Self-Adaptive Quantum Particle Swarm
Optimization for Dynamic Environments

Gary Pampara! and Andries P.
Engelbrecht?

! Department of Computer Science, University of Pretoria, South Africa
gpampara@gmail . com
2 Institute for Big Data and Data Science, University of Pretoria, South Africa
engel@cs.up.ac.za

Abstract. The quantum-inspired particle swarm optimization (QPSO)
algorithm has been developed to find and track an optimum for dynamic
optimization problems. Though QPSO has been shown to be effective,
despite its simplicity, it does introduce an additional control parameter:
the radius of the quantum cloud. The performance of QPSO is sensitive
to the value assigned to this problem dependent parameter, which ba-
sically limits the area of the search space wherein new, better optima
can be detected. This paper proposes a strategy to dynamically adapt
the quantum radius, with changes in the environment. A comparison of
the adaptive radius QPSO with the static radius QPSO showed that the
adaptive approach achieves desirable results, without prior tuning of the
quantum radius.

1 Introduction

Optimization algorithms have very different performance characteristics based
on the underlying problem search space. Static environments have been widely
studied and several algorithms have been shown to be applicable to a wide
variety of static optimization problems. Notable examples include genetic algo-
rithms [14], differential evolution [22] and particle swarm optimization (PSO) [16].
In the case where the underlying problem search space changes over time, the
behavior characteristics of these algorithms are not always still applicable. A
dynamic optimization problem describes such a problem search space, where the
optimal value of the search space not only changes over time, but can drasti-
cally change in value and/or location. When applying an algorithm designed for
a static environment to a dynamic environment, the inefficiencies of the algo-
rithms become apparent with the algorithms unable to adapt to the changing
search space. Common reasons for the inefficiency include a loss of diversity,
outdated memory of previous best positions, and the inability of the algorithm
to detect that the search space has actually changed [21].

Quantum particle swarm optimization (QPSO) [3] was proposed as an inher-
ently dynamic variant of the PSO, capable of handling underlying environment
changes by categorizing a set of particles within the algorithm as “quantum”

2 G. Pampara et al.

particles. These quantum particles follow a different position update strategy
from normal particles: Quantum particles move probabilistically within a pre-
defined quantum cloud around the global best particle position. The size of the
quantum cloud determines the area within which a quantum particle is allowed
to move. Unfortunately, the solution tracking ability of the QPSO is sensitive
to the size of the radius. If the radius is too small, the area the quantum parti-
cles can explore for changes in the optimum, will be restricted; preventing the
detection of an optima change outside of the cloud radius. Conversely, if the
cloud radius is too large, a larger portion of the search space will be covered by
the cloud, resulting in unnecessary exploration for small change severities, and
resulting more in a random search.

This paper proposes a strategy to adapt the cloud radius value, starting
with a large radius and reducing it to a small value. As soon as the environment
changes, the radius is increased to a large value. This strategy helps to increase
the exploration by the quantum particles whenever a change in the environment
occurs, while moving towards exploitation the longer the environment remains
unchanged.

The remainder of the paper is organized as follows: Section 2 discusses the
necessary background information for the algorithm alteration proposed in Sec-
tion 3. Following in Section 4, is a discussion on the experimental approach
with results provided in Section 5. Lastly, concluding remarks are presented in
Section 6.

2 Background

This section provides background information for the remainder of the paper.
Section 2.1 discusses dynamic environments, with the moving peaks benchmark
(MPB) discussed in Section 2.2. Sections 2.3 and 2.4 respectively discuss the PSO
and QPSO algorithms, with previous radius management strategies discussed in
Section 2.5.

2.1 Dynamic Environments

A problem space wherein optima move over time is regarded as a dynamic envi-
ronment. The changes experienced by such environments can vary from subtle
movements to extreme changes where optima seemingly move at random. Much
work has been done to attempt to classify these problem space changes, based
on the frequency and severity of the change observed, the type of movement
the change undertook, and the trajectory that a change followed. Eberhart and
Shi [10] and Hu and Eberhart [15] describe changes observed for an optimum
as (a) Type I, where the measurable value of an optimum remains the same,
but its position in the search space changes, (b) Type II, where the value of the
optimum changes but the position in the search space remains constant, or (c)
Type III, where both the position and the optimum value change. Angeline [1]
categorizes the movement of an optimum as either linear, circular, or random.

