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Abstract: Two of the most economically important plants in the Artocarpus genus are jackfruit
(A. heterophyllus Lam.) and breadfruit (A. altilis (Parkinson) Fosberg). Both species are long-lived
trees that have been cultivated for thousands of years in their native regions. Today they are grown
throughout tropical to subtropical areas as an important source of starch and other valuable nutrients.
There are hundreds of breadfruit varieties that are native to Oceania, of which the most commonly
distributed types are seedless triploids. Jackfruit is likely native to the Western Ghats of India and
produces one of the largest tree-borne fruit structures (reaching up to 45 kg). To-date, there is limited
genomic information for these two economically important species. Here, we generated 273 Gb and
227 Gb of raw data from jackfruit and breadfruit, respectively. The high-quality reads from jackfruit
were assembled into 162,440 scaffolds totaling 982 Mb with 35,858 genes. Similarly, the breadfruit
reads were assembled into 180,971 scaffolds totaling 833 Mb with 34,010 genes. A total of 2822
and 2034 expanded gene families were found in jackfruit and breadfruit, respectively, enriched in
pathways including starch and sucrose metabolism, photosynthesis, and others. The copy number
of several starch synthesis-related genes were found to be increased in jackfruit and breadfruit
compared to closely-related species, and the tissue-specific expression might imply their sugar-rich
and starch-rich characteristics. Overall, the publication of high-quality genomes for jackfruit and
breadfruit provides information about their specific composition and the underlying genes involved
in sugar and starch metabolism.
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1. Introduction

The family Moraceae contains at least 39 genera and approximately 1100 species [1–3]. Species
diversity of the family is primarily centered in the tropics with variation in inflorescence structures,
pollination forms, breeding systems, and growth forms [2]. Within the Moraceae family, the genus
Artocarpus is comprised of approximately 70 species [2,4]. The most recent evidence indicates that
Borneo was the center of diversification of the Artocarpus genus and that species diversified throughout
South and Southeast Asia [2]. All members of the genus have unisexual flowers and produce exudate
from laticifers. Inflorescences consist of up to thousands of tiny flowers, tightly packed and condensed
on a receptacle [2]. In most species, the perianths of adjacent female flowers are partially to completely
fused together and develop into a highly specialized multiple fruit called a syncarp, which is formed
by the enlargement of the entire female head. Syncarps of different species range in size from a few
centimeters in diameter to over half a meter long in the case of jackfruit [2,5]. Many Artocarpus species
are important food sources for forest fauna, and about a dozen species are important crops in the
regions where they are from [2,6].

Jackfruit (A. heterophyllus Lam.) is thought to have originated in in the Western Ghats of India
and is cultivated as an important food source across the tropics. It is monecious, and thought to be
pollinated by gall midges [7]. In some areas it is propagated mainly by seeds [8], however, clonal
propagation via grafting is increasing in areas where it is grown for commercial use [9]. On average it
contains more than 100 seeds per fruit with viability of less than a month [10,11]. The male flowers
are tiny and clustered on an oblong receptacle, typically 5–10 cm in length. Limited studies exist
on the range of cultivated varieties of jackfruit, but they are often grouped into two main types,
varieties with edible fleshy perianth tissue (often referred to as “flakes”) that are either (a) small,
fibrous, soft, and spongy, or (b) larger, less sweet crisp fruit [10,12]. The latter type is often more
commercially important.

Breadfruit (A. altilis [Parkinson] Fosberg) is most likely derived from the progenitor species
A. camansi Blanco, which is native to New Guinea [10,13]. As humans migrated and colonized the
islands of Remote Oceania, indigenous people selected and cultivated varieties from the wild ancestor
over thousands of years [13], giving rise to hundreds of cultivated varieties [10,13–15]. Cultivated
varieties were traditionally propagated clonally by root cuttings but can now be commercially
propagated by tissue culture [16,17]. Among the hundreds of varieties, some are diploid (2n = 2x = ~56)
and may produce seeds, while other varieties are seedless triploids (3n = 2x = ~84), and still others are
of hybrid origin with another species, A. mariannensis Trécul [13,18–20]. A small subset of the triploid
diversity is what has been introduced outside of Oceania [19,21].

To diversify the global food supply, enhance agricultural productivity, and eradicate malnutrition,
it is necessary to focus on crop improvement of plants that are utilized in rural societies as a local
source of nutrition and sustenance. This study is part of the African Orphan Crops Consortium
(AOCC), an international public-private partnership. A goal of this global initiative is to sequence,
assemble, and annotate the genomes of 101 traditional African food crops [22,23]. Both breadfruit
and jackfruit are nutritious [24–27] and have the potential to increase food security, especially in
tropical areas. Until now limited genomic information has been available for the Artocarpus genus
as a whole. Microsatellite markers have been used to characterize cultivars and wild relatives
of breadfruit [8,19,21,28], jackfruit [29], and other Artocarpus crop species [6,30,31]. Additionally,
an assembled and annotated reference transcriptome of A. altilis has been generated [20]. Twenty-four
transcriptomes of breadfruit and its wild relatives revealed signals of positive selection that may have
resulted from local adaptation or natural selection [20]. Finally, a low coverage whole genome sequence
has been published for A. camansi [32], but full genome sequences for jackfruit and breadfruit are still
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not available. Here, we report high-quality annotated draft genome sequences for both jackfruit and
breadfruit. The results help explain their energy-dense fruit composition and the underlying genes
involved in sugar and starch metabolism.

