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Abstract 

 

This study assessed two versions of the crop model CropSyst (i.e. EMS, existing; MMS, 

modified) for their ability to simulate maize (Zea mays L.) yield in South Africa. MMS 

algorithms explicitly account for the impact of extreme weather events (droughts, heat waves, 

cold shocks, frost) on leaf development and yield formation. The case study of this research 

was at an experimental station near Johannesburg where both versions of the model were 

calibrated and validated by using field data collected from 2004 to 2008. The comparison of 

EMS and MMS showed considerable difference between the two model versions during 

extreme drought and heat events. MMS improved grain-yield prediction by ∼30% compared 

with EMS, demonstrating a better ability to capture the behaviour of stressed crops under a 

range of conditions. MMS also showed a greater variability in response when both versions 

were forced with scenarios of projected climate change, with increased severity of drought 

and increased temperature conditions at the horizons 2030 and 2050, which could drive 

decreased maize yield. Yield was even lower with MMS (8 v. 11 t ha–1 for EMS) at the horizon 

2050, relative to the baseline scenario (∼13 t ha–1 at the horizon 2000). Modelling solutions 
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accounting for the impact of extreme weather events can be seen as a promising tool for 

supporting agricultural management strategies and policy decisions in South Africa and 

globally. 
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Introduction  

Climate extremes such as droughts, heat waves, cold shocks and frost affect directly and 

indirectly cropping systems by altering physiology and behaviour of plants, with impacts on 

the productivity as well as the seasonality and quality of crop production (e.g. Motha 2011; 

Lesk et al. 2016). The weather-related risks faced by crops lie in the degree of exposure to 

different extremes, occurring with varying severity at different temporal and spatial scales and 

affecting various facets of crop growth and development, and farming practices (van der Velde 

et al. 2012). Extreme weather events adversely affect several physiological processes of 

plants, also causing important damages on crop yield. For example, drought and heat stresses 

triggered by low precipitation amounts and supra-optimal temperatures adversely affect crop 

transpiration and photosynthesis processes (Wolf et al. 1996; Porter and Semenov 2005). For 

maize in Africa, Lobell et al. (2011) reported a yield reduction by 1% associated with each 

degree day spent above 30 0C under optimal rain-fed conditions, which rises up to 1.7% under 

drought conditions experienced at around 21 days before anthesis. Yield variations due to an 

extreme event (cold temperature, high temperature or water deficit) are due to flower death 

and failure in pollination (high or low temperatures) (Hatfield et al. 2011) while water stress 

reduces seed set (Saini and Westgate 1999; Setter et al. 2001). All these effects are mediated 

by a change in Harvest Index (HI). 
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Simulation modelling has an important role to play in understanding and quantifying the 

relationships, or trade-offs, between management and the production from cropping systems 

but mechanistic/dynamic simulation models mostly omit some potential large biophysical 

effects of extreme events (Nelson et al. 2014). The continuous rise in temperatures has 

prompted severe heat waves, drought, and other forms of extreme weather (Field et al. 2012). 

So, in order to prepare for potential future impacts, recent efforts have been made to 

understand how extreme weather events may change in future (Tebaldi 2007; Orlowsky and 

Seneviratne 2012) and impact on crop production (van der Velde et al. 2012; Chavez et al. 

2015; Powell and Reinhard 2016). Global impact assessment studies have not been successful 

in addressing credibly the impact of extreme weather events on crop production (van der 

Velde et al. 2012; Zinyengere et al. 2014). This is because most crop models often fail to 

integrate the present day understanding of how crops respond to the impact brought by 

extreme weather events. Suggestions have been put forward that most of the existing crop 

models need an overhaul or an update in order for them to produce reliable results that can be 

used by policy developers for future planning (Rötter et al. 2011). In the case that existing 

models do not take into account explicitly the impacts of extreme weather events, there is a 

likelihood of overestimating yields if they are used in simulating future crop performances 

(Rötter et al. 2011). This has a negative impact on food and feed security planning at both 

local and global scales.  

