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ABSTRACT 

The South African government intends to develop the Mzimvubu Water Project (MWP) which includes 

the construction of two dams (the Ntabelanga and Laleni dams) in the Tsitsa River, Eastern Cape 

province, South Africa. This investment is believed to be important to unlock the economic potential 

of this rural, poor and underdeveloped area. We consider a range of variables to ascertain what the 

realistic economic lifespan of each of the dams are, subject to uncertainty and complexity, as the 

benefits from the development of the dams are closely linked to such lifespans. The selected sites are 

prone to soil erosion thereby potentially jeopardising the derived benefits from the investment. We 

therefore develop a catchment-wide system dynamics model, incorporating both technical and 

behavioural dimensions, in an effort to determine which factors influence the economic lifespan of 

the dams and to what extent. The results suggest that, without taking any restorative or behavioural 

effects into consideration, the lifespan of the Ntabelanga and Laleni dams are 55–68 years and 26–33 

years, respectively. Introducing business-as-usual type behavioural patterns could reduce the dams’ 

lifespans by between 35% and 44% due to the increased erosion. The increased soil erosion and 

resulting sedimentation is the direct result of increased human and animal movements due to the 

economic investment and associated land use change. Restorative and desirable behavioural action 

that will mitigate these impacts have the potential to reduce this loss to only 4%–9%. This would imply 

investing heavily both in restoration and in capacity-building and community development 

programmes to facilitate desirable behavioural change. In sum, this suggests that investment in social 

and natural capital has to coincide with the investment of financial capital in manufactured capital to 

make economic development last. Investment in social and natural capital could therefore be viewed 

as a type of insurance policy, and thus an insurance investment, against the risk of very plausible losses 
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of the benefits derived from the manufactured capital (the dams). Alternatively, the opportunity cost 

of not investing in social and natural capital, is the much reduced lifespans of the dams and all 

associated economic benefits. 

 

Highlights: 

 Variability in soil erosion in a catchment cause a dam’s actual and predicted economic lifespan 

to differ significantly. 

 When no mitigation is assumed the modelled Ntabelanga dam’s lifespan declines from 55–68 

years to 31–44 years. With mitigation, the anticipated lifespan is 50–65 years. 

 When no mitigation is assumed the modelled Laleni dam’s lifespan declines from 26–33 years 

to 16–21 years. With mitigation, the anticipated lifespan is 24–30 years. 

 The state of the catchment has to be improved and maintained through restorative actions 

together with societal endorsement and behavioural change. Such behavioural change is to 

be informed by a catchment management plan and the proactive and careful implementation 

thereof. 

 The investment in social and natural capital to safeguard the lifespan of the manufactured 

capital (the dams) and thus the financial capital invested, is of high importance.  

 

Keywords: system thinking, dams, economic lifetime, soil erosion, human behaviour, restoration  

 

1  INTRODUCTION  

 

It is the government of South Africa’s intent to develop the proposed Mzimvubu Water Project (MWP).  

This project comprises the construction of two dams (the Ntabelanga and Laleni dams) in the Tsitsa 

River, in the Eastern Cape Province. This development is to be augmented with investments in an 

irrigation scheme to further agricultural activity and kick-start subsequent economic development in 

the coming decades. This proposed development is of high strategic importance as the uMzimvubu 

river catchment is characterised by high levels of poverty, with low levels of employment, little 

economic activity and an increasing reliance of households on social assistance [1*]. 

 

While such an initiative is praiseworthy, the question is, what are the drivers to success of such an 

initiative? One of the key, yet often overlooked or neglected, drivers is the realistic economic lifespan 

of the dams. The expected economic lifespan of a dam is the period before a dam is silted up and 

during which it is likely to deliver economic benefits. This lifespan is calculated as [2*]: 
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LS = (W*D)/(Q*TE) where        (1) 
LS (lifespan) is measured in years  
W is build density of bottom sediments measured in t/m3  
D is storage capacity measured in m3  
Q is the estimated average suspended sediment load in a given year and is measured 
as t/year  
TE is the trap efficiency measured as a percentage 

 

From equation 1 it is clear that several factors influence the anticipated economic lifespan of a dam. 

Of particular importance here is the fact that generally as Q, the suspended sediment, increases, the 

economic lifespan of the dam decreases, and the converse is true as well. Careful attention should 

therefore be given to this as an increase in suspended sediment load accelerates dam sedimentation 

and is a negative externality. This is since it leads to losses in the assurance of water supply [3*], water 

yield, changes in estuarine activity and fish production [4*], and losses in hydropower capabilities [5*, 

6*]. Therefore, estimates of dam lifespans that include time trends of suspended sediment loads are 

of great value. We acknowledge, however, that even though the techniques/skills/data required to 

produce sediment adjusting estimates go beyond those used in traditional economic analysis, we also 

argue that the consequences of ignoring it is very grave and therefore it is important to include it in 

economic analysis.  

 

We use the planned Mzimvubu Water Project (MWP) that comprises the construction of two dams 

(the Ntabelanga and Laleni dams) in the Tsitsa River, Eastern Cape province, South Africa, as a case 

study and we propose a method based on modelling the anticipated impacts of anthropogenic 

behavioural changes on soil movements to estimate changes in dam lifespans. Before providing the 

details of this case study, we examine plausible reasons why the modelling and estimations of 

expected dam lifespans have failed to develop some sophistication in the past. This is done particularly 

with respect to human-induced trends in erosion processes.  

