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Highlights

• Persistence in gold and silver prices is analyzed in a fractional integration basis.
• Two parameters for the long run trend and the cyclical behavior are estimated.
• Only when the cyclical component is considered, mean reversion is detected.
• Cycles have a higher periodicity for gold than for silver prices.
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Abstract

This study examines the persistence in gold and silver prices covering the historical periods of 1257 to 2016 and 1687 to 2016 
respectively, by means of simultaneously estimating two differencing parameters for the long run trend and the cyclical behavior in a 
fractional integration framework. As opposed to many previous papers in the literature, once the cyclical differencing parameter is 
taken into account, mean reversion is detected in the long run trend of both gold and silver prices. The same result is obtained when 
structural breaks are taken into account. As far as the cyclical behavior of gold and silver prices is concerned, we find that cycles have 
a higher periodicity for gold (around 7 years) than for silver (4–5 years).

1. Introduction

Although gold and silver prices have remained relatively flat and stable for centuries until the second half of the 20th
century [1], they have been characterized, as the rest of the commodity prices, by a high volatility in the past two decades [2].
For example, gold and silver prices rose by 528% and by 806%, respectively, from 2001 to 2011 (with only a 25% increase in
overall inflation), and after reaching their maximum levels in 2011, they fell a 40% and a 68%, respectively, from 2011 to
2016. During the same two decades, gold and silver prices have shown a higher correlation with other commodity prices
and stock prices [2–4]. These figures have raised different debates and questions in the economic literature that justify the
interest of modeling the behavior of these two commodity prices. First, the increasing correlation of the prices of these two
precious metals with stock prices could reduce the attractiveness of investments in gold or silver as a diversification and a
hedging tool, raising the question of whether gold and silver have been or are safe havens [5–8], and whether they act as
inflation hedges [9–11]. Additionally, the increasing trend in prices during the last decades raised the question of whether
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the gold and silver prices are driven by supply and demand factors or by speculation due to the so-called ‘‘financialization’’
of the commodities markets [2,3,12–14]. Moreover, since gold and silver represent a significant proportion of developing
economies’ exports1 [15] commodity price dynamics also constitute an economic growth and development factor in several
developing countries, so that commodity price stability may constitute a policy objective to reduce poverty. Furthermore,
the analysis of the degree of persistence of commodity prices relative to the prices of the manufactured goods is central to
test the Prebisch–Singer hypothesis.2 Finally, central banks and governments hold gold as part of their reserves (according
to the [18], gold is the third most popular asset in the advanced countries accounting for 20% of the international reserves),
making the price of this precious metal part of the central banks’ policies.

Like any other goods, gold’s and silver’s prices are determined by supply and demand factors, although unlike other
commodity prices, they have historically played, and still play, an important role as money, as an investment and as a store
of value, and, thus, are driven by a great number of factors. According to the literature, gold and silver prices are driven
by the US dollar [19], the exchange rates of other currencies [20,21], interest rates [22], inflation rates or expected inflation
rates [9,10,23–26], equity and bondmarket returns [27], the prices of other commodities [28–30], investor sentiment [31,32],
economic cycles [31], or economic and policy uncertainty [26,33–35], among others. For example, Lau et al. [4] analyze the
relationship betweenwhite preciousmetals, gold, oil and global equity bymeans of analyzing return spillovers and volatility
transmission, and find that all these markets are well integrated.

Determining whether the impacts of all the above factors on gold and silver prices are temporary or permanent will
depend on the time series properties of gold and silver prices. For example, if gold and silver prices are stationary, shocks
will only have transitory effects on these variables, while if they are non-stationary, shocks will have permanent effects
on them. Furthermore, the order of integration of these variables will determine whether or not these variables might be
cointegrated with other variables [10], such as inflation, stock returns or interest rates. Additionally, if gold and silver were
perfect inflation hedges, the real price of gold and silver would be stationary [10]. However, despite the vast literature
directed to estimate the integration order or persistence of these variables [10,16,36–42] the results are not yet conclusive
(see, for example, [41], for a recent survey of the literature). For example, Ghoshray [16] reexamines the Prebisch–Singer
hypothesis, employing the unit root tests proposed by Lee and Strazicich [43,44] with one and two structural breaks and the
results suggest the existence of unit roots in many commodity prices, including gold and silver. Narayan and Liu [36], for
example, analyzewhether shocks to ten commodity prices are persistent or transitory using two recently developed unit root
tests (Narayan and Popp test and the Liu and Narayan test) allowing for structural breaks and they also conclude that gold
and silver prices are non-stationary. However, Gil-Alana et al. [39] use monthly data from 1972:1 to 2013:13 and fractional
integration techniques, and they find that real gold price is non-mean reverting while real silver price is mean reverting,
concluding that in the event of exogenous shocks, the effects will be permanent in gold prices, although temporary in silver
prices. Gil-Alana et al. [40] use annual data spanning from 1833 to 2013 for gold and 1792 to 2013 for silver and they find
fractional order of integration above 1 in case of gold and below 1 for silver, concluding again that gold prices exhibit a non
mean-reverting behavior, while they find mean reversion in silver prices. Winkelried [42] reexamines the Prebisch–Singer
hypothesis testing for unit roots in commodity prices and find evidence against nonstationarity in at least 20 out of 24 cases,
including gold and silver prices. Earlier attempts in this regard, can be found in [45–47], which in turn provides support for
the Prebisch–Singer hypothesis.