Self-Adaptive QPSO for Dynamic Environments 3

Duhain and Engelbrecht [9] combine the previous classifications with spatial
and temporal severity to create 27 unique environments. These environments
are broadly classified into:

1. Quasi-static environments which have both low spatial and temporal changes.

2. Progressive environments which have small spatial, but frequent changes.
The changes result in a search space where optima move gradually over time.

3. Abrupt environments which have infrequent and large spatial changes. The
problem space almost seems to remain constant for a period of time before
the next, large change is observed.

4. Chaotic environments experience large spatial adjustments that occur at a
frequent interval.

2.2 Moving Peaks Benchmark Function

The MPB [15] has been developed as a generator for dynamic environments,
based on a set of input parameters. The generator can create problems spaces
that adhere to a variety of classification goals, and is quite popular within litera-
ture [6,5,17,19]. The generated problem search spaces are characterized by the
number of peaks, within a given domain, with each peak maintaining a width,
height, and location within the search space. The dynamic nature of the problem
is achieved by varying the parameters of the MPB generator over time, resulting
in a changed environment. The movement of the peaks is also determined by
the state of the previous environment, where trajectory information of the peaks
themselves is maintained.

2.3 Particle Swarm Optimization

The PSO algorithm, introduced by Kennedy and Eberhart [16], describes an
optimization process which is modeled on the flocking behavior of birds. PSO is
a population-based, stochastic algorithm which maintains a collection of entities,
known as “particles”. Each particle exhibits a simple behavior which determines
its movement: (1) move towards the best position in the immediate neighborhood
of particles, and (2) move towards a particle’s own best, previously observed,
position.

Particles move in an iterative manner throughout the problem search space,
determining the magnitude of the movement through the application of a “ve-
locity” vector (representing a step size and direction) and to the currently main-
tained position vector. The velocity vector implements the previously mentioned
particle behavior, and is calculated as:

03 (t+ 1) = wvi () + c1715 (i (B) — @05 (8)) + cara; (95 (1) — xi5(8)) (1)

where v;;(t) is the velocity of particle ¢ in dimension j, with the current par-
ticle position given by z;;(t), at time step t; w denotes the inertia coefficient,
determining the extent to which a particle will continue to search in the same

4 G. Pampara et al.

direction, with ¢; and ¢ respectively specifying the influence of the social and
cognitive components to the resultant velocity vector. The stochastic vectors, ry
and ry, are multiplied with the cognitive and social velocity components.

The movement of particle ¢ through the search space, to the next position,
is then determined by

xi(t+1) = xi(t) + vi(t + 1) (2)

The classical PSO algorithm displays several disadvantages when applied to
dynamic environments, particularly related to the personal best position. There
is no way to know, ahead of time, whether an environment change would (po-
tentially) make the particle’s best position obsolete or invalid [2]. Additionally,
as the swarm converges on a solution, the dispersion of particles within the
swarm (diversity) [25] decreases. This loss of diversity results in small step sizes,
preventing particle movement to other areas of the search space.

2.4 Quantum Particle Swarm Optimization

The QPSO [3] was introduced to address the problems of the PSO within dy-
namic environments. The QPSO employs a percentage of particles that use a
position update that is different to equation (2). These particles, referred to as
quantum particles, move in a manner similar to electrons orbiting the nucleus of
an atom. The movement of the quantum particles is done by sampling a proba-
bility distribution, centered at the global best position of the current swarm of
particles. The movement is then

xij (t +]-) ~ d(gz] (t)7 Tcloud) (3)

where d is a probability distribution and 7., is a constant determining the
size of the quantum “cloud” around the global best position. Any particle that
is not updated using equation (3), is termed a neutral particle and follows the
update equations of the classical PSO algorithm.

Although this approach does allow for a percentage of particles to behave in
a manner that addresses concerns around diversity loss, an additional param-
eter, Teoud, is introduced. Because 7.joq restricts the search area of quantum
particles around the global best position, the parameter requires problem de-
pendent tuning. After an environment change, a larger radius is desirable, as
more exploration can occur within the quantum cloud, whereas a smaller radius
would aid with solution refinement when the environment is unchanging.