2. Materials and Methods

2.1. Sample Collection, NGS Library Construction, and Sequencing

Genomic DNA was extracted from fresh leaves of A. heterophyllus (ICRAFF 11314) and A. altilis
(ICRAFF 11315), grown at the World AgroForestry (ICRAF) campus in Kenya, using a modified CTAB
method [33]. Extracted DNA was used to construct four paired-end libraries (170, 350, 500, and
800 bp) and four mate-pair libraries (2, 6, 10, and 20 Kb) following the standard protocols provided
by Illumina (San Diego, CA, USA). Subsequently, the sequencing was performed on a HiSeq 2000
platform (Illumina, San Diego, CA, USA) using a whole genome shotgun sequencing strategy. To
improve the data quality, the poor quality reads were filtered using SOAPfilter (v2.2) [34] with the
following parameters: (1) low-quality bases with Q = below 7 and 15 for A. altilis and A. heterophyllus,
respectively were trimmed from forward and reverse reads; (2) reads with ≥30% low quality bases
(quality score ≤ 15); (3) reads with ≥10% uncalled (“N”) bases; (4) reads with adapter contamination
or PCR duplicates; (5) reads with undersized insert sizes were discarded. Finally, more than 100
high-quality reads were obtained for each species (see Supplementary Materials: Table S1).

For transcriptome sequencing, the RNA was extracted from different tissues of A. altilis (various
leaf stages, leaf buds, and roots) and A. heterophyllus (various leaf stages, leaf bud, stem, bark,
roots, germinated seed, and seedling). The RNA was extracted using the PureLink RNA Mini Kit
(Thermo Fisher Scientific, Carlsbad, CA, USA) according to the manufacturer’s instructions. For
each sample, RNA libraries were constructed by following the TruSeq RNA Sample Preparation Kit
(Illumina, San Diego, CA, USA) manual, and were then sequenced on the Illumina HiSeq 2500 platform
(paired-end, 100-bp reads), generating more than 47 Gb of sequence data for each species. Data were
then filtered using a similar criterion as used to filter DNA NGS data, with a slight modification: (1)
reads with ≥10% low-quality bases (quality score ≤ 15) were removed; and (2) reads with ≥5% uncalled
(“N”) bases were removed (see Supplementary Materials: Table S2). All of the transcriptome data
were compiled, and the combined version was used to check the completeness of the whole genome
sequence assembly.

2.2. Evaluation of Genome Size

Clean reads of the paired-end libraries (170, 250, and 500 bp) were used to estimate the genome
size by k-mer frequency distribution and heterozygosity analysis. The genome size was estimated
based on the following formula:

G = N × (L − 17 + 1)/K_depth (1)

where N represents the number of used reads, L represents the read length, K represents the k-mer
value in the analysis, and K_depth refers to the location of the main peak in the distribution curve [35].
The heterozygosity was evaluated by the GCE software [36].

2.3. De Novo Genome Assembly

The de novo genome assembly tool, Platanus (Platanus, RRID: SCR_015531) [37], was used to
construct the contigs and scaffolds in three steps: contig assembling, scaffolding and gap closing.
In contig assembling, paired-end libraries ranging from 170 to 800 bp were used with the parameters
“-d 0.5 -K 39 -u 0.1 -m 300”. In the scaffolding step, paired-end and mate-pair information were used
to with parameters “-u 0.1”. Lastly, the paired-end reads were used for gap closing using GapCloser
version 1.12 (GapCloser, RRID: SCR_015026) [34], with the parameters “-l 150 -t 32 -p 31”.
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2.4. Genome Assembly Evaluation

The genome assembly completeness was assessed using BUSCO (Benchmarking Universal
Single-Copy Orthologues), version 3.0.1 (BUSCO, RRID: SCR_015008) [38]. Next, the unigenes
generated by Bridger software [39] from the transcriptome data of each species were aligned to the
assembled genomes using BLAT (BLAT, RRID: SCR_011919) [40] with default parameters. In order
to confirm the accuracy of the assembly, some of the paired-end libraries (170, 250, and 350 bp) were
aligned to the assembled genomes, and the sequencing coverage was calculated using SOAPaligner,
version 2.21 (SOAPaligner/soap2, RRID: SCR_005503) [41].