In this context, the objective of the paper is to analyze the persistence in the trend and cyclical components of gold and
silver prices using long spans of data, covering 1257 to 2016 and 1687 to 2016 respectively, within a fractional integration
framework and allowing for two differencing parameters for the long run trend and cyclical behavior of these prices. The
main contributions of the paper are the following. First, we use a long span of data that covers more than seven centuries for
gold andmore than three centuries for silver prices, a time period which includes many historical episodes that significantly
impacted oil and silver prices, such as: the adoption of the gold standard, the Great Depression and the stock market crash
in 1929, WorldWars I and II, the BrettonWoods accord in 1944, the end of the gold standard, the oil price shocks in the 70s,
the Lehman Brothers collapse and the Eurozone debt crisis, among others. Second, in a fractional integration framework, we
use a model that incorporates simultaneously two fractional differencing parameters, one at the long run or zero frequency
and another one at a cyclical frequency. Although a rather similar methodology has already been used in [40], in this paper
we use a longer time period that allows us to more precisely estimate the two fractional differencing parameters and of the
periods for the length of the cycles. In fact, in [40] the time period goes from 1833 (gold) and 1792 (silver) till 2013 while in
this work the period examined is 1257–2016 for gold and 1687–2016 for silver. Moreover, we provide in this paper a more
exhaustive analysis of the cyclical periodicity in the two series.

The rest of the paper is organized as follows: Section 2 presents the methodology, while Section 3 discusses the data and
the empirical results. Finally, Section 4 concludes.

1 Note, for example, that gold is the leading export for several countries, such as Mali, Tanzania, Ghana or Guyana.
2 According to this hypothesis, the price of primary commodities declines relative to the manufactured goods over the long term. If this hypothesis

holds, developing countries, with a higher export dependence on primary products, will lose out from a worsening of the terms of trade. See [16] and [17]
for a survey of the literature.
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2. Methodology

We use in this paper techniques that are based on the concept of long memory or long range dependence. To be fairly
general, we can provide two definitions of long memory. The time domain definition claims that a covariance stationary
process {xt, t = 0, ±1, . . .} displays the property of long memory if the infinite sum of the autocovariances tends to infinite.
That is,

lim
T−→∞

T∑
j=−T

⏐⏐γj
⏐⏐ = ∞. (1)

On the other hand, if we assume that xt has an absolutely continuous spectral distribution function, with a spectral density
function given by:

f (λ) =
1
2π

∞∑
j=−∞

γj cos λ, −π < λ ≤ π, (2)

according to the frequency domain, we say that xt displays long memory if its spectral density function is unbounded at
some frequency λ in the interval [0, π ], i.e.,

f (λ) → ∞, as λ → λ∗, λ∗
∈ [0, π ] , (3)

(see [48]). The empirical literature on long memory has focused mainly on the case when the singularity or pole in the
spectrum takes place at the smallest (i.e., zero) frequency (λ = 0), i.e.,

f (λ) → ∞, as λ → 0+, (4)

and a very natural model satisfying the above two properties is the one based on the concept of fractional integration. We
say that a process {xt , t = 0, ±1, . . .} is integrated of order d, and denoted as I(d) if it can be represented as:

(1 − L)dxt = ut , t = 0, ±1, . . . , (5)

where L is the lag operator (Lxt = xt−1), d can be any integer or fractional value and ut is supposed to be I(0) defined for our
purposes as a covariance stationary process (or a short memory process), where the infinite sum of the autocovariances is
finite. Examples of I(0) processes are the white noise case and the stationary and invertible AutoRegressive Moving Average
(ARMA) models.