2.5 Previously Suggested Radius Management Strategies

In order to prevent the problem dependent tuning of r.,.q, several strategies
have been proposed. Blackwell et al [4] propose the use of different distributions
to influence the movement of quantum particles within the quantum cloud. Al-
though this approach does not hint at adjusting the radius of the quantum cloud,

Self-Adaptive QPSO for Dynamic Environments 5

the quantum particles may move to positions beyond the defined radius, based
on the distribution being sampled. For example, sampling a standard Gaussian
distribution would restrict 95% of the observed values to be within two standard
deviations from the mean, and would on occasion allow for larger values.

Harrison et al [12] examine the effect of different distributions on the perfor-
mance of the QPSO, concluding that the choice of distribution depends on the
type of dynamic environment and that smaller values for r.,.q lead to better
performances for QPSO. These conclusions also stated that the uniform distribu-
tion is, generally, a poor choice. Another study by Harrison et al [13] attempt to
remove the parameter r.,,q and the probability distribution completely through
the use of a parent centric crossover (PCX) [7] operator. The resulting algorithm
completely removes the atom metaphor, replacing it with a crossover operator
instead. As a result, the algorithm can not truly be classified as a QPSO vari-
ant. The algorithm does, however, address the problem of diversity loss because
the PCX operator was originally designed to introduce diversity into the swarm
of particles, but introduces two additional parameters: the deviations of two
Gaussian distributions.

3 Self-Adaptive Quantum Particle Swarm Optimization

In order to allow the QPSO to manage a dynamically sized quantum cloud,
adjusting automatically based on the current swarm and the current environ-
ment, some of the problems associated with the PSO in dynamic environments
(outdated memory, diversity loss, etc) need to be addressed. The resulting al-
gorithm is largely unchanged from the standard QPSO definition, with a few
configuration changes applied:

— When a change in the environment occurs, the memory of particles (per-
sonal best positions) may have become invalid or obsolete. These invalid
values need to be corrected, otherwise the particle may be attracted to an
undesirable area of the search space. One such mechanism, is to reset the per-
sonal best position of the particle to the current position, and to re-evaluate
the particle. Quantum particles do not depend on a personal best position
and are re-initialized within the problem domain.

— The personal best position of a particle is updated, if and only if the current
position is within the boundaries of the search space. This constraint on the
update process prevents solutions that may be seemingly more optimal, but
are located outside the defined problem search space to become personal best
positions. Allowing infeasible personal best positions will result in particles
being attracted to infeasible solutions, and / or fruitless search in infeasible
space [11].

— The quantum cloud radius, 7.4, is calculated by taking the maximum
between the diversity of neutral and quantum particles. The diversity calcu-
lation for neutral particles only considers the particle personal best position,
as these positions will be within the problem search space. Quantum parti-
cles are only considered if the current position of the particle is within the

6 G. Pampara et al.

problem bounds. Diversity is calculated as:

1

Ns

D(S(t) = —Z2, /T, (g (1) — 75(1)) (4)

where ng is the number of the neutral, or quantum particles considered in

the diversity calculation; Z;(t) is the average j-th dimension of the entire

swarm, calculated as
The resulting diversity value is then used as the cloud radius value. The cloud
radius value is fed into a random distribution as the deviation, from which
quantum particle positions are sampled. Scaling the calculated diversity by
a constant to determine the cloud radius was not considered as it would
introduce an additional constant, which would require problem dependent
tuning.

— The neighborhood topology should facilitate information exchange, but at a
slower rate than a fully connected topology. Slower information propagation
through the swarm using topologies like the local best or Von Neumann,
allows for larger parts of the search space to be covered, whilst still allow-
ing for convergence. Fully connected topologies result in faster convergence
which results in smaller diversity and cloud radius values.

— Particle neighborhoods should consist of both types of particles. Because
quantum particles move within the quantum cloud at each iteration, it is
advantageous to share information about the changed search space with the
neutral particles in the local particle neighborhood.

z;(t) .

4 Experimental Approach

The main objective of this paper is to demonstrate that the performance of the
QPSO on a set of dynamic optimization problems is either better than, or un-
changed, when the algorithm dynamically adapts the value of r.,,q compared
to keeping the value at a predefined static value. This section describes the dif-
ferent considerations in order to prepare the experiments to evaluate the QPSO
and the self-adaptive QPSO, with experiment design in Section 4.1, performance
measures in Section 4.2, and Section 4.3 discussing the statistical process.