Considering that more than half of the maize production areas around the globe already 

experience heat stress and drought during the most sensitive moments of their growing cycle, 

special attention is placed in modelling the maize response to rising temperatures and drought 

(Lobell et al, 2013; Anderson et al, 2015; Carter et al, 2016). For instance, Lobell et al, (2013) 

used Agricultural Production Systems Simulators (APSIM) to show if the crop model can be 

able to reproduce the relationship between yields and extreme temperatures and with the 
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seasonal rainfall in the Mid-Western United States. Knowledge of maize sensitivity to extreme 

temperature and drought is needed to understand sensitivity of food production to human-

caused climate change and the potential for food production adaptation (Anderson et al, 2015).   

The focus of this study is on the cropping systems simulation model CropSyst, which provides 

a mechanistic view of the processes and multiple interactions occurring in cropping systems 

(Stöckle et al. 2003). Including a large set of management options, CropSyst can simulate a 

range of cropping systems in a variety of conditions. The model is used to represent 

environmental outputs and crop production (e.g. Bellocchi et al. 2002; Confalonieri et al. 

2006; Sommer et al. 2008) and in impact studies (Tubiello et al. 2000; Abraha and Savage 

2006; Tingem and Rivington 2009; Finger et al. 2011; Bocchiola et al. 2013; Eitzinger et al. 

2013, Sommer et al. 2013). CropSyst is also being used for model comparison studies 

(Palosuo et al. 2011; Rötter et al. 2012), also as part of the AgMIP – The Agricultural Model 

Intercomparison and Improvement Project (Asseng et al. 2013; Bassu et al. 2014). Some 

model weaknesses have been highlighted (e.g. overestimation of crop yield) when simulating 

detailed multi-year datasets in a range of conditions (Todorovic et al. 2009). 

In this study, we have assessed the performance of CropSyst to simulate maize crop growth 

and yield in South Africa under drought and excessive heat, using two versions of the model. 

The first one is the existing modelling solution (EMS) and the second is an improved CropSyst 

version referred to as the modified modelling solution (MMS). MMS consists of a component 

(coupled to EMS) that explicitly takes into consideration impacts of extreme weather events 

(high and low temperatures, and water deficit) on crop growth and development. Expressed 

mathematically, fundamental concepts were implemented into dedicated module (Villalobos 

et al. 2015) and coupled to CropSyst (EMS) to illustrate that the cropping system model has 

the elements needed to reproduce experimentally established system performances. 

Integrating a module implementing libraries for the impact of extreme events to a complex 
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soil-vegetation-management model can thus provide useful insights into plant response. We 

thus extended CropSyst to include extreme impacts in a simplified way and used it to simulate 

multi-year datasets of crop growth and yield in South Africa. MMS emphasizes the effect of 

high and low temperatures and water deficit starting just before anthesis until maturity of the 

crop though other effects on the crop before and after anthesis were included which influences 

leaf area index and biomass accumulation (Bolanos and Edmeades 1996). This is particularly 

relevant for maize, which is particularly sensitive to extreme weather events occurring just 

before anthesis and during anthesis, usually resulting in drastic reduction of the potential yield. 

In this study, the effects of low temperatures will not be of significance due to the location of 

the study area (sub-tropical climate in sub-Saharan Africa), in which cold shocks and frost 

have not much of importance during the maize growing season. 

The aim of this study was twofold: first to compare CropSyst outputs and experimental data, 

while assessing in a comparative fashion EMS and MMS, secondly to illustrate the sensitivity 

of both modelling solutions to alternative weather scenarios. 

 

Materials and methods 

Model description 

CropSyst model is a generic multi-year crop model that works on a daily time step and 

accounts for the impact of agricultural management on crop production and the environment. 

Weather, soil and crop input data are used in estimating crop productivity under varied crop 

management practices (e.g. tillage operations) and water and nutrient conditions. For a 

detailed description of the model, the reader is referred to Donatelli et al. (1997) and Stöckle 

et al. (1994, 2003). The CropSyst release 3.02.23 is used in this study, adapted to, and 

embedded in the modelling platform BioMA (Biophysical Model Applications, release 

0.4.2.0, http://bioma.jrc.ec.europa.eu). The CropSyst code has evolved since release 3, with 

http://bioma.jrc.ec.europa.eu/


6 | P a g e  

 

release 4 being an update of previous versions of codes 

(http://modeling.bsyse.wsu.edu/rnelson/registration/cropsyst.htm). As this study started with 

the CropSyst solution developed in the BioMA framework (which is considered a valuable 

option for crop harvest forecasting in Europe by the European Commission Joint Research 

