008   

Variable cg22985016 

(SLC93A) 

cg21910650 

(MEA1;KLHDC3) 

cg23643951 

(CAMTA1) 

cg16306629 

(Unknown) 

cg07966372 

(RASA3) 

 rho p-value rho p-value rho p-value rho p-value rho p-value 

Fasting glucose 

(mmol/L) 

0.728  <0.001 -0.694 <0.001 -0.735 <0.001 0.724 <0.001 -0.452  0.026 

1 hr OGTT 

(mmol/L) 

0.502  0.012 -0.377  0.069 -0.399  0.053 0.559  0.004 0.016  0.939 

2 hr OGTT  

mmol/L) 

0.297  0.168 -0.249  0.250 -0.338  0.115 0.266  0.219 0.098  0.658 

Fasting insulin 

(mIU/L) 

-0.037  0.888 -0.103  0.691 -0.204  0.433 0.109  0.674 -0.495  0.043 



 

143 

 

4.3. Functional Enrichment Analysis 

Differentially methylated CpG sites (1046), annotated to 939 unique genes using M-

values >0.6 and <-06 with unadjusted p<0.01 threshold criteria, were selected for 

functional enrichment analysis. Functional enrichment analysis identified 261 KEGG 

pathways, including pathways for T2D and insulin signalling (Table S4). Only 50 

KEGG pathways were statistically significantly different between GDM and non-

GDM groups (Table S5). Statistically significant pathways included cancer, brain 

signalling, cell growth, proliferation, viability and inflammation pathways. The most 

significant KEGG pathway was ‘Signalling pathways regulating pluripotency of stem 

cells’ with an enrichment score of 10.496, a p-value =2.76E-05 and 19 differentially 

methylated associated genes. In addition, GO terms were enriched by differentially 

methylated genes, categorized into 1181 biological processes, 167 molecular functions 

and 85 cellular components with a p-value <0.05 (Table S6). The top ten GO terms 

categorized into biological processes, molecular functions and cellular components 

are illustrated in Figure 7.7. Of these, homophilic cell adhesion via plasma membrane 

adhesion molecules  (biological process), calcium ion binding (molecular function) 

and integral component of plasma membrane  (cellular component) have the highest 

ranked enrichment score and p-value <0.001.   
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Figure 7.7. Top ten GO terms enriched by differentially methylated genes in GDM and non-GDM 

groups. Enriched GO terms were categorized into (a) biological processes, (b) molecular function and 

(c) cellular components. Data are presented as enriched scores express as −log10 (p value). Fisher p≤0.001  
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5. DISCUSSION 

We report the differential methylation of 1046 CpG sites in the peripheral blood of 

black South African women with GDM compared to women with normoglycemic 

pregnancies. Functional analysis mapped these CpGs to genes in pathways key to 

metabolic regulation. Furthermore, differential methylation of the five CpG loci , 

within SLC93A was positively correlated with fasting and 1 hr glucose, while CpGs 

within CAMTA, MEA1;KLHDC3 and RASA3 was inversely correlated to fasting 

glucose, with distinct methylation profiles in GDM and non-GDM groups. CAMTA1 

is a transcriptional activator that was previously shown to regulate insulin production 

and secretion (Mollet et al., 2016). These results support the plausibility of the 

observed DNA methylation differences in GDM pathophysiology and potential as 

diagnostic biomarkers of GDM.  

Genome-wide DNA methylation differences during GDM have been demonstrated in 

other populations. Kang et al. used the Illumina Infinium Human MethylationEPIC 

Bead Chip array to investigate DNA methylation in Chinese women with GDM, and 

showed that the top 200 differentially methylated loci mapped to 151 genes (Kang et 

al., 2017). Of these, 15 genes, CAMTA1, Smad Nuclear Interacting Protein 1 (SNIP1), 

Protein-Tyrosine Phosphatase, Receptor-Type, F Polypeptide-Interacting Protein-

Binding Protein 2 (PPFIBP2), Switching B Cell Complex Subunit SWAP70 (SWAP70), 

Semiphorin 6D (SEMA6D), Cadherin 8 (CDH8), Cytochrome P450 Family 26 

Subfamily B Member 1 (CYP26B1), Wnt Family Member 6 (WNT6), Raftlin, Lipid Raft 

Linker 1 (RFTN1), Unc-5 Netrin Receptor C (UNC5C), Nucleoside Diphosphate-

Linked Moiety X Motif 6 (NUDT6), Storkhead Box (STOX2), MutS Protein Homolog 5 

(MSH5), KH RNA Binding Domain Containing, Signal Transduction Associated 

2 (KHDRBS2), and Neuregulin 1 (NRG1) were similarly shown to be differentially 
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methylated in our study, and has been illustrated in a venn diagram (Figure S3). 

Disparities in the number of differentially methylated CpG sites identified between 

studies could be due to population differences such as ethnicity, age and stage of 

pregnancy, and the data filtering criteria used. Although M-values were used to 

measure methylation differences in both studies, Kang et al. used a more stringent 

FDR adjusted p-value <0.05 for their analysis whereas we used an unadjusted p-value 

<0.01, since an FDR of <0.05 did not identify any significantly differentially methylated 

loci in our analysis. Despite using a higher FDR than Kang et al., the differential 

methylation of 15  genes were similar between studies (Kang et al., 2017).  Other 

technical differences between studies which may affect methylation levels include 

sample preparation, loading during hybridization and batch effect bias (Soriano-

Tárraga et al., 2013; Nakabayashi, 2017). Soriano-Tárraga et al. reported that the 

method of DNA extraction affects global DNA methylation levels (Soriano-Tárraga et 

al., 2013). Thus, standardization of analytical methods across laboratories is essential 

to enable comparison of DNA methylation patterns between studies. Other studies 

that used previous versions of the Bead Chip array similarly reported DNA 

methylation differences during GDM in Non-Hispanic Caucasian American and 

Caucasian English populations (Enquobahrie et al., 2015; Wu et al., 2018). As reported 

in these studies (Enquobahrie et al., 2015; Kang et al., 2017; Hjort et al., 2018; Wu et al., 

2018), the majority of CpG differences in our study were hypomethylated in women 

with GDM compared to women without GDM. However, in contradiction, in our 

study most of the 1046 differentially methylated CpG sites occurred in promoter 

regions, whereas previous studies identified most of the differentially methylated 

CpGs in gene body regions (Huang et al., 2015; Hjort et al., 2018). Differences could 

be due to the method of analysis used. Our analysis included additional CpGs located 

5 kbp upstream and 3 kbp downstream of the transcription start site to increase the 

probability of detecting differentially methylated promoter regions. Altered DNA 
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methylation in promoter regions influence the expression of specific genes (El Hajj et 

al., 2013; Kang et al., 2018; Wang, Yang, et al., 2018), which may enable the 

identification of genes/pathways involved in metabolic processes during GDM.  

Recently, we demonstrated that global DNA methylation is not associated with GDM 

in South African women (Dias, Adam, Wyk, et al., 2019). We hypothesised that the 

failure to detect DNA methylation differences was due to technical limitations and 

that gene-specific methylation analysis would be able to identify GDM-associated 

methylation differences. Global DNA methylation quantification is a crude marker of 

overall genomic methylation and does not have the resolution to detect gene-specific 

differences, as observed in the current study. Similar findings were reported by 

Matsha et al., who showed no difference in global DNA methylation between 61 

diabetic individuals on treatment and 287 normoglycemic subjects in a mixed ethnic 

ancestry South African population (Matsha et al., 2016). In addition, no difference in 

global DNA methylation was observed in peripheral blood mononuclear cells of a 

Danish population with obesity or T2D compared to controls (Simar et al., 2014).  

The diagnosis of GDM is contentious and varies across countries and health 

institutions. Currently the IADPSG criteria is advocated by several international 

bodies and endorsed by the World Health Organisation (WHO) (WHO, 2013). 

However, concerns that the high costs and increased workload of IADPSG criteria 

outweigh the clinical effects of small glucose differences has hampered its universal 

use. We were able to see altered DNA methylation patterns despite small glucose 

differences between women with or without GDM, suggesting that epigenetic 

programming is evident even during mild hyperglycaemia. Kang et al. also 

demonstrated altered DNA methylation in women diagnosed with GDM according 

to IADPSG diagnostic criteria (Kang et al., 2017). These findings support The 
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Hyperglycaemia and Adverse Pregnancy Outcomes (HAPO) study, which showed 

that even mild hyperglycaemia is associated with adverse pregnancy outcomes and 

requires treatment (HAPO Study Cooperative Research Group et al., 2008). 

Furthermore, several clinical trials have confirmed that treatment of mild 

hyperglycaemia decreases maternal morbidity and adverse perinatal outcomes 

(Alwan, Tuffnell & West, 2009).  

Functional analysis of differentially methylated CpG sites identified canonical 

pathways related to signal transduction, cell growth, proliferation, differentiation and 

apoptosis, insulin resistance, glucose metabolism, inflammation, neurological 

signalling, and oncogenesis. Altered DNA methylation of two signalling pathways, 

mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K), 

which play a role in cell growth and differentiation, and the metabolic action of insulin 

(Świderska et al., 2018), have previously been reported during GDM in other 

populations (Kang et al., 2017), identifying these CpG sites as likely biomarkers for 

the development of GDM. Our results demonstrated that pathways associated with 

cancer are differentially methylated in women with GDM compared to controls.  

Several studies have reported a link between GDM and cancer, particularly breast 

cancer (Sella et al., 2011; Park et al., 2017; Peng et al., 2019), identifying GDM as a 

potential risk factor for the development of cancer in later life , Nine of the top 10 GO 

terms enriched for biological processes were associated with structural organisation 

and developmental processes, supporting the influence of GDM on in utero 

programming of foetal growth and development (Monteiro et al., 2016). As expected, 

all 10 GO terms enriched for molecular functions were associated with regulatory or 

binding activities and offer insight into functions influenced by altered methylation at 

a molecular level during GDM.  
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A strength of our study is that women were matched for age, gestational age and BMI, 

to ensure that results were comparable between groups. In addition, DNA 

methylation analysis was conducted using the most comprehensive MethylationEPIC 

Bead Chip array currently available, which is considered a high-throughput method, 

that has a lower cost compared to sequencing, and is reproducible and time-efficient 

(Pidsley et al., 2016; Nakabayashi, 2017). . Our study has a number of limitations. The  

sample size (n=24) is small, although, it is larger than previously reported 

(Enquobahrie et al., 2015; Kang et al., 2017; Wu et al., 2018). No CpG sites reached FDR 

cut-off, suggesting that the study might have been underpowered. Albeit, 15 of the 

differentially methylated genes identified in our study were amongst the top 151 

identified by Kang et al. Peripheral blood cells consist of a mixture of different cell 

types (Reinius et al., 2012), which may confound methylation analysis. In our study, 

cell type composition did not differ significantly between GDM and non-GDM groups 

and therefore was not adjusted for in further analysis due to the small sample size. 

Thus, methylation differences between cell types could have confounded our analysis. 

Furthermore, physical activity, diet, smoking and alcohol consumption, which are 

known to influence DNA methylation patterns, are not known, and could confound 

our analysis. However, women in our study were recruited from the same community 

and had similar lifestyle behaviours, education and employment status, suggesting 

that they had roughly similar environmental influences. 

To our knowledge, this exploratory study is the first to profile genome-wide DNA 

methylation levels in the peripheral blood of South African women with GDM. We 

have identified five CpGs which are associated with GDM and offer potential as 

epigenetic biomarkers in our population. Further validation using pyrosequencing 

and conducting longitudinal studies in large sample sizes and in different populations 

are required to investigate their candidacy as biomarkers of GDM  
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8.  CHAPTER 8  

 

 

 

HUMAN IMMUNODEFICIENCY VIRUS 

INFECTION AFFECTS THE ASSOCIATION 

BETWEEN ADIPONECTIN DNA 

METHYLATION AND GESTATIONAL 

DIABETES MELLITUS IN SOUTH AFRICAN 

WOMEN 

 

This Chapter has been submitted as a short report to Clinical Epigenetics. Dias S, Adam 

S, Abrahams Y, Rheeder P, Pheiffer C.   
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1. ABSTRACT 

Background: DNA methylation is increasingly being recognized as a potential 

biomarker for gestational diabetes mellitus (GDM), however the effect of human 

immunodeficiency virus (HIV) infection on its candidacy as a biomarker has not yet 

been investigated. This study explored the effect of HIV infection on methylation of 

the adiponectin (ADIPOQ) gene in South African women with GDM. 

Results: DNA methylation levels at eight CpG sites within the ADIPOQ promoter was 

quantified in peripheral blood of women with (n=95) or without (n=191) GDM using 

pyrosequencing, where after women were stratified according to their HIV status. Of 

these, two CpG sites (-3410: p=0.048 and -3400: p=0.004) were hypomethylated during 

GDM in HIV negative, but not in HIV positive women. Methylation levels at these 

CpGs were inversely associated with serum adiponectin (-3410: p=0.023 and -3400: 

p=0.013) and fasting glucose (-3410: p=0.015 and -3400: p=0.001) concentrations. In 

silico analysis showed that transcription factors involved in adipocyte differentiation, 

stress response, and glucose and lipid metabolism may bind to the regions of altered 

DNA methylation. 

Conclusion: Our results show that HIV infection affects the association between 

ADIPOQ DNA methylation and GDM in South African women. These findings have 

implications for biomarker discovery in high HIV prevalence settings such as SA, 

where approximately one in three pregnant women are HIV positive. We recommend 

that DNA methylation studies be conducted in both HIV negative and positive 

individuals.  
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2. INTRODUCTION 

GDM is defined as glucose intolerance that is first diagnosed during the latter half of 

pregnancy, with return to normoglycemia after birth (WHO, 2013).  Globally, the 

prevalence of GDM ranges from <1 to 28%, depending on the population studied and 

diagnostic criteria employed (Jiwani et al., 2012). Recently, a GDM prevalence of 25.8% 

was reported in an urban setting in SA, a rate considerably higher than previously 

reported in this country (Adam & Rheeder, 2017). Although, different diagnostic 

criteria could partly account for the increased prevalence, the study nevertheless 

highlights the growing challenge GDM poses on the health systems of under-

resourced countries such as SA. Without appropriate diagnosis and management, 

GDM is associated with adverse maternal, foetal and perinatal outcomes (Hod et al., 

1991; Hadar & Hod, 2013; Moore, 2018), while both mothers and their offspring are at 

increased risk of developing type 2 diabetes mellitus (T2D), obesity and other 

metabolic conditions in later life (Kim, Newton & Knopp, 2002; Clausen et al., 2008; 

Bellamy et al., 2009; Zhao et al., 2016). The early detection of GDM could facilitate risk 

stratification and intervention strategies that could potentially better manage GDM, 

thereby improving health outcomes.  

Adiponectin is an insulin-sensitising hormone secreted by adipose tissue that 

regulates glucose and lipid homeostasis (Brochu-Gaudreau et al., 2010; Ghadge, 

Khaire & Kuvalekar, 2018). During pregnancy adiponectin concentrations 

progressively decline with increasing insulin resistance (Catalano et al., 2006; Bao et 

al., 2015). Furthermore, several studies (Ranheim et al., 2004; Worda et al., 2004; 

Retnakaran et al., 2010; Mohammadi & Paknahad, 2017), including ours (Adam et al., 

2018) have reported that adiponectin concentrations are lower in women with GDM 

compared to women with normoglycemic pregnancies. Accordingly, adiponectin has 
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been widely investigated as a potential biomarker of GDM (Ranheim et al., 2004; 

Worda et al., 2004; Retnakaran et al., 2010; Guelfi et al., 2017; Mohammadi & 

Paknahad, 2017; Adam et al., 2018; Lobo et al., 2019). These studies show that it is 

possible to detect adiponectin dysregulation early during pregnancy (from 14 weeks) 

(Guelfi et al., 2017), that adiponectin concentrations correlate with glucose 

concentrations (Worda et al., 2004; Mohammadi & Paknahad, 2017) and the 

development of GDM (Ranheim et al., 2004; Retnakaran et al., 2010; Adam et al., 2018), 

and is able to predict GDM before clinical diagnosis at 24-28 weeks (Lobo et al., 2019). 

Thus, measurement of serum adiponectin concentrations offers tremendous potential 

to serve as a clinical biomarker for GDM. 

DNA methylation is an important epigenetic mechanism that reflects the interplay 

between gene-environment interactions (Christensen & Marsit, 2011; Ling & Rönn, 

2019). It is the most widely studied and best characterised epigenetic mechanism and 

refers to the addition of a methyl group to the fifth carbon position of a cytosine 

residue within a cytosine-phosphate-guanine (CpG) dinucleotide. This modification 

can alter chromatin structure and regulates gene expression primarily by 

transcriptional repression. Aberrant DNA methylation has been demonstrated in 

many diseases (Barres & Zierath, 2011; He et al., 2019; Krause et al., 2019). Evidence 

suggest that peripheral blood mirrors DNA methylation patterns in tissue, supporting 

its potential as biomarkers of various metabolic disease, including GDM (Li et al., 

2012; Dias et al., 2018; Willmer et al., 2018). Recently we reported altered genome-wide 

DNA methylation patterns in South African women with GDM (Dias, Adam, Rheeder, 

et al., 2019). This study showed that 1046 CpG sites related to 939 genes displayed 

significant methylation differences between GDM and non-GDM groups, supporting 

the potential of DNA methylation as biomarkers for GDM in our population.  
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South Africa has the highest prevalence of human immunodeficiency virus (HIV) 

worldwide, with an estimated 7.9 million people infected (HSRC Press, 2018). HIV 

infection alters epigenetic mechanisms such as DNA methylation and microRNA 

expression (Zhang et al., 2016; Pheiffer et al., 2019), which may affect their potential as 

biomarkers of GDM. Given the high prevalence of HIV in South Africa, particularly 

in women of reproductive age (HSRC Press, 2018), it is important to explore the effect 

of infections such as HIV on potential biomarkers of GDM. Previous studies were 

conducted in HIV negative (Dias, Adam, Rheeder, et al., 2019) or without 

consideration of HIV status (Bouchard et al., 2012; Ott et al., 2018).  This study 

investigated the effect of HIV infection on ADIPOQ DNA methylation  in pregnant 

women with and without GDM. DNA methylation at eight CpG sites within the 

ADIPOQ promoter was quantified in the peripheral blood of women with (n=95) or 

without (n=191) GDM using pyrosequencing, where after women were stratified 

according to their HIV status. Furthermore, the association between CpG-specific 

methylation and clinical characteristics was assessed, while in silico analyses was 

conducted to identify transcription factors that bind to CpGs with altered methylation.   



 

156 

 

3. MATERIALS AND METHODS 

3.1. Study Population 

Ethical approval for this study was granted by the University of Pretoria Health 

Sciences Ethics Committee (180/2012). The study was conducted according to the 

Declaration of Helsinki and all women gave written informed voluntary consent after 

the procedures had been fully explained in the language of their choice (Adam & 

Rheeder, 2017). One thousand pregnant black African women attending a primary 

care clinic in Johannesburg, South Africa were recruited to the study. Women were 

excluded if they had twin pregnancies, pre-existing diabetes (Type 1 diabetes mellitus 

(T1D) and T2D) and if they had any other infections such as tuberculosis. At their first 

visit, random glucose and glycated haemoglobin (HbA1c) concentrations were 

measured using a glucometer (Roche Diagnostics, Mannheim, Germany) and the 

point-of-care Afinion system (Alere Technologies, Oslo, Norway), respectively. 