We calculated the GC content and average depth with 10 kb non-overlapping windows.
The distribution of GC content indicated a relative pure single genome without contamination
or GC bias (Supplementary Materials: Figure S3). Moreover, the GC content of A. altilis and
A. heterophyllus genomes were also compared with three rosids species (Fragaria vesca, Malus domestica,
and Morus notabilis).

2.5. Repeat Annotation

Repetitive sequences were identified by using RepeatMasker (version 4-0-5) [42], with a combined
library consisting of the Repbase library and a custom library obtained through careful self-training.
The custom library was composed of three parts: the MITE, LTR, and an extensive library, which
were constructed as described below. First of all, the library of miniature inverted-repeat transposable
elements (MITEs) was created by annotation using MITE-hunter [43] with default parameters. Secondly,
the library of long terminal repeats (LTR) was constructed using LTRharvest [44] integrated in
Genometools (version 1.5.8) [45] with parameters “-minlenltr 100 -maxlenltr 6000 -mindistltr 1500
-maxdistltr 25,000 -mintsd 5 -maxtsd 5 -similar 90 -vic 10” to detect LTR candidates with lengths of 1.5 kb
to 25 kb, including two terminal repeats ranging from 100 bp to 6000 bp with ≥ 85% similarity. In order
to improve the quality of the LTR library, we used several strategies to filter the candidates. As intact
PPT (poly purine tract) or PBS (primer binding site) was necessary to define LTR, we subsequently used
LTRdigest [46] with a eukaryotic tRNA library [47] to identify these features, and then removed the
elements without appropriate PPT or PBS locations. Subsequently, to remove contamination, like local
gene clusters and tandem local repeats, 50 bp of flanking sequences on both sides of each LTR candidate
were aligned using MUSCLE (MUSCLE, RRID:SCR_011812) [48] with default parameters: if the identity
≥ 60%, the candidate was taken as a false positive and removed. LTR candidates which nested with
other types of elements were also removed. Exemplars for the LTR library were extracted from the
filtered candidates using a cutoff of 80% identity in 90% of sequence length. Furthermore, the regions
annotated as LTRs and MITEs in the genome were masked, and then put into RepeatModeler version
1-0-8 RepeatModeler, RRID: SCR_015027) to predict other repetitive sequences for the extensive library.

Finally, the MITE, LTR and extensive libraries were integrated into the custom library, which
was combined with the Repbase library and then taken as the input for RepeatMasker to identify and
classify repetitive elements genome wide.

2.6. Gene Prediction

Repetitive regions of the genome were masked before gene prediction. Based on the RNA,
homologous and de novo prediction evidence, the protein-coding genes were identified using the
MAKER-P pipeline (version 2.31) [49]. For RNA evidence, the clean transcriptome reads were
assembled into inchworms using Trinity version 2.0.6 [50], and then fed to MAKER-P as EST
evidence. For homologous evidence, the protein sequences from four relative species in the rosids
(F. vesca, M. domestica, M. notabilis, Prunus persica, Ziziphus jujuba) were downloaded and provided as
protein evidence.

For de novo prediction evidence, a series of training attempts were made to optimize different
ab initio gene predictors. At first, a set of transcripts were generated by a genome-guided approach
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using Trinity with parameters “–full_cleanup –jaccard_clip –genome_guided_max_intron 10,000
–min_contig_length 200”. The transcripts were then mapped back to the genome using PASA (version
2.0.2) [51] and a set of gene models with real gene characteristics (e.g., size and number of exons/introns
per gene, features of spicing sites) was generated. The complete gene models were picked for training
Augustus [52]. Genemark-ES (version 4.21) [53] was self-trained with default parameters. The first
round of MAKER-P was run based on the evidence above with default parameters except “est2genome”
and “protein2genome” set to “1”, yielding only RNA- and protein-supported gene models. SNAP [54]
was then trained with these gene models. Default parameters were used to run the second and final
round of MAKER-P, producing final gene models.

Furthermore, non-coding RNA genes in the A. altilis and A. heterophyllus genomes were also
annotated. The BLAST tool was employed to search ribosomal RNA (rRNA) against the A. thaliana
rRNA database, and to search microRNAs (miRNA) and small nuclear RNA (snRNA) against ther
Rfam database (Rfam, RRID: SCR_004276) (release 12.0) [55]. tRNAscan-SE (tRNAscan-SE, RRID:
SCR_010835) [56] was used to scan transfer RNA (tRNA) in the genome sequences.