 

2  MODELLING THE ECONOMIC LIFESPAN OF A DAM: BACKGROUND  

 

Systems thinking is defined by Arnold and Wade [7:675] as “a set of synergistic analytic skills used to 

improve the capability of identifying and understanding systems, predicting their behaviors, and 

devising modifications to them in order to produce desired effects”. It is a paradigm and a learning 

method that enables one to think more productively about a world that is increasingly marked by 

awareness of interconnectedness and complex behaviours. System dynamics and system dynamics 

modelling on the other hand are, respectively, an approach and a tool with which to comprehend a 

system’s structure and run simulations around that comprehension both of which require a specific 
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skill sets and accompanying competencies [8]. Ironically such prerequisites have encouraged the 

emergence of steep barriers to entry reinforcing the reductionist fragmentation of human knowledge 

generating capacity and effectively limiting the extent to which systems can be understood and 

sensible modification to them proposed.  

 

Viewing the matter of dam lifespan estimates through the lens of systems thinking, it is learned that, 

for the most part, civil engineers contracted to build dams are under no obligation to collect or verify 

sedimentation data before or during a project [9]. Therefore they cannot guarantee that the dam will 

survive the impacts of sedimentation long enough to provide economic benefits over some average 

expected period of time. There are also no penalties incurred if the dam’s lifespan is less than 

predicted or assumed. The burden of monitoring and evaluating the dam’s capacity falls upon 

government departments who are also not held accountable for dam lifespan as much as for ensuring 

that the necessary water yield exists to meet demand. The latter is easily accomplished by contracting 

engineers to raise dam walls, build transfer schemes, erect desalination plants or increase the number 

of impoundments on a river [10]. There are of course a range of possible reasons for the existence of 

such an oversight, such as :  

1. Both government and engineering firms stand to benefit financially from this arrangement. 

2. There are many dams that tend to silt up slowly and have long expected lifespans [11, 12] 

spanning centuries, and if the anticipated lifespan of the dam is very short, then it is likely to 

raise serious ideological and practical concerns as to the need for the dam [13]. 

3. By and large people do not have planning horizons rivalling the length of the construction 

project they are engaged in – for example, politicians often are unconcerned with what occurs 

after their term in office [14].  

 

Furthermore, one is often discouraged from pursuing this type of analysis when considering the 

magnitude thereof. Not only are the estimates of suspended sediment subject to change over time 

but also, long after the completion of a particular study or research, are sediment yield estimates or 

data on remaining usable storage capacity of a dam scarce and expensive to produce [4*, 15]. 

Additionally, modelling future sediment yields is subject to much change since the average suspended 

sediment load will vary according to : 

1. seasons [6*, 16, 17, 18, 19]  

2. response to climate change [3*, 20, 21]  

3. changes in upstream impoundments [4*, 22, 23]  

4. long run upstream land use changes [24, 25, 26]  
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5. changes in dam operating strategies [27, 28, 29]  

 

The degree of soil movement is further affected by the scale of economic activity, human population 

densities, and different forms of manufactured capital that are introduced into the system [30]. As a 

consequence, a variety of models and modelling techniques have been developed by subject experts 

to estimate the level and rate of sedimentation for differing levels of data availability [31, 32, 33, 34]. 

These complicated models are inaccessible to most decision-makers and economic analysts, thus 

requiring the coordinated efforts of a heterogeneous group of experts covering various disciplines 

such as restoration ecologists, hydrologists, geologists, economists and, in some instances, animal 

scientists, sociologists, and policy makers. The costs of hiring the services of such a group of experts 

and facilitating their interactions is likely to be very high. 

 

Fortunately, the changes in soil movements following various forms of human intervention are, by and 

large, measurable and these can and are being modelled to some extent [35]. For example, reduction 

in soil losses have been measured i) when an area is reforested [36], ii) where more effective soil 

conservation technologies are implemented [19], and iii) where gullies are restored [22]. Some 

estimates including the impact of land use changes, if these can be forecasted or planned, are 

therefore achievable. However, instead of speculating what sort of land use changes will occur in a 

region, we propose that an efficient model of expected lifespan can be built around the plausible 

changes in human behaviour focussing on the impacts on sediment yields of changes in the stock of 

social capital over time. We develop a system dynamics model to illustrate this theory at the hand of 

a case study.  The development of a simulation model is intended as nothing more than a boundary 

object in service of the suggested research agenda and assisting diverse stakeholders to integrate their 

perspectives and legitimise a sense of ownership over the problem [37]. To this end we endeavour to 

convey the interconnectedness of the system by extending the models boundary to cover the entire 

river system inclusive of the interest’s natural scientists while also focussing on human behaviour as 

the driver representing the interest of all social scientists. 

 

  

3  MATERIALS AND METHOD 

 

The system dynamics model developed in this study estimates the lifespans of the Ntabalenga and 

Laleni dams in the Tsista River, Eastern Cape province, South Africa by considering the plausible 

impacts of future anthropogenic developments and their mutual dependence on each other. We start 
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by describing the study area, followed by a literature review of site specific characteristics. Thereafter, 

we discuss the model, and then present the results of the Monte Carlo simulation analysis.  

 

3.1 Description of the study area 

 

The Ntabelanga dam catchment (approximately 1 967km2) and the Laleni dam catchment 

(approximately 1 882km2) are part of the larger uMzimvubu river catchment (approximately 

20 000km2) situated between the south-eastern border of Lesotho and the Indian Ocean (see Figure 

1). This larger catchment produces the fourth highest mean runoff (approximately 2.8 x 

109 m3/annum) in South Africa [38]. The uMzimvubu river is therefore a natural choice for 

impoundments due to its size, location and largely still “untapped” status within an area of 

economically impoverished population. In 2011, the average monthly household income in the 

uMzimvubu river catchment was R3 183.33 [39] (~US$250/month) which is half of the average 

monthly household income for the entire Eastern Cape province [40]. In addition, the South African 

national electricity generation utility, ESKOM, has been investigating the suitability of the Tsitsa falls 

as a suitable location for hydropower generation since 2001 [41]. 