Centre, (https://ec.europa.eu/jrc/en), it continued with improving it with the equations - 

consistent in the degree of complexity with generic crop simulators – developed in the frame 

of the EU-FP7 project MODEXTREME (http://modextreme.org). BioMA is a public domain 

software framework designed and implemented for developing, parameterizing and running 

modelling solutions based on biophysical models in the domains of agriculture and 

environment (http://www.biomamodelling.org). The application enables the running and 

comparing of alternative modelling solutions. The software is developed using Microsoft C# 

language in the .NET framework. A customized CropSyst solution (MMS) was built by 

coupling algorithms explicitly considering the impacts of extreme weather events to the 

existing CropSyst version (EMS).  

Improved CropSyst Model (MMS) 

The hypothesis of the general framework was developed grounded on the fact that yield 

variations due to extreme events are effectuated by changes in the harvest index for water, 

heat and cold shocks whereas the main effects of weather on crop performance are already 

considered by existing crop models (Villalobos et al. 2015). The fact that extreme events effect 

of crop is dependent on the growth stage (van der Velde et al. 2012), is taken into account by 

using different thresholds for inducing the damage at different developmental stages. The 

different developmental stages were represented using a numerical code (DVS, unit less; 0; 

emergence; 1 anthesis; 2 maturity as proposed by van Keulen et al. (1982)). The impact of 

water stress (FW, unitless) around anthesis is calculated using Equation 1 (i.e.,0.9 ≤ DVS ≤ 

1.1). 

http://modeling.bsyse.wsu.edu/rnelson/registration/cropsyst.htm
http://modextreme.org/
http://www.biomamodelling.org)/
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𝐹𝑊 = {

𝐹𝐸

𝐹𝐸𝑐𝑟𝑖𝑡

1

    
𝐹𝐸 ≤ 𝐹𝐸𝑐𝑟𝑖𝑡

𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                             (1) 

where FE denotes the fraction of transpiration that is not reduced (which is determined by the 

actual to potential transpiration and on the allowable soil water depletion); FEcrit denotes the 

crop dependent parameter, set at 0.7 in this study. 

In addition, the effect of extreme heat (function of maximum crop temperature) is overlapped, 

as follows: 

𝐹𝐻𝑇 =

{
 
 

 
 

1

𝑇𝐶 𝑚𝑎𝑥−𝑇100ℎ𝑒𝑎𝑡 

𝑇0ℎ𝑒𝑎𝑡−𝑇100ℎ𝑒𝑎𝑡 

0

       

𝑇𝐶max  ≤ 𝑇0ℎ𝑒𝑎𝑡

𝑇0ℎ𝑒𝑎𝑡 < 𝑇𝐶max   < 𝑇100ℎ𝑒𝑎𝑡

𝑇𝐶max  ≥  𝑇100ℎ𝑒𝑎𝑡

 (2)  

The strategy that was used in simulating the impact of heat shocks (FHT) (Equation 2) makes 

use of a linear response to maximum canopy temperature (TCmax, 
oC) driven by threshold 

(T0heat, 
oC) and critical (T100heat, 

oC) temperatures during the reproductive phase of the crop 

(i.e.,0.9 ≤ DVS ≤ 2). 

Heat shocks (FHT) response function ranges between 0 and 1 (untiless) and modulates HI in a 

different way if the extreme event occurs around the flowering stage (Equation 3) or from 

anthesis to maturity (Equation 4).       

𝐻𝐼𝐴𝐴 = [(
1

𝑑𝐴
 ∑𝐹𝑊

𝑑𝐴

1

) .(∏𝐹𝐻𝑇

𝑑𝐴

1

)] . 𝐻𝐼𝑚𝑎𝑥                                                                    (3) 

 𝐻𝐼𝐴𝐴 = 𝐻𝐼𝐴𝐴. [(1 − 𝐹𝐻𝑇).
𝑡

𝑑𝑃𝐴
+ 𝐹𝐻𝑇]                  (4)                

where HIAA, HImax and HI (unitless) are the actual (after anthesis), potential and final harvest 

index at maturity, respectively; t is time after anthesis; dA and dPA are the duration of the 

flowering and anthesis-maturity phases, respectively (which can be genotype-dependent). In 
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this way, the effect of water stress on the HI is averaged around flowering whereas that of 

heat stress is multiplicative, considering that high air temperatures can exacerbate the effect 

of the limited transpirational cooling under drought stress). Throughout the reproductive 

phase, each event of heat stress has an impact on the HI. In the absence of extreme weather 

events, MMS bypasses the extreme event module and acts as EMS. 