2.7. Functional Annotation of Protein-Coding Genes

Functional annotation of protein-coding genes was based on sequence similarity and domain
conservation by aligning translated coding sequences to public databases. The protein-coding genes
were first queried against protein sequence databases, such as KEGG (KEGG, RRID: SCR_012773) [57],
NR database (NCBI), COG [58], SwissProt, and TrEMBL [59] for best-matches using BLASTP with an
E-value cut-off of 1 × 10−5. Secondly, InterProScan 55.0 (InterProScan, RRID: SCR_005829) [60] was
used as an engine to identify the motif and domain-based on Pfam (Pfam, RRID: SCR_004726) [61],
SMART (SMART, RRID: SCR_005026) [62], PANTHER (PANTHER, RRID: SCR_004869) [63], PRINTS
(PRINTS, RRID: SCR_003412) [64] and ProDom (ProDom, RRID: SCR_006969) [65,66].

2.8. Ks-Distribution Analysis

The coding sequences and annotations for Morus notabilis were downloaded from the NCBI,
reference RefSeq assembly accession GCF_000414095.1 [66]. The coding sequences and annotations for
Ziziphus jujube [67] were downloaded from the Plaza4 database [68]. The headers of the fasta files,
as well as the ninth columns of the gff3 files were edited to make the datasets compatible with the
software packages used for downstream analysis.

Ks-distribution analyses were performed, using the wgd-package [69]. For each species, the
paranome was obtained by performing an all-against-all BlastP [70], with MCL clustering [71]. Codon
multiple sequence alignment was done using MUSCLE [48]. Ks-distributions were constructed using
codeml from the PAML4 package [72] and Fast-Tree [73] for inferring phylogenetic trees used in the
node weighting procedure, other software used by the wgd. Thereafter, i-ADHoRe [74] was used to
get anchor-point distributions and produce dot-plots. Lastly, Gausian mixture modes were fitted using
1–5 components.

2.9. One vs. One Synteny

One-vs.-one synteny analysis was performed for pairs of the above-mentioned species, using
the “work-flow 2” script that is part of the wgd-package [69]. In order to compare A. altilis,
A. heterophyllus, we use MCScanX to detect the synteny and collinearity, and MCscan (Python
version) for the visualization.

2.10. Gene Family Construction

Protein and nucleotide sequences from A. altilis, A. heterophyllus, and seven species (A. thaliana,
F. vesca, M. domestica, M. notabilis, P. mume, P. persica, Z. jujuba) were retrieved to construct gene families
using OrthoMCL software [75] based on an all-versus-all BLASTP alignment with an E-value cutoff of
1 × 10−5.
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2.11. Collinearity Analysis

Collinearity of the largest orthologous scaffolds were determined and plotted using MCscan and
the JCVI utility libraries v0.9.14 [76,77].

2.12. Phylogenetic Analysis and Divergence Time Estimation

We identified 486 single-copy genes in the nine species, and subsequently used them to build the
phylogenetic tree. Coding DNA sequence (CDS) alignments of each single-copy family were constructed
following the protein sequence alignment with MUSCLE (MUSCLE, RRID: SCR_011812) [48].
The aligned CDS sequences of each species were then concatenated to a super gene sequence.
The phylogenetic tree was constructed with PhyML-3.0 (PhyML, RRID: SCR_014629) [78] with the
HKY85+ Gamma substitution model on extracted four-fold degenerate sites. Divergence time was
calculated using the Bayesian relaxed molecular clock approach using MCMCTREE in PAML (PAML,
RRID: SCR_014932) [72], based on the published calibration times (divergence between Arabidopsis
thaliana and Rosales was 108-109 Mya, divergence between P. mume and P. persica was 24–72 Mya) [66].
The divergence time between M. notabilis and Artocarpus was predicted to be 61.8 (54.1–76.0) Mya
(Figure 1A). Subsequently, to study gene gain and loss, CAFE (CAFE, RRID:SCR_005983) [79] was
employed to estimate the universal gene birth and death rate λ (lambda) under a random birth and
death model with the maximum likelihood method. The results for each branch of the phylogenetic
tree were estimated (Figure 1A). Enrichment analysis on GO and the pathway of genes in expanded
families in the Artocarpus lineage were also calculated.

Figure 1. Phylogenetic and evolutionary analysis. (A,B) Gene conservation and gene family expansion
and contraction in A. heterophyllus and A. altilis. The scale bar indicates 10 million years. The values
at the branch points indicate the estimates of divergence time (mya), while the green numbers show
the divergence time (million years ago, Mya), and the red nodes indicate the previously published
calibration times. (C) The distribution of gene families among the model species and Artocarpus genus.
(D) Distribution of 4DTv distance between collinearity gene pairs among A. heterophyllus, A. altilis,
M. notabilis, and Arabidopsis thaliana.
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2.13. Identification of Starch Biosynthesis-Related Genes

Using the amino acid, starch biosynthesis-related genes in soybean as bait, we performed an
ortholog search in A. altilis, A. heterophyllus, M. notabilis, Z. jujuba, P. mume, P. persica, F. vesca, M. domestica,
and A. thaliana.