4.1 Experimental Design

Due to the complex nature of algorithms that operate in dynamic environments,
it is beneficial to elaborate on the software approach used. All experiments used
the software library CIlib [20] which allows for type-safe, repeatable experimenta-
tion, with perfectly reproducible results. The initial seed, from which 30 distinct
seeds are then generated for the different independent algorithm runs, is listed
in Table 2. Importantly, different pseudo-random number generators are used

Self-Adaptive QPSO for Dynamic Environments 7

Table 1: Environment parameters

Parameter Static Progressive Abrupt Chaotic
Peak height (30, 70] [30, 70] [30, 70] [30, 70]
Peak width [1,12] [1,12] [1,12] [1,12]
Height change severity 1 1 10 10
Width change severity 0.05 0.05 0.05 0.05
Change severity 1 1 10 10
Random movement % (A\) 0 0 0 0
Change freq. (iterations) 200 1 200 5

Table 2: QPSO algorithm parameters

Parameter Value
Particles 40
Proportion quantum particles 50%
w 0.729844
c1,C2 1.496180
Topology l-best (size 3)
Iteration strategy Synchronous
PRNG Seed 123456789L
Static radius values Teloud € [5, 10, 50]
Quantum cloud distribution Gaussian

for algorithms and dynamic environment updates. PSO parameter choices are
based on the convergence properties described by Van den Bergh [24], with the
[-best topology providing slower information propagation throughout the neutral
particles. Sampling a Gaussian distribution centered at the global best position
allows for quantum particle movement with a central tendency at the global
best position, whilst still allowing unconstrained movement that may exceed the
boundaries of the quantum cloud.

To compare the performance of the static QPSO with the self-adaptive
QPSO, benchmark environments were defined that match the classifications
of Duhain [8] and Duhain and Engelbrecht [9], using the MPB as the search
space problem. Each problem space contained 10 peaks and used the param-
eters defined in Table 1. Each environment was also classified as a Type III
environment [15]. Each algorithm configuration was executed 30 times for 1000
iterations. The domain of the problem search space was defined to be [0, 100],
with 5 dimensions. The static QPSO variants are identified by the size of the
associated radius: QPSO-5, QPSO-10, and QPSO-50 for cloud radius of 5, 10
and 50 respectively. Other parameters, common to the QPSO algorithms, are
listed in Table 2.

4.2 Dynamic Environment Performance Measures

Performance measures are required to quantify the performance of an algorithm
within a dynamic environment. Performance measures of static environments do

8 G. Pampara et al.

not behave in a manner that allows for a valid performance quantification for
dynamic environments. Duhain [8] recommend that better choices for perfor-
mance measurement within a dynamic environment include the accuracy of the
solutions over time, the stability (solution quality after an environment change),
and algorithm exploitative capacity, which is the quality of the best solution be-
tween environment changes. Because the MPB defines a maximum peak value,
the error produced by an algorithm, by comparing a solution to the search space
optimum, is calculable. A set of “good” [8] measures are:

— The collective mean error (CME) [18] records the mean error of the best
solution over the entire experiment. The measure is defined as:

CME = 1 ey m (6)
ny
where n; is the number of iterations within an experiment, and erry ,, is the
difference between the optimum in environment m and the best solution,
at time-step ¢t. The CME is a good overall measure [18] that quantifies the
overall performance of an algorithm within a dynamic environment.

— The average best error before change (ABEBC) is a measure that
records the difference between the optimum value and the quality of the
best particle, or error (provided that the target value is known). Knowl-
edge of when an environment change occurs is a prerequisite for using the
ABEBC measure, and the measure provides insight about the exploitative
capability [9] of an algorithm on a given problem. Formally, the measure is
defined by:

ABEBC = niﬂggo(errcm,l) (7)
C
where 7 is the number of iterations between two environmental changes and
errer—1 is the difference between the best fitness and the optimal fitness at
iteration t after the last change c; n. is the total number of environment
changes.