 

 

Figure 1 Study Area: Mzimvubu river catchment  
Source: Own construction using river and drainage region data from the Department of Water Affairs 
as well as natural earth data  
 

In terms of conservation importance relating to biodiversity, the estuary at the uMzimvubu river 

mouth at Port St. Johns (approximately 240km south-west of Durban and 70km east of Mthatha), is 

ranked 35th out of South Africa’s 265 estuaries [42]. It has a total surface area of approximately 150ha 
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[43] and contributes roughly R6 783 215 (~US$522 000) per annum to marine fisheries [44]. This return 

is under threat since the catchment produces high sediment yield rates, is considered to be in a poor 

condition and is subject to probable future deterioration [45, 46].  

 

3.2 Economic development prospects 

 

The uMzimvubu Water Project (MWP), is expected to catalyse growth in economic activity across the 

Eastern Cape which implies the development of the catchment. Thus a substantial increase in 

household income is expected within the study area during their operational years [47]. The local 

inhabitants who are aware of the planned development have high expectations that the construction 

of the larger Ntabelanga irrigation dam will allow for the expansion of irrigation agriculture while 

reducing the high rates of soil erosion that currently destroy their homes and disrupt graves. Such 

expectations are disconcerting as most of the gully erosion currently occur in areas previously used 

for crop cultivation [48]. Yet, it is the expectations of the local inhabitants that will determine their 

future behaviour. As the saying goes, the best gauge for future behaviour is past behaviour. Therefore, 

these concerns remain, even if the proposed restoration programme implemented in the Ntabelanga 

and Laleni dam catchments is highly successful [49].  

 

We therefore seek to internalise a range of plausible societal behavioural patterns and the need for 

improving the economic development prospects and the impacts that might have on the expected life 

expectancies of the dam. We turn to the model design now. 

 

3.3  Model conceptualisation 

 

None of the official documents related to the MWP report on the projected lifespans of the dams [39, 

1, 47, 49, 43]. An external study focussing only on possible soil movements, however, suggests that 

the lifespan of the Ntabelanga dam is 55 years while the Laleni dam is 43 years [45]. Land use data is 

mentioned as an important factor in most of these studies and is used in the calculation of dam 

lifespan and sedimentation. The modelling thereof over time, however, is not taken into 

consideration. This is a major shortcoming and one that we wish to address. One major constraint is 

that there exists no long-term data since the MWP is only a proposed scheme, and the variables 

impacting the dams' economic lifetime listed in Annex 1 are not adequately captured in a systematic 

manner. Available data include single entry point observations/estimates related to soil movement, 

the proximity of erosion gullies, and mean annual runoff, as well as the physical properties of the dams 
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[50, 51]. Within a separate dataset, socio-economic time series data, including household income and 

demographic data is recorded at municipal level [40, 52, 53]. Of great interest are projected income 

growths for the Mzimvubu catchment [47]. This enables a mapping of all the required data for the 

modelling process.  

 

We choose to augment the current dam lifespan estimates by including the impact on long run 

sediment yield trends caused by behavioural adaptation of communities. To do so we model the 

underlying processes that govern land use change and agricultural behaviour over time. By 

behavioural adaptation we mean the “process by which individuals learn, negotiate, enact and 

maintain the behaviours appropriate to a given environment…” [54]. In this particular case study, we 

refer to households in the Mzimvubu catchment adopting behavioural patterns to minimise soil loss. 

Bruque [55] provides empirical evidence to suppose that the size and strength of supportive and 

informative networks are good predictors of adaptation. This provides us with a way to understand 

what one of the impacts will be on social capital stocks change in the catchment over time. 

 

We model two potential vectors of adaptation. The direction of these vectors can be understood as 

(1) adaptation over time for growing population and affluence in the catchment due to a strengthening 

of networks, and (2) a deterioration of networks in the presence of growing populations and increasing 

incomes over time. The magnitude of the behavioural change we model as a function of household 

income. We define three elasticities to model the consequences of growing populations and incomes 

over the long-term average sediment yield rate. These elasticities decrease over time when modelling 

the desirable behavioural adaptation in the presence of increasing social capital in the study area; and 

these elasticities increase over time when modelling undesirable behavioural adaptation in the 

presence of diminishing social capital.  

 

The model consists of 81 equations, 12 of which are differential equations describing the rates of 

change of sediment yields, usable dam storage capacities, impacts on the estuary downstream, 

changes to population densities, household income and the impacts of some restoration efforts over 

time and relative to one another (refer to Annex 1 for parameter values used to calibrate these 

equations). We do not model income, but rather anticipated changes to the projected income growth 

[47] due to soil loss affecting agriculture and estuary health. 

 

Given the limited data, we seek to vary key parameters within reasonable ranges and default to 

sensitivity analysis in such a way that the estimates of the dams’ lifespans are produced in terms of 
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confidence intervals. The reduction of the complexity of such a system is accomplished through a 

system dynamics approach to modelling, which also enables us to examine in some detail the long-

term implications of feedbacks and delays which are so prevalent in understanding sediment 

movement over time. The model of the Mzimvubu catchment system is summarised and briefly 

explained in the causal loop diagram in Figure 2. A detailed explanation of all the numbered links are 

provided in Annex 2, with a validation suitable to the type of modelling approach provided in Annex 

3.  