3. Results and Discussion

3.1. Genome Sequencing and Assembly

A total of eight libraries were constructed including four short-insert libraries (170 bp, 350 bp,
500 bp, and 800 bp) and four mate-pair libraries (2 kb, 5 kb, 10 kb, and 20 kb) for Illumina Hiseq2000
sequencing. In total, 273 Gb and 227 Gb of raw data was generated from A. heterophyllus and
A. altilis, respectively (Supplementary Materials: Table S1). We used the GCE software to evaluate the
heterozygosity, and the results showed that the heterozygous ratio is 1.13% and 0.911% for A. altilis
and A. heterophyllus, respectively. The K-mer distributions of A. altilis and A. heterophyllus showed two
distinct peaks (Supplementary Materials: Figures S1 and S2), the first peak was the heterozygous peak,
the second peak was the homozygous peak, where the second peak was confirmed as the main one for
each of the species. Based on K-mer frequency methods [36], the A. heterophyllus and A. altilis genomes
were estimated to be 1005 MB and 812 Mb, respectively (Supplementary Materials: Figure S1, Table S3).
The genome sizes of A. altilis and A. heterophyllus were relatively close to the genome size of species in
the genus Artocarpus based on existing data in the 1C-values database of 1.2 pg.

Using the SOAPdenovo2 program [41], all of the A. heterophyllus high-quality reads were assembled
into 108,267 scaffolds, totaling 982 Mb (Table 1). The N50s of contigs and scaffolds were 27 kb and 548
kb, with the longest being 255 kb and 3.1 Mb, respectively (Table 1, Supplementary Materials: Figure
S3). Similarly, for A. altilis, the N50s of contigs and scaffolds were 17 kb and 1.5 Mb with the longest
being 174 kb and 7.4 Mb respectively (Table 1, Supplementary Materials: Figure S3). These results
indicate the high quality of the assemblies for both species. The GC content of the A. heterophyllus
and A. altilis genomes were 32.9% and 32.3%, respectively. The GC depth graphs and distributions
indicated there was no contamination in the genome assemblies (Supplementary Materials: Figure S4).

Table 1. Statistics of the genome assembly of A. altilis and A. heterophyllus.

A. altilis A. heterophyllus

Parameters
Contig Scaffold Contig Scaffold

Length (bp) Number Length (bp) Number Length (bp) Number Length (bp) Number

N90 3361 52,085 183,851 637 4902 39,073 77,281 2115
N50 16,898 13,662 1,536,010 151 26,681 9516 547,861 527
N10 47,070 1284 5,076,803 14 82,850 846 1,422,119 54

Total length 803,695,923 833,038,871 930,343,435 982,020,585
Maximum length 174,221 7,444,155 255,416 3,088,173

Total number ≥ 100 bp 180,971 98,152 162,440 108,267
Total number ≥ 2000 bp 61,693 4338 52,444 7263

N content (%) 3.52 5.26

Evaluation of the quality and completeness of the draft genome assembly was done with the
Benchmarking Universal Single-Copy Orthologs (BUSCO) datasets [38]. Of the total of 1440 BUSCO
ortholog groups searched in the A. heterophyllus assembly, 932 (64.7%) BUSCO genes were “complete
single-copy”, 437 (30.3%) were “complete duplicated”, 15 (1%) were “fragmented”, and 56 (4%) were
“missing” (Table 2). Similarly, in A. altilis, 988 (68.6%) BUSCO genes were “complete single-copy”,
383 (26.6%) were “complete duplicated”, 14 (~1%) were “fragmented”, and 55 (3.8%) were “missing”
(Table 2), suggesting that the quality of the genome assembly is high. From the 1440 core Embryophyta
genes, 1371 (95.2%) and 1369 (95.1%) were identified in the A. altilis and A. heterophyllus assemblies,
respectively (Table 2). We observed a significant difference in the number of duplicated core genes in
A. altilis and A. heterophyllus (Table 2), which might be ascribed to the genome duplication in these
species. The results also indicated that the assembly covered more than 90% of the expressed unigenes,
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(Table 3). As expected, after the comparative GC content analysis the close peak positions showed
A. altilis, A. heterophyllus, and M. notabilis are closer than other species in GC content (Supplementary
Materials: Figure S5).

Table 2. BUSCO evaluation of genome assembly of A. altilis and A. heterophyllus.

BUSCOs
A. altilis A. heterophyllus

N P (%) N P (%)

Complete BUSCOs 1371 95.20 1369 95.00
Complete single-copy 988 68.60 932 64.70
Complete duplicated 383 26.60 437 30.30

Fragmented 14 1.00 15 1.00
Missing 55 3.80 56 4.00

Abbreviation: BUSCO, Benchmarking universal single-copy orthologs; N, number; P, percentage of complete
BUSCOs compared to the total BUSCOs.

Table 3. The gene coverage based on transcriptome data.