— The average best error after change (ABEAC) [23] is a measure that de-
termines the stability [5] of an algorithm within a dynamic environment. The
measure is similar to the ABEBC, except that the error in fitness compared
to the global optimum, determined directly after an environment change. As
such, the measure favors algorithms that tend to prefer areas of the search
space that do not change all that much. The measure is defined by

1
ABEAC = — X7 errcp (8)

Ne

where err. is the error at the iteration directly after an environment change.

4.3 Statistical Process

The performance of the static QPSOs and the self-adaptive QPSO was evalu-
ated using the measures defined in Section 4.2. For each combination of error

Self-Adaptive QPSO for Dynamic Environments 9

measurement, a Mann-Whitney-U rank sum test with Holm correction was used
to determine if a significant difference (o = 0.05) existed between the algorithm
performances. A value of 1 is allocated to an algorithm if the results are superior
to the other, and the inferior algorithm is assigned a score of —1. These scores
then determine the win/loss ratio of the algorithms.

5 Results

This section contains the analysis of the obtained results for the four algorithms
(QPSO-5, QPSO-10, QPSO-50, and self-adaptive QPSO). An analysis of the
CME, ABEBC and ABEAC measures follow in Sections 5.1, 5.2 and 5.3 re-
spectively. Section 5.4 analyzes the diversity and radius size of the self-adaptive

QPSO.

5.1 Analysis of Collective Mean Error

Table 3 provides algorithm rankings with respect to the CME. For the CME
measurement, the rankings indicate that the self-adaptive QPSO performed the
best across the different environment types. QPSO-50 was the second best per-
forming algorithm, followed by QPSO-10 and QPSO-5. As shown in Figure 1(a),
a similar trend to the ranking data can be observed when comparing algo-
rithm performances. For the abrupt and progressive environments all algorithms
achieved similar performances, but the win/loss ratio favors the self-adaptive
QPSO within these environments.

After an environment change, the self-adaptive QPSO has an increase in
diversity, as illustrated in Figure 1(d). The increase in diversity results in a
larger area for quantum particles to explore, and as the swarm starts to converge
on an optimum, the radius value decreases. With a decreasing radius, quantum
particles begin exploitation of the search space around the optimum. The error
values in Figure 1(a) also show that the QPSO is sensitive to the frequency of
environment change: the lower error values were achieved for the quasi-static
environments where the frequency of change is low. Compared to the static
QPSOs, it should be noted that the self-adaptive QPSO did not perform worse.

5.2 Analysis of Average Best Error Before Change

Figure 1(b) illustrates that all four algorithms manages to achieve values of less
than 20 for the ABEBC within the quasi-static environments. For the other envi-
ronments, the same trend of the CME measurement is evident, with none of the
algorithms particularly providing a clearly better solution, and a similar spread
of error values. Because the ABEBC demonstrates the exploratory capacity of
an algorithm, it is clear that none of the algorithms were able to effectively lo-
cate a new solution before the environment changed. The self-adaptive QPSO
achieved a comparable performance, compared to the static QPSOs.

10 G. Pampara et al.

5.3 Analysis of Average Best Error After Change

After an environment change, the QPSO-10 and self-adaptive QPSO managed to
achieve median values that are lower than that of the other QPSO algorithms for
the quasi-static environments. Unfortunately, for the other environment types,
no one algorithm displayed a clear improvement, and all algorithms (including
the self-adaptive QPSO) achieved equally poor results. These performances are
illustrated in Figure 1(c).

5.4 Analysis of the Dynamic Radius Size and Diversity

For the self-adaptive QPSO, the average radius size is illustrated in Figure 1(d)
for each environment type over 1000 iterations. From the graph it is clear that
the diversity (which is the cloud radius value), did change over the course of
algorithm execution. For environments with high temporal severity (chaotic and
progressive environments), the cloud radius size fluctuated at a large value which
is roughly half of the problem domain. Due to the frequency of the environment
changes, there is not enough time between the environment changes for particles
to share enough information in order to attract the swarm to a specific region
within the search space. Therefore, the re-initialization process maintains a large
diversity.