Women with random glucose concentrations <11.1 mmol/L and HbA1c concentrations 

<6.5%, were requested to return to the clinic within two weeks in a fasted state for 

GDM testing and blood collection. GDM was diagnosed using the 75 g 2 hr oral 

glucose tolerance test (OGTT) at 24-28 weeks gestation if at least one glucose value 

was met (fasting plasma glucose ≥5.1 mmol/L, 1 hr OGTT ≥10 mmol/L or 2 hr OGTT 

≥8.5  mmol/L), according to the International Diabetes and Pregnancy Study Group 

(IADPSG) criteria (IADPSG panel, 2010). Anthropometric measurements were 

obtained according to standard procedures and demographic and socio-economic 

data were obtained in the form of a standardised questionnaire (Adam & Rheeder, 

2017). HIV testing were offered to all pregnant women using rapid HIV kits, and 

results were confirmed with a different kit according to the guidelines of the SA 

Department of Health (National Department of Health South Africa, 2015). HIV 
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positive women were treated with Atripla™; a fixed-dose coformulation of three anti-

HIV drugs, efavirenz, emtricitabine and tenofovir given once-daily (National 

Department of Health South Africa, 2015). Blood samples were collected after an 

overnight fast, and C-reactive protein (CRP) and fasting glucose and insulin 

concentrations were measured in an accredited laboratory (Vermaak and 

Partners/Pathcare laboratories, South Africa). The homeostatic model assessment 

(HOMA), a measure of insulin resistance was calculated using the equation: (fasting 

plasma glucose x fasting serum insulin)/22.5. Serum adiponectin concentrations were 

measured using the human adiponectin enzyme-linked immunosorbent assay 

(ELISA) (Merck, Dermstadt, Germany). Blood were stored at -80 oC for DNA 

methylation profiling. A subset of women between the ages of ≥18≤40 years, with 

(n=95) or without (n=191) GDM, who had serum adiponectin concentration 

measurements were selected for this cross-sectional study. These women were 

stratified according to HIV negative (n=63, GDM; n=118, non-GDM) and HIV positive 

(n=32, GDM; n=73 non-GDM) groups (Figure 8.1). Of the 105 HIV positive women, 36 

were receiving antiretroviral therapy (ART) (GDM: n=12, non-GDM: n=24), 68 were 

ART naïve (GDM: n=19, non-GDM: n=49) and one had missing data, which was not 

included in ART analysis. 
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Figure 8.1. Flow diagram for study participants. A subset of women with (n=95) and without (n=191) 

GDM were selected for this cross sectional study and were stratified according to HIV negative and 

HIV positive groups. HIV: Human Immunodeficiency Virus 

3.2. Peripheral Blood Collection and DNA Extraction 

Peripheral blood was collected in Ethylenediaminetetraacetic acid (EDTA) tubes, and 

genomic DNA was extracted from 2 ml of whole blood using the QIAamp DNA Blood 

Midi Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. 

DNA concentrations were measured using the Qubit Flourometer (Invitrogen, 

Carlsbad, USA) and the Quanti-iT dsDNA Broad Range assay kit (ThermoFisher, 

Massachusetts, USA).  

Participants recruited

n=1000

Selected for ADIPOQ DNA methylation

GDM (n=95); Non-GDM (n=191)
HIV negative (n=181): GDM=63 and non-GDM=118
HIV positive (n=105): GDM=32 and non-GDM=73 

OGTT performed 

n=554

DNA extracted from eligible 

participants

n=449

Excluded n=446
• Fetal loss (n=82)

• Migrated from area (n=163)

• Loss to follow-up (n=194)
• Withdrew consent (n=7)

Excluded n=105
• Missing HIV data (n=5)

• Participants age <18 and >40 years (n=24)

• No stored blood for DNA extraction (n=76)

Excluded n=163
• Due to insufficient serum samples 

for adiponectin measurements
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3.3. Primers 

Primers designed specifically to bisulfite modified regions were selected from 

publications that identified two regions important for ADIPOQ gene regulation 

(Bouchard et al., 2012; Houshmand-Oeregaard et al., 2017). Region 1 (R1) represents 4 

CpGs at -3413, -3410, -3400 and -3372 (region C in Bouchard et al. 2012 (Bouchard et 

al., 2012)) and R2 represents 2 CpGs at -112 and -45 (Houshmand-Oeregaard et al. 2017 

(Houshmand-Oeregaard et al., 2017)) upstream from the transcription start site (TSS). 

In addition, primers for R3 (2 CpGs at -473 and -415 upstream from the TSS) was 

designed by us, using the PyroMark Assay Design Software (version 2.0.2.5, Qiagen). 

A schematic representation of the eight CpG sites investigated in the promoter of 

ADIPOQ is illustrated in Figure 8.2. The PCR primer set included a forward and 

reverse primer, of which one was biotinylated, and a sequencing primer (Integrated 

DNA Technologies, Inc., South Africa). The amplicon length was restricted to <200 bp 

to ensure optimal sequencing. The primer and target sequences, chromosomal 

location and amplicon length are listed in Table S1. 

Figure 8.2. Schematic illustration of the Adiponectin gene locus, including three exons and the location 

of analysed CpG sites upstream of the transcription start site. Region 1 (R1) represents 4 CpGs at -

3413, -3410, -3400 and -3372, R2 represents 2 CpGs at -112 and -45 and R3 represents 2 CpGs at -

473 and -415 

Exon 2Exon 1

Transcription start site

-415

Exon 3
-112 -45-473-3372-3400-3410-3412

R1 R2 R3

5’ 3’
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3.4. DNA Methylation Analysis 

Bisulfite conversion was performed using the EpiTech Fast DNA Bisulfite Kit (Qiagen, 

Hilden, Germany), according to the manufacturer’s instructions. Briefly, 500 ng of 

genomic DNA was mixed with 85 µl of sodium bisulfite solution, 15 µl of DNA protect 

buffer and variable RNase free water to a total volume of 140 µl. Thereafter, bisulfite 

conversion was performed in a thermal cycler as follows: 5 min at 95 °C, 20 min at 60 

°C, 5 min at 95 °C and 20 min at 60 °C. For purification, bisulfite converted DNA was 

mixed with 310 µl of BL buffer and 250 µl of ethanol (96 – 100%) and loaded onto the 

EpiTech DNA spin column. DNA was washed using BW buffer, incubated with 

desulfonation BD buffer for 15 min at room temperature (15–25°C), and eluted by 

centrifugation at 15,000 g for 1 min, using 15 µl of EB buffer. PCR was performed using 

20 ng of bisulfite converted DNA and 0.2 µM of specific primers containing CpG sites 

of interest, in a final volume of 25 µl using the Pyromark PCR kit (Qiagen), according 

to the manufacturer’s instructions. Quality control for pyrosequencing was conducted 

using no template and bisulfite controls on the PyroMark Q96 MD pyrosequencing 

system, according to the manufacturer’s instructions.  Bisulfite conversion efficiency 

was tested by performing PCR and pyrosequencing using differing ratios of DNA 

methylated standards ranging from unmethylated to completely methylated (0%, 

10%, 25%, 50%, 75%, 90% and 100%) (Qiagen). Methylation at each CpG site was 

associated with the approximate percentage of methylation for each standard, with 

R1 (CpGs at -3413, -3410, -3400 and -3372) showing good correlation (Figure S1). Next, 

15 µl of PCR product was used for pyrosequencing with the PyroMark Gold Q96 

reagent kit (Qiagen), and the percentage of methylation was quantified for all CpG 

sites using Pyromark Q96 Assay Design software (V2.0). Bisulfite conversion and 

pyrosequencing were repeated in randomly selected samples for validation.  
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3.5. In Silico Analysis  

In silico analysis was conducted to identify transcription factors that bind to regions of 

altered CpG methylation. The sequence of the human ADIPOQ gene was retrieved 

from Ensemble (GRCh38) (https://www.ensembl.org/index.html), and the region 

between -3425 bp to -3383 bp (total 42 bp), overlapping CpG -3410 and -3400 was 

analysed to identify potential transcription factors using ALIBABA 2.1 (Grabe, 2000) 

and ALGGEN-PROMO software (Messeguer et al., 2002). CpG -3410 and -3400 

showed high levels of methylation, thus, the resulting transcription factor predictions 

were cross-referenced using the MeDReader database to assess the likelihood of these 

transcription factors to bind to highly methylated regions (Wang, Luo, et al., 2018).  

3.6. Statistical Analysis 

Data were evaluated for normality using the Shapiro-Wilk tests in STATA 14 

(StataCorp, College Station, USA). Data were not normally distributed and are 

expressed as the median and interquartile range (25th – 75th percentile) and categorical 

data are expressed as count (percentage).  Comparisons between groups were 

analysed using the Mann-Whitney test, while categorical variables were analysed 

using the Chi-squared test. To investigate the association between GDM and 

differentially methylated CpGs, univariate or multivariate logistic regression 

adjusting for covariates were used. GDM was classified as the binary dependent 

variable and DNA methylation as the continuous independent variable. The 

association between DNA methylation and clinical characteristics were assessed using 

Spearman’s correlation (r) coefficient. Graphs were drawn in Prism 7, Version 7.03 

(GraphPad, La Jolla, USA). A p-value of  ≤0.05 was considered statistically significant.  

https://www.ensembl.org/index.html
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4. RESULTS 

4.1. Participant Characteristics 

Participant characteristics are presented in Table 8.1. Random (p<0.001), fasting 

(p<0.001), 1 hr OGTT (p<0.001) and 2 hr OGTT (p<0.001) glucose and HbA1c (p=0.022) 

concentrations, HOMA (p<0.001) and risk factors (p=0.017) were higher in women 

with GDM compared to women with normoglycemia, while serum adiponectin 

concentrations (p=0.009) were lower in women with GDM. When women were 

stratified according to HIV status, random (p<0.001), fasting (p<0.001), 1 hr OGTT 

(p<0.001) and 2 hr OGTT (p<0.001) glucose, HbA1c (p=0.007) and fasting insulin 

(p=0.034) concentrations, HOMA (p<0.001) and risk factors (p=0.038) were higher in 

HIV negative women with GDM compared to those with normoglycemia, while 

adiponectin concentrations (p=0.009) were lower in women with GDM. Most of these 

differences were ablated in HIV positive women, with only fasting (p<0.001), 1 hr 

OGTT (p<0.029) and 2 hr OGTT (p<0.001) glucose concentrations higher in HIV 

positive women with GDM compared to women with normoglycemia. Importantly, 

the percentage of women receiving ART compared to ART naïve women were not 

different between GDM and non-GDM groups in HIV positive women (p=0.567).
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Table 8.1. Participant characteristics 

 ALL HIV negative HIV positive 

Participant Characteristics GDM Non-GDM p-value GDM Non-GDM p-value GDM Non-GDM p-value 

Participants: n 95 191  63 118  32 73  

Age (years) 29 (24-32) 27 (23-31) 0.114 28 (24-32) 26 (23-30) 0.079 30 (25-32) 29 (25-33) 0.613 

BMI (kg/m2) 26.7 (23.3-31.2) 25.6 (22.5-28.6) 0.057 26.9 (22.9- 30.7) 25.6 (22.7-28.6) 0.232 26.6 (24.4-33.6) 25.8 (22.3-29.7) 0.085 

Gestational Age (weeks) 25 (21-27) 25 (21-28) 0.399 25 (21-27) 25 (20-28) 0.754 25 (20.5-26.5) 26 (22-28) 0.306 

Random glucose (mmol/L) 4.6 (4.2-5.0) 4.3 (4.0-4.8) <0.001 4.6 (4.1-5.0) 4.3 (3.9-4.7) <0.001 4.6 (4.3-5.2) 4.4 (4.1-4.9) 0.124 

Fasting glucose (mmol/L) 5.6 (5.3-6.0) 4.4 (4.1-4.7) <0.001 5.7 (5.3-6.0) 4.3 (4.0-4.6) <0.001 5.4 (5.3-5.7) 4.5 (4.2-4.8) <0.001 

OGTT 1 hr (mmol/L) 6.2 (5.5-7.5) 5.4 (4.6-6.3) <0.001 6.3 (5.6-8.3) 5.3 (4.5-6.3) <0.001 5.9 (5.3-7.0) 5.5 (4.7-6.3) 0.029 

OGTT 2 hr (mmol/L) 6.1 (5.1-7.2) 5.2 (4.6-5.7) <0.001 6.1 (5.1-7.3) 5.2 (4.6-5.7) <0.001 6.1 (5.1-7.1) 5.1 (4.3-5.8) <0.001 

HbA1c (%) 5.3 (5.0-5.5) 5.2 (4.9-5.4) 0.022 5.3 (5.0-5.5) 5.1 (4.8-5.3) 0.007 5.3 (5.1-5.5) 5.3 (5.1-5.5) 0.886 

Fasting insulin (mIU/L) 5.9 (3.7 -8.1) 5.2 (3.6-7.0) 0.132 6.5 (4.5-8.5) 5.4 (3.9-7.6) 0.034 3.6 (2.8-5.6) 4.5 (3.1-5.8) 0.387 

HOMA 1.6 (1.0-2.4) 1.0 (0.7-1.5) <0.001 1.7 (1.2-2.1) 1.1 (0.8-1.6) <0.001 0.8 (0.7-1.4) 0.9 (0.6-1.1) 0.473 

C-reactive protein (mg/L) 7.1 (3.7-10.5) 6.1 (3.0-8.8) 0.174 6.9 (3.6-9.0) 5.3 (3.0-8.3) 0.367 10.3 (5.3-21.7) 7.8 (2.9-16.3) 0.169 

Adiponectin (µg/ml) 9.2 (5.3-15.1) 10.5 (8.1-16.5) 0.009 7.6 (4.9-11.8) 9.7 (7.3-14.5) 0.009 14.0 (7.2-19.6) 14.4 (9.4-20.3) 0.427 
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BMI: body mass index; OGTT: oral glucose tolerance test; HbA1c: glycated haemoglobin; HOMA: homeostatic model assessment; Risk factors: advanced maternal 

age (age > 35 years), obesity (BMI > 30 kg/m2), family history of diabetes mellitus, delivery of a previous baby more than four kilograms, glucosuria, previous recurrent 

pregnancy loss, stillbirth, or birth of a baby with congenital abnormalities; ART: antiretroviral treatment using Atripla™: a fixed-dose coformulation of three anti-HIV 

drugs, efavirenz, emtricitabine and tenofovir given once-daily. Data are expressed as the median and interquartile range (25th–75th percentiles) or as acount 

(percentage). Values in bold type indicate statistical significance

Education: n (%)a 

<grade 12 

≥grade 12 

 

48 (51.1) 

46 (58.9) 

 

96 (52.5) 

87 (47.5) 

0.826 

 

28 (45.2) 

34 (54.8) 

 

49 (43.4) 

64 (56.6) 

0.819 

 

20 (62.5) 

12 (36.5) 

 

47 (67.1) 

23  (32.9) 

0.647 

Risk Factors: n (%)a 

None 

≥1 risk factor 

 

40 (42.1) 

55 (57.9) 

 

109 (57.1) 

82 (42.9) 

0.017 

 

30 (37.6) 

33 (52.4) 

 

75 (63.6) 

43 (36.4) 

0.038 

 

10 (31.3) 

22 (68.7) 

 

34 (46.6) 

39 (53.4) 

0.143 

ART: n (%)a 

On treatment 

ART  naïve 

- - - - - - 

 

12 (38.7) 

19 ( 61.3) 

 

24 (32.8) 

49 ( 67.1) 

0.567 
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4.2. DNA Methylation 

DNA methylation at CpG -3413, -3410, -3400 and -3372 in R1 was lower 

(hypomethylated) in women with GDM compared to normoglycemia, although only 

CpG -3400 showed a trend towards statistical significance (p<0.06) (Figure 8.3a). 

Stratification according to HIV status demonstrated hypomethylation of two CpG 

sites (-3410: p=0.048 and -3400, p=0.004) in HIV negative women with GDM compared 

to normoglycemia (Figure 8.3b). These GDM-associated differences were not observed 

in HIV positive women (Figure 8.3c). Logistic regression analysis showed that 

methylation at CpGs -3410 and -3400 were associated with GDM in HIV negative 

women, with the strength of association increasing slightly when methylation at both 

CpGs were included in the model (Table 8.2). The association between DNA 

methylation and GDM in HIV negative women remained significant after adjusting 

for age, BMI and gestational age. Regression analysis confirmed that methylation 

levels were not associated with GDM in HIV positive women. The percentage of 

women with methylation values in the upper quartile (between the median and 75th 

percentile) at CpGs -3410 and -3400 were significantly higher (p<0.001) in the HIV 

positive women compared to HIV negative women (Table S2). ART did not affect 

DNA methylation levels at CpG -3410 (p=0.196) and -3400 (p=0.617) in HIV positive 

women (Figure S2).  
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Figure 8.3. DNA methylation of eight CpG sites in the promoter of the adiponectin gene. DNA 

methylation was measured in a) all women (n=95 GDM; n=191 non-GDM), b) HIV negative women 

(n=63 GDM; n=118 non-GDM) and c) HIV positive women (n=32 GDM; n=73 non-GDM). Data are 

represented as the median and interquartile range. *p<0.05, **p<0.01 
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Table 8.2. Logistic regression analysis of ADIPOQ gene promoter DNA methylation at CpG -3410 and 

-3400 associated with GDM by HIV status 

aUnivariate linear regression: Association between CpG-specific methylation and GDM. bMultivariate 

linear regression:  Adjusting for age (years), body mass index (kg/m2) and gestational age in HIV 

negative women and age (years), body mass index (kg/m2), gestational age (weeks) and antiretroviral 

therapy in HIV positive women; β: beta coefficient; CI: Confidence interval. Values in bold type indicate 

statistical significance. 

 

The correlation between methylation levels at CpG sites (-3410, -3400) and clinical 

characteristics was explored using Spearman’s analysis (Table 8.3). An inverse 

relationship between DNA methylation and fasting insulin concentrations at CpG -

3400 was observed (p=0.029), although the association was ablated when stratified 

according to HIV status. DNA methylation was negatively correlated with fasting 

glucose concentrations at CpG -3410 (p=0.015) and CpG -3400 (p=0.001) and with 

serum adiponectin concentrations at CpG -3410 (p=0.023) and CpG -3400 (p=0.013) in 

HIV negative women. 

 

 aUnivariate bMultivariate 

GDM β 95% CI p-value β 95% CI p-value 

HIV negative 

-3410 -0.051 -0.079; -0.022   0.001 -0.043 -0.075; -0.011 0.008 

-3400 -0.056 -0.087; -0.026 <0.001 -0.050 -0.084; -0.017 0.003 

-3410 & -3400 -0.027 -0.042; -0.012 <0.001 -0.024 -0.040; -0.007 0.005 

HIV positive 

-3410 -0.129 -0.245; 0.504 0.498 0.170 -0.251; -0.592 0.428 

-3400 0.246 -0.139; -0.630 0.211 0.245 -0.168; -0.658 0.245 

-3410 & -3400 0.145 -0.096; -0.385 0.238 0.150 -0.104; -0.404 0.246 
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Table 8.3. Spearman’s correlation between ADIPOQ gene promoter DNA methylation at CpG -3410 

and -3400 and participant characteristics 

 OGTT: oral glucose tolerance test; HIV: human immunodeficiency virus; ADIPOQ: Adiponectin gene; 

Rho: Spearman’s correlation. Values in bold type indicate statistical significance: **p<0.01, *p<0.05 

 

4.3. In Silico Analysis 

Transcription factors that may bind to the region of altered DNA methylation in the 

ADIPOQ promoter are illustrated in Figure 8.4. Using ALIBABA software, binding 

sites for Specificity Protein 1 Transcription Factor (SP-1) and Odd-Skipped Related 

Transcription factor 1 (OSR1) were identified, while ALGGEN-PROMO software 

identified binding sites for glucocorticoid receptor alpha and beta (GRα and GRβ), X-

Box Binding Protein 1 (XBP1) and General Transcription Factor IIi (GTF2I). Binding 

sites for Transcription Factor AP2-alpha (TFAP2A) were similarly identified by both 

ALIBABA and ALGGEN-PROMO software. 