Species Dataset Number Total Length (bp) Base Coverage by
Assembly (%)

Sequence Coverage by
Assembly (%)

A. altilis

All 141,626 165,794,671 87.7 97.92

>200 bp 141,626 165,794,671 87.7 97.92

>500 bp 79,410 146,265,291 86.81 97.62

>1000 bp 49,485 125,138,638 85.97 96.99

A. heterophyllus

All 14,858 6,364,445 90.39 98.89

>200 bp 14,858 6,364,445 90.39 98.89

>500 bp 2949 2,853,909 84.41 96.74

>1000 bp 765 1,386,949 74.83 92.16

3.2. Gene Annotation

A combination of de novo and homology-based methods (using transcript data as evidence)
were used to identify repeat sequences. We found that up to 51.01% of the A. heterophyllus and
52.04% of the A. altilis assembled sequences were repeat sequences, comprised mostly of transposable
elements and tandem repeats. Interestingly, the amounts of these elements were higher than what is
observed in orange (20%, 367 Mb) [80], peach (29.6%, 265 Mb) [81], pineapple (38.3%, 526 Mb) [82],
and others (Table 4). This is consistent with the finding that larger fruit tree genomes often retained
higher percentages of repetitive elements compared to the smaller fruit tree genomes [83]. Among the
repetitive sequences, 37.0% and 46.0% were of the long terminal repeat (LTR) type, respectively (Table 4),
indicating LTRs are the most abundant transposable elements in A. heterophyllus and A. altilis genomes.

Table 4. Classification of predicted transposable elements in the genome of A. altilis and A. heterophyllus.

A. altilis A. heterophyllus

Repeat Type in Genome (%) Length (bp) in Genome (%) Length (bp)

SINE 0 1187 0.03 384,983
LINE 0.14 1,214,650 0.99 9,775,316
LTR 45.95 382,841,531 36.99 363,293,617

DNA 2.95 24,608,939 3.76 36,982,825
Satellite 0 34,585 0.3 3,001,478

Simple repeat 0.03 253,818 0.04 485,582
Unknown 5.4 45,013,282 12.23 120,128,962

Total 52.04 433,486,547 51.01 500,968,186

Using a comprehensive annotation strategy, we annotated a total of 35,858 A. heterophyllus genes
and 34,010 A. altilis genes (Table 5). This was close to the number of genes (39,282) predicted in
Dimocarpus longan, an exotic round to oval Asian fruit [83]. The average A. heterophyllus gene length
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was 3472 bp, the average length of the coding sequence (CDS) was 1241 bp, and the average number
of exons per gene was 5.5 (Table 5, Supplementary Materials: Figure S6). We predicted a total of 466
rRNA, 159 miRNA, 1554 snRNA genes and 713 tRNA in A. altilis; and a total of 2706 rRNA, 168 miRNA,
1005 snRNA genes and 689 tRNA in A. heterophyllus (Table 6). Of 35,858 A. heterophyllus protein-coding
genes, 35,076 (97.8%) had Nr homologs, 34,968 (97.5%) had TrEMBL homologs, 27,632 (77.1%) had
InterPro homologs and 27,741 (77.4%) had SwissProt homologs (Table 7). Similar to A. heterophyllus, the
average A. altilis gene size was 3545 bp, the average length of the CDS was 1253 bp, and the average
number of exons per gene was 5.5 (Table 5). Of 34,010 A. altilis protein-coding genes, 33,353 (98.1%) had
Nr homologs, 33,240 (97.7%) had TrEMBL homologs, 26,422 (77.7%) had InterPro homologs, and 26,689
(78.5%) had SwissProt homologs (Table 7). BUSCO evaluation showed that more than 89% of 1440
core genes were complete, suggesting an acceptable gene annotation for A. altilis and A. heterophyllus
genomes (Supplementary Materials: Table S4)

Table 5. Statistics of gene models of A. altilis, A. heterophyllus, and other species in Rosids.

A. altilis A. heterophyllus F. vesca M. domestica M. notabilis P. persica Z. jujuba

Protein-coding gene number 34,010 35,858 34,301 61,721 27,085 28,701 37,526
Mean gene length (bp) 3545.4 3472.2 2824.6 2692.5 2866.8 2464.8 3313.5
Mean cds length (bp) 1252.6 1241.5 1174.7 1141.4 1086.9 1210.8 1353.0
Mean exons per gene 5.4 5.5 5.1 4.8 4.6 4.9 5.5

Mean exon length (bp) 227.8 226.5 232.5 236.7 236.4 243.6 246.0
Mean intron length (bp) 509.6 497.7 407.1 405.8 494.6 315.8 435.7

Table 6. Annotation of non-coding RNA genes in the A. altilis and A. heterophyllus genomes.