However, the long memory processes may display other representations apart from the one given by (5). In fact, the
singularity or pole might take place at any other frequency away from zero. This is the case of the model that is based on the
following representation,

(1 − 2 cos µ L + L2)dxt = ut , t = 1, 2, . . . , (6)

with

(1 − 2µ L + L2)−d
=

∞∑
j=0

Cj, d(µ)Lj ,

where Cj, d(µ) are orthogonal Gegenbauer polynomial coefficients defined recursively as:

C0,d(µ) = 1, C1,d(µ) = 2µ d,

Cj,d(µ) = 2µ
(
d − 1

j
+ 1

)
Cj−1,d(µ) −

(
2
d − 1

j
+ 1

)
Cj−2,d(µ), j = 2, 3, . . . ,

Gray et al. [49,50] showed that xt in (6) is (covariance) stationary if d < 0.5 for |µ = coswr| < 1 and if d < 0.25for|µ| = 1.
This process implies the existence of a pole or singularity at a non-zero frequency which corresponds to the cyclical pattern.
Special cases of this model were analyzed by Ahtola and Tiao [51,52] and Bierens [53,54] setting d = 1, and by Gil-Alana
[55], DePenya and Gil-Alana [56] and others allowing d to take fractional values.

In this paper we combine the two models given by Eqs. (5) and (6) in a single framework, that is, considering a model of
form:

(1 − L)d1 (1 − 2 cos wrL + L2)d2xt = ut , t = 1, 2, . . . , (7)

where d1 and d2 are the integration orders corresponding respectively to the long-run and the cyclical frequency;wr = 2πr/T
with r = T/j, j indicates the number of periods per cycle and r the frequency with a singularity or pole in the spectrum; and
ut is I(0) process and potentially displaying weak autocorrelation of the ARMA-form.

We estimate the parameters in themodel using theWhittle function in the frequency domain, as proposed in [57] and [58]
among others.
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Fig. 1. Log-transformed data.

Fig. 2. First differenced data.

Fig. 3. Periodograms of the log-transformed data.

3. Data and empirical results

We use annual data for nominal prices (in British pounds) of gold over 1257 to 2016 and silver covering 1687 to 2016
retrieved fromMeasuringWorth (https://www.measuringworth.com). Datawere transformed by taking natural logarithms.

Fig. 1 displays the time series plots (in logs) of gold and silver data, while Fig. 2 plots the first differenced data. The data on
both these metal prices tends to remain fixed over yearly intervals in the early part of the sample, before increasing sharply
from around 1940 for gold and 1946 for silver, i.e., during and after the World War II respectively. Tables 1 and 2 present
summary statistics and test for normality and nonlinearity for the gold and silver prices (in logs) and their first differences.
As reported in the tables, the null hypothesis of normality and linearity can be rejected for all the series.

Fig. 3 displays the periodograms of the two series and Fig. 4 displays the periodograms of the first differenced data. We
observe that the highest values take place at the smallest frequency, suggesting thus a long memory model with the pole
taking place at zero, i.e.,

yt = β0 + β1t + xt; (1 − L)dxt = ut , t = 0, 1, . . . , (8)

4
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Table 1
Summary statistics.
Statistic Variables

LGOLD RGOLD LSILVER RSILVER

Mean 1.3455 0.9549 −0.8841 1.2605
Median 1.3164 0.0000 −1.2684 0.0000
Maximum 7.4200 141.8796 3.5587 144.9503
Minimum −0.1165 −28.6355 −2.7336 −67.2759
Std. Dev. 1.3716 7.8639 1.2848 15.0509
Skewness 2.4584 9.6583 1.6718 3.2214
Kurtosis 9.4427 151.7087 4.9760 32.3785
Jarque–Bera 2079.9540 711164.4000 207.4108 12400.6600
Probability 0.0000 0.0000 0.0000 0.0000
Observations 760 759 330 329

Note: LGOLD (LSILVER) is the natural logarithm of gold (silver) prices, and RGOLD (RSILVER)
is the log-returns of gold (silver); Std. Dev. stands for standard deviation, while probability is
the p-value for the Jarque–Bera test, with the null hypothesis of normality.