Variable   All women             HIV negative              HIV positive 

 r p-value               r p-value                r p-value 

CpG -3410       

Fasting glucose (mmol/L) -0.084 0.158 -0.180 0.015 -0.024 0.806 

OGTT 2 hr (mmol/L) -0.011 0.857 0.035 0.642 -0.034 0.733 

Fasting insulin (mIU/L) -0.118 0.089 -0.079 0.318 0.234 0.096 

Adiponectin (µg/ml) 0.040 0.512 -0.170 0.023 -0.020 0.852 

CpG -3400       

Fasting glucose (mmol/L) -0.111 0.062 -0.238 0.001 0.130 0.186 

OGTT 2 hr (mmol/L) -0.062 0.303 -0.014 0.857 -0.050 0.615 

Fasting insulin (mIU/L) -0.149 0.029 -0.134 0.092 0.130 0.358 

Adiponectin (µg/ml) 0.023 0.690 -0.180 0.013 -0.040 0.721 
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Figure 8.4. Schematic illustration showing potential transcription factors specific to the region of 

altered DNA methylation in the promoter of ADIPOQ. Potential transcription factor binding sites 

within the region -3425 to -3383 upstream of the ADIPOQ gene transcription start site were identified 

using ALGGEN-PROMO1 and ALIBABA 2.12 software. These transcription factors were cross-

referenced with the MeDReader database to identify transcription factors capable of binding to highly 

methylated DNA. The following factors were identified: GRα - glucocorticoid receptor alpha; XBP1 - 

X-Box Binding Protein 1; GTF2I - General Transcription Factor Iii; SP-1 - Specificity Protein 1 

Transcription Factor; OSR1 - Odd-Skipped Related Transcription factor 1; GRβ - glucocorticoid 

receptor beta and TFAP2A - Transcription Factor AP2-alpha. Bold-face nucleotides indicate 

differentially methylated CpG sites  
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5. DISCUSSION 

The effect of HIV infection on DNA methylation during GDM is underexplored. This 

study demonstrates that HIV infection affects the association between ADIPOQ DNA 

methylation in peripheral blood and GDM in South African women. Two CpG sites (-

3410 and -3400) in the proximal promoter of ADIPOQ was hypomethylated in HIV 

negative women with GDM compared to normoglycemia, while these changes were 

not observed in HIV positive women. Furthermore, methylation at these differentially 

methylated CpGs were negatively correlated with fasting glucose and adiponectin 

concentrations in HIV negative, but not in HIV positive pregnant women. In addition, 

in silico analysis identified two transcription factors, SP-1 and TFAP2A, that binds to 

differentially methylated sites in the ADIPOQ promoter region at CpG -3410 and -

3400, respectively. 

Our findings are consistent with others who have similarly reported altered ADIPOQ 

methylation during GDM. Although the methylation differences between GDM and 

non-GDM groups were small, they were previously reported in other populations 

(Bouchard et al., 2012; Houshmand-Oeregaard et al., 2017; Ott et al., 2018), suggesting 

that these CpG sites may be important for ADIPOQ gene regulation. Ott et al. showed 

small, yet significant alterations in CpG-specific DNA methylation in paired 

subcutaneous and visceral adipose tissue and maternal blood between GDM and non-

GDM obese women. In addition, the authors demonstrated a significant inverse 

correlation between differentially methylated CpG sites and ADIPOQ gene expression 

in adipose tissue, indicating functional relevance of altered CpG-specific DNA 

methylation. However, this study was conducted in a low HIV prevalence setting and 

did not investigate the effect of HIV. Similarly, other studies that have reported altered 

DNA methylation of the ADIPOQ gene were conducted in low HIV prevalence 
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populations and did not report HIV status (Bouchard et al., 2012; García-Cardona et 

al., 2014; Houshmand-Oeregaard et al., 2017; Nogues et al., 2019). Nogues et al. 

showed that  placental hypomethylation of the ADIPOQ promoter is associated with 

maternal obesity in a French population consisting of 12 obese and 18 non-obese 

pregnant women (Nogues et al., 2019). Gacia-Cardona et al. reported altered ADIPOQ 

promoter methylation at two CpG sites in peripheral blood of 39 obese and 22 

morbidly obese Mexican adolescents with or without insulin resistance (García-

Cardona et al., 2014). Moreover, Houshmand-Oeregaard et al. reported an increase in 

ADIPOQ DNA methylation and a decrease in ADIPOQ gene expression in 

subcutaneous adipose tissue from adult offspring of Danish women with diet treated 

GDM compared to controls (Houshmand-Oeregaard et al., 2017).  

Accumulating evidence suggests that HIV infection modifies DNA methylation to 

promote viral integration into the host cell and to increase the virus’s ability to 

replicate, survive and establish latency (Harbers et al., 1981; Nelson et al., 2017). 

Furthermore, HIV infection has been shown to increase DNA methyltransferase 

expression, which is responsible for de novo methylation in CD4+ T cells (Mikovits et 

al., 1998; Fang et al., 2001). Accordingly, DNA methylation differences between HIV 

negative and positive individuals have been reported, although not during GDM 

(Zhang et al., 2016). Using the HumanMethylation450 Beadchip array, Zhang et al. 

identified 20 CpG sites that were differentially methylated in peripheral blood of 261 

HIV infected and 117 uninfected individuals. Of these, two CpGs in the promoter of 

the NLR family, CARD domain containing gene 5 (NLRC5), a key regulator of major 

histocompatibility complex class I gene expression, had significantly lower 

methylation in HIV-infected compared to uninfected subjects (Zhang et al., 2016). Pion 

et al. reported that HIV infection of regulatory T cells cultured from peripheral blood 

samples of healthy individuals induced downregulation of Forkhead box P3 (FOXP3), 
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which was associated with increased methylation in the regulatory regions of FOXP3 

(Pion et al., 2013). In addition, Dye et al. identified 123 differentially methylated CpG 

sites in monocytes of HIV-infected individuals with varying levels of insulin 

sensitivity using the HumanMethylation450 BeadChip array. These CpGs were 

enriched at genes involved in pathways relating to immune activation, glucose 

metabolism and insulin signalling (Dye et al., 2019). Furthermore, a study 

investigating global DNA methylation in LINE-1 and AluYb8 repetitive elements 

showed decreased DNA methylation profiles in infants exposed to HIV infection and 

combined ART treatment in utero compared to unexposed infants (Marsit et al., 2015). 

In our study, DNA methylation at CpG -3410 and -3400 within the ADIPOQ gene were 

not different between women receiving ART or those who were ART naïve, which 

may suggest that HIV infection rather than ART is associated with altered ADIPOQ 

methylation in South African women. Alternatively, our study may have been 

underpowered to detect differences due to the small HIV positive sample size 

compared to previously reported (n=445) (Marsit et al., 2015).  

DNA methylation at CpG -3410 and -3400  within the ADIPOQ gene was inversely 

correlated with fasting glucose and serum adiponectin concentrations, and is 

consistent with Bouchard et al. who similarly reported an association between 

ADIPOQ methylation and hyperglycaemia or circulating adiponectin concentrations 

during pregnancy (Bouchard et al., 2012). In contrast, we did not observe an 

association between ADIPOQ methylation and insulin resistance as reported by 

Bouchard et al. Possible reasons for differences observed between studies could be 

due to several factors including sample size, different ethnicity, biological material, 

timing of methylation analysis during pregnancy and treatment strategies. Bouchard 

et al. investigated DNA methylation in the placenta of 98 French-Canadian women at 

delivery, while DNA methylation in our study was conducted in peripheral blood of 
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286 South African women at <26 weeks of gestation. In addition, the authors reported 

that women with GDM were on diet or insulin treatment, whereas women in our 

study were not on any treatment at the time of blood collection. 

Common risk factors (advanced maternal age, obesity, family history of diabetes 

mellitus, previous baby more than four kg, glucosuria, previous recurrent pregnancy 

loss, stillbirth, or birth of a baby with congenital abnormalities) were significantly 

different in HIV negative women with GDM compared to normoglycemia, while these 

changes were not observed in HIV positive women. It is possible that HIV infection 

may influence the risk of developing GDM, although epidemiological studies on HIV 

infection during GDM are limited. Recently, a meta-analysis exploring the 

relationship between GDM diagnosis, HIV infection and treatment reported no 

association between HIV infection and the development of GDM in four studies using 

combination ART, two of which were conducted in the USA and two in Africa 

(Soepnel et al., 2017). A study investigating the prevalence of GDM in South African 

pregnant women reported a higher HIV prevalence in GDM compared to non-GDM 

women, although this was not statistically significant (Adam & Rheeder, 2017). 

Evidence suggest that ART, particularly first-generation protease inhibitors induces 

insulin resistance in both pregnant and non-pregnant women (Jao et al., 2013). 

Furthermore, ARTs cause dysregulated glucose metabolism, which likely increases 

the risk of developing GDM (Soepnel et al., 2017). Although Atripla™, a newer 

generation ART used in this study have fewer effects on cellular function and 

metabolism than protease inhibitors, metabolic dysfunction has not completely been 

eliminated (Willig & Overton, 2016). Thus, the association between HIV, ART and the 

development of GDM warrants further investigation.  
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In silico analysis identified transcription factors that are capable of binding highly 

methylated DNA and whose binding may be affected by altered methylation of the 

CpG sites. These factors are involved in adipocyte differentiation, stress response, and 

glucose and lipid metabolism (O’Connor, Gilmour & Bonifer, 2016; Piperi, 

Adamopoulos & Papavassiliou, 2016; Weikum et al., 2017). Of the identified 

transcription factors, SP-1 and TFAP2A had their core recognition sites directly over 

the altered CpG sites. SP-1, a ubiquitously expressed transcription factor involved in 

proliferation and differentiation (O’Connor, Gilmour & Bonifer, 2016) has previously 

been shown to bind to the ADIPOQ proximal promoter (Barth et al., 2004). TFAP2A, a 

member of the developmentally important AP2 transcription factor family is able to 

form a heterodimer with its paralogue TFAP2B  and consequently may negatively 

regulate ADIPOQ expression (Ikeda et al., 2006). In addition, the high level of DNA 

methylation observed within this region suggests that other mechanisms such as 

histone modification and chromatin remodelling may also have an important function 

in regulating ADIPOQ. Taken together, these results suggest that altered CpG 

methylation in the ADIPOQ promoter could potentially play a role in regulating 

ADIPOQ gene expression during GDM, and that this may differ in HIV negative and 

positive women. A limitation of this analysis is the short region of DNA (42 bp) 

explored for transcription factor binding. DNA methylation of nearby cytosines may 

influence the binding of trans-acting elements through steric interactions or other 

mechanisms such as the binding of methyl-CpG-binding proteins (Kudo, 1998; Baubec 

& Schübeler, 2014), that may play an important role in ADIPOQ gene regulation 

located beyond the region investigated. In this study, ADIPOQ promoter methylation 

and serum adiponectin concentration levels were not inversely correlated, supporting 

the role of other epigenetic mechanisms.  
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Our study has several strengths. First, DNA methylation of the ADIPOQ promoter 

was quantified  in both HIV negative and positive women with GDM, and to our 

knowledge is the first such analysis conducted globally. Second, our sample size was 

larger (n=286) than previous studies on DNA methylation and GDM (Bouchard et al. 

(n=98) and Ott et al. (n=55)) (Bouchard et al., 2012; Ott et al., 2018), and women were 

matched according to age, BMI and gestational age as far as possible. Third, 

pyrosequencing is a highly reproducible method that is able to accurately detect small 

methylation differences (Fakruddin & Chowdhury, 2012). However, our study also 

has limitations. The use of peripheral blood, which consists of a variety of different 

cell types, such as erythrocytes, lymphocytes and platelets (Reinius et al., 2012) may 

confound methylation analysis. Although, previously we showed no significant 

differences in cell type composition between GDM and non-GDM women in a subset 

of our sample (Dias, Adam, Rheeder, et al., 2019).  In addition, adiponectin gene 

expression was not quantified, which may have provided more insight into the 

potential role of DNA methylation. We quantified DNA methylation levels of 

ADIPOQ in blood and analysing DNA methylation in adipose tissue may offer more 

insight into its regulation. Furthermore, in addition to disease state, other infections, 

as well environmental factors such as diet, physical activity, smoking and alcohol 

consumption could lead to similar DNA methylation changes (Joubert et al., 2012; Lim 

& Song, 2012; Pauwels et al., 2017; Miyake et al., 2018). Thus, the lack to account for 

environmental factors pose a significant limitation to our study. However, the study 

population was recruited from the same community, had similar lifestyle behaviours 

and education status, and had no significant intergroup differences in socioeconomic 

factors, suggesting that they were likely to have similar environmental exposures. 

Furthermore, our study revealed inter-individual heterogeneity in methylation levels, 

highlighting another caveat of DNA methylation analysis. Consideration of factors 

such as viral load, CD4+ count, immune status and HIV and ART duration, which 
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were not known for our study, are important to enable a better understanding of the 

effect of HIV infection on DNA methylation during GDM. Nevertheless, our study 

paves the way for future longitudinal studies to investigate the relationship between 

HIV and GDM.  

6. CONCLUSION 

Our results demonstrate that HIV infection affects the association between ADIPOQ 

DNA methylation in peripheral blood and GDM in South African women. This study 

highlights the complexities of DNA methylation profiling and emphasises the need 

for biomarker discovery in both HIV infected and uninfected individuals. This is 

particularly important in South Africa, where approximately one in three pregnancies 

are complicated by HIV. To our knowledge, this is the first study to investigate the 

effects of HIV infection on DNA methylation during GDM. Studies with larger sample 

sizes are needed to confirm that methylation differences between  HIV negative and 

HIV positive women are not due to chance, but rather due to HIV infection. 

Furthermore, longitudinal studies in both HIV infected and uninfected individuals 

are required to elucidate the underlying mechanisms associated with methylation 

differences and the effect it may have on gene regulation during GDM.  
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9.  CHAPTER 9 

 

 

 

GENETIC VARIANTS OF THE ADIPONECTIN 

AND METHYLENETETRAHYDROFOLATE 

REDUCTASE GENES IN SOUTH AFRICAN 

WOMEN WITH GESTATIONAL DIABETES 

MELLITUS 

 

 

This chapter will be submitted as a research article to the Journal of Assisted 

Reproduction and Genetics. Dias S, Adam S, Rheeder P, Pheiffer C.   
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1. ABSTRACT 

Introduction: Gestational diabetes mellitus (GDM) occurs due to both genetic and 

environmental factors which increases susceptibility to disease. Genetic risk variants 

for GDM have been identified in many genes, although limited studies have been 

conducted in South African populations, which warrants further investigation. The 

aim of this study was to determine whether ADIPOQ -11377C>G and -11391G>A, and 

MTHFR 677C>T are associated with GDM in South African women. 

Methods: The genotype and allele frequencies of ADIPOQ rs266729 and rs17300539, 

and MTHFR rs1801133 were quantified in the peripheral blood of women with (n=118) 

and without GDM (n=331), using quantitative real-time PCR and validated with DNA 

sequencing.  

Results: Genotype and allele frequencies of ADIPOQ rs266729 and rs17300539, and 

MTHFR rs1801133 were not associated with GDM in our population. In addition, no 

association between ADIPOQ rs266729 and rs17300539 and clinical characteristics 

were observed. However, women with the minor T allele at the MTHFR 

polymorphism had significantly lower fasting insulin and higher serum adiponectin 

concentrations compared to women with the C allele. No association between MTHFR 

polymorphisms and global DNA methylation was observed.  

Conclusion: This study is the first to investigate the association between  ADIPOQ 

(rs266729 and rs17300539) and MTHFR (rs1801133) polymorphisms and GDM in a 

South African population. The low minor allele frequency observed in this population 

for all SNPs suggests that these polymorphisms may not be associated with the risk 

of GDM in South African women. However, to confirm this, future studies in larger 
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sample sizes are required to determine whether these genetic polymorphisms are 

associated with GDM in our population. Furthermore, the high genetic variability 

within the South African population emphasises the need to explore African specific 

SNPs.  
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2. INTRODUCTION 

GDM is defined as glucose intolerance that is first diagnosed during the latter half of 

pregnancy, with return to normoglycemia after birth (WHO, 2013). The prevalence of 

GDM is increasing worldwide, with approximately 14% of pregnancies affected by 

GDM (International Diabetes Federation, 2017). Although different diagnostic criteria 

could partly account for the increase in prevalence observed, the increasing rates of 

obesity and maternal age are contributing factors. Without appropriate glucose 

management, GDM is associated with adverse pregnancy outcomes (Hod et al., 1991; 

Hadar & Hod, 2013; Moore, 2018) and an increased risk of type 2 diabetes (T2D) and 

future metabolic syndrome (Kim, Newton & Knopp, 2002; Clausen et al., 2008; 

Bellamy et al., 2009; Zhao et al., 2016) in both mothers and offspring. It is becoming 

increasingly evident that both genetic and environmental factors play a role in the 

pathophysiology of GDM (Shaat & Groop, 2007). Evidence suggest that 

environmental factors such as diet and physical activity increase susceptibility to 

GDM (Khan et al., 2016; Mijatovic-Vukas et al., 2018). In addition, genetic risk variants 

in genes responsible for metabolic changes during pregnancy predispose to GDM 

(Dias et al., 2018). Thus, screening for SNPs may detect genetic susceptibility to GDM 

and may be useful as biomarkers.  

Adiponectin is an adipose tissue-derived adipokine with insulin sensitising properties 

that regulates glucose and lipid homeostasis (Brochu-Gaudreau et al., 2010; Ghadge, 

Khaire & Kuvalekar, 2018). Decreased levels of adiponectin are observed during 

obesity and T2D (Daimon et al., 2003; Gariballa et al., 2019). Adiponectin 

concentrations progressively decline during pregnancy (Guelfi et al., 2017), with lower 

levels observed in women with GDM compared to those with normoglycemic 

pregnancies (Ranheim et al., 2004; Worda et al., 2004; Mohammadi & Paknahad, 2017; 
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Adam et al., 2018). Studies have suggested that single nucleotide polymorphisms 

(SNPs) in the adiponectin gene (ADIPOQ) could influence adiponectin concentrations 

and subsequently insulin sensitivity and glucose tolerance (Hara et al., 2002; 

González-Sánchez et al., 2005). The majority of these SNPs have been shown to be 

associated with obesity, insulin resistance and T2D (Kondo et al., 2002; Menzaghi et 

al., 2002; Stumvoll et al., 2002; Kang et al., 2005; Bouatia-Naji et al., 2006; Han et al., 

2011; Fan et al., 2014; Lu et al., 2014), with only a few studies investigating ADIPOQ 

SNPs during GDM (Dias et al., 2018). The SNPs rs266729 (-11377T>G) in the promoter 

region (Beltcheva et al., 2014; Pawlik et al., 2017) and rs2241766 (45T>G) in exon 2 (Low 

et al., 2011; Beltcheva et al., 2014; Han et al., 2014; Takhshid & Zare, 2015) were 

reported to be associated with GDM in Polish, Bulgarian, Iranian, Chinese and 

Malaysian populations, while rs1501299 (276G>T) in intron 2 was not associated with 

GDM in a Polish and Bulgarian populations (Beltcheva et al., 2014; Pawlik et al., 2017). 

DNA methylation is an epigenetic mechanism that plays a key role in gene regulation 

in response to environmental cues (Christensen & Marsit, 2011; Ling & Rönn, 2019). 