 

Figure 2 CLD describing the Mzimvubu river catchment system; relationships labelled 1–26 

are explained in further detail in Annex 2  

Source: Own construction  

 

The model’s dynamics are provided by the following important causal loops (Figure 2): 

1. A mechanism (loop B1) that limits the rate of soil loss from the catchment. 

2. A direct positive relationship (population density income elasticity) which is defined to exist 

between population density and soil erosion processes, which models two aspects of 

population dynamics:  

a. higher local income eroding incentive to migrate (loop R3); and 

b. higher population density encouraging migration (loop B5).  

3. Three environmental checks and balances are given on income growth: 
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a. the impact of soil loss, through loss of soil fertility on future agricultural production 

(loop B3);  

b. the reduction of dam storage and thus economic benefits provided by water project 

as a result of siltation (loop B2); and 

c. the impact of water salinity and turbidity on estuarine production (loops R1, R2 and 

B4).  

4. Two additional regulating feedback mechanisms (dotted black arrows): 

a. a direct delayed positive relationship (Income Sediment yield elasticity) which exists 

between income and sediment yield rates (loop B6); and 

b.  a direct positive relationship (Income Water quality elasticity) which exists between 

income and water quality that will impact the estuary function (loop B5).  

 

This allows us to estimate the impact of various technical and behavioural interventions on the dams’ 

lifespans. A main feature of this model (elaborated in Annex 2) is the assumed nature of the 

relationships between household income, human behaviour and the sediment yield rate over time. As 

stated above, through a system thinking lens, the simulation model and associated CLD is intended 

only as a boundary spanning object. Livelihoods are intertwined with water quality and the 

functionality of the river system. The estuary is selected to represent this concept of interrelatedness 

even though the analysis of this relationship is not thoroughly defined or explored. This model is a 

prototype which is purposed to engender greater collaborative interests and efforts around economic 

lifespan as a focal point or indicator to support integrated water resource management efforts. 

 

3.4 Monte Carlo parameter scenarios 

 

The model described in Section 3.3 is used to conduct a sensitivity analysis based on Monte Carlo 

simulation (see Table 1). We commence with variations for the basic (also called the naïve) mix of 

parameters that are listed within the literature and for which the literature provides various values. It 

should be noted that for this model we assume that changes in income do not have an effect on 

behavioural change.  
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Table 1 Parameter variation mixes used in sensitivity analysis 

Mix name Parameters Measuring 
Unit 

Range of values 
used within 
Monte Carlo 

analysis 

Naïve model1 Bulk density  
Initial average sediment yield rate 
Trapping efficiency Laleni 
Trapping efficiency Ntabelanga 
Subst. switch = 0 (linear relationship – see 
Annex 2, Figure 3) 

t/m3 
t/ha/annum 

% 
% 

(1.5, 1.7) 
(62, 82) 

(95, 100) 
(95, 100) 

Anthropogenic effects Naïve model 
+ Population density sediment yield elasticity 
+ Income sediment yield elasticity 
+ Sediment yield effect delay 
+ Response time 

 
Dmnl2 
Dmnl2 

Months 
Dmnl/year 

 
(3, 7) 
(3, 7) 

(12, 60) 
(0.5, 1.5) 

Restoration effects Anthropogenic effects 
+ Restoration duration 
+ Restoration budget 
+ Probability of structure failure 
+ Sediment yield restoration effect  
+ Restoration duration 

 
Months 

R3 
Dmnl2 

%/ha/Months 
 

 
(100, 140) 
(4m, 5m) 
(0, 0.06) 
(0.4, 0.6) 

Environmental effects Restoration effects 
+ Water quality elasticity 
+ Cost containment  
+ Water quality effect delay 
+ Soil loss impact 
+ Estuary impact 
+ Benefit containment effect 

 
Dmnl2 

% 
Months 

% 
% 
% 

 
(3, 7) 

(0.01, 0.15) 
(12, 60) 

(0, 1e-11) 
(0.0001, 0.001) 

(0.5, 0.8) 

Desirable income 
substitution 

Environmental effects 
+ Subst. switch = 2 (logarithmic relationship – 
see Annex 2, Figure A2-3) 

  

Undesirable income 
substitution 

Environmental effects 
+ Subst. switch = 1 (exponential relationship – 
see Annex 2, Figure A2-3) 

  

Notes:  
1. For the naïve model: Bulk density estimated as 1.6 t/m3 sediment yield rate is based on 

72t/ha/annum [50]; trapping efficiency for Ntabelanga is calculated as 0.978 and trapping 
efficiency for Laleni is based on figures for dam capacity and mean annual runoff found in 
Annex 1.  

2. Dmnl is the abbreviation for dimensionless common to system dynamics modelling.  
3. R is the abbreviation for the South African Rand. 

 

4  RESULTS 

 

The construction of the MWP was due to commence in 2014, but it has been delayed several times. 

We therefore present the results in terms of operational months starting at an unknown future date, 

with month 1 being the start of the construction of the Ntabelanga dam. It is anticipated that this dam 
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will be completed at month 72 and the Laleni dam 96 months into the simulation period. The model 

runs for a total number of 906 months or 75 years.  

 

A baseline reading from the model, that is the reading without allowing for the Monte Carlo analysis, 

indicates a lifespan of 57 years when no attempt is made to correct for the impact of increasing 

populations and incomes on sediment yields over time. The outcome differs slightly from the 55 year 

calculation mentioned earlier [45]. This difference can be explained as the trapping efficiencies used 

were not assumed to be 100% throughout for both dams with monthly variation in trap efficiency 

values randomly sampled from a uniform distribution for some range of trap efficiency values. The 

estimates of dam lifespan for the Laleni dam differ considerably from the 43 year reported earlier [45]. 