Table 2
(Brock et al. [59], BDS) test of nonlinearity.
Independent variable m

2 3 4 5 6

LGOLD 53.3668*** 56.8806*** 61.3552*** 67.8966*** 76.8812***
RGOLD 18.3219*** 19.6147*** 21.0147*** 22.5937*** 24.4162***
LSILVER 41.3295*** 43.6979*** 46.8093*** 51.4529*** 57.8144***
RSILVER 9.9636*** 10.9289*** 11.8325*** 13.5624*** 15.6200***

Note: Entries correspond to the z-statistic of the BDS test with the null of i.i.d. residuals, with
the test applied to the residuals recovered from the LGOLD (LSILVER) equationwith a constant
and a trend, and RGOLD (RSILVER) with a constant.
***Indicates rejection of the null hypothesis at 1 percent level of significance.

Fig. 4. Periodograms of the first differenced data.

where yt is the observed data (log of gold and silver prices); β0 and β1 are unknown coefficients referring respectively to the
intercept and the time trend.We estimate d in this context under two differentmodeling assumptions. First, considering that
ut is an uncorrelated (white noise) process, and then imposing autocorrelation for the error term.3 The results are reported
in Table 3.

We report in Table 3 the fractional differencing parameter d for the three standard cases examined in the literature,
i.e., the case of no deterministic terms (i.e., β0 = β1 = 0 a priori in the undifferenced equation (8), including only a constant
(β0 unknown, andβ1 = 0 a priori), and finally the case of a constantwith a linear time trend (β0 andβ1unknown).Wemarked
in bold the selected model according to these deterministic specifications. It is observed that under no autocorrelation the
time trend is not statistically significant and an intercept is sufficient to describe the deterministic terms. However, under
autocorrelation the time trend is required in the two series. Focusing now on the degree of integration, the estimated values
of d are above 1 in the two series under no autocorrelation, but they are in the I(1) interval under Bloomfield (autocorrelated)
disturbances. Performing several diagnostic tests they confirm that the autocorrelated case is more appropriate.

3 Here we use the exponential spectral model of Bloomfield [60] that approximates highly parameterized ARMA models with very few parameters.
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Table 3
Estimates of the long run persistence parameter.
(i) No autocorrelation

Series No terms An intercept A linear trend

Gold 1.15 1.15 1.15
(1.10, 1.21) (1.10, 1.21) (1.10, 1.21)

Silver 1.07 1.09 1.09
(1.10, 1.16) (1.02, 1.19) (1.02, 1.19)

(i) With autocorrelation

Gold 1.05 1.04 1.04
(0.99, 1.11) (0.99 1.10) (0.99 1.10)

Silver 0.97 0.94 0.95
(0.89, 1.09) (0.88, 1.04) (0.86, 1.05)

Note: In bold the significant models according to the deterministic terms. In
parenthesis, 95% confidence intervals of the estimated values of d.

Table 4
Estimated coefficients in Eq. (9).
(i) Original data

Series j d

Gold 101 0.08 (0.05, 0.12)
Silver 59 0.04 (0.00, 0.09)

(i) Mean subtracted data

Series j d

Gold 101 0.08 (0.04, 0.12)
Silver 59 0.04 (0.00, 0.10)

Table 5
Estimated coefficients in the model given by (10) under white noise disturbances.
(i) Original data

Series d1 j d2
Gold 0.75 (0.68, 0.81) 103 −0.19 (−0.24, −0.10)
Silver 0.90 (0.83, 0.98) 69 −0.35 (−0.39, −0.17)

(ii) Mean subtracted data

Series d1 j d2
Gold 0.73 (0.66, 0.80) 101 −0.22 (−0.29, −0.11)
Silver 0.88 (0.80, 0.97) 55 −0.31 (−0.40, −0.21)

The results reported in Table 3, however, might be biased because we do not take into account the potential cyclical
structure. Thus, based on the potential existence of unit roots in the two logged series, we next examine a model of the
following form:

(1 − 2 cos wr L + L2)dxt = ut , t = 1, 2, . . . , (9)

where xt is now the first differenced series and where wr = 2πr/T with r = T/j, j indicates the number of periods per cycle
and r the frequency with a singularity or pole in the spectrum.

Table 4 displays the results for the original (first differenced) and mean-subtracted data. They are similar in both cases.
We observe that the values of j (101 and 59) are very close to those observed in the periodograms of the first differenced
data in Fig. 4, and the estimated values of d are slightly positive though significantly differently from zero. The j-values of
101 and 59 indicate that the cyclical structure repeat itself at approximately 7.52 (760/101) and 5.59 (330/59) years, being
therefore higher for gold than for silver.