Site description 

This work is part of an on-going research, which started in 2004 at East Rand Water Care 

Works (ERWAT), Johannesburg, Gauteng, South Africa. The experimental site (26◦ 01’ 01” 

S, 28◦ 16’ 55” E, 1577 m a.s.l.) has a clay loam soil, Hutton soil form (Soil Classification 

Working Group, 1991) or a loamy, kaolinitic, mesic, Typic Eutrustox. The soil has a pH (H2O) 

of 6 to 6.8 and an average soil profile depth >1 m. The study site experiences a single-peak of 

summer rainfall between October and April, averaging 680 mm during the cropping season. 

The occurrences of extreme weather events during the validation period (refer to Fig 1) were 

analysed using webXTREME which is an R-based web tool for calculating agro-climatic 

indices of extreme events (refer to http://modextreme.org/webxtreme/) (Klein et al. 2017). In 

webXTREME, the number of days with extreme aridity are measured as number of days in a 

growing season [Day of Year(DOY) start, DOYend] with ARID > ARIDcrit, where ARID 

(Agricultural Reference Index for Drought) denotes the aridity index proposed by Woli et al. 

(2012). In our study ARIDcrit was equivalent to 0.5. Heat shocks number of days in a growing 

season [DOYstart, DOYend] with daily maximum temperature (AIRTMAX) exceeding a 

user-defined threshold and in our study this value was 300C. 

Study design 

Crop management and experimental layout 

Crop and soil data for model calibration and validation were collected during the period 2004-

2008 on a medium season maize (Zea maize L.) hybrid (PAN6966). This work is part of an 

http://modextreme.org/webxtreme/)
https://www.sciencedirect.com/science/article/pii/S0168169916304884#b0135
https://www.sciencedirect.com/science/article/pii/S0168169916304884#b0135
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on-going research, which started in year 2004. Field plots of 25 m2 were arranged in a 

randomized complete block design comprising five fertilizer treatments and two cropping 

systems (dryland maize and irrigated maize-oat rotation). The crop was planted using a hand-

drawn planter in 0.9 m rows at rates of 80 000. Each plot consisted of 6 rows of 5 m in length, 

with one border on either side. Weeds were controlled manually, and plants were chemically 

protected against pests’ diseases. Harvesting of plants was done manually using hands. The 

fertilizer treatments consisted of three sludge, one commercial inorganic fertilizer, and zero 

fertilizer treatments. For this study, the irrigated commercial inorganic fertilizer was used for 

model calibration and testing. The crop was fertilized according to crop N, P, and K 

requirements, with split applications at different growth stages as per the recommendations 

from Omnia Fertilizer Company (http://www.omnia.co.za). The total amount applied was 226 

kg ha-1 N; 40 kg ha-1 P; and 100 kg ha-1 K. This was applied in four splits. At planting 6 kg 

ha-1 (N); 9 kg ha-1 (P); 20 kg ha-1 (K); three weeks after planting 90 kg ha-1 (N); 31 kg ha-1 

(P); no potassium;  Five weeks after emergence 64 kg ha-1 (N) and 40 kg ha-1 (K); Seven 

weeks after emergence 66 kg ha-1  (N) and 40 kg ha-1 (K). The first split was spread uniformly 

and incorporated immediately into the soil top layer (0-0.2 m) with a manually operated, diesel 

powered rotovator (Agria), and the plots were levelled using rakes. The rest of the fertilizer 

was applied on the soil surface along plant rows.  

Crop sampling 

During the 2004/5 growing season, growth analysis and measurements of the aboveground 

biomass were performed at an interval of approximately two weeks. As for the remaining 

growing seasons, i.e. 2006/07-2008/09, plant sampling was carried out three times per year at 

different crop growth stages: at the eighth leaves, at soft dough and at physiological maturity. 