Altered DNA methylation has been reported during several metabolic diseases (Wang 

et al., 2010; Cash et al., 2011; Martín-Núñez et al., 2014; Chambers et al., 2015; Matsha 

et al., 2016; Huang et al., 2017; Willmer et al., 2018) including GDM (Enquobahrie et 

al., 2015; Kang et al., 2017; Wu et al., 2018). Recently, we conducted genome-wide 

methylation analysis using the MethylationEPIC bead chip array and demonstrated 

differential methylation of 1046 CpGs in South African women with GDM compared 

to women without GDM (Dias, Adam, Rheeder, et al., 2019). Several of these CpGs 

mapped to genes involved in glucose metabolism, insulin resistance and 

inflammation, suggesting that dysregulated DNA methylation could contribute to the 

development of GDM. Methylenetetrahydrofolate reductase (MTHFR), an enzyme in 

the transmethylation pathway, catalyses the conversion of homocysteine to 



 

184 

 

methionine in response to  environmental cues (Goyette et al., 1994; Froese et al., 2016), 

thus affecting DNA methylation (Miranda & Jones, 2007; Tchantchou & Shea, 2008). 

Genetic variants in the MTHFR gene have been shown to impair enzyme function and 

consequently DNA methylation (Lievers et al., 2001), resulting in metabolic disease 

(Kang et al., 1988; Frosst et al., 1995; Wang et al., 2014, 2017). Two common functional 

polymorphisms, rs1801133 (677C>T) and rs1801131 (1298A>C) within the MTHFR 

gene were shown to decrease enzyme activity (Kang et al., 1988; Lievers et al., 2001). 

It is thus plausible to speculate that SNPs in MTHFR may play a role in the regulation 

of DNA methylation during GDM. 

The molecular mechanisms that underlie the development of GDM are not fully 

elucidated. Our recent studies showed lower adiponectin expression (Adam et al., 

2018) and altered DNA methylation (Dias, Adam, Rheeder, et al., 2019) in South 

African women with GDM compared to those with normoglycemic pregnancies. We 

hypothesised that SNPs in ADIPOQ and MTHFR underlie these differences and are 

thus associated with GDM. The aim of this study was to determine whether ADIPOQ 

-11377C>G  and -11391G>A, and MTHFR 677C>T are associated with GDM in South 

African women. The genotype and allele frequencies of SNPs were determined in 118 

women with GDM and 331 women with normoglycemic pregnancies using 

quantitative real-time PCR (qRT-PCR). In addition, we investigated the association 

between SNPs and clinical characteristics. Furthermore, the association between 

MTHFR 677C>T (rs1801133) polymorphism and global methylation was investigated. 

To our knowledge this is the first study to investigate the association between 

ADIPOQ and MTHFR polymorphisms during GDM in a South African population.  
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3. METHODOLOGY 

3.1. Study Participants 

Ethical approval for this study was granted by the University of Pretoria Health 

Sciences Ethics Committee (180/2012). The study was conducted according to the 

Declaration of Helsinki and all women gave written informed voluntary consent after 

the procedures had been fully explained in the language of their choice. One thousand 

participants were recruited from a primary care clinic in Johannesburg, South Africa. 

Black African women with singleton pregnancies, who were ≤26 weeks pregnant and 

who did not have pre-existing diabetes type 1 and type 2 diabetes (T1D and T2D) were 

enrolled in the study. At recruitment, demographic and socio-economic data were 

obtained in the form of a standardised questionnaire and risk factors for GDM were 

assessed (Adam & Rheeder, 2017). Women with random glucose and glycated 

haemoglobin (HbA1c) concentrations <11.1 mmol/L and 6.5%, respectively, were 

requested to return to the clinic within two weeks in a fasted state for GDM testing 

and blood collection. At this time, a 75 g oral glucose tolerance test (OGTT) was 

conducted, and GDM was diagnosed if at least one glucose value was met (fasting 

plasma glucose ≥5.1mmol/L, 1 hr OGTT ≥10 mmol/L or 2 hr OGTT ≥8.5  mmol/L), 

according to the International Association of Diabetes in Pregnancy Study Group 

(IADPSG) criteria (IADPSG panel, 2010). Four hundred and forty nine women were 

selected for this study, of which 118 were GDM and 331 non-GDM (Figure 9.1). Blood 

samples were collected after an overnight fast, and C-reactive protein (CRP) and 

fasting glucose and insulin concentrations were measured in an accredited laboratory 

(Vermaak and Partners/Pathcare laboratories, South Africa). The homeostatic model 

assessment (HOMA), a measure of insulin resistance was calculated using the 

equation: (fasting plasma glucose in mmol/L x fasting serum insulin in mIU/mL)/22.5. 
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Serum adiponectin concentrations were measured using the human adiponectin 

enzyme-linked immunosorbent assay (ELISA) (Merck, Dermstadt, Germany). Blood 

were stored at -80 °C for SNP genotyping analysis.  

 

Figure 9.1. Flow diagram for study participants. For this study, women with (n=118) and without 

GDM (n=331) were selected from a larger prospective cohort study. 

 

3.2. DNA Extraction and Genotyping 

Genomic DNA was extracted from 2 ml of blood collected in 

Ethylenediaminetetraacetic acid (EDTA) tubes using the QIAamp DNA Blood Midi 

Kit (Qiagen, Hilden, Germany) as previously described (Dias, Adam, Wyk, et al., 

2019).  DNA concentration was measured using the Qubit Fluorometer (Invitrogen, 

Participants recruited

n=1000

Selected for SNP genotyping

GDM (n=118)

No GDM (n=331)

OGTT performed 

n=554

DNA extracted from eligible 

participants

n=449

Excluded n=446
• Fetal loss (n=82)

• Migrated from area (n=163)

• Loss to follow-up (n=194)
• Withdrew consent (n=7)

Excluded n=105
• Missing HIV data (n=5)

• Participants age <18 and >40 years (n=24)

• No stored blood for DNA extraction (n=76)

Excluded n=2
• Undefined data for all SNPs



 

187 

 

Carlsbad, USA) and the Quanti-iT dsDNA Broad Range assay kit (ThermoFisher, 

Massachusetts, USA). The ADIPOQ -11377C>G (rs266729) and 11391G>A  

(rs17300539) polymorphism, previously associated with GDM, overt diabetes and 

GDM, and MTHFR 677C>T (rs1801133) polymorphisms, previously associated with 

DNA methylation, were genotyped using qRT-PCR with Taqman genotyping assays 

(Table 9.1) (Applied Biosystems, Massachusetts, USA) on the QuantStudio™ 7 Flex 

Real-Time PCR System (Applied Biosystems, Massachusetts, USA). Briefly, qRT-PCR 

was performed using 9.5 ng of DNA, 5 µl of TaqPath ProAmp  Master Mix and 0.25 

µl of 40X TaqMan SNP Genotyping Assay in a total volume of 10 µl, according to 

manufacturer’s instructions. The following PCR conditions were used: 10 min at 95 °C 

(initial denaturation/enzyme activation), 15 sec at 95 °C (denaturation) and 60 sec at 

60 °C (annealing/extension) for 40 cycles. For quality control, 20% of samples were 

randomly selected and genotyped in duplicate. Positive and negative controls were 

included on all plates. Genotyping was validated by DNA sequencing (Central 

Analytical Facilities, Cape Town, South Africa). Details of sequencing primers are 

shown in Table 9.2. In total, nine samples for each SNP were randomly selected for 

validation. Primers for sequencing were designed on NCBI using Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast.). 

3.3. Statistical Analysis 

Participant characteristics were tested for normality using the Shapiro-Wilk test in 

STATA 14 (StataCorp, College Station, USA). All data deviated from normality and 

were expressed as the median and interquartile range (25th and 75th percentiles). The 

Mann-Whitney test was used to compare variables across GDM and between 

genotypes and clinical parameters. The ADIPOQ rs266729 and rs17300539 and 

MTHFR rs1801133 genotype and allele frequencies in GDM and non-GDM groups 

http://www.ncbi.nlm.nih.gov/tools/primer-blast
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were compared using the Chi-squared (X2) test or Fisher’s exact test if the frequency 

was <5. A p≤0.05 was considered statistically significant. The Pearson’s X2 test was 

performed to determine whether the genotype frequencies at ADIPOQ rs266729 and 

rs17300539 and MTHFR rs1801133 were in Hardy-Weinberg Equilibrium (HWE) 

(p>0.05). 
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Table 9.1. Details for ADIPOQ rs266729 and rs17300539 and MTHFR rs1801133 single nucleotide polymorphisms assays 

 

 

 

SNP: Single nucleotide polymorphisms; ADIPOQ: Adiponectin ; MTHFR: methylenetetrahydrofolate reductase; MAF: Minor allele frequency 

 

Table 9.2. Sequencing primers for SNP validation 

SNP: Single nucleotide polymorphism; ADIPOQ: Adiponectin gene; MTHFR: Methylenetetrahydrofolate reductase; Fwd: forward primer; Rev: Reverse Primer; 

5’: five prime; 3’: three prime. 

Gene symbol Assay ID Sequence (5’-3’) Global MAF 

ADIPOQ rs266729 TTGCAAGAACCGGCTCAGATCCTGC[C/G]CTTCAAAAACAAAACATGAGCGTGC 
G=0.23 

C=0.77 

ADIPOQ rs17300539 TCAGAATGTGTGGCTTGCAAGAACC[A/G]GCTCAGATCCTGCCCTTCAAAAACA 
A=0.03 

G=0.97 

MTHFR rs1801133 GAAAAGCTGCGTGATGATGAAATCG[G/A]CTCCCGCAGACACCTTCTCCTTCAA 
T=0.25 

C=0.75 

rs number/ 

gene symbol 
Primer sequence (5’-3’) 

Template 

strand 
Length Start Stop Tm GC% 

Product 

Length (bp) 

rs266729/ 

(ADIPOQ) 

Fwd: TGGTGCTGGCATCCTAAGC 

Rev: CCTTGGACTTTCTTGGCACG 

Plus 

Minus 

20 

20 

416 

541 

435 

522 

60.68 

59.41 

55 

55 

 

126 

rs17300539/ 

(ADIPOQ) 

Fwd: TTGGTGCTGGCATCCTAAGC 

Rev: GGACTTTCTTGGCACGCTCA 

Plus 

Minus 

20 

20 

180 

301 

199 

282 

60.68 

60.88 

55 

55 

 

122 

rs1801133/ 

(MTHFR) 

Fwd: CTGTCATCCCTATTGGCAGGT 

Rev: CATGCCTTCACAAAGCGGAA 

Plus 

Minus 

21 

20 

404 

564 

424 

545 

59.51 

59.4 

52 

50 

 

161 
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4. RESULTS 

4.1. Clinical Characteristics of Study Participants 

The clinical characteristics of the study participants are shown in Table 9.3.  BMI 

(p=0.012) and random (p<0.001), fasting (p<0.001), 1 hr OGTT (p<0.001) and 2 hr OGTT 

(p<0.001) glucose and fasting insulin (p=0.03) concentrations, glycated haemoglobin 

(HbA1c) (p=0.005) and HOMA (p<0.001) were higher in women with GDM compared 

to women with normoglycemia, while gestational age (p=0.007) and serum 

adiponectin concentrations (p=0.013) were lower in women with GDM.  

4.2. Association Between ADIPOQ Genotypes, Gestational Diabetes Mellitus 

and Metabolic Characteristics  

No differences in genotype and allele frequency distribution were observed for 

ADIPOQ rs266729 and ADIPOQ rs17300539 polymorphisms in GDM and compared 

to normoglycemia (Table 9.4). The genotype frequency distribution of the ADIPOQ 

rs17300539 polymorphism was in accordance with HWE (p=0.92), while the ADIPOQ 

rs266729 polymorphism deviated from HWE (p<0.001). Moreover, no differences in 

BMI, fasting glucose, 1 hr OGTT, 2 hr OGTT, HbA1c, fasting insulin and serum 

adiponectin concentrations were observed by genotype (Table 9.5).  
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Table 9.3. Participant characteristics according to GDM status 

BMI: body mass index; OGTT: oral glucose tolerance test; HbA1c: glycated haemoglobin; HOMA: 

homeostatic model assessment. Data are expressed as the median and interquartile range (25th–75th 

percentiles). Bold-type values indicate statistical significance between GDM and non-GDM groups.  

 

 

Participant Characteristics Non-GDM GDM p-value 

Participants: n 331 116  

Age (years) 27.0 (23.0 – 31.0) 29.0 (24.0 – 32.0) 0.083 

BMI (kg/m2) 25.6 (22.7 – 29.8) 27.1 (23.6 – 31.2) 0.012 

Gestational age (weeks) 26.0 (23.0 – 28.0) 25.0 (21.0 – 27.0) 0.007 

Random glucose (mmol/L) 4.4 (4.0 – 4.8) 4.7 (4.3 – 5.1) <0.001 

Fasting glucose (mmol/L) 4.4 (4.0 – 4.6) 5.5 (5.3 – 6.0) <0.001 

OGTT 1 hr (mmol/L) 5.5 (4.7 – 6.4) 6.3 (5.4 – 7.5) <0.001 

OGTT 2 hr (mmol/L) 5.2 (4.5 – 5.8) 6.0 (5.1 – 7.2) <0.001 

HbA1c (%) 5.2 (4.9 – 5.4) 5.3 (5.1 – 5.5) 0.005 

Fasting insulin (mIU/L) 5.2 (3.3 – 7.5) 5.9 (3.9 – 8.8) 0.030 

HOMA 1.0 (0.7 – 1.5) 1.5 (0.9 – 2.2) <0.001 

C-reactive protein (mg/L) 5.7 (3.1 – 8.8) 7.0 (3.7 – 10.5) 0.125 

Adiponectin (µg/ml) 10.4 (8.0 – 16.5) 9.1 (5.6 – 15.1) 0.013 
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Table 9.4. Genotype frequency and allele distribution of ADIPOQ rs266729 and rs17300539 

polymorphisms between GDM and non-GDM groups 

 ADIPOQ: Adiponectin gene; GDM: gestational diabetes mellitus. Bold-type letters indicate the risk 

allele and genotype.  

 

 

Table 9.5. Participant characteristics according to ADIPOQ (rs266729 and rs17300539) genotype 

BMI: body mass index; OGTT: oral glucose tolerance test; HbA1c: glycated haemoglobin; Data are 

expressed as the median and interquartile range (25th–75th percentile)

ADIPOQ  Genotype frequency (n (%)) Allele frequency (n (%)) 

Variant Genotype Non-GDM GDM p-value Allele Non-GDM GDM p-value 

rs266729 

 

CC 258 (77.9) 90 (77.6) 

0.936 

C 576 (87.0) 199 (85.8) 

0.634 

CG + GG 73 (22.1) 26 (22.4) G 86 (13.0) 33 (14.2) 

rs17300539 GG 327 (98.8) 116 (100.0) 

0.234 

G 654 (99.4) 232 (100.0) 

0.234 

GA + AA 4 (1.2) 0 (0.0) A 4 (0.6) 0 (0.0) 

 rs266729 rs17300539 

Participant 

characteristics 

CC 

n=348 

CG + GG 

n=99 

p-value GG 

n=443 

GA + AA 

n=4 

p-value 

BMI (kg/m2) 26.1 (22.7 – 29.4) 25.9 (23.2 – 30.8) 0.796 26.2 (22.8 – 29.8) 22.7 (22.5 – 25.3) 0.226 

Fasting glucose 

(mmol/L) 

4.6 (4.2 – 5.3) 4.7 (4.4 – 5.3) 0.386 4.6 (4.3 – 5.3) 4 (3.9 – 4.8) 0.161 

1 hr OGTT (mmol/L) 5.7 (4.8 – 6.7) 5.7 (4.7 – 6.4) 0.661 5.7 (4.8 – 6.7) 6.4 (4.4 – 6.6) 0.844 

2 hr  OGTT (mmol/L) 5.5 (4.8 – 6.3) 5.3 (4.6 – 6.1) 0.499 5.4 (4.7 – 6.2) 5.5 (4.6 – 6.2) 0.973 

HbA1c (%) 5.2 (5.0 – 5.5) 5.2 (5.0 – 5.4) 0.949 5.2 (5.0 – 5.4) 5.0 (4.8 – 5.2) 0.241 

Fasting insulin (mIU/L) 5.3 (3.4 – 7.4) 5.7 (3.1 – 9.0) 0.423 5.4 (3.4 – 7.5) 2.7 (2.7 – 2.7) 0.176 

Adiponectin (µg/ml) 10.0 (6.8 – 15.3) 11.9 (7.9 – 17.5) 0.181 10.2 (6.8 – 15.4) 19.6 (8.5 – 31.4) 0.178 
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4.3. Association Between MTHFR Genotype, Gestational Diabetes Mellitus 

and Metabolic Characteristics 

No difference in the genotype or allele frequency of MTHFR rs1801133 was observed 

between women with or without GDM (Table 9.6). The genotype frequency 

distribution of the MTHFR rs1801133 polymorphism deviated from HWE (p<0.001). 

Fasting insulin concentrations were lower (p=0.058) and serum adiponectin 

concentrations were higher (p=0.013) in women with the T allele compared to the C 

allele, while no significant differences were observed for BMI and fasting, 1 hr OGTT 

and 2 hr OGTT glucose and HbA1c concentrations (Table 9.7). 

 

Table 9.6. Genotype frequency and allele distribution of MTHFR rs1801133 polymorphisms between 

GDM and non-GDM groups 

MTHFR Genotype frequency (n (%)) Allele frequency (n (%)) 

Variant Genotype Non-GDM GDM p-value Allele Non-GDM GDM p-value 

rs1801133 CC 295 (89.1) 106 (91.4) 

0.491 

C 617 (93.2) 218 (93.9) 

0.687 

CT + TT 36 (10.9) 10 (8.6) T 45 (6.8) 14 (6.1) 

MTHFR: Methylenetetrahydrofolate reductase gene; GDM: gestational diabetes mellitus. Bold-type 

letters indicate the risk allele and genotype.  
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Table 9.7. Participant characteristics according to MTHFR rs1801133 genotype status 

BMI: body mass index; OGTT: oral glucose tolerance test; HbA1c: glycated haemoglobin. Data are 

expressed as the median and interquartile range (25th–75th percentiles). Bold-type values indicate 

statistical significance between GDM and non-GDM groups. 

  

 rs1801133 

Participant characteristics CC CT + TT p-value 

BMI (kg/m2) 26.1 (22.8 – 29.8) 26.2 (22.1 – 29.7) 0.096 

Fasting glucose (mmol/L) 4.7 (4.3 – 5.3) 4.6 (4.2 – 5.3) 0.781 

1 hr OGTT (mmol/L) 5.7 (4.8 – 6.6) 5.9 (4.8 – 6.7) 0.737 

2 hr  OGTT (mmol/L) 5.4 (4.7 – 6.2) 5.3 (4.7 – 6.3) 0.903 

HbA1c (%) 5.2 (5.0 – 5.4) 5.1 (4.9 – 5.5) 0.817 

Fasting insulin (mIU/L) 5.5 (3.5 – 7.6) 4.5 (2.9 – 6.1) 0.058 

Adiponectin (µg/ml) 10.1 (6.7 – 15.1) 15.3 (8.3 – 19.8) 0.013 

Global DNA methylation (%) 102.8 (75.4 – 149.8) 109.4 (76.1 – 152.5) 0.829 
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5. DISCUSSION 

Genetic factors are known to play a role in the development of GDM (Martin et al., 

1985), however, relatively few studies have investigated the association between 

genetic variants and GDM. Results show no association between the investigated 

ADIPOQ and MTHFR gene polymorphisms and GDM in our population. However, 

we found that women with the minor T allele at the MTHFR polymorphisms had 

lower fasting insulin and higher serum adiponectin concentrations compared to 

women with the C allele.  

In this study, no difference between genotype and allele frequencies were observed 

for ADIPOQ rs17300539 and rs266729 in women with GDM compared to 

normoglycemia in our population. These results are consistent  with Gueuvoghlanian-

Silva et al., who reported no differences in genotype or allele frequencies for the 

ADIPOQ rs266729 polymorphism in 79 women with GDM compared 169 

normoglycemic controls in a Brazilian population (Gueuvoghlanian-Silva et al., 2012). 