Furthermore, we extend that model to amore flexible one, where the order of integration at the long run frequency is not
set up to be equal to 1 but estimated from the data along with the other parameters. In particular we consider the model,

(1 − L)d1 (1 − 2 cos wrL + L2)d2xt = ut , t = 1, 2, . . . (10)

Table 5displays the results under the assumptionofwhite noise errors.Weobserve that the values of j nowchange slightly
with respect to the previous cases, being now103 and 101 for gold and 69 and 55 for silver. This implies that according to this
specification the cycles have a periodicity around 7 years for gold and between 4 and 5 for silver. Moreover, the estimated
value of d1 is below 1 in the two series, being smaller for gold than for silver. On the other hand, the estimated values of d2
are significantly negative in the two series.

6



Table 6
Estimated coefficients in the model given by (10) under autocorrelated disturbances.
(i) Original data

Series d1 j d2
Gold 0.80 (0.71, 0.88) 100 −0.28 (−0.34, −0.14)
Silver 0.70 (0.64, 0.78) 60 −0.16 (−0.27, −0.05)

(ii) Mean subtracted data

Series d1 j d2
Gold 0.77 (0.66, 0.83) 101 −0.25 (−0.33, −0.12)
Silver 0.61 (0.55, 0.72) 61 −0.08 (−0.15, 0.00)

Table 7
Structural breaks in the series.
Series Number of breaks Break dates

Gold 3 1545; 1696; 1903
Silver 1 1950

In Table 6 we assume that the errors are autocorrelated, and the results are quite similar in the sense that mean reversion
is detected on the long run or zero frequency, and anti-persistence (d < 0) for the cyclical (non-zero) frequency.

Finally, we conduct Bai and Perron’s [61] tests for the existence of breaks. The results are reported in Table 7. We found
three breaks for gold, at 1545, 1696 and 1903, and a single one for silver (1950). Identical breaks were obtained when using
other approaches like Hassler and Meller [62] or Gil-Alana [63].

Table 8 focuses on the estimates of d in Eq. (8) for each subsample in each of the series. As in Table 3, we report the results
for the three cases of no regressors, an intercept, and an intercept with a linear time trend.We observe that for gold, the time
trend is required in the first, the second and the fourth subsamples under the two cases of uncorrelated and autocorrelated
errors. For silver, the time trend is only required in the second subsample under autocorrelation. If we focus now on the
estimated values of d we see that for gold, the I(1) hypothesis is only rejected in a single case, corresponding to the 3rd
subsample in the case of no autocorrelation. In this case, d is found to be significantly higher than 1. For the remaining
cases, the unit root null hypothesis cannot be rejected. For silver, the I(1) hypothesis cannot be rejected in any of the two
subsamples under no autocorrelation. However, including autocorrelation, this hypothesis is rejected in the two subsamples
in favor of mean reversion (d < 1).

Next, we examine the model corresponding to Eq. (9), i.e., with a single pole at a non-zero frequency. The results, though
not reported, show values of d very close to 0 in all subsamples, which is clearly due to the wider confidence bands as a
consequence of the smaller sample sizes. Finally, we examine model (10), i.e., allowing for two poles, one corresponding to
the long run or zero frequency, and another one for the cyclical component. Results are reported in Table 9. We only report
the results for the case of white noise errors, though the same conclusions were obtained under autocorrelation.We observe
that for gold, the estimates of d2 (cyclical persistence) are insignificantly different from zero in the four subsamples, once
more due to the wide associated confidence intervals. The estimates of d1 (long run persistence) are all higher than 0 and
smaller than 1 implying long memory and oscillating between 0.43 (1st subsample) and 0.55 (2nd and 3rd subsamples). For
silver, d2 is significantly positive during the first subsample, but becomes insignificant during the second subsample due to
the smaller number of observations during this subsample (67 versus 263 in the first one). The estimate of d1 increases from
0.26 in the first subsample to 0.58 in the second one. Finally, and referring to j, the values implies cycles with a periodicity
constrained once more between 4 and 7 periods in all cases.

4. Conclusions

This study examines the degree of persistence in the trend and cyclical patterns of gold and silver prices using annual
data that covers a period of more than seven centuries for gold (1257–2016) and more than three centuries for silver prices
(1687–2016), a period which includes many historical episodes that significantly impacted oil and silver prices. Within a
fractional integration framework, we use a model that incorporates simultaneously two fractional differencing parameters,
one at the long run or zero frequency and another one at a cyclical frequency, following Gil-Alana et al. [40].