An explanation for this is that the sediment yield rate used to calibrate the model was derived from 

observations from the Ntabelanga dam catchment and applied for the entire Mzimvubu river 

catchment [51]. The earlier study focussed on differences between the Ntabelanga and Laleni dam 

catchment, the latter of which was found to have a sediment yield much lower than the first [45]. This 

highlights the dependency of these lifespan estimates on sediment yield figures and the pitfalls of 

estimating lifespans where data is scarce. 

 

Table 2 (see also Annex 4) summarises the results with respect to the anticipated lifespans of the two 

dams when considering different scenarios. These lifespans are reported as the intervals (in years) in 

which 75% of the simulations for various parameter mixes converge indicating the respective dams 

being silted up. These results indicate: 

1. There is a substantial reduction in the anticipated lifespans when incorporating business-as-

usual type anthropogenic effects on-top of the naïve model. The anticipated lifespan of the 

Ntabelanga dam, for example, declines from 55–68 years to 31–44 years and that for the 

Laleni dam from 26–33 years to 16–21 years. 

2. When incorporating the restoration and environmental effects, as well as income leakage and 

desired behavioural changes, the anticipated lifespans increase each time to reach a 

maximum lifespan of 50–65 years (Ntabelanga dam) and 24–30 years (Laleni dam).  

3. In the event of undesirable behavioural action, however, the anticipated lifespan is reduced 

to 31–45 years and 15–20 years.  
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Table 2  Summary of sensitivity analysis around economic lifespan 

Mix name 
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(1) 
Ntabelanga 

lifespan (years) 
75% of simulations 

fall between1 

(2) 
Laleni lifespan 
(years) 75% of 
simulations fall 

between1 

Additive 
impact 

Min Max Min Max 

Naïve model X  55 68 26 33  

+ Business-as-usual 
anthropogenic effects 

X  31 44 16 21 Reduce 

+ Restoration effect X  33 46 17 23 Increase 

+ Desirable behavioural change 
and income substitution 

 X 50 65 24 30 Increase 

+ Undesirable behavioural 
change and income substitution 

 X 31 45 15 20 Reduce 

1  Note: Results rounded to the nearest year 

 

5 CONCLUSION 

 

In a water resources catchment, the lifespan of a dam is an emergent property embedded in the 

interrelatedness of many complex and dynamic elements. While the scientific understanding of each 

individual element can be sophisticated, our capacity to model the interactions among them is limited.  

Scientific knowledge and subject expertise and local/indigenous knowledge, or wisdom, has to be 

combined to construct integrative catchment modelling. This is especially true with respect to the 

modelling of the anticipated lifespans of dams under various scenarios and/or conditions. Using a 

systems thinking approach it is possible to produce sediment adjusted estimates of dam lifespans in 

an integrative manner across disciplines. This provides an important bridge between the research and 

management divides and thus offers an important leverage point towards sustainable management 

of water resources in future.  

 

In an attempt to simplify the complexity around modelling dam lifespans, we suggest an approach 

built around the impacts of social capital on soil loss through income related changes to human 

behaviour.  
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Economic development depends, among others, on the injection of financial resources and the 

development of manufactured capital that could be used as a springboard for further development. 

As such it is the government’s intent to develop the proposed Mzimvubu Water Project (MWP) 

comprising the construction of two dams (the Ntabelanga and Laleni dams), including an irrigation 

scheme, in the Tsitsa River. The question though is, what are the realistic economic lifespans of the 

dams? Here, we develop a catchment-wide system dynamics model incorporating both technical and 

behavioural dimensions, and an effort to model the influence of social capital on the economic 

lifespan of the two dams. This is important as the catchments are already degraded and prone to 

further soil degradation, negatively affecting the anticipated lifespans. The current engineering 

studies neither take these into account and nor do they consider the impacts of various anthropogenic 

behavioural changes.  

 

In the absence of appropriate adaptation, the impact of restoration in lengthening the lifespan of both 

modelled dams is negligible. By making some inclusion for the loss of soil and estuary health on 

household income, the modelled system adjusts to lengthen the dam lifespans by slowing down the 

speed at which households increase the scale or type of operation. The results signal the importance 

of behavioural action. 

 

We show that, considering a capital investment project of this magnitude, without taking into 

consideration both environmental and anthropogenic feedback effects, this is highly likely to lead to 

erroneous conclusions. It is equally as important to invest in both environmental and society-wide 

programmes towards safeguarding the investment programme. The responsibility of the investment 

planner does not stop at calculating the cost of the capital investment but extends towards making 

sure that such an investment is durable and to take the necessary steps in this regard. In this case it 

would imply investing heavily both in restoration and in capacity-building and community 

programmes to facilitate desirable behavioural change.  

 

Desirable behavioural change in conjunction with restoration and prudent environmental 

management will buy almost an equal number of years for the project as what would have been lost 

if it was not the case. Buying back the years that would have been lost due to the initial unmitigated 

anthropogenic behaviour will extend the dams’ lifespans. For the modelled Ntabelanga dam, for 

example, the unmitigated anthropogenic effects are expected to reduce the dam’s lifespan by 35%–

44% (44 years compared to 68 years and 31 years compared to 55 years). Introducing restorative 
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actions and desirable behavioural action will reduce this loss to only 4%–9% (comparing 65 years with 

68 years and 50 years with 55 years).  