Contrary to our findings, four studies investigating the ADIPOQ rs266729 

polymorphism reported significant differences in genotype and allele frequencies 

between GDM and non-GDM women in various populations. Liang et al, reported 

that a higher frequency of the minor risk allele G (CG and GG genotypes) of rs266729 

in 50 Chinese women with GDM compared to 80 controls at 38–39 weeks of gestation. 

Furthermore, the authors showed that the minor risk allele G remained associated 

with GDM after validation using a high throughput gene chip technique in 24 

randomly selected Chinese women with GDM compared to controls (Liang et al., 

2010). Among Polish women, Pawlik et al. reported a higher prevalence of the G allele 

(GG and CG genotypes) in GDM (n=204) compared to controls (n=207), which 

remained significant after adjusting for age, pre-pregnancy BMI and GDM in past 
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pregnancies (Pawlik et al., 2017). In addition, Nezamzadeh et al. showed that the G 

risk allele was significantly associated with GDM in Iranian women, with 

approximately 51 (61.4%) of the 83 GDM patients carrying the GG genotype 

(Nezamzadeh et al., 2019). Conversely, although Beltcheva et al. demonstrated a 

significant difference in genotype and allele frequency between GDM and controls, 

the authors reported a significant association between the minor risk allele G and 

controls, while the more common C allele was associated with GDM in a Bulgarian 

population (Beltcheva et al., 2014). In addition to ethnicity, discrepancies between our 

study and those that showed a significant association may be due to sample size and 

the frequency of the risk allele within our population. For example, the risk allele G of 

rs266729 occurs at a much lower frequency (9.5%) in Africans compared to the 

Europeans (28.1%), East Asians (27.6%) and Americans (24%), suggesting that a larger 

sample size is needed to predict disease risk in African populations.  

To the best of our knowledge, no study has investigated the association between 

ADIPOQ rs17300539 polymorphisms and GDM. However, several studies have 

investigated the association between rs17300539 polymorphism and obesity, insulin 

resistance and T2D, although, with conflicting results. In a black South African 

population, Olckers et al. reported that the minor risk allele A was associated with 

normoglycemia, while the more common G allele was associated with T2D (Olckers 

et al., 2007). In contrast, a higher prevalence of the minor risk allele A was shown to 

be associated with T2D in French (Vasseur et al., 2002) and German (Schwarz et al., 

2006) Caucasian populations. However, studies investigating the association between 

the rs17300539 polymorphism and T2D in a Japanese, Pakistani (Nadeem et al., 2017) 

and an African American population (Bostrom et al., 2009), did not report a significant 

difference in genotype frequencies between T2D and normoglycemia. Differences 

observed between these studies and ours may be due to the different degrees of 
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hyperglycaemia between GDM and T2D participants, different ethnicities, exposure 

to environmental factors and risk of disease.  SNP polymorphism caused by somatic 

mutations are induced by environmental factors which are associated with changes in 

the expression of genes involved in disease development (Hollman, Tchounwou & 

Huang, 2016). The interaction between inherited genetics and environmental 

influences between different ethnicities and populations, confer different 

susceptibilities to disease outcome. Given the high level of genetic variation in the 

African population, as a result of the population migratory history and the dramatic 

variations in climate, diet and exposure to infectious diseases (Cabrera et al., 2018), 

the mechanisms that influences the risk of developing GDM or T2D in African 

populations may be different to non-African populations (Popova et al., 2017). 

Dysregulated serum adiponectin concentrations are increasingly being implicated in 

the pathogenesis of GDM, although, the molecular mechanism underlying these 

changes remain unclear. Studies investigating the association between ADIPOQ 

rs266729 and rs17300539 polymorphisms, which are both located in the promoter 

region of ADIPOQ, and GDM are limited in South Africa. We found no association 

between rs266729 and rs17300539 polymorphisms and serum adiponectin levels, nor 

did we see an association between these SNPs and GDM related-metabolic traits such 

as BMI, glucose and insulin concentrations. Zemlin et al. showed no association 

between these SNPs and high molecular weight adiponectin levels in hyperglycaemic 

and normoglycemic individuals in a mixed ancestry South African population 

(Zemlin et al., 2016). Although our study investigated total adiponectin levels, while 

Zemlin et al. investigated high molecular weight adiponectin levels, similar results 

were observed, suggesting that these polymorphisms do not vary between different 

forms of adiponectin measurements within the South African population regardless 

of ethnicity. Conversely, Gueuvoghlanian-Silva et al. showed that serum adiponectin 
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levels at 28-36 weeks of gestation were significantly higher in Brazilian pregnant 

women, carrying the CC genotype for rs266729 (Gueuvoghlanian-Silva et al., 2012). 

Adiponectin levels have a strong genetic component (Comuzzie et al., 2001), 

suggesting that differences observed between studies may be due to genetic and 

ethnic backgrounds of the study populations. In addition, environmental factors such 

as diet and physical activity have also been shown contribute to variability observed 

in adiponectin concentrations (Mantzoros et al., 2006; Yu et al., 2009), which may play 

an important role in gene-environmental interactions.   

In this study, no difference between genotype and allele frequencies were observed 

for MTHFR rs1801133 in women with or without GDM. However, women with the 

CT+TT genotype had lower fasting insulin and higher serum adiponectin 

concentrations compared to women with the CC genotype. In line with our findings 

Khan et al. showed no significant difference in allele and genotype frequencies of 

rs1801133 between GDM and non-GDM women in a South Indian population (Khan 

et al., 2015). Conversely, Kheradmand et al., reported that HOMA and insulin levels 

were significantly higher in non-pregnant Iranian women carrying the minor risk T 

allele compared to those with the CC genotype (Kheradmand et al., 2017). In addition, 

Chen et al. reported a higher prevalence of the T allele in T2D individuals with or 

without metabolic syndrome compared to controls in a Han Chinese population 

(Chen et al., 2010). Differences between these studies and ours may be due to age, 

gender, ethnicity, environmental influences and disease state. In addition, 

supplementation of folic acid and vitamin B12, which is generally taken during 

pregnancy, helps to overcome the negative health effect of SNPs in the MTHFR gene 

(Hiraoka & Kagawa, 2017). Unfortunately, data for folic acid and vitamin B12 intake 

is not known for these participants and therefore presents a limitation of our study.  



 

199 

 

In this study, we did not observe an association between MTHFR polymorphisms and 

DNA methylation. In line with our findings, Matsha et al., showed no association 

between the genotype distribution of MTHFR across quarters of global DNA 

methylation in diabetic (n=158), prediabetic (n=119) and normoglycemic (n=287) 

subjects in a mixed ethnic ancestry South African population (Matsha et al., 2016). In 

addition, Gobbo et al. showed no association between the risk T allele and DNA 

methylation in the placenta of uncomplicated (n=179) and complicated pregnancies 

(n=124) in a Canadian population, even though the risk T allele was increased in 

pregnancies affected by pre-eclampsia and intrauterine growth restriction (Del Gobbo 

et al., 2018). Moreover, in a recent meta-analysis of 10 studies across various 

populations, Wang et al. showed no association between the risk allele and global 

DNA methylation in various tissue samples affected by neural tube defects (Wang et 

al., 2016). MTHFR encodes a key enzyme in the folate and homocysteine metabolism 

and is essential for providing methyl groups for DNA methylation. Genetic mutations 

such as rs1801133 in the MTHFR gene, decreases enzyme activity and alters DNA 

methylation patterns (Fox & Stover, 2008). These results suggest the MTHFR 

polymorphisms may not play a role in regulating DNA methylation in diabetes-

related complications. Although, further studies should be conducted to identify and 

understand methylation regulation as a result of MTHFR polymorphisms.  

In contrast to most of the studies described previously, a strength of our study is that 

genotyping results were validated by DNA sequencing, thereby confirming all 

genotypes of randomly selected samples. While our sample size was relatively larger 

than most previously reported studies, differences in allele frequencies and disease 

aetiology between ethnicities, may explain our failure to detect statistically significant 

associations. Allele frequencies of rs266729 and rs1801133 deviated from HWE, 

suggesting that the SNPs investigated may be under possible selection pressure, or 
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that our sample size may be too small to detect an association between the risk allele 

an GDM. In addition, GDM diagnosis is not standardised internationally; thus, 

different diagnostic criteria could have contributed to the discordant results observed 

between studies. Importantly, GDM is a multifactorial disease, resulting from 

complex interactions between genetic and environmental factors (Shaat & Groop, 

2007). Thus, the lack to account for factors such as diet, physical activity, smoking and 

alcohol consumption, which have been found to contribute substantially to the risk of 

GDM, pose a significant limitation to our study (Bao et al., 2016; Khan et al., 2016; 

Mijatovic-Vukas et al., 2018). In addition, environmental factors are known to 

influence DNA methylation patterns and may have impacted our analysis (He, Zhang, 

et al., 2017).  Furthermore, our analysis may have overlooked the possibility of SNP-

SNP and SNP-environment interaction, as well as linkage disequilibrium (Hinds et al., 

2006; Zhang et al., 2019). Thus, in future, it would be worth investigating the combined 

effects of these polymorphisms and other variants that may affect the 

pathophysiology of GDM and are specific to the African population. African 

populations are considered the most genetically diverse worldwide, yet genomic 

research on the continent is limited. In an attempt to understand the genetic variation 

that underly susceptibility to disease, particularly in admixed African ancestry 

populations SNPs on the H3A array, which is specific for the African population, 

should be explored in this population (Mulder et al., 2016). 

6. CONCLUSION 

This study is the first to investigate the association between ADIPOQ (rs266729 and 

rs17300539) and MTHFR (rs1801133) polymorphisms and GDM in a South African 

population. The low minor allele frequency observed in this population for all SNPs 

suggests that these polymorphisms may not be associated with the risk of GDM in 
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South African women. Future studies in larger sample sizes are required to determine 

whether these genetic polymorphisms are associated with GDM in our population. 

Furthermore, the high genetic variability within the South African population 

emphasises the need to explore SNPs that are more specific to the African population. 
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1. SUMMARY  

In the current study we explored the potential of DNA methylation and SNPs to serve 

as molecular biomarkers for GDM in a South African population. Global, genome-

wide and gene-specific methylation of ADIPOQ were measured in peripheral blood 

to assess methylation differences between women with or without GDM. In addition, 

SNPs within the ADIPOQ and MTHFR genes were examined to investigate whether 

these polymorphisms are associated with GDM in our population. Results of each 

chapter are briefly summarised below, followed by an integration and synthesis of the 

overall thesis findings, highlighting the significance and novelty of the study and how 

the study findings contribute to existing knowledge both locally and globally. Lastly, 

we discuss the potential impact of biomarkers on health systems, the strengths and 

limitations of the study and recommendations for future research.  

CHAPTER 3 provides an overview of GDM focusing on risk factors, prevalence and 

treatment. All studies on GDM prevalence conducted between 1969 and 2018 in South 

Africa were reviewed and showed that the prevalence of GDM has increased over the 

years. The escalating prevalence may partly be due to the less stringent diagnostic 

criteria used in some studies (IADPSG panel, 2010), however the rising obesogenic 

environment, spurred by urbanisation, unhealthy diets and physical inactivity, 

undeniably plays an important role in the increased prevalence of GDM. Our 

recommendation is that intervention strategies targeting obesity may have the 

greatest impact on decreasing the prevalence of GDM.  

CHAPTER 4 discusses the major screening and diagnostic strategies used worldwide 

and in South Africa, including the novel screening and diagnostic methods that are 

being explored. GDM screening and diagnostic tests have evolved over the years, with 
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different criteria used between and within countries. Although most international 

bodies advocate the IADPSG criteria based on findings from the HAPO study, 

concerns about over-diagnosis and increased burden on the health system, has led to 

decreased implementation, particularly in resource limited settings. In SA, the four 

most common diagnostic criteria are the IADPSG, NICE, American College of 

Obstetricians and Gynaecologists (ACOG) and WHO 1999 criteria. Lack of uniformity 

in diagnostic methods may negatively impact universal health care for all South 

Africans, while also resulting in inaccurate epidemiological data on prevalence, which 

is required to inform health planning and policy. This chapter highlights the need for 

novel screening and diagnostic tests that are simple, sensitive, specific and cost-

effective alternatives to the current strategies employed, thus potentially being more 

amenable to widespread implementation.  

CHAPTER 5 provides an overview of published literature on the use of DNA 

methylation and SNPs as molecular biomarkers of GDM. Several studies support the 

use of these molecular biomarkers as diagnostic tools for GDM. Despite their 

potential, we highlight the many challenges that need to be addressed before 

molecular biomarkers can become clinically applicable. Variation in analytical 

methods and lack of standardisation, together with population differences hamper the 

accuracy of these tests. We recommend the establishment of an international body to 

standardise analytical conditions for molecular biomarkers and screening biomarkers 

in large prospective cohort studies in different populations. 

CHAPTER 6 investigated the association between global DNA methylation and GDM 

in our population. Results showed no differences in global DNA methylation between 

GDM and non-GDM groups, in contrast to studies in other populations, albeit in 

different biological samples (Nomura et al., 2014; Reichetzeder et al., 2016). 
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Interestingly, global DNA was associated with obesity, suggesting that maternal BMI 

rather than GDM may influences global methylation during pregnancy. Importantly, 

the diagnostic criteria used may have contributed to our failure to see differences. The 

IADPSG diagnosed GDM based on modest hyperglycaemia, resulting in small 

glucose differences between GDM and non-GDM groups. Furthermore, the lack of 

association between GDM and global DNA methylation, a crude measure of overall 

genomic methylation, may suggest that a more targeted approach profiling gene or 

locus specific methylation may be required.  

CHAPTER 7 quantified genome-wide methylation in 801,236 CpG sites across the 

genome. Results showed differential methylation at 1046 CpG sites (associated with 

939 genes), which mapped to pathways key to metabolic regulation, in women with 

GDM compared to women with normoglycemia. Of these, differential methylation of 

15 genes were consistent with findings from a study conducted in Chinese women, 

using the same Illumina Infinium Human MethylationEPIC Bead Chip array (Kang et 

al., 2017). Other studies using the previous version of the bead chip array similarly 

reported DNA methylation differences during GDM in Non-Hispanic Caucasian 

American and Caucasian English populations (Enquobahrie et al., 2015; Wu et al., 

2018), suggesting that GDM influences genome-wide methylation across different 

populations. Among the top five CpG sites identified in our study, one CpG site 

mapped to the CAMTA1 gene, shown to regulate insulin production and secretion in 

previous studies (Mollet et al., 2016), which may offer potential as an epigenetic 

biomarker in our population.  

CHAPTER 8 investigated whether DNA methylation levels at eight CpG sites within 

the ADIPOQ promoter are associated with GDM in HIV negative and HIV positive 

women. Results showed that two (CpG -3410 and -3400) of the eight CpG sites within 
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the ADIPOQ promoter were significantly hypomethylated during GDM in HIV 

negative, but not in HIV positive women. Although the methylation differences 

between GDM and non-GDM groups were small, they are consistent with findings in 

other low HIV prevalence settings (Bouchard et al., 2012; Houshmand-Oeregaard et 

al., 2017; Ott et al., 2018), suggesting that these CpG sites may be important for 

ADIPOQ gene regulation. Bioinformatic analysis identified transcription factor 

binding sites across this region, supporting their role in gene regulation. Our findings 

suggest that HIV infection may modify DNA methylation of ADIPOQ, potentially 

affecting gene expression and adiponectin’s candidacy as a biomarker for GDM in 

South African women.  

CHAPTER 9 investigated the association between ADIPOQ and MTHFR 

polymorphisms and GDM in our population. Results showed no association between 

the ADIPOQ (rs266729 and rs17300539) and MTHFR (rs1801133) polymorphisms and 

GDM in our population, in contrast to studies in other populations that reported an 

association between ADIPOQ (rs266729) and GDM (Liang et al., 2010; Pawlik et al., 

2017; Nezamzadeh et al., 2019) and between ADIPOQ (rs17300539) and MTHFR 

(rs1801133) with T2D and diabetes-related metabolic traits (Vasseur et al., 2002; 

Schwarz et al., 2006; Kheradmand et al., 2017). These findings suggest that these SNPs 

are population specific and may not be associated with the risk of GDM in South 

African women. Alternatively, our sample size may have been too small. The minor 

allele frequency of these SNPs are lower in our population compared to non-African 

populations, which may explain the discrepancies between our study and those that 

showed a significant association. Interestingly, the minor allele of the MTHFR 

polymorphism was associated with lower fasting insulin and higher serum 

adiponectin concentrations. These results suggest that the MTHFR polymorphism 
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may be a useful marker to identify women at risk of developing insulin resistance 

during pregnancy, although further studies are required to explore this hypothesis.  

2. INTEGRATION AND SYNTHESIS 

GDM is becoming a growing public health concern both globally and in South Africa. 

Without appropriate screening and treatment, GDM affects maternal and child health, 

and has a negative impact on the health system. The lack of uniformity in diagnosis 

has been shown to hamper the detection of GDM, thus, research efforts to identify 

simple and efficient strategies to detect GDM has become a major focus. In this regard, 

studies have explored the use of molecular biomarkers as screening and diagnostic 

tools that could potentially aid in the accurate detection of GDM in future.  

Collectively, experimental findings suggest that gene-specific, but not global 

methylation nor SNPs rs266729, rs17300539 and rs1801133, may offer potential as 

molecular biomarkers of GDM in this population. Quantification of global DNA may 

be too crude to detect small methylation differences during GDM, while the allele 

frequency of genetic variants, rs266729 and rs17300539 in ADIPOQ and rs1801133 in 

MTHFR may be too low to detect the risk of GDM in black South African women. Our 

findings show that HIV may affect DNA methylation, which has important 

ramifications for biomarker discovery in our population, given the high HIV 

prevalence. Overall, this study highlights the strengths and challenges of DNA 

methylation profiling and SNP genotyping, and emphasises the need for further 

studies to explore the candidacy of molecular biomarkers for GDM in South Africa 

and globally.   
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3. NOVELTY AND SIGNIFICANCE OF THE STUDY 

To our knowledge, this is the first study to investigate the association between DNA 

methylation or ADIPOQ and MTHFR polymorphisms and GDM in a South African 

population. Molecular biomarkers are affected by both ethnicity and environmental 

factors, which emphasises the need to explore their candidacy as biomarkers in 

different populations. Globally, genetic variants rs17300539 in ADIPOQ and rs1801133 

in MTHFR were investigated for the first time during GDM in our population, thus, 

adding new knowledge to the growing field of biomarker discovery for GDM. In 

addition, genetic variant rs266729 in ADIPOQ was found to be associated with GDM 

in different populations, but not in ours, suggesting that it might be population 

specific, and may not be associated with the risk of developing GDM in South African 

women. We showed differences in gene-specific methylation despite the low glucose 

levels differences observed between groups. These methylation differences suggest 

that molecular changes may occur despite modest hyperglycaemia, which may be 

associated with an increased risk of adverse health outcomes in mothers and 

offspring.  Unfortunately, we did not have information on the pregnancy outcomes in 

mothers and offspring in this study.  

Molecular biomarkers indicative of epigenetic changes with functional impact may 

offer potential as additional risk factors for GDM. This could facilitate earlier 

detection, initiation of treatment and management of GDM leading to improved 

health outcomes in the South African population. The use of biomarkers is a more 

acceptable GDM screening and diagnostic strategy for pregnant women and 

clinicians, as it is less time consuming than the OGTT, is not associated with nausea 

and vomiting, and does not require fasting or multiple blood draws. In addition, DNA 

methylation and SNPs can be detected in buccal cells from saliva (McMichael et al., 
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2009; Van Dongen et al., 2018) and could provide a non-invasive method for detecting 

biomarkers, thereby obviating the need for blood collection. In populations with a 

high prevalence of HIV such as ours, blood collection is a safety concern due to the 

risk of HIV transmission. Moreover, extraction of DNA from buccal swabs provides 

an inexpensive, non-invasive and simple method to investigate these biomarkers in 

the offspring of mothers with GDM, which may facilitate intervention strategies to 

decrease adverse long-term health outcomes in these babies. This provides an 

opportunity to decrease the growing burden of non-communicable diseases, which 

would positively impact the overall disease trajectory.  