In 2004/05, grain yield was determined by harvesting maize crops from a 2 m length of the 

middle two rows. In the growing seasons 2006/07 and 2008/09, grain yield determination was 

http://www.omnia.co.za/
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performed from 2 m lengths of the middle four rows. The components (leaves, stems, and 

grain) were then dried in a forced-air oven at 60 oC to a constant mass to determine above-

ground biomass, calculated as the sum of leaf, stem, and seed biomass. 

Soil sampling 

Soil samples were collected at the beginning of the study, before treatment application, using 

an auger from the following soil layers: 0-0.3 m, 0.3-0.6 m, 0.6-0.9 m, and 0.9-1.2 m. 

Additional soil samples were collected using a core sampler to determine bulk density and 

hydraulic properties of the soil, which were used to parameterize the model. At the end of 

each growing season, three soil samples were collected diagonally using auger from each plot 

(0-0.3 m, 0.3-0.6 m, 0.6-0.9 m, and 0.9-1.2 m layers). The three samples from each layer per 

plot were combined and mixed to make a single homogenous soil sample per layer.  

Weather recording 

Weather data were collected from an automated weather station located at the study site. The 

automatic weather station consisted of an LI 200X pyranometer (LiCor, Lincoln, Nebraska, 

USA) for measuring solar radiation, an electronic relative humidity and temperature sensor 

installed in a Gill screen, an electronic cup anemometer (MET ONE, Inc. USA) to measure 

wind speed and electronic rain gauge (RIMCO, R/TBR tipping bucket rain gauge, Rauchfuss 

INSTRUMENTS division, Australia) and a CR10x data logger (Campbell Scientific Inc., 

USA). The sensors were placed 2m above the ground. The weather data included daily values 

of maximum and minimum temperatures (oC), rainfall (mm), maximum and minimum relative 

humidities (%), wind speed (m s-1) and global solar radiation (MJ m-2 d-1). Evapotranspiration 

was calculated using the Penman-Monteith model. 
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Calibration and validation 

Experimental data from the season 2004/05 were used to calibrate model in Table 1. The 

values of most parameters were set as measured experimentally (e.g. thermal time taken for 

each developmental stage), while others were extracted from the CropSyst user manual or 

other literature sources (e.g. the cut-off temperature above which the crop development stops). 

The data obtained during the seasons 2006/07, 2007/08 and 2008/09 were used for validating 

the model. The weather data for the seasons used during validation of the model are shown in 

Fig 1. It can be noted that during the 2006/7 season there was a combined effect of drought 

and heat as shown by a high number of occurrence of days with temperatures above 30 and 

the number of days with extreme aridity (ARID > 0.5) compared to the other two growing 

seasons (2007/08 and 2008/09). The two model versions were evaluated using the 

performance metrics (d, Index of agreement; MSE, Mean square error; EF, Modelling 

efficiency; R, Pearson’s correlation coefficient) reported in Appendix 1.  

Simulations with climate scenarios 

Climate data generation 

To run the CropSyst model (both EMS and MMS) under future projected climate change 

scenarios we made use of bias-corrected climate data (daily precipitation, minimum and 

maximum temperatures) generated from four General Circulation Models (GCM) - Regional 

Climate models (RCM) simulations namely: A) ECEARTH-RACMO B) HadGem-CCLM C) 

MPIESM-CCLM D) GFDLESM-RC (Table 2). Bias correction was performed using the 

statistical quantile mapping (Wilcke et al. 2013), independently for each variable. Some 

GCMs were making use of standard calendar (360-day calendar) whilst others were generating 

data using a 365-day (Gregorian) calendar. For crop modelling purposes standard days were 

adjusted by adding the missing days (five days per year or six days in the case of leap years) 

after bias correction was done to make the model output uniform. The added days contain the 
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value of the previous day (e.g., July 30th and July 31st have the same value of precipitation, 

minimum and maximum temperatures). Other required variables for use as input to the 

simulation model, such as global solar radiation, relative humidity and wind speed, were 

derived based on methods by Duveiller et al. (2017). 

Three-time horizons/time slices were used in the generation of climate data under four GCM-

RCM scenarios: current climate, 1991-2010; near future, 2021-2040; far future, 2041-2060. 