 

Investing in social and natural capital has to coincide with the investment of financial capital in 

manufactured capital to make the economic development last. Investment in social and natural capital 

could therefore be viewed as a type of insurance policy, and thus insurance investment, against the 

very plausible losses in the benefits derived from the dams. Alternatively, the opportunity cost of not 

investing in social and natural capital, is the much-reduced lifespans of the dams and all associated 

economic benefits. 
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Annex 1: Data 

Parameters used in the Ntabelanga and Laleni dam catchment sub-model 

 Unit Value Source 

Initial yield N m3/a 20,000,000 DWS [39] 

Trapping Efficiency L % 0.96 Own calculation  

Trapping Efficiency N % 0.987 Own calculation  

Construction period both dams Dmnl 60 DWS [47] 

Delay dam building Dmnl 24 Assumption 

Initial storage Laleni m3 231,000,000 DWS [39] 

Initial storage Ntabelanga m3 490,000,000 DWS [39] 

Dead storage Ntabelanga m3 29,300,000 DWS [39] 

Sediment yield initial t/ha/year 72 Calculated using Le Roux & Barker [50] 

Average depth of erodible soil M 3 Own estimated from DWS [49] 

Soil density t/m3 1.6 Le Roux & Barker [50] 

Estuary Ha Ha 150 DWS [43] 

Catchment area Ha 2,000,000 DWS [56] 

Laleni dam catchment area Ha 188,221 DWS [56] 

Ntabelanga dam catchment area Ha 197,178 DWS [56] 

Electricity  MWh/annum 202,438.247 DWS [47] 

Price electricity R/MWh 769.32 DWS [47] 

Income addition % due to 
construction 

%/construction 
period 

17.7 DWS [39] 

Income addition % due to operation %/dameconomic 
lifespan 

7.5 DWS [39]  

Household Income Growth % 2.684 Own estimate calculated from Statistics 
South Africa [44] 

Impact of income % 10 Own calculation 

Initial household income R/month 3770.55 [39] 

Initial population people 1,702,830 Own estimate calculated from [54,55] 

Impact soil loss % 5e-10 Own calculation 

Impact estuary % 0.01 Own calculation 

People per household People 5 Own calculation 

Tolerable population density People/ha 200 Own calculation 

Cost containment factor Dmnl 0 Assumption 

Benefit containment factor Dmnl 1 Assumption 

Response time Dmnl 1 Assumption 

Sediment yield effect delay Month 60 Assumption 

Water quality effect delay Month 60 Assumption 

Monthly Birth rate Dmnl 0.09688 ECSECC [52,53] 

Monthly Death rate Dmnl 0.000705 ECSECC [52,53] 

Monthly Migration rate  Dmnl 0.001345 ECSECC [52,53] 

Income Migration delay Month 24 Own calculation 

Cost estuary suitability R/ha/annum 44,924.93 Lamberth & Turpie [44] 

Mean annual runoff 2014 𝑚3/annum 2,897 DWS [56] 

Rest budget Rm 450 DWS [47] 

Sediment yield restoration effect t/ha/year/restoration 
duration 

0.5 Own calculation 

Restoration duration Months 120 DWS [47] 

Proportion spent on SO N % 0.5 DWS [47] 

Restoration intensity Dmnl 0.0006 Own calculation 

Restoration cost per ha Ha 239,931 DEA [57] 

Initial probability of restoration 
failure 

% 0.05 Own calculation 

Rate of substitution initial Dmnl 0.2 Assumption 
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Annex 2: Model description 
 
The numbers below refer to the numbered links within Figure 2 (Section 3.3).  
 
1-3 
The stock of material susceptible to water erosion is reduced through soil loss. Using an average rate of soil 
erosion (t/ha/annum) the amount of soil eroded in the catchment in period t is calculated and the sediment 
yield is estimated using the sediment delivery ratio variable. It is expected that a reduction over time in average 
soil erosion rate or in the sediment delivery ratio will result in a shift upward (#1 in Figure A2-1) of the soil mass 
curve over time, while an increase in the sediment delivery ratio or the rate of soil erosion over time will result 
in a shift downward (#2 in Figure A2-1) of the soil mass curve over time.  
 

 
Figure A2-1 Conceptual model for soil erosion with illustration of expected output under increases and 
decreases for average soil erosion rate 
 
4 
Most households in the study area augment household income with subsistence agriculture. We assume that 
soil erosion has an impact on soil fertility to the detriment of these households [4*]. We calculate cumulative 
soil lost from the catchment as a stock. In each period we assume some small percentage (see Annex 1) called 
Impact soil loss, acts negatively on the household income growth rate.  
 
5-10 
We assume that higher income will convince more people to delay out-migration, subject to an acceptable 
population density. As illustrated in Figure A2-2, a consistent increase in household income is expected to reduce 
the out-migration rate and might even result in in-migration. Subject to a 24-month delay (Annex 1) we model 
a % reduction of the out-migration rate as follows: 

 %𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 1 −
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−𝐼𝑛𝑐𝑜𝑚𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦∗

𝐶𝑃𝐼𝑡
𝐶𝑃𝐼𝑡−𝑖𝑛𝑐𝑜𝑚𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐼𝑛𝑐𝑜𝑚𝑒𝑡
∗

𝑖𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑖𝑛𝑐𝑜𝑚𝑒 
 
If, in real terms, for some month t, should households observe real household income to be lower than it was 
the same month 2 years prior, the migration rate increases and more people leave the catchment in search of 
opportunity. As soon as the population density (people/ha) increases above some tolerable population density 
value the % reduction of the out-migration rate is modelled as follows: 

%𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 1 −

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐼𝑛𝑐𝑜𝑚𝑒𝑡−𝐼𝑛𝑐𝑜𝑚𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 ∗
𝐶𝑃𝐼𝑡