The quasi-static environment plot shows that the radius reduced to a small
value and increased as the environment changed (every 200 iterations), albeit a
small change. The size of the cloud radius for the abruptly changing environ-
ment reduced similarly to the quasi-static environment, but at 400 iterations,
increased to a value under half of the problem domain size and remained there
for the remainder of the algorithm execution. It is not clear why this behavior is
observed. As expected, the size of the cloud radius remained large for the pro-
gressive and chaotic environments where the frequency of environment change
is high.

6 Conclusion

This paper investigated if the QPSO could be able to dynamically adapt and
maintain the value of the quantum cloud radius, without requiring that the value
be defined ahead of time, and without tuning the value for a given optimization
problem. A new strategy was suggested, whereby the cloud radius value is based
on the diversity of the particle swarm. By allowing the cloud radius value to
dynamically adapt during the execution of the algorithm, it was shown that
the self-adaptive strategy ranked well against three static quantum cloud radius
QPSO algorithms. Even though the results indicated that the self-adaptive strat-
egy did not provide significantly improved results when compared to the static
radius QPSO algorithms, the results did indicate that the self-adaptive cloud
radius does, generally, perform well and should be preferred. In future work,
the influence of different distributions on the performance of the self-adaptive
QPSO, and refinements to the adaptive cloud radius strategy, will be explored.

Self-Adaptive QPSO for Dynamic Environments 11

m
S 40
o

20 ;

gy] o

i
|

ABEBC
S

2

o

Static

(a) CME per environment — plot order:
QPSO-5, QPSO-10, QPSO-15,
Self-adaptive QPSO

Prog Abrupt Chaotic

Static Prog Abrupt Chaotic

(b) ABEBC per environment — plot order:
QPSO-5, QPSO-10, QPSO-15,
Self-adaptive QPSO

S
‘ 2 150 ‘
6ol — =] 2 —e— Abrupt — Chaotic
&) é%@% = 100] —+— Prog —— Static [
% 40 l | g
50
< 20| S
a
| ! ! ! 54 0
Static Prog Abrupt Chaotic A

(c) ABEAC per environment — plot order:
QPSO-5, QPSO-10, QPSO-15,

(d) Average diversity/radius size over
algorithm iterations

Self-adaptive QPSO

Fig. 1: Measurements over environment types

Table 3: Algorithm performance ranking

Problem Measure QPSO-5 QPSO-10 QPSO-50 Self-adaptive QPSO

Quasi-static ~ CME (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)
ABEBC (Win/Loss) (0/-3) (1/-2) (3/0) (2/-1)
ABEAC (Win/Loss) (0/-3) (3/0) (1/-2) (2/-1)

‘Win+Loss -9 -1 3 5

Rank 1 2 3 4
Progressive =~ CME (Win/Loss) (0/-2) (2/-1) (0/-1) (2/0)
ABEBC (Win/Loss) (0/-2) (2/-1) (0/-1) (2/0)
ABEAC (Win/Loss) (0/-2) (2/-1) (0/-1) (2/0)

Win+Loss -6 3 -3 6

Rank 1 3 2 4
Abrupt CME (Win/Loss) (0/-3) (1/-2) (2/0) (2/0)
ABEBC (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)
ABEAC (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)

Win+Loss -9 -3 4 8

Rank 1 2 3 4
Chaotic CME (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)
ABEBC (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)
ABEAC (Win/Loss) (0/-3) (1/-2) (2/-1) (3/0)

Win+Loss -9 -3 3 9

Rank 1 2 3 4

Win/Loss total -33 1 7 28

12 G. Pampara et al.
References
1. Angeline, P.J.: Tracking extrema in dynamic environments. In: International Con-

10.

11.

12.

13.

14.

15.

16.

ference on Evolutionary Programming. pp. 335-345. Springer (1997)

. Blackwell, T.: Particle swarm optimization in dynamic environments. In: Evolu-

tionary computation in dynamic and uncertain environments, pp. 29-49. Springer
(2007)

Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments. In:
Workshops on Applications of Evolutionary Computation. pp. 489-500. Springer
(2004)

Blackwell, T., Branke, J., Li, X.: Particle Swarms for Dynamic Optimization
Problems, pp. 193-217. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-74089-6__ 6

Branke, J.: Memory enhanced evolutionary algorithms for changing opti-
mization problems. In: Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406). vol. 3, p. 1882 Vol. 3 (1999).
https://doi.org/10.1109/CEC.1999.785502