4. RECOMMENDATIONS AND FUTURE WORK 

Future work focusing on community-based, longitudinal studies in larger sample 

sizes that include both HIV negative and positive pregnant women are required to 

explore the candidacy of CAMT1 as a biomarker for GDM in this population.  There 

is a need to identify early biomarkers to facilitate earlier intervention strategies and 

possibly decrease adverse effects. In SA, many women seek antenatal care late during 

their pregnancies, thus community-based studies offer a pragmatic approach to 

identify women earlier during pregnancy. To increase the sensitivity, specificity and 

predictive power of molecular biomarkers, future studies should consider using a 

combination of these markers alone or together with other traditional risk factors in 

risk stratification models for predicting GDM risk.  DNA methylation is affected by 

gene-environment interactions (He, Zhang, et al., 2017), thus we recommend that 

potential biomarkers be screened in different populations and countries to identify 

robust markers that are globally applicable. Lastly, we propose that future studies 

should investigate the use of non-invasive methods to collect DNA for analysis. 

Several studies have demonstrated the potential of using buccal cells (Teschendorff et 
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al., 2015; Van Dongen et al., 2018), which would be more clinically acceptable, yet 

would also allow an opportunity to assess DNA methylation in offspring exposed to 

GDM. Lastly, we recommend that genome-wide SNP genotyping using the H3A array 

(Mulder et al., 2016) should be conducted in our population to identify African specific 

SNPs, given the low allele frequency of non-African SNPs in our population.  

 

5. IMPACT ON THE PUBLIC HEALTH SYSTEM 

Our study adds to the growing body of evidence supporting the use of SNPs and DNA 

methylation as biomarkers for GDM. However, further validation in larger sample 

sizes are required to confirm their clinical candidacy as screening and diagnostic 

biomarkers of GDM. Despite their potential, these molecular biomarkers face several 

challenges, including the current expensive cost and complexity of analysis 

(McDermott et al., 2013), which negatively impacts their successful introduction into 

the clinical setting. The recent rapid advancement in molecular biology and laboratory 

technologies raise hope that technically advanced biomarkers may be made easier and 

become clinically feasible (Mayeux, 2004), leading to the development of a quick, cost-

effective, point-of-care test, that could accurately identify women at high risk for 

GDM. Successful integration of these molecular biomarkers into the clinical setting 

will make the diagnosis of GDM easier compared to the challenges associated with 

risk-factor based strategies and the OGTT, as many health systems are already 

overburdened and under-resourced. In addition, use of biomarkers may allow earlier 

management and treatment of GDM, which is beneficial for patient outcomes. In this 

regard, biomarker research may have the potential to improve the performance of 

health systems and health equity in underserved communities. However, although 

promising new biomarkers are continuously being proposed, the reluctance of health 
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systems to move away from routine procedures, hinder translation and 

implementation of these markers into the clinical setting (Frangogiannis, 2012). Thus, 

the integration and implementation of potential biomarkers into the clinical setting 

requires close co-disciplinary, collaborative efforts between researchers, clinicians and 

health care personnel.  

6. STRENGTHS AND LIMITATIONS 

A strength of our study is the pragmatic study approach. Pregnant women from 

surrounding communities attending the local clinic, were recruited under standard 

routine clinical practices in a primary health care setting, thus, increasing the potential 

of  biomarker discovery in realistic situations. In addition, women were not on any 

form of medication at the time of blood collection, thereby precluding any impact 

medication may have on DNA methylation profiling (García-Calzón et al., 2017). In 

this study, a relatively larger sample size compared to other studies on GDM was 

used, and confounding factors such as age, BMI and gestational age were adjusted for 

in our analysis. It is widely reported that obesity and maternal age affect DNA 

methylation patterns. Thus, to minimise any influence these factors may have on DNA 

methylation patterns, women were matched according to maternal age, BMI and 

gestational age as far as possible in each chapter. Moreover, GDM was diagnosed 

using the widely recommended IADPSG criteria, suggesting that even modest glucose 

differences may affect DNA methylation.  

A number of limitations should be taken into account when interpreting the results of 

the current study. Of the 1000 participants recruited, only 554 women were scheduled 

for the 75g 2 hr OGTT at 24-28 weeks of gestation due to foetal loss, migration, loss to 

follow up and withdrawal of consent, which is a large drop-out rate in comparison to 
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other studies. Pregnant women from rural communities travel long distances, thus 

seldom attend the antenatal clinic in a fasted state, nor can they afford repeated visits 

in the event where a trained phlebotomist may not be available to conduct an OGTT 

at their given appointment. Other factors such as the lack of education about GDM 

and its adverse effects may have contributed to the high drop-out rates. Conducting 

community-based studies rather than clinic-based studies may lead to higher 

retention rates. Moreover, due to the migratory nature of this population, we were 

unable to measure post-partum OGTT to confirm the diagnosis of GDM. Thus, there 

is a possibility that some participants may have had pre-existing or undiagnosed 

diabetes. However, women in this study had low glucose levels, which are not 

considered diagnostic of T1D or T2D according to WHO (WHO, 2013). In addition, 

pre-pregnancy BMI was not known for these women, which may have influenced 

DNA methylation differences between groups. Another limitation of our study is the 

use of peripheral blood cells, which consist of a mixture of different cell types that 

may confound methylation analysis (Reinius et al., 2012). Statistical analysis of cell 

type composition in a subset of women did not show significant differences between 

GDM and non-GDM groups. However, the use of whole blood is robust, and does not 

require cell type isolation.  Furthermore, the method of quantification could hinder 

reproducibility of findings across studies. Thus, standardisation of analytical methods 

is critical when profiling molecular biomarkers. Lastly, physical activity, diet, alcohol 

consumption and smoking, which are widely reported to influence DNA methylation 

patterns (Joubert et al., 2012; Lim & Song, 2012; Ling & Rönn, 2014; Pauwels et al., 

2017; Miyake et al., 2018), are not known for our study and could confound our 

analysis. However, women in our study were recruited from the same community 

and had similar lifestyle behaviours, education and employment status, suggesting 

that they had roughly similar environmental influences. Importantly, the aim of the 
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study was to identify a robust marker that is not affected by these environmental 

factors, thus making it applicable in different settings.  
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APPENDIX 3: CONSENT FORM 

PARTICIPANT’S INFORMATION LEAFLET AND INFORMED CONSENT 

TITLE OF STUDY: 

NAME OF RESEARCHER:   

Dear Miss/Mrs ______________________________________________________ 

Date:  ___/___/20___ 

Invitation: 

You are invited to volunteer for a research study.  This information leaflet is to help 

you to decide whether you would like to participate.  Before you agree to take part in 

this study you should fully understand what is involved.  Please take your time to 

read the following information carefully and discuss it with others if you wish.  If you 

have any questions which are not fully explained in this leaflet, do not hesitate to ask.  

You should not agree to take part unless you are completely happy about all the 

procedures involved.  Thank you for reading this. 

What is the purpose of the study? 

The aim of this study is to develop a simple, easy method of diagnosing diabetes 

mellitus in pregnancy.  We will also evaluate how common diabetes mellitus in 

pregnancy is in South Africa. 

Why have I been chosen? 
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You have been chosen as you are at an early stage in your pregnancy. 

Procedures to be followed: 

This study involves answering some questions regarding your past pregnancies and 

your family history, an examination and blood and urine tests.  This is part of your 

routine ante-natal care.  In addition, we will test your blood for glucose.  We will also 

collect a tube of your blood that will be frozen and used for tests related to gestational 

diabetes at a later stage.  In a couple of weeks, you will be asked to come to the clinic 

so we can do a glucose tolerance test.  For this test you will be asked to drink a 

glucose/sugar solution and your blood will be tested for glucose thereafter.   

You will also be asked to return at six weeks after delivery.  At this visit, your baby 

will be immunized and we will ask you questions regarding the birth of your baby.   

None of these procedures is harmful to you or your baby. 

Risk and discomfort involved: 

There may be slight bruising after taking blood.  The glucose solution may make you 

feel nauseous.  There are no risks involved with any of the tests. 

Possible benefits of this study: 

Many of the questions asked and tests are done routinely in pregnancy.  If any of the 

test results are abnormal, you will be referred for appropriate care. 

I understand that if I do not want to participate in this study, I will still receive 

standard treatment for my illness.  I may withdraw from this study at any time. 
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Has the study received ethical approval?  

This protocol was submitted to the Faculty of Health Sciences Research Ethics 

Committee, University of Pretoria and written approval has been granted by that 

committee.  The study has been structured in accordance with the Declaration of 

Helsinki which deals with the recommendations guiding doctors in biomedical 

research involving humans.  A copy of the Declaration may be obtained from the 

investigator should you wish to review it. 

If you have any question concerning this study, you should contact: 

Dr. Sumaiya Adam 

Department of Obstetrics and Gynaecology 

Steve Biko Academic Hospital 

Pretoria 

012 354 3715 or 084 951 1773 

 

Confidentiality: 

All records obtained whilst in this study will be regarded as confidential.  Results will 

be published in such a fashion that patients remain unidentifiable. 

Consent to participate in this study: 
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I have read the above information, or it has been read to me in a language that I 

understand.  I understand the above information before signing the consent form.  The 

content and meaning of this information have been explained to me.  I have been given 

the opportunity to ask questions and am satisfied that they have been answered 

satisfactorily. I understand that if I do not participate it will not alter my management 

of this pregnancy in any way.  I hereby volunteer to take part in this study. 

I have received a signed copy of this informed consent agreement. 

 

____________________________    ___/___/20___ 

Participant’s Signature      Date 

____________________________    ___/___/20___ 

Person obtaining informed consent    Date 

____________________________    ___/___/20___ 

Witness        Date 

 

Verbal participant informed consent (if person cannot read or write): 

I, the undersigned ____________________________________________________, have 

read and have explained fully to the participant, named 
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___________________________________________________________________ and/or 

to her relative, the patient information leaflet, which has indicated the nature and 

purpose of the study in which I have asked the person to participate.  The explanation 

I have given has mentioned both the possible risks and benefits of the study.  The 

participant indicated that she understands that she will be free to withdraw from the 

study at any time for any reason without jeopardizing the further care of her 

pregnancy. 

I hereby certify that the patient has agreed to participate in this study. 

Participant’s name: ____________________________________________________ 

Investigator’s name: ____________________________________________________ 

Investigator’s signature: ________________________________________________ 

Witness’s Name: ____________________ Witness’s signature: ________________ 

Date: ___/___/20___ 
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APPENDIX 4: SUPPLEMENTARY FILES FOR CHAPTER 7 

Figure S1. Average detection p-values per sample for all probes. All samples passed the quality control 

test. P<0.01. 

  

 

 

 

 

 

Figure S2. Histogram of β-values showing the frequency distribution of CpG methylation across all 

samples.  
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Figure S3.  Venn diagram illustrating comparison of genes differentially methylated in GDM between 

our study (left) and those identified by Kang et al. 2017 (right) in maternal blood. Left: Identification 

of 939 differentially methylated genes in our study. Right: Identification of 151 differentially methylated 

genes by Kang et al. Centre: 15 differentially methylated genes that were common in our study 

compared to Kang et al. Arrows illustrate up or down regulation in GDM vs. non-GDM in our study. 

Information for Kang et al. was not available. Calmodulin Binding Transcription Activator 1 

(CAMTA1), Smad Nuclear Interacting Protein 1 (SNIP1), Protein-Tyrosine Phosphatase, Receptor-Type, 

F Polypeptide-Interacting Protein-Binding Protein 2 (PPFIBP2), Switching B Cell Complex 

Subunit SWAP70 (SWAP70), Semiphorin 6D (SEMA6D), Cadherin 8 (CDH8), Cytochrome P450 

Family 26 Subfamily B Member 1 (CYP26B1), Wnt Family Member 6 (WNT6), Raftlin, Lipid Raft 

Linker 1 (RFTN1), Unc-5 Netrin Receptor C (UNC5C), Nucleoside Diphosphate-Linked Moiety X 

Motif 6 (NUDT6), Storkhead Box (STOX2), MutS Protein Homolog 5 (MSH5), KH RNA Binding 

Domain Containing, Signal Transduction Associated 2 (KHDRBS2), and Neuregulin 1 (NRG1). 

Our Study Kang et al. 2017 
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Figure S4. Comparison of six major peripheral blood cell components in GDM and non-GDM women. 

No significant difference was observed between cells types. All Data points are presented as means with 

standard deviation. p<0.01 is considered significant. CD8T and CD4T: T lymphocytes; NK: Natural 

killer cells; Bcell: B lymphocytes; Mono: Monocytes; Gran: Granulocytes. 
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Table S3: The association between the significantly differentially methylated CpG sites with fasting 

glucose, 1 hr OGTT and fasting insulin, using linear regression adjusting for gestational diabetes 

mellitus. 

aUnivariate linear regression: Association between CpG-specific methylation and fasting glucose, 1 hr 

OGTT or fasting insulin. bMultivariate linear regression:  Adjusting for gestational diabetes mellitus; CI 

– Confidence interval. p<0.001, p<0.01, p<0.05 OGTT: Oral glucose tolerance test; CI: Confidence 

interval; GDM: Gestational diabetes mellitus 

 

 

 

 

  aUnivariate bMultivariate 

CpG site  Coefficien

t 

95% CI p-value Coefficien

t 

95% CI p-value 

Fasting 

glucose  (mmol/L) 

      

cg22985016 0.019 0.012; 0.027 <0.001 0.003 -0.010; 0.016 0.669 

cg21910650 -0.059 -0.084; -0.033 <0.001 -0.006 -0.052; 0.040 0.805 

cg23643951 -0.037 -0.051; -0.022 <0.001 0.001 -0.022; 0.024 0.934 

cg16306629 0.193 0.116; 0.269 <0.001 0.049 -0.092;  0.192 0.492 

cg07966372 -0.010 -0.018; -0.002 0.017 -0.001 -0.018;  0.015 0.867 

1 hr OGTT (mmol/L)       

cg22985016 0.006 0.002; 0.010 0.006 0.002 -0.001; 0.005 0.283 

cg16306629 0.066 0.025; 0.108 0.002 0.029 -0.005; 0.063 0.095 

Fasting insulin (mIU/L)       

cg07966372 -0.001 -0.002; -0.0001 0.027 -0.001 -0.002; -0.0003 0.043 
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*Supplementary tables for chapter 7 are available on request as they are too large to 

be included in this document: 
 

Table S1: Genome-wide DNA methylation profiling identified 1046 differentially methylated 

CpG  

Table S2: Differentially methylated CpG sites annotated to 939 unique genes 

Table S4: Functional enrichment analysis identified 261 Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways 

Table S5: Statistically significant KEGG pathways associated with GDM 

Table S6: GO terms enriched by differentially methylated genes, categorized into 1181 

biological processes, 167 molecular functions and 85 cellular components.  
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APPENDIX 5: SUPPLEMENTARY FILES FOR CHAPTER 8 

Table S1. Primer design for CpG sites in the adiponectin gene (ADIPOQ) 

5’ to 3’ orientation; NaBis - Sodium Bisulfite;  Red bold type letters indicated CpG sites investigated on the adiponectin gene (ADIPOQ) promoter region. 

Name Target sequence* 
Chromosomal 

region 
PCR and pyrosequencing primer* 

Target sequence after NaBis 

treatment* 
Amplicon length 

Assay 1 

CGCGGTGGCTCAC

GCCTGTCATTCCA

GCACTTTGGGAGG

CCG 

Chromosome 3: 

186,839,297-

186,839,338 

Positive strand 

Fwd1: GGTGGTAGGAGGTGATAGTTTAA 

Rev1: ACTCCCCACCTCAAATAATCCAC 

Seq1: GAAATGTTTTTTTGGTTAGG 

YGYGGTGGTTTAYGTTTG

TTATTTTAGTATTTTGGG

AGGTYGAGGGGGTGGA

T TATTTGAGGT 

199 (4CpGs) 

Assay 2 

CTGAACGTACAC

AGTCTCAGACTTA

ATCATGCACAGTG

AGCAAGACTGTG

GTGTGATAATTGG

CGTCCCTGAC 

Chromosome 3: 

186,842,231-

186,842,303 

Positive strand 

Fwd3: TTAGGTTAGAGAGTGGAGGATGTG 

Rev3: TCCCCCTCCCATAAATTTACC 

Seq3: CTCCCATAAATTTACCCTAATA 

AATCAAAAACRCCAATT

ATCACACCACAATCTTA

CTCACTATACATAATTA

AATCTAAAACTATATAC

RTTCAAACAATAAATAC

TTCAAAAAAAAACA 

186 (2CpGs) 

Assay 3 

TTTGTTTATCGGTT

TTTGGTTTTTATTG

AGTTGGTTAATGG

GAAATGATAATTG

TGAGGTGGGGATT

GTTTGTTTTCGTG

AG 

Chromosome 3: 

186,842,599-

186,842,672 

Positive strand 

Fwd2: GTGGGTAATTGTTAGGGATATGT 

Rev2: AAAAAATAACCCAACCTCAACAAC 

Seq2: GTAATTGTTAGGGATATGTG 

TTTGTTTATYGGTTTTTG

GTTTTTATTGAGTTGGTT

AATGGGAAATGATAATT

GTGAGGTGGGGATTGTT

TGTTTTYGTGAGTATTAG

GTTGTTGAGGTTGGGTT

AT 

136 (2CpGs) 
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Figure S1. Primer sensitivity using known methylated standards (x-axis) for each pyrosequencing 

probe. The percentage (%) of methylation as determine (y-axis) for a) 4 CpGs (-3412, -3410, -3400, -

3372) in R1, b) 2 CpGs (-473, -415) in R2 and c) 2 CpGs (-112, -45) in R3. 
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Table S2. Frequency distribution of methylation at CpG -3410 and -3400 in HIV negative and HIV 

positive women. 

 

 

 

 

 

 

 

 

 

 

 

Upper quartile: methylation between the median and 75th percentile; Lower quartile: methylation 

between the median and 25th percentile. 

 

 

Figure S2. DNA methylation levels in HIV positive women receiving antiretroviral therapy (ART) 

(n=36) and those who were ART naïve (n=69). DNA methylation levels at a) CpG -3410 and b) CpG -

3400. 

 

  

CpG sites HIV negative HIV positive p-value 

n 181 104  
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Abstract: Increasing evidence implicate altered DNA methylation in the pathophysiology of 

gestational diabetes mellitus (GDM). This exploratory study probed the association between GDM 

and peripheral blood DNA methylation patterns in South African women. Genome-wide DNA 

methylation profiling was conducted in women with (n = 12) or without (n = 12) GDM using the 

Illumina Infinium HumanMethylationEPIC BeadChip array. Functional analysis of differentially 

methylated genes was conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analyses. A total of 1046 CpG sites (associated with 939 genes) were 

differentially methylated between GDM and non-GDM groups. Enriched pathways included GDM-

related pathways such as insulin resistance, glucose metabolism and inflammation. DNA 

methylation of the top five CpG loci showed distinct methylation patterns in GDM and non-GDM 

groups and was correlated with glucose concentrations. Of these, one CpG site mapped to the 

calmodulin-binding transcription activator 1 (CAMTA1) gene, which have been shown to regulate 

insulin production and secretion and may offer potential as an epigenetic biomarker in our 

population. Further validation using pyrosequencing and conducting longitudinal studies in large 

sample sizes and in different populations are required to investigate their candidacy as biomarkers 

of GDM. 