𝐶𝑃𝐼𝑡−𝑖𝑛𝑐𝑜𝑚𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝐼𝑛𝑐𝑜𝑚𝑒𝑡

∗ 𝑖𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑖𝑛𝑐𝑜𝑚𝑒) ∗ (1 + (
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑡 − 𝑡𝑜𝑙𝑒𝑟𝑎𝑏𝑙𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑡𝑜𝑙𝑒𝑙𝑎𝑏𝑙𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 
) 
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Figure A2-2 Conceptual model for population dynamics with illustration of expected output for 
population variable given constant increase in household income 
 
12-13 
We model dam storage as a stock that is depleted over time as sediment is deposited in it [13]. We do not model 
the flow of water given the required temporal and spatial scale as well as data scarcity. The stock and flow 
diagram in Figure A2-3 shows how we combine factors in Table 1 calculating the siltation effect as follows: 

𝑆𝑖𝑙𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑡 =
𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝑇𝑟𝑎𝑝 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑙𝑜𝑎𝑑𝑡

 

and, 
𝐷𝑎𝑚 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡 = 𝐷𝑎𝑚 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑡−1 − 𝑆𝑖𝑙𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑒𝑐𝑡𝑡 

with, 
𝐷𝑎𝑚 𝑆𝑡𝑜𝑟𝑎𝑔𝑒0 = Innitial Storage Capacity 

 
The graphical representation of what we expect to happen to storage over time is also presented in Figure A2-
3. We define lifespan here as the complete loss of storage. As the sediment load in time t is variable, an increase 
in sediment load over time should be represented graphically as a decrease in lifespan (#1 in figure A2-3). A 
reduction in the sediment load, either through change in land use and population or as a result of restoration 
and catchment management, should be represented by an increase in lifespan.  
 

 
Figure A2-3 Conceptual model for dam sedimentation with illustration of expected output and 
behaviour for varying sediment load 
 
14 
The benefits of the MWP are expressed in increases in household income [39] dependant on whether dams are 
still under construction or are already in full operation. If both dams silt, all upward pressure on household 
income growth rate stops. Higher household income growth rate under the MWP is modelled as additions to 
basic growth rate which we take to be equal to the expansion of national social grant expenditure received [44]. 
We construct a variable called “benefit containment factor” as a real number ranging between 0 and 1. This 
allows one to control the proportion of MWP benefits in terms of wages are earned by households in the 
Mzimvubu river catchment. Similarly, we construct a variable called “cost containment factor” as a real number 
which ranges between 0 and 1 indicating what proportion of the environmental costs (including the impact of 
sedimentation hydropower production in the Laleni dam) negatively affect household income. We assume that, 
should the Laleni dam be completely silted up, no hydropower will be produced by it. Should this occur before 
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the Ntabelanga dam is completely silted up then it will have implications for the projected annual household 
income growth for when the Ntabelanga dam is operational. 
 
15-19 
To ensure that changes in estuary health are considered in the model, we construct an index measuring the 
suitability of the estuary for fish with year 1 as base year that fluctuates with water turbidity and salinity. The 
index will fluctuate, brought on by human behavioural changes in water use in response to rising incomes, or 
indirectly through aggravated soil loss. We multiply the value of the deviation of this index relative to its base 
year value with Lamberth and Turpie’s [44] estimate for the value of fish caught per estuary hectare. By including 
a variable Estuary impact in our simulations we can allow some of this cost to be internalised in the study area 
as downward pressure on income growth.  
 
The Department of Water and Sanitation [43] predicted the magnitudes of changes in turbidity and salinity to 
occur in the estuary upon completion of the Ntabelanga dam. The average turbidity in the estuary was 174 NTU 
(nephelometric turbidity units) in 2014 and is modelled to increase to 181.33 NTU upon completion of both 
dams. By building the Ntabelanga dam, a reduction in mean annual runoff of 2% percent is estimated [43]. In 
response, the salinity in the lower region of the estuary, which was 13 PSU (practical salinity unit) in 2014, is 
modelled to increase to 18 PSU upon the completion of the Ntabelanga dam. We estimate a relationship 
between turbidity in the estuary, sediment yield and mean annual runoff in the Mzimvubu river catchment in 
equation 1. 
 

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 𝑖𝑛 𝑒𝑠𝑡𝑢𝑎𝑟𝑦𝑡= 
𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑖𝑙 𝑙𝑜𝑠𝑠 𝑀𝑍𝑡

𝑀𝐴𝑅𝑡−(𝑌𝑖𝑒𝑙𝑑 𝑁𝑡)∗2e−005
∗(

1

11
)………………… (1) 

 
Using the available predictions on the effect of the Ntabelanga dam on salinity in the lower reaches of the 
estuary, we estimate equation 2. Equation 2 describes a possible relationship between mean annual runoff, dam 
yield and salinity in the estuary at time t: 
 

𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦 𝑖𝑛 𝑒𝑠𝑡𝑢𝑎𝑟𝑦𝑡 =  𝑀𝐴𝑅2014 ∗
𝑀𝐴𝑅2014

𝑀𝐴𝑅𝑡
∗ 12 +

𝑌𝑖𝑒𝑙𝑑 𝑁𝑡

𝑀𝐴𝑅𝑡
∗ 0.0001 …………………(2) 

 
For subtropical estuaries in the Eastern Cape, Whitfield [58] reported an increase in fish abundance of 100% in 
response to a reduction in salinity of 30%. Grange et al. [59] observe a positive correlation between fish 
abundance and turbidity for estuaries in the Eastern Cape. We assume that the increase in the index brought 
about by an increase in turbidity decreases the further current turbidity levels from reference turbidity. We 
estimate a relationship (equation 3) between the suitability of the estuary for fish, turbidity and salinity: 
 

𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑠𝑡𝑢𝑎𝑟𝑦 𝑓𝑜𝑟 𝑓𝑖𝑠ℎ𝑡 = −3.3333 ∗ 
𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦𝑡−𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦

 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦
 − 4.3333 +

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦𝑡−𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦2014

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦2014
∗

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦

𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦𝑡
 ……………………(3) 

 
11, 21-23 
 
We assume that human behaviour varies with changes in income. We consider three plausible environmental 
consequences of human behaviour changes for rising income illustrated in Figure A2-4 below and modelled with 
a switch named “subst. switch”: 

1. Subst. switch value = 0 specifies the substitution trajectory (as income rises) of behavioural change that 
does not alter the impact humans have on the environment.  