Branke, J.: The moving peaks benchmark. URL: http://www.aifb.uni-
karlsruhe.de/~jbr/MovPeaks/movpeaks (1999)

Deb, K., Joshi, D., Anand, A.: Real-coded evolutionary algorithms with
parent-centric recombination. In: Evolutionary Computation, 2002. CEC ’02.
Proceedings of the 2002 Congress on. vol. 1, pp. 61-66 (May 2002).
https://doi.org/10.1109/CEC.2002.1006210

Duhain, J.G.: Particle swarm optimisation in dynamically changing environments-
an empirical study. Master’s thesis, University of Pretoria (2011)

Dubhain, J.G., Engelbrecht, A.P.: Towards a more complete classification system for
dynamically changing environments. In: Evolutionary Computation (CEC), 2012
IEEE Congress on. pp. 1-8. IEEE (2012)

Eberhart, R.C.; Shi, Y.: Tracking and optimizing dynamic systems with par-
ticle swarms. In: Proceedings of the 2001 Congress on Evolutionary Com-
putation (IEEE Cat. No.01TH8546). vol. 1, pp. 94-100 vol. 1 (2001).
https://doi.org/10.1109/CEC.2001.934376

Engelbrecht, A.: Roaming behavior of unconstrained particles. In: Proceedings -
1st BRICS Countries Congress on Computational Intelligence, BRICS-CCI 2013.
pp. 104-111 (09 2013)

Harrison, K., Ombuki-Berman, B.M., Engelbrecht, A.P.: The effect of probability
distributions on the performance of quantum particle swarm optimization for solv-
ing dynamic optimization problems. In: 2015 IEEE Symposium Series on Computa-
tional Intelligence. pp. 242-250 (Dec 2015). https://doi.org/10.1109/SSCI.2015.44
Harrison, K.R., Ombuki-Berman, B.M., Engelbrecht, A.P.: A radius-free quantum
particle swarm optimization technique for dynamic optimization problems. In: 2016
IEEE Congress on Evolutionary Computation (CEC). pp. 578-585 (July 2016).
https://doi.org/10.1109/CEC.2016.7743845

Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan
Press (1975)

Hu, X., Eberhart, R.: Tracking dynamic systems with pso: where’s the cheese. In:
Proceedings of the workshop on particle swarm optimization. pp. 80-83 (2001)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the
IEEE International Joint Conference on Neural Networks. vol. IV, pp. 1942-1948.
IEEE (1995)

17.

18.

19.

20.

21.

22.

23.

24.

25.

Self-Adaptive QPSO for Dynamic Environments 13

Li, C., Yang, S., Nguyen, T., Yu, E., Yao, X., Jin, Y., Beyer, H., Suganthan, P.:
Benchmark generator for cec 2009 competition on dynamic optimization. Tech.
rep., University of Leicester, UK (2008)

Morrison, R.W.: Performance measurement in dynamic environments. In: GECCO
workshop on evolutionary algorithms for dynamic optimization problems. pp. 5-8.
Citeseer (2003)

Moser, 1., Chiong, R.: Dynamic Function Optimization: The Moving Peaks
Benchmark, pp. 35-59. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-30665-5__3

Pampara, G., Nepomuceno, F., Leonard, B.: Cilib v2.0.1 (Oct 2014).
https://doi.org/10.5281 /zenodo.12371, https://doi.org/10.5281/zenodo.12371

van der Stockt, S., Engelbrecht, A.P.: Analysis of hyper-heuristic performance in
different dynamic environments. In: Computational Intelligence in Dynamic and
Uncertain Environments (CIDUE), 2014 IEEE Symposium on. pp. 1-8. IEEE
(2014)

Storn, R., Price, K.: Differential evolution — a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of Global Opti-
mization 11(4), 341-359 (Dec 1997). https://doi.org/10.1023/A:1008202821328,
https://doi.org/10.1023/A:1008202821328

Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary envi-
ronments. In: Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress on. vol. 3, pp. 1843-1850. IEEE (1999)

Van Den Bergh, F.: An Analysis of Particle Swarm Optimizers. Ph.D. thesis, Pre-
toria, South Africa, South Africa (2002), aAI0804353

Van Den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization
particle trajectories. Information sciences 176(8), 937-971 (2006)