Species Type Copy (w) Average Length (bp) Total Length (bp) % of Genome

A. altilis

miRNA 159 126.7 20,145 0.002418
tRNA 713 75.3 53,705 0.006447
rRNA 466 183.2 85,353 0.010246

18S 76 551.4 41,907 0.005031
28S 98 125.5 12,296 0.001476
5.8S 32 135.6 4338 0.000521
5S 260 103.1 26,812 0.003219

snRNA 1554 105.4 163,744 0.019656
CD-box 1410 102.6 144,676 0.017367

HACA-box 52 130.1 6765 0.000812
splicing 92 133.7 12,303 0.001477

A. heterophyllus

miRNA 168 126.3 21,227 0.002162
tRNA 689 75.2 51,813 0.005276
rRNA 2706 268.2 725,709 0.073900

18S 654 737.5 482,306 0.049114
28S 920 123.6 113,667 0.011575
5.8S 242 151.6 36,699 0.003737
5S 890 104.5 93,037 0.009474

snRNA 1005 108.2 108,724 0.011071
CD-box 814 102.5 83,426 0.008495

HACA-box 68 127.4 8665 0.000882
splicing 123 135.2 16,633 0.001694

Table 7. Statistics of functional annotation of protein-coding genes in the A. altilis and A. heterophyllus genomes.

A. altilis A. heterophyllus

Values Number Percentage Number Percentage

Total 34,010 100.0% 35,858 100.0%
Nr 33,353 98.1% 35,076 97.8%

Swissprot 26,689 78.5% 27,741 77.4%
KEGG 24,860 73.1% 25,804 72.0%
COG 12,875 37.9% 13,408 37.4%

TrEMBL 33,240 97.7% 34,968 97.5%
Interpro 26,422 77.7% 27,632 77.1%

GO 17,428 51.2% 18,336 51.1%
Overall 33,394 98.2% 35,109 97.9%

Unannotated 616 1.8% 749 2.1%
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3.3. Gene Family Evolution and Comparison

Orthologous clustering analysis was conducted with the A. altilis and A. heterophyllus genomes
following comparison with seven other plant genomes: A. thaliana, F. vesca, M. domestica, M. notabilis,
P. mume, P. persica, and Z. jujuba. A Venn diagram shows that A. altilis, A. heterophyllus, A. thaliana,
M. notabilis, and Z. jujuba contain a core set of 9462 gene families in common; there were 1028
orthologous families shared by three Moraceae species; while 329 gene families containing 515 genes
were specific to A. altilis; and 420 gene families containing 907 genes were specific to A. heterophyllus
(Figure 1C).

Of the 35,845 protein-coding genes in the A. heterophyllus genome, 28,969 were grouped into 15,768
gene families (of which 242 were A. heterophyllus-unique families) (Figure 1B, Supplementary Materials:
Table S5). Of the 33,986 A. altilis protein-coding genes, 27,354 were grouped into 15,614 gene families
(of which 136 were A. altilis-unique families) (Figure 1B, Supplementary Materials: Table S5).

Phylogenetic analysis showed that A. heterophyllus and A. altilis were more closely related to
mulberry than to Jujube (Figure 1A), further supporting a previous phylogeny of Artocarpus [2].
CAFE [79] was used to identify gene families that had potentially undergone expansion or contraction.
We found a total of 2822 expanded gene families and 1497 contracted families in A. heterophyllus,
as well as 2034 expanded and 1800 contracted families in A. altilis (Figure 1A). The genes in the
expanded and contracted families were assigned to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [84]. The A. heterophyllus-expanded gene families were remarkably enriched in
metabolism related pathways/functions, including starch and sucrose metabolism (ko00500, p = 0.003),
glycan degradation (ko00511, p = 0.007), glycolysis/gluconeogenesis (ko00010, p = 0.016), and others
(Supplementary Materials: Table S7). KEGG enrichment analysis of A. altilis revealed that pathways
associated with photosynthesis, such as carbon fixation in photosynthetic organisms (ko00710, p = 0.017),
other types of O-glycan biosynthesis (ko00514, p = 0.018), and photosynthesis (ko00195, p = 0.006) were
particularly enriched (Supplementary Materials: Table S7).