2. Undesirable substitution activated for Subst. switch value = 1 is the substitution trajectory (as income 
rises) of behavioural changes that have an increasingly negative impact on the environment as the scale 
of economic activity increases.  

3. Desirable substitution activated for Subst. switch value = 2 is the substitution trajectory (as income rises) 
of behavioural changes that have a decreasingly negative impact on the environment as the scale of 
economic activity increases.  
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Figure A2-4 Possible changes in the technological trajectories 
 
To model these three scenarios, we make use of three variables:  

1. The impact of a change in behaviour on water quality or sediment yield is modelled using an elasticity. 
This is a measure of the environmental costs incurred by spending additional income or by the 
behaviours additional income encourages. 

2. The speed with which behaviours are changed after an increase in income is realised (response time). 
3. The delay until the impact of this new behaviour becomes observable in the environment. 

 
We model, subject to a delay, an income sediment yield elasticity as follows: 
 

𝐼𝑛𝑐𝑜𝑚𝑒 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑦𝑖𝑒𝑙𝑑 𝑒𝑙𝑎𝑠𝑡𝑐𝑖𝑡𝑦 =
%∆𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑦𝑖𝑒𝑙𝑑

%∆𝐴𝑛𝑛𝑢𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑖𝑛𝑐𝑜𝑚𝑒
 

 
Elasticities for population density is modelled in a similar way. To acknowledge the possibility that behavioural 
changes in water use could influence estuarine production downstream, we develop an Income water quality 
elasticity and subject to some delay model the impact of rising incomes on the Suitability of estuary for fish 
index.  
 
24 
The effect of gully restoration over the project lifespan has been observed to reduce sediment yield by 44% [30]. 
The success rates of the projects vary considerably [60] often as a result of failure to inform and obtain the 
cooperation of all stakeholders [61]. Evidence that the rate at which restoration structures fail also vary across 
structure types and catchment as summarised in Table A2-1. We model a success rate of restoration (stock-flow 
arrangement seen in Figure A2-5) that takes into account the rate of structure failure and the impact on the SY 
rate, which, assuming that the type of restoration applied to an area is best practice and completive. 
  
Table A2-1 Rate at which restoration structures fail 

Structure failure Type of restoration Reference 

39%  Check dams [61] 

60%  Check dams [53] 

22%  Bush structures 

34% Check dams [62] 

21.74% Bush Structures 

13.51% Check dams  [63] 

 
As R450 million has been allocated to restoration in the Laleni dam and Ntabelanga dam catchments [39], a 
component is included to account for the effects of such restoration on the rate of soil erosion in the region. A 
soft option restoration programme (i.e. ponding, silt fences, eco-logs, rock packs and sloping) is modelled using 
contract data provided by the Department of Environmental Affairs [57]. We define the restoration success as a 
function of the probability of structure failure and the percentage reduction in sediment yield produced over 
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the restoration period on the area of land identified for restoration. We construct a sub-model for restoration 
using cost data for a restoration project near the Ntabelanga dam catchment and model the stock Restoration 
expenditure and how it drained over the restoration program lifespan by assuming that spending over the 
project lifespan follows a sigmoidal function and that there are delays between spending on materials and labour 
and the actual installation of structures. The variable Speed of substitution is introduced to model changes in 
the relative effectiveness of land/catchment management brought on by technology substitution in response to 
rising incomes. The variable Substitution Switch allows one to specify whether future technologies adopted in 
the catchment strengthen, weaken or ensure that the relative effectiveness of catchment/land management 
remains unaltered. The probability of structure failure is affected by the willingness of the population to regard 
these structures as useful technology for which speed of substitution is used as proxy.  

 
Figure A2-5 Soft option restoration in Ntabelanga dam catchment 
Source: Own construction 
 
 
Annex 3: Model validation 
 
Dimensional consistency test  
A dimensional consistency test was performed and passed ensuring that equations used to establish 
mathematical relationships were scientifically sound.  
 
Behavioural tests  
Turbidity and salinity modelling results in DWS [39] with average turbidity in the estuary at 175 NTU before the 
dam and 181 NTU after dam construction and lower zone estuary current 12 PSU and 18 PSU after dam 
construction. Le Roux and Barker [50] calculated a siltation effect, average sediment deposited into the 
Ntabelanga dam per month of 888 000 tons, this is replicated by the model when the feedback causing 
alterations to sediment yield rates are deactivated.  
 
Parameter verification tests  
The majority of data was sourced from organisations that operate in the catchment or from available literature. 
Certain parameters were assumed. Sensitivity analysis around many of the assumed parameters such as Rate of 
substitution factor, cost containment factor, various delays and benefit containment factor are found in the 
results showing how sensitive the output is to small changes in assumed parameters.  
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Annex 4: Results of the Monte Carlo analysis 
 

 
Figure A4-1 Output showing the impact of parameter mix variations on the Ntabelanga dam lifespan, 
Laleni dam lifespan and household income. 
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