Keywords: gestational diabetes mellitus; molecular biomarkers; DNA methylation; 

MethylationEPIC Bead Chip Array; South Africa 
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1. Introduction 

Gestational diabetes mellitus (GDM) is defined as glucose intolerance that arises during 

pregnancy, and usually resolves postpartum. The prevalence of GDM is increasing, affecting 

approximately 14% of pregnancies globally [1], although rates vary between <1% and 28% according 

to the diagnostic criteria employed and population studied [2]. GDM is associated with maternal 

(preeclampsia, caesarean section and birth injuries), fetal (macrosomia, shoulder dystocia, 

hyperinsulinemia, hypoglycemia, hyperbilirubinemia) and perinatal (respiratory distress syndrome, 

metabolic derangements and jaundice) complications [3–5], while both mothers and their offspring 

are at an increased risk of developing metabolic disease in later life [6–8]. Current estimates indicate 

that more than 50% of women with GDM develop type 2 diabetes (T2D) within 10 years, making 

GDM a strong predictor of T2D [6,9]. The identification of women with GDM who are at risk of 

developing T2D allows the introduction of timely measures to prevent or better manage disease 

progression.  

Epigenetic mechanisms are increasingly being implicated in the pathophysiology of metabolic 

diseases, including GDM [10]. DNA methylation, the most widely studied and best characterized 

epigenetic marker, is a reversible process that refers to the addition of a methyl group to the fifth 

carbon position of a cytosine residue within a cytosine-phosphate-guanine (CpG) dinucleotide, and 

regulates gene expression through transcriptional mechanisms [11]. Altered global and gene-specific 

DNA methylation are observed in the placenta of women with GDM [12,13]. DNA methylation is a 

tissue-specific process, although recent evidence suggests that peripheral blood reflects DNA 

methylation in tissue [14], while several studies report that maternal blood reflects pregnancy-

associated DNA methylation changes [15–17], supporting its potential as epigenetic biomarkers for 

GDM.  

DNA methylation during GDM has been studied using various techniques such as enzyme-

linked immunosorbent assays, whole-genome bisulfite sequencing, methylated DNA 

immunoprecipitation sequencing, liquid chromatography coupled with mass spectrometry, 

pyrosequencing, bead chip arrays and methyl light polymerase chain reaction (PCR) [12,15,17–20]. 

Due to its comparatively low cost compared to sequencing, reproducibility and high sample 

throughput, bead chip arrays are currently the most widely used technique for genome-wide DNA 

methylation profiling [21,22]. The current bead chip array version, the HumanMethylationEPIC, 

allows the interrogation of >850,000 CpG sites across the genome, enriched for promoters and 

enhancer sequences, covering 99% of RefSeq genes [23]. Previous versions, the 

HumanMethylation450 and HumanMethylation27, measured >480,000 and >27,000 CpG sites, 

respectively across the genome [21].  

In South Africa, the prevalence of GDM has increased from about 1.6–25.8% in recent years 

[24,25]. The possible increase in future T2D cases will place a major burden on the already 

overburdened health system and creates an urgent need to identify preventative strategies. DNA 

methylation has attracted considerable interest as biomarkers that could facilitate risk stratification 

and offer opportunities for intervention strategies to prevent or delay the development of T2D after 

pregnancy [26]. The aim of this study is to explore the potential of DNA methylation to serve as 

biomarkers of GDM in black South African women. Genome-wide DNA methylation profiling was 

conducted in the peripheral blood of women with (n = 12) or without (n = 12) GDM using the Illumina 

methylationEPIC Bead Chip array. Functional analysis of differentially methylated genes was 

conducted to identify pathways associated with GDM in the South African population. 
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2. Results 

2.1. Study Participants 

Participant characteristics are presented in Table 1. As expected, no difference in age, gestational 

age and body mass index (BMI) was observed between women with or without GDM. Women with 

GDM had significantly higher fasting (p < 0.001) and 1 h oral glucose tolerance test (OGTT) (p < 0.01) 

glucose concentrations compared to women without GDM, while 2 h OGTT (p = 0.07) glucose 

concentrations showed a trend towards significance. In addition, fasting insulin concentrations, 

homeostatic model of assessment (HOMA), and c-reactive protein (CRP) levels were higher in 

women with GDM compared to women without GDM, although these were not statistically 

significant. No difference between groups were observed for HbA1c and adiponectin concentrations, 

nor for common risk factors (advanced maternal age (age ≥ 35 years), obesity (BMI ≥ 30 kg/m2), family 

history of diabetes mellitus, delivery of a previous baby more than four kg, glucosuria, previous 

recurrent pregnancy loss, stillbirth, or birth of a baby with congenital abnormalities), as well as 

education and employment status.  

Table 1. Participant characteristics. 

Variables Non-GDM (n = 12) GDM (n = 12) p-Value 

Age (years) a 27.3 (0.3) 27.3 (0.3) 1.00 

Gestational age (weeks) a 19.3 (1.5) 19.3 (2.0) 1.00 

BMI (kg/m2) a 27.1 (1.3) 27.6 (1.1) 0.77 

Fasting glucose (mmol/L) a 4.3 (0.1) 5.5 (0.1) <0.001 

1hr OGTT (mmol/L) a 5.2 (0.3) 6.6 (0.4) 0.01 

2hr OGTT (mmol/L) a 5.2 (0.3) 5.8 (0.3) 0.07 

HbA1c (%) a 5.1 (0.1) 5.1 (0.1) 0.85 

Fasting insulin (mIU/L) b 8 (7.5-9.0) 10.2 (6.3-12.7) 0.65 

HOMA b 1.6 (1.6-1.8) 2.6 (1.5-2.9) 0.31 

Adiponectin (µg/mL) b 10.4 (7.3-23.8) 9.7 (4.7-12.0) 0.28 

C-reactive protein (mg/L) a 7.1 (1.2) 7.7 (1.1) 0.75 

Risk factors: n (%) c 

None 10 (83.3) 7 (58.3) 

0.37 

≥1 risk factor 2 (16.7) 5 (41.8) 

* Education: n (%) c <grade 12 7 (63.6) 5 (41.7) 0.29 
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≥grade 12 4 (36.4) 7 (58.3) 

Employment:  

n (%) c 

None 8 (66.7) 7 (58.3) 

1.00 
Formal/informal 

employment 
4 (33.3) 5 (41.7) 

GDM: gestational diabetes mellitus; BMI: body mass index; OGTT: oral glucose tolerance test; HbA1c: 

glycated hemoglobin; HOMA: homeostatic model assessment calculated according to the formula: 

fasting insulin (mIUL) × fasting glucose (mmol/L)/22.5; Risk factors: advanced maternal age (age > 35 

years), obesity (BMI > 30 kg/m2), family history of diabetes mellitus, delivery of a previous baby more 

than four kilograms, glucosuria, previous recurrent pregnancy loss, stillbirth, or birth of a baby with 

congenital abnormalities. * One participant had missing data for education. Data are expressed as the 
a mean ± standard error of the mean, as b median (25th–75th percentiles) or as c count (percentage). p-

values for continuous data were calculated using the Mann–Whitney or the unpaired Student t test. 

p-values for categorical data were calculated using chi-square test or Fisher’s exact test if frequency 

was <5. 

2.2. Genome-Wide DNA Methylation Profiling 

The average detection p-values for all probes were calculated for each sample and are presented 

in supplementary Figure S1. Each sample showed p-values below the usual cut-off of 0.01, indicating 

that all samples passed the quality control. In addition, box and whisker plots showed concordance 

across samples without any outliers, suggesting good quality and consistency of samples (Figure 1). 

Median β-values ranged between 0.79 and 0.83 across the 24 samples. A histogram of β-values 

showing the frequency distribution of CpG methylation across all samples is illustrated in Figure S2. 

A clear separation between GDM and non-GDM groups is evident in the principal component 

analysis (PCA) score plot, with characteristic DNA methylation profiles aggregating together within 

the same group (Figure 2). The first three PCAs explain 27.6% of the variance observed. The β-values 

were then converted to M-values for statistical analysis. To identify differentially methylated CpG 

sites between GDM and non-GDM pregnancies, data were filtered using the criteria shown in Figure 

3. An M-value cut-off threshold between >0.4 and >0.6 was explored in this study, which is within 

the threshold range suggested by Du et al. [27]. In the first filtering step a M-value difference of >0.4 

or <–0.4 and unadjusted p < 0.01 was used, to permit comparison between differentially methylated 

probes. Further filtering steps including M-values which ranged between >0.5 or <–0.5 and >0.6 or <–

0.6 with unadjusted p < 0.01 were assessed. We identified 1046 differentially methylated CpG loci 

with M-value differences of >0.6 or <–0.6 and unadjusted p < 0.01 (Table S1). To facilitate a more 

stringent analysis, a false discovery rate (FDR) <0.1 was added, which did not identify any significant 

probes. Hierarchical clustering was performed to determine whether these methylation patterns 

could distinguish between women with or without GDM. The heatmap in Figure 4 illustrates that 

there are distinct methylation patterns between the GDM and non-GDM groups.  
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Figure 1. Box and whisker plots of β-values. Each box represents a sample (n = 24) which is illustrated 

by a different color bar. The median β-value is 0.042 with a minimum and maximum range of 0.785 

and 0.827. 
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Figure 2. Principal component analysis (PCA) between GDM and non-GDM groups. Each dot 

represents a sample. Centroids (black) connect samples from the respective GDM (blue) or non-GDM 

(red) group and indicate the center of distribution, while the black bars indicate the distance between 

samples and centroids. The first three PCAs explain 27.6% of the variance. 

 

Figure 3. Filtering criteria for the identification of CpGs differentially methylated between 

GDM and non-GDM groups. A total of 801,236 probes, derived through the removal of 

polymorphic, cross-hybridising and non-CpG probes were used for analysis. FDR: false 

discovery rate; M-values closest to 0 indicate similar methylation intensities between 

probes. 

Probes removed (n=64,623):
• Polymorphic probes (n=22,139)
• Cross-hybridising (n=40,762)
• Common probes between polymorphic and cross-hybridising lists (n=1,721)
• Non-CpG probe (n=1)
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M-value > 0.4 or < -0.4; 
unadjusted p-value < 0.01 and FDR = n.a

n = 4,964 CpGs

M-value > 0.5 or < -0.5; 
unadjusted p-value < 0.01 and FDR = n.a

n = 2,215 CpGs

M-value > 0.6 or < -0.6; 
unadjusted p-value < 0.01 and FDR = n.a

n = 1,046 CpGs

M-value > 0.6 or < -0.6; 
unadjusted p-value < 0.01 and FDR < 0.1

n = 0 CpGs

939 unique genes
selected for further analysis

801,236 probes
used for further analysis

865,859 total number 
of probes identified



Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 270 of 363 

270 

 

 

Figure 4. Heatmap showing methylation signatures of 1046 CpG sites in women 

with/without GDM. DNA methylation across 1046 CpG sites in each sample was analyzed 

using Euclidean distance for both rows (observations) and columns (features) and average 

linkage criteria. Samples are shown in rows and are clustered in GDM (green) and non-

GDM (orange) groups. Standardized M-values are depicted using a blue (hypomethylation 

in GDM) to red (hypermethylation in GDM) methylation gradient. 

Of the 1046 differentially methylated CpG loci, 148 CpG sites (14.2%) were hypermethylated and 

898 CpG sites (85.8%) were hypomethylated in women with GDM compared to women without 

GDM. To increase the likelihood of identifying differentially methylated promoters, probes located 5 

kbp upstream or up to 3 kbp downstream of the transcription start site were also included as 

promoter regions. The frequency of all CpG sites analysed and differentially methylated CpG sites in 

relation to their genomic location is shown in Figure 5. Of the differentially methylated CpGs, 16.3% 

were associated with 5’-untranslated regions (UTR), 49.7% with promoters, 6.2% with coding domain 

sequences (CDS), 19.1% with introns, 4.0% with non-coding regions, 2.1% with 3’-UTRs and 4.6% 

with intergenic regions. Differentially methylated CpG sites were annotated to 939 unique genes 

using RefSeq build 87 (Table S2). The top five significantly differentially methylated CpG sites 

selected for further analysis, were associated with four unique genes, including Solute Carrier Family 

9 Member A3 (SLC9A3), Male-Enhanced Antigen 1; Kelch domain-containing protein 3 

(MEA1;KLHDC3), Calmodulin Binding Transcription Activator 1 (CAMTA1) and RAS P21 Protein 

Activator 3 (RASA3), and one unknown gene. The probe ID, location, gene region and direction of 

methylation (GDM vs. non-GDM), as well as the nearest gene/regulatory region for the unknown 

gene is shown in Table 2. Of the differentially methylated CpG sites, cg22985016 and cg16306629 was 

shown to be significantly hypermethylated, while cg21910650, cg23643951 and cg07966372 was 

significantly hypomethylated in GDM compared to non-GDM groups. The association between GDM 

and the top five CpG sites remained significant for each CpG after linear regression adjusting for age 
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BMI and gestational age (Table 3). To examine the degree to which DNA methylation levels at these 

CpGs are associated with the clinical characteristics of GDM, Pearson’s correlation analysis was 

performed (Table 4). For cg22985016 and cg16306629, a positive correlation between DNA 

methylation and fasting glucose concentrations was observed, while methylation at cg21910650, 

g23643951 and cg07966372 was inversely correlated with glucose concentrations. Furthermore, DNA 

methylation at cg22985016 and cg16306629 was correlated with 1 h glucose, while methylation at 

cg07966372 was negatively correlated with fasting insulin concentrations. When adjusting for GDM, 

the association between the five CpGs and fasting glucose concentrations and between cg22985016 

and cg16306629 and 1 h OGTT was no longer significant, while the association between cg07966372 

and fasting insulin remained significant (Table S3).  

 

Figure 5. Relative frequency of all CpGs analysed (black bars) and differentially methylated 

CpGs identified in our study (white bars) in relation to genomic location across the genome. 

UTR: untranslated region; CDS: coding domain sequence.
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Table 2. The top five significantly differentially methylated CpG sites between GDM and non-GDM groups. 

Probe ID Location Gene Symbol Gene Name Region p-Value Methylation 

cg22985016 Chr5:492187–524227 SLC9A3 Solute Carrier Family 9 Member A3 Intron 1.84 × 10−7 ↑ 

cg21910650 Chr6:42976841–42986722 MEA1; KLHDC3 
Male-Enhanced Antigen 1;  

Kelch domain-containing protein 3 
Promoter/5’UTR 3.23 × 10−6 ↓ 

g23643951 Chr1:7151432–7309551 CAMTA1 Calmodulin Binding Transcription Activator 1 Intron 4.46 × 10−6 ↓ 

cg16306629 Chr8:119121060–119129059 COLECT10 * Collectin Subfamily member 10* Enhancer * 9.22 × 10−6 ↑ 

07966372 Chr13:114782770–114898099 RASA3 RAS P21 Protein Activator 3 5’UTR/Intron 9.75 × 10−6 ↓ 

* Nearest gene/regulatory region of cg16306629. ↑: hypermethylation and ↓: hypomethylation between GDM vs. non-GDM groups. Significance is shown as p < 0.05. 

 

Table 3. Linear regression analysis of gestational diabetes mellitus and the top five significantly differentially methylated CpG sites, adjusting for 

age, body mass index and gestational age. 

CpG Site 
a Univariate b Multivariate 

Coefficient 95% CI p-Value Coefficient 95% CI p-Value 

cg22985016 (SLC93A) 0.028 0.019; 0.037 <0.001 0.028 0.019; 0.037 <0.001 

cg21910650 (MEA1;KLHDC3) −0.088 −0.117; −0.058 <0.001 −0.087 −0.118; −0.056 <0.001 

cg23643951 (CAMTA1) −0.056 −0.070; −0.042 <0.001 −0.056 −0.071; −0.042 <0.001 

cg16306629 (Unknown) 0.274 0.183; 0.366 <0.001 0.275 0.192; 0.359 <0.001 

cg07966372 (RASA3) −0.015 −0.025; −0.004 0.006 −0.015 −0.026; −0.004 0.008 

a Univariate linear regression: association between CpG-specific methylation and GDM. b Multivariate linear regression: adjusting for age (years), body mass index 

(kg/m2) and gestational age (weeks); CI: Confidence interval. Significance is shown as p < 0.05.  
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Table 4. Correlation analysis showing the association between DNA methylation and fasting plasma, 1 h OGTT, 2 h OGTT and fasting insulin for the top five 

differentially methylated CpG sites. 

Variable 

cg22985016 (SLC93A) cg21910650 (MEA1; KLHDC3) cg23643951 (CAMTA1) cg16306629 (Unknown) cg07966372 (RASA3) 

Rho p-Value Rho p-Value Rho p-Value Rho p-Value Rho p-Value 

Fasting glucose (mmol/L) 0.728 <0.001 −0.694 <0.001 −0.735 <0.001 0.724 <0.001 −0.452 0.026 

1 h OGTT (mmol/L) 0.502 0.012 −0.377 0.069 −0.399 0.053 0.559 0.004 0.016 0.939 

2 h OGTT (mmol/L) 0.297 0.168 −0.249 0.250 −0.338 0.115 0.266 0.219 0.098 0.658 

Fasting insulin (mIU/L) −0.037 0.888 −0.103 0.691 −0.204 0.433 0.109 0.674 −0.495 0.043 

OGTT: oral glucose tolerance test; SLC93A: Solute Carrier Family 9 Member A3; MEA1; KLHDC3: Male-Enhanced Antigen 1; Kelch domain-containing protein 3; 

CAMTA1: Calmodulin Binding Transcription Activator 1; Unknown: gene nearest to this region is called Collectin Subfamily member 10; RASA3: RAS P21 Protein 

Activator 3. Pearson’s correlation coefficient (rho) is shown with significance at p < 0.05. 
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2.3. Functional Enrichment Analysis 

Differentially methylated CpG sites (1046), annotated to 939 unique genes using M-values >0.6 and 

<–06 with unadjusted p < 0.01 threshold criteria, were selected for functional enrichment analysis. 

Functional enrichment analysis identified 261 Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways, including pathways for T2D and insulin signaling (Table S4). Only 50 KEGG pathways were 

statistically significantly different between GDM and non-GDM groups (Table S5). Statistically 

significant pathways included cancer, brain signaling, cell growth, proliferation, viability and 

inflammation pathways. The most significant KEGG pathway was ‘Signaling pathways regulating 

pluripotency of stem cells’ with an enrichment score of 10.496, a p-value = 2.76 × 10−5 and 19 

differentially methylated associated genes. In addition, Gene Ontology (GO) terms were enriched by 

differentially methylated genes, categorized into 1181 biological processes, 167 molecular functions and 

85 cellular components with a p-value < 0.05 (Table S6). The top 10 GO terms categorized into biological 

processes, molecular functions and cellular components are illustrated in Figure 6. Of these, homophilic 

cell adhesion via plasma membrane adhesion molecules (biological process), calcium ion binding 

(molecular function) and integral component of plasma membrane (cellular component) have the 

highest ranked enrichment score and p-value < 0.001.  
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Figure 6. Top 10 Gene Ontology (GO) terms enriched by differentially methylated genes in GDM and 

non-GDM groups. Enriched GO terms were categorized into (a) biological processes, (b) molecular 

function and (c) cellular components. Data are presented as enriched scores expressed as −log10 (p 

value). Fisher p ≤ 0.001. 

3. Discussion 

We report the differential methylation of 1046 CpG sites in the peripheral blood of black South 

African women with GDM compared to women with normoglycemic pregnancies. Functional analysis 

mapped these CpGs to genes in pathways key to metabolic regulation. Furthermore, differential 

methylation of the five CpG loci, within SLC93A was positively correlated with fasting and 1 h glucose, 

while CpGs within CAMTA, MEA1;KLHDC3 and RASA3 was inversely correlated to fasting glucose, 

with distinct methylation profiles in GDM and non-GDM groups. CAMTA1 is a transcriptional 

activator that was previously shown to regulate insulin production and secretion [28]. These results 

support the plausibility of the observed DNA methylation differences in GDM pathophysiology and 

potential as diagnostic biomarkers of GDM.  