Collinearity between the largest orthologous scaffolds were determined (Figure S7B) and the
result indicates conserved shared synteny. In order to determine whether there is any evidence for
whole genome duplications in A. heterophyllus and A. altilis, the distance–transversion rates at four-fold
degenerate sites (4DTv) was calculated (Figure 1D, Supplementary Materials: Figure S7A). Two 4DTv
values that peaked at 0.07 and 0.08 for orthologs between A. heterophyllus, and between A. altilis,
respectively, which highlighted the recent whole-genome duplication of these two species. The results
of the Ks distributions mostly corroborate the findings of the 4DTv analysis. The results suggest that
the whole genome duplication event was shared by A. altilis and A. heterophylus. Their divergence
is recent, as suggested by the overlap of their WGD peaks (Figure 2), meaning that they have equal
substitution, duplication, and loss rates. Thus, for further analysis (one-vs.-one synteny with the
close relatives M. notabilis and Z. jujube), only A. altilis was used. These results suggest that the
Artocarpus genome duplication event occurred after divergence from the common ancestor they share
with M. notabilis (Figure 3), thus, between 62 and 10 MYA. A total of 33,614 gene pairs were identified
in 2694 syntenic blocks.
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Figure 2. A graph showing the A. heterophyllus Ks distributions (pink) and the Ks distributions
of its anchor pairs (red), A altilis Ks distributions (dark blue) and the distributions of its anchor
pairs (light blue) overlaid with the Ks distributions of the one-to-one orthologs of A. heterophyllus,
and A. altilis (green). (B) log transformed version of (A). (C,D) are the log transformed Ka and ω
distributions, respectively.
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Figure 3. Ks distribution (dark pink) and anchor pair Ks distribution (yellow) of A. altilis in overlay
with the results of whole paranome distributions between A. altilis and M. notabilis (light blue) and
A. altilis and Z. jujube (dark blue).

3.4. Gene Family Expansion and Tissue Specific Expression of Starch Synthesis-Related Genes

The copy number of starch synthesis related genes were compared between A. heterophyllus,
A. altilis, closely related species, as well as some other starch-rich plant species (Figure 4). We observed
a remarkable copy number expansion of the UGD1 gene in A. heterophyllus compared with the other
species. The enzyme encoded by UGD1, catalyzes the conversion of Glucose-1-P into UDP-GlcA,
thereby stalling the starch synthesis process [85] (Figure 4). Interestingly, the tissue-specific expression
pattern of UGD1 contrasts with other starch synthesis genes in A. heterophyllus (Figure 5A). For instance,
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in A. heterophyllus there is a suppression of UDPG transcription in the stem, while the other starch
biosynthesis genes are activated. However, differential expression of UGD1 was not shown in A. altilis
(Figure 5B). This unusual expression pattern of UGD1, as well as the gene copy number expansion,
might lead to the failure of starch accumulation in A. heterophyllus rather than A. altilis. However,
this needs to be further validated by real-time qPCR for confirmation of the tissue-specific expression.
For the GO enrichment, expansion of gene families were related to small molecule binding or single
organism signaling (Supplementary Materials: Table S6) in A. altilis. Moreover, there were some
expansion of gene families related to molecule binding, reproductive process, and cellular response to
stimulus in A. heterophyllus. Gene families belonging to expanded pathways in A. altilis were mainly
related to plant-pathogen interaction, lysine biosynthesis or photosynthesis. In contrast, the gene
families that were expanded in A. heterophyllus belonged to pathways involving secondary metabolite
biosynthesis, phenylpropanoid biosynthesis, and fatty acid metabolism. In contrast, the biosynthesis
of secondary metabolites, phenylpropanoid biosynthesis, and fatty acid metabolism were enriched in
the expanded gene families in A. heterophyllus (Supplementary Materials: Table S7).

Figure 4. Copy number expansion of starch synthesis-related genes in A. heterophyllus and A. altilis.

Figure 5. Tissue specific expression of starch synthesis-related genes in A. heterophyllus and A. altilis.

4. Conclusions

Here, we report the characterization of the genomes of jackfruit (A. heterophyllus) and breadfruit
(A. altilis). The publication of these high-quality draft genomes and annotations may provide plant
breeders and other researchers with useful information regarding trait biology and their subsequent
improvement. In particular, we highlight genes unique to A. heterophyllus and A. altilis due to
their high sugar and starch content, respectively, which are desirable characteristics in these edible
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plants. The information provided in the draft genome annotations can be used to accelerate genetic
improvement of these crops. The availability of these genomes on the AOCC ORCAE platform
(https://bioinformatics.psb.ugent.be/orcae/aocc) will enable various stakeholders to access and improve
the annotations of these genomes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/1/27/s1,
Figure S1. K-mer (K = 17) analysis of the two genomes, Figure S2. Distribution of sequencing depth of the
assembly data, Figure S3. Distribution of the length and number of the scaffold in two species, Figure S4. The
distribution of GC content, Figure S5. Comparison of GC content across closely related species, Figure S6. Statistics
of gene models in A. altilis, A. heterophyllus, F. vesca, M. domestica, M. notabilis, Prunus persica, and Ziziphus jujube,
Figure S7. The collinearity between two species, Table S1. Statistics of the raw and clean data of DNA sequencing,
Table S2. Summary statistics of the transcriptome data, Table S3. Estimation of the genome size based on K-mer
statistics, Table S4. BUSCO evaluation of the annotated protein-coding genes in A. altilis and A. heterophyllus, Table
S5. Analysis of gene families of different species, Table S6. Enriched GO terms (level 3) of genes in families with
expansion, Table S7. Enriched pathways of genes in families with expansion.
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