Themain results are the following. First, when the trend persistence of gold and silver prices are analyzed without taking
into account the potential cyclical structure of the data, the results suggest that the fractional integration order of both gold
and silver prices is above 1, implying persistence in the prices of these two precious metals, as in Gil-Alana et al. [39,40]. As
surveyed previously in the paper, this result is in line with most of the previous literature, which concludes that gold and
silver prices follow non-stationary processes, as in [16] or [36]. However, and once the cyclical differencing parameter is
taken into account, mean reversion (fractional integration orders below 1) is detected in the long run trend of both gold and
silver prices, in contrast withmost of the previous literature, and implying that shocks to these variables will have transitory
effect on the price of these two precious metals. Second, when we allow for structural breaks in both gold and silver prices
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Table 8
Estimates of the long run persistence parameter for each subsample.
Gold

(i) No autocorrelation

Series No terms An intercept A linear trend

1st subsample 0.88 0.91 0.91
(0.81, 0.97) (0.83, 1.01) (0.84, 1.01)

2nd subsample 1.03 0.96 0.97
(0.92, 1.18) (0.85, 1.12) (0.87, 1.12)

3rd subsample 0.98 1.19 1.19
(0.89, 1.09) (1.04, 1.37) (1.04, 1.38)

4rd subsample 1.02 1.10 1.10
(0.88, 1.22) (0.96, 1.31) (0.96, 1.31)

(i) With autocorrelation

1st subsample 0.89 0.91 0.93
(0.77, 1.09) (0.78, 1.13) (0.78, 1.12)

2nd subsample 0.91 0.98 0.98
(0.74, 1.14) (0.83, 1.23) (0.80, 1.21)

3rd subsample 0.94 0.80 0.80
(0.81, 1.14) (0.54, 1.18) (0.54, 1.18)

4rd subsample 0.78 0.86 0.79
(0.66, 1.02) (0.75, 1.08) (0.59, 1.09)

Silver

(i) No autocorrelation

Series No terms An intercept A linear trend

1st subsample 0.96 1.03 1.03
(0.86, 1.09) (0.92, 1.15) (0.92, 1.15)

2nd subsample 1.05 1.05 1.05
(0.86, 1.36) (0.88, 1.40) (0.85, 1.40)

(i) With autocorrelation

1st subsample 0.75 0.81 0.80
(0.62, 0.92) (0.68, 0.98) (0.63, 0.98)

2nd subsample 0.62 0.64 0.46
(0.41, 0.94) (0.50, 0.88) (0.17, 0.83)

Note: In bold the significant models according to the deterministic terms. In parenthesis, 95%
confidence intervals of the estimated values of d.

Table 9
Estimated coefficients in the model given by (10) under white noise disturbances.
Gold

Series d1 j d2
1st subsample 0.43 (0.31, 0.49) 55 0.02 (−0.14, 0.20)
2nd subsample 0.55 (0.25, 0.70) 25 0.09 (−0.17, 0.21)
3rd subsample 0.55 (0.43, 0.63) 47 0.17 (−0.01, 0.34)
4th subsample 0.49 (0.23, 0.71) 10 0.04 (−0.19, 0.24)

Silver

Series d1 J d2
1st subsample 0.26 (0.13, 0.40) 64 0.26 (0.09, 0.37)
2nd subsample 0.58 (0.46, 0.81) 15 −0.05 (−0.17, 0.32)

series (1545, 1696 and 1903 for gold; 1950 for silver prices), the results again suggest that without taking into account the
potential cyclical structure of the data, the fractional integration order of both gold and silver prices is above 1, while when
the cyclical component is included, the fractional integration order of the series is below 1, suggestingmean reversion of the
series. Third, as far as the cyclical behavior of gold and silver prices is concerned, the null hypothesis of no cycles in the two
series is rejected in favor of cyclical dependence, and we find that cycles have a higher periodicity for gold (around 7 years)
than for silver (4–5 years).

The mean-reverting behavior of real gold and silver prices will have several implications in a number of areas. For
example, in the event of shocks, the effects will only be temporary on both gold and silver prices, and the two prices will
return to their original trends. Furthermore, and as explained in the paper, we should consider this mean-reverting behavior
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of real gold and silver prices when studying the role of gold and silver as diversification and hedging tools, when analyzing
their effectiveness as inflation hedges, or when testing the Prebisch–Singer hypothesis, among other cases.
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