Genome-wide DNA methylation differences during GDM have been demonstrated in other 

populations. Kang et al. used the Illumina Infinium Human MethylationEPIC Bead Chip array to 

investigate DNA methylation in Chinese women with GDM, and showed that the top 200 differentially 

methylated loci mapped to 151 genes [15]. Of these, 15 genes, CAMTA1, Smad Nuclear Interacting 

Protein 1 (SNIP1), Protein-Tyrosine Phosphatase, Receptor-Type, F Polypeptide-Interacting Protein-

Binding Protein 2 (PPFIBP2), Switching B Cell Complex Subunit SWAP70 (SWAP70), Semiphorin 6D 

(SEMA6D), Cadherin 8 (CDH8), Cytochrome P450 Family 26 Subfamily B Member 1 (CYP26B1), Wnt 

Family Member 6 (WNT6), Raftlin, Lipid Raft Linker 1 (RFTN1), Unc-5 Netrin Receptor C (UNC5C), 

Nucleoside Diphosphate-Linked Moiety X Motif 6 (NUDT6), Storkhead Box (STOX2), MutS Protein 

Homolog 5 (MSH5), KH RNA Binding Domain Containing, Signal Transduction Associated 2 

(KHDRBS2), and Neuregulin 1 (NRG1) were similarly shown to be differentially methylated in our 

study, and has been illustrated in a venn diagram (Figure S3). Disparities in the number of differentially 

methylated CpG sites identified between studies could be due to population differences such as 

ethnicity, age and stage of pregnancy, and the data filtering criteria used. Although M-values were 

used to measure methylation differences in both studies, Kang et al. used a more stringent FDR adjusted 

p-value < 0.05 for their analysis whereas we used an unadjusted p-value < 0.01, since an FDR of <0.05 

did not identify any significantly differentially methylated loci in our analysis. Despite using a higher 

FDR than Kang et al., the differential methylation of 15 genes were similar between studies [15]. Other 

technical differences between studies which may affect methylation levels include sample preparation, 

loading during hybridization and batch effect bias [21,29]. Soriano-Tárraga et al. reported that the 

method of DNA extraction affects global DNA methylation levels [29]. Thus, standardization of 

analytical methods across laboratories is essential to enable comparison of DNA methylation patterns 

between studies. Other studies that used previous versions of the bead chip array similarly reported 

DNA methylation differences during GDM in Non-Hispanic Caucasian American and Caucasian 

English populations [16,17]. As reported in these studies [15–17,30], the majority of CpG differences in 

our study were hypomethylated in women with GDM compared to women without GDM. However, 

in contradiction, in our study most of the 1046 differentially methylated CpG sites occurred in promoter 

regions, whereas previous studies identified most of the differentially methylated CpGs in gene body 

regions [30,31]. Differences could be due to the method of analysis used. Our analysis included 

additional CpGs located 5 kbp upstream and 3 kbp downstream of the transcription start site to increase 

the probability of detecting differentially methylated promoter regions. Altered DNA methylation in 

promoter regions influences the expression of specific genes [32–34], which may enable the 

identification of genes/pathways involved in metabolic processes during GDM.  
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Recently, we demonstrated that global DNA methylation is not associated with GDM in South 

African women [19]. We hypothesized that the failure to detect DNA methylation differences was due 

to technical limitations and that gene-specific methylation analysis would be able to identify GDM-

associated methylation differences. Global DNA methylation quantification is a crude marker of overall 

genomic methylation and does not have the resolution to detect gene-specific differences, as observed 

in the current study. Similar findings were reported by Matsha et al., who showed no difference in 

global DNA methylation between 61 diabetic individuals on treatment and 287 normoglycemic subjects 

in a mixed ethnic ancestry South African population [35]. In addition, no difference in global DNA 

methylation was observed in peripheral blood mononuclear cells of a Danish population with obesity 

or T2D compared to controls [36].  

The diagnosis of GDM is contentious and varies across countries and health institutions. Currently 

the International Association of Diabetes in Pregnancy Study Group (IADPSG) criteria are advocated 

by several international bodies and endorsed by the World Health Organisation (WHO) [37]. However, 

concerns that the high costs and increased workload of IADPSG criteria outweigh the clinical effects of 

small glucose differences has hampered its universal use. We were able to see altered DNA methylation 

patterns despite small glucose differences between women with or without GDM, suggesting that 

epigenetic programming is evident even during mild hyperglycemia. Kang et al. also demonstrated 

altered DNA methylation in women diagnosed with GDM according to IADPSG diagnostic criteria 

[15]. These findings support The Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) study, 

which showed that even mild hyperglycemia is associated with adverse pregnancy outcomes and 

requires treatment [38]. Furthermore, several clinical trials have confirmed that treatment of mild 

hyperglycemia decreases maternal morbidity and adverse perinatal outcomes [39].  

Functional analysis of differentially methylated CpG sites identified canonical pathways related 

to signal transduction, cell growth, proliferation, differentiation and apoptosis, insulin resistance, 

glucose metabolism, inflammation, neurological signaling, and oncogenesis. Altered DNA methylation 

of two signaling pathways, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase 

(PI3K), which play a role in cell growth and differentiation, and the metabolic action of insulin [40], 

have previously been reported during GDM in other populations [15], identifying these CpG sites as 

likely biomarkers for the development of GDM. Our results demonstrated that pathways associated 

with cancer are differentially methylated in women with GDM compared to controls. Several studies 

have reported a link between GDM and cancer, particularly breast cancer [41–43], identifying GDM as 

a potential risk factor for the development of cancer in later life , Nine of the top 10 GO terms enriched 

for biological processes were associated with structural organization and developmental processes, 

supporting the influence of GDM on in utero programming of fetal growth and development [44]. As 

expected, all 10 GO terms enriched for molecular functions were associated with regulatory or binding 

activities and offer insight into functions influenced by altered methylation at a molecular level during 

GDM.  

A strength of our study is that women were matched for age, gestational age and BMI, to ensure 

that results were comparable between groups. In addition, DNA methylation analysis was conducted 

using the most comprehensive MethylationEPIC Bead Chip array currently available, which is 

considered a high-throughput method, that has a lower cost compared to sequencing, and is 

reproducible and time-efficient [21,22]. Our study has a number of limitations. The sample size (n = 24) 

is small, although, it is larger than previously reported [15–17]. No CpG sites reached FDR cut-off, 

suggesting that the study might have been underpowered. However, 15 of the differentially methylated 

genes identified in our study were amongst the top 151 identified by Kang et al. Peripheral blood cells 

consist of a mixture of different cell types [45], which may confound methylation analysis. In our study, 

cell type composition did not differ significantly between GDM and non-GDM groups and therefore 

was not adjusted for in further analysis due to the small sample size. Thus, methylation differences 
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between cell types could have confounded our analysis. Furthermore, physical activity, diet, smoking 

and alcohol consumption, which are known to influence DNA methylation patterns, are not known, 

and could confound our analysis. However, women in our study were recruited from the same 

community and had similar lifestyle behaviours, education and employment status, suggesting that 

they had roughly similar environmental influences. 

To our knowledge, this exploratory study is the first to profile genome-wide DNA methylation 

levels in the peripheral blood of South African women with GDM. We have identified five CpGs which 

are associated with GDM and offer potential as epigenetic biomarkers in our population. Further 

validation using pyrosequencing and conducting longitudinal studies in large sample sizes and in 

different populations are required to investigate their candidacy as biomarkers of GDM 

4. Materials and Methods 

4.1. Study Participants 

Ethical approval for this study was granted by the University of Pretoria Health Sciences Ethics 

Committee (180/2012: approved on the 26/09/2012). The study was conducted according to the 

Declaration of Helsinki and all women gave written informed voluntary consent after the procedures 

had been fully explained in the language of their choice. One thousand pregnant women attending a 

primary care clinic in Johannesburg, South Africa were enrolled in the study. At recruitment, 

demographic and socio-economic data were obtained in the form of a standardized questionnaire and 

risk factors for GDM, i.e. advanced maternal age (age ≥ 35 years), obesity (BMI ≥ 30 kg/m2), family 

history of diabetes mellitus, delivery of a previous baby more than four kilograms, glucosuria, previous 

recurrent pregnancy loss, stillbirth, or birth of a baby with congenital abnormalities) were assessed [25]. 

Patients with pre-existing diabetes mellitus (Type 1 diabetes (T1D) and T2D) and those who were more 

than 26 weeks pregnant were excluded. At their first visit, random glucose and glycated hemoglobin 

(HbA1c) concentrations were measured. Women with random glucose and HbA1c concentrations less 

than 11.1 mmol/L and 6.5 %, respectively, were requested to fast overnight and return to the clinic 

within two weeks. At this time, a 75 g oral glucose tolerance test (OGTT) was conducted, and GDM 

was diagnosed if at least one glucose value was met (fasting plasma glucose > 5.1 mmol/L, 1 h OGTT > 

10 mmol/L or 2 h OGTT > 8.5 mmol/L), according to the IADPSG criteria [46]. Blood for measurement 

of cytokines and DNA methylation was collected and stored at –80 °C. For this sub-study, a subset of 

women with (n = 12) and without (n = 12) GDM were selected for genome-wide DNA methylation 

analysis. The inclusion criteria were pregnant women ≥1840 years of age, black ethnicity, human 

immunodeficiency virus (HIV) negative and women with a singleton pregnancy. All women were 

matched according to age, BMI and gestational age as far as possible. 

4.2. DNA Extraction 

Genomic DNA was extracted from 2 ml of peripheral blood collected in 

Ethylenediaminetetraacetic acid (EDTA) tubes using the QIAamp DNA Blood Midi Kit (Qiagen, 

Hilden, North Rine-Westphalia, Germany), as previously described [19]. Briefly, white blood cells were 

lysed and loaded onto the QIAamp Midi column, bound DNA was washed and then eluted from the 

column membrane using 300 µl of elution buffer and centrifuged at 4500× g for 2 mins. DNA 

concentration was measured using the Qubit Fluorometer (Invitrogen, Carlsbad, California, USA) and 

the Quanti-iT dsDNA Broad Range assay kit (ThermoFisher, Waltham, Massachusetts, USA). One 

microgram of DNA in a volume of 45 µl was frozen and shipped on dry ice, as instructed by the 

University of Southern California Molecular Genomics Core for genome-wide DNA methylation 
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analysis using the Illumina Infinium HumanMethylationEPIC BeadChip (USC Molecular Genomics 

Core, Los Angeles, California, USA).  

4.3. Genome-Wide DNA Methylation Profiling 

Genome-wide DNA methylation profiling was conducted using the Illumina’s Infinium 

HumanMethylationEPIC Bead Chip (HumanMethylationEPIC, Illumina inc., San Diego, California, 

USA) according to manufacturer’s instructions. Bisulfite conversion of 500 ng genomic DNA was 

performed using the Illumina-specific EZ DNA methylation kit (D5001, Zymo Research, Orange city, 

Florida, USA), and quality control was conducted by quantitative real-time polymerase chain reaction 

(PCR) and melt curve analysis. Bisulfite converted DNA was amplified up to 1000-fold with DNA 

polymerase during the incubation step in the Illumina hybridization oven at 37 °C. Amplicons were 

then fragmented to 300–600 bp products, precipitated with isopropanol and loaded onto Illumina 

Infinium HumanMethylationEPIC Bead Chips prepared for hybridization in the capillary flow-through 

chamber (Human MethylationEPIC, Illumina Inc.), according to the Infinium protocol [47]. After 

annealing to locus-specific 50-mer probes, a single base extension occurs at the base immediately 

adjacent to the interrogated CpG site. Products were fluorescently labelled with either dinitrophenol-

labelled ddATP/ddTTP or biotin-labelled ddCTP/ddGTP, depending on the methylation state of the 

interrogated CpG site. Fluorescence intensity was measured with the Illumina iScan system (iScan 

Control Software v.3.3.28) and was based on the ratio of methylated probe intensities and the overall 

intensity (sum of methylated and unmethylated probe intensities). The methylation scores were 

represented as raw beta (β)-values and were exported as 48 intensity data files (IDAT).  

4.4. Processing and Analysis of the Human Methylation EPIC Bead Chip Array 

Data analysis was conducted by Partek (Partek, St. Louis, Missouri, USA). IDAT files were 

imported to Partek (R) Genomics Suite (R) v.7.18.0803 software. Functional normalization with normal-

exponential out-of-band (NOOB) background correction and dye correction was used [48]. Quality 

control was performed across all imported probes (865,859) for each sample. All samples passed the 

quality control, and those with detection p < 0.01 were included in the analysis. Thereafter, β-values for 

imported probes were plotted and no outliers were detected, indicating that the data were technically 

sound. In addition, a histogram was used to illustrate distribution of methylation β-values across all 

CpG sites in each sample. Data filtering was conducted to remove polymorphic probes (n = 22,139), 

cross-hybridising probes (n = 40,762), non-CpG probes (n = 1) and probes overlapping both the 

polymorphic and cross-hybridising probe lists (n = 1,721) (Figure 3), according to McCartney et al. [23]. 

The clean data set consisted of 801,236 probes (referred to as CpG sites). Exploratory analysis was 

performed using PCA. Cell count estimation was performed empirically using methylation data from 

sorted blood cells using the ‘Estimate Cell Count’ function in the minfi package in R [49]. The function 

is based on a modification of the original method by Houseman et al. [50] and the R package 

FlowSorted.Blood.450k [51]. No differences in cell composition were identified, and cell composition 

was deemed unlikely to be a confounder (Figure S4). Therefore, cell composition was not corrected for 

in further analysis.  

Following data processing, β-values were converted to M-values (log2 ratio [methylated signal 

intensity/unmethylated signal intensity]) to account for heteroscedasticity and allow for analyses 

assuming a Gaussian distribution [27]. M-values have a range of −∞ to +∞, with a value close to 0 

indicating similar intensities between methylated and unmethylated probes. Positive M-values 

represent hyper-, while negative M-values represent hypo-methylation. M-values were then 
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standardized (converted to Z-scores) to perform hierarchical clustering, using Euclidean distance and 

average linkage criteria for visualization of methylation signatures.  

4.5. Functional Enrichment Analysis 

All differentially methylated CpG sites were annotated to genes using the reference sequence 

database (RefSeq) build 87 and were subjected to functional analysis using KEGG pathway analysis 

and GO grouping categories (biological process, cellular component, and molecular function). The 

results of enriched pathways were ranked by enrichment scores to identify overrepresented pathways 

and then sorted by factor score to consider those pathways with the most significant p-value. A high 

enrichment score indicates that a significant number of the differentially methylated genes within a 

pathway are present, while factor score enables comparison of pathways with similar enrichment 

scores between GDM and non-GDM groups.  

4.6. Statistical Analysis 

Participant characteristics were tested for normality using the Shapiro-Wilk test in STATA 14 

(StataCorp, College Station, USA). Normally distributed data are expressed as the mean ± standard 

error of the mean (SEM), or as the median and interquartile range (25th and 75th percentiles) for data 

that were not normally distributed. An unpaired t-test or the Mann–Whitney test was used to compare 

variables across GDM groups. Categorical variables were analysed using the chi-square test or the 

Fisher’s exact test if the frequency was <5. A p ≤ 0.05 was considered statistically significant. Due to the 

matched case control study design, a two-way analysis of variance (ANOVA, one factor was the GDM 

status and the other was the pairing ID), was used to identify differentially methylated sites. To 

investigate the association between GDM and differentially methylated CpGs, univariate and 

multivariate generalised linear regression models were tested and adjust for confounding factors. 

Pearson’s rank correlation (r) was used to evaluate the relationship between specific CpG DNA 

methylation (β-values; 0–1, as a percentage of methylated to unmethylated) states and clinical 

parameters. Pathway enrichment was based on the current publicly available human database, 

GRCh38, and statistical significance was calculated using Fisher’s exact test. An enrichment score ≥3 

was considered significant (p < 0.05). 

 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1: Figure 

S1: Average detection p-values per sample, Figure S2: Histogram of β-values showing frequency 

distribution, Figure S3: Venn diagram illustrating comparison of differentially methylated genes, 

Figure S4: Comparison of six major peripheral blood cell components in GDM and non-GDM women, 

Table S1: Genome-wide DNA methylation profiling identified 1046 differentially methylated CpG loci, 

Table S2: Differentially methylated CpG sites annotated to 939 unique genes, Table S3: Univariate and 

multivariate linear regression analysis, Table S4: Functional enrichment analysis identified 261 Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways, Table S5: Statistically significant KEGG 

pathways associated with GDM, Table S6: GO terms enriched by differentially methylated genes, 

categorized into 1181 biological processes, 167 molecular functions and 85 cellular components. 

http://www.mdpi.com/xxx/s1


 

280 

 

Author Contributions: Conceptualization of study and methodology, C.P. and S.A.; data curation and 

formal analysis, S.D.; funding acquisition, S.D., J.L. and C.P.; project administration, S.A. and P.R.; 

supervision, S.A., P.R. and C.P.; validation, C.P.; writing—original draft preparation, S.D.; writing—

review and editing, S.A., P.R., J.L. and C.P. All authors read and approved the final version to be 

published. 

Funding: This research was funded by the National Research Foundation, South Africa (Unique Grant 

no. 99391), and the South African Medical Research Council. 

Acknowledgments: The authors are grateful to the study subjects who voluntarily participated in this 

study, and would like to thank Ria Laubscher, a statistician in the Biostatistics Unit at the South African 

Medical Research Council, for her assistance. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design 

of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, or in 

the decision to publish the results. 

Abbreviations 

GDM Gestational diabetes mellitus 

CAMTA1 Calmodulin binding transcription activator 1 

MAPK Mitogen activated protein kinase 

PI3K Phosphoinositide 3-kinase 

T2D Type 2 diabetes 

CpG Cytosine-phosphate-guanine 

OGTT Oral glucose tolerance test 

HIV Human immunodeficiency virus 

BMI Body mass index 

HOMA Homeostatic model of assessment 

CRP c-Reactive protein 

HbA1c Glycated hemoglobin 
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PCA Principal component analysis 

FDR False discovery rate 

UTR Untranslated regions 

CDS Coding domain sequences 

KEGG Kyoto Encyclopedia of Genes and Genomes 

GO Gene Ontology 

NRG1 Neuregulin 1 

SNIP1 smad Nuclear Interacting Protein 1 

PPFIBP2 Protein-tyrosine phosphatase, receptor-type, f polypeptide-interacting protein-binding 

protein 2  

SWAP70 Switching b cell complex subunit swap70  

SEMA6D Semiphorin 6d  

CDH8 Cadherin 8  

WNT6 Wnt family member 6 

RFTN1 Raftlin, lipid raft linker 1 

UNC5C Unc-5 netrin receptor c  

NUDT6 Nucleoside diphosphate-linked moiety x motif 6 

STOX2 Storkhead box 

MSH5 Muts protein homolog 5  

KHDRBS2 KH RNA binding domain containing, signal transduction associated 2  

NRG1 Neuregulin 1 

SLC9A3 Solute carrier family 9 member a3 

MEA1 Male-enhanced antigen 1 

KLHDC3 Kelch domain-containing protein 3 

RASA3 RAS p21 protein activator 3 

CYP26B1 Cytochrome p450 family 26 subfamily b member 1 
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IADPSG International association of diabetes in pregnancy study group  

WHO World Health Organisation 

HAPO Hyperglycemia and adverse pregnancy outcomes 

T1D Type 1 diabetes 

EDTA Ethylenediaminetetraacetic acid 

NOOB Normal-exponential out-of-band 

SEM Standard error of the mean 

ANOVA One-way analysis of variance 
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