During the first 15 years of the current scenario (1991-2005), historical radiative forcing was 

used to drive the GCMs, whereas from 2006 and beyond they followed the Representative 

Concentration Pathway (RCP) 8.5 (Van Vuuren et al. 2011) due to the reason that RCP 

scenarios only start to differ from 2006 and onwards. RCP 8.5 is the most extreme of the 

emissions pathway scenarios developed for the IPCC’s Fifth Assessment Report (Moss et al. 

2010). 

 

Results and Discussion 

Calibration and validation 

CropSyst was calibrated by adjusting the phenological and growth coefficients (Table 1) of 

the medium season maize hybrid PAN6966 through repeated iterations until the differences 

between observed and simulated yields were minimised as shown in Fig. 2. The same 

coefficients were used in subsequent validations. Figs. 3A and B show the performance of 

EMS and MMS in simulating grain yields and aboveground biomass, respectively. The 

performances of EMS and MMS were almost similar for grain yield simulation in 2007/08 

and 2008/09, when the study site received adequate rain and very few counts of temperatures 

above the 300C. Both models slightly overestimated grain yield during the 2007/08 growing 

season. In contrast, the models slightly underestimated both maize grain yield and 

aboveground biomass during the 2008/09 growing season. The response of the two modelling 
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solutions differed in the 2006/07 growing season, where the season was extremely arid and a 

high number of days with temperatures above 300C prevailed. For this extremely rare dry and 

hot year, maize grain yield prediction by MMS (1 780 kg ha-1) was close to the measured 

value while the value predicted by EMS (2 603 kg ha-1) was roughly twice the observed value. 

Similar patterns were also observed with the aboveground biomass prediction, with MMS 

improving prediction capability by 34%. Model performance indicators also show that MMS 

performed better than EMS (Table 3). The differences were also manifested in the harvest 

index (Fig 4). This agrees with a previous study by Todorovic et al. (2009), who reported the 

over-prediction of both aboveground biomass and grain yield by CropSyst and attributed this 

overestimation to the simplifications adopted by the model which limits it under severe water 

stress. This difference between EMS and MMS was also noted when predicting maize yield 

in near and far future horizons (next section). As can be seen in season 2006/7 the harvest 

index of MMS was reduced by approximately 12% in comparison to that of the EMS. 

Reduction in HI due to water and heat stress explains the fact that grain yield is much more 

affected than the total dry matter (Rafiee et al. 2010) and that has been taken into account into 

the MMS by the inclusion of new algorithms.  

Comparison of grain yield average between EMS and MMS over different time horizons and 

under different scenarios. 

Maize grain yield comparisons using existing and the modified CropSyst versions show some 

notable differences during different time periods (Fig. 5). As a general trend, observed with 

all the climate scenarios investigated, grain yields predicted at each time horizon with MMS 

were lower (of 14-30%, Fig. 5) than with EMS. There has been a shift in the median yield at 

all-time horizons and under all climate scenarios (Fig. 6). A general trend of the median yield 

shifting was observed across all the four GCM’s and three climate scenarios used. Using EMS, 

this shift goes from grain yield of 16 000 kg ha-1 in the 2000 horizon to approximately 11 000 

kg ha-1 in the 2050 horizon. The MMS showed a range of a median shift from 11 000 kg ha-1 
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to 8 000 kg ha-1. The median yields at all-time horizons and under all climate scenarios were 

thus higher with EMS than with MMS. Contrasting results, depending on the climate scenario 

used, were observed in terms of percent variation of the simulated rain-fed maize yields for 

different time horizons using EMS and MMS with reference to 2000 time horizon yield (Table 

4). With ECEARTH-RACMO and MPIESM-CCLM, simulated grain yields in 2020 and 2050 

show some notable differences in comparison to the 2000 time horizon. For climate scenario 

HadGem-CCLM and GFDLESM-RCA, results on the extent to which the (Table 4) 2030 and 

2050 time horizon grain yields deviated from the baseline (2000) were roughly the same 

between EMS and MMS. Climate scenario MPIESM-CCLM showed differences of 

approximately 16% and 13% between 2030 and 2050 respectively, while climate scenario 

HadGem-CCLM showed a difference of approximately 5% at both 2030 and 2050 time 

horizons. At the time horizon of 2050, it can be shown that across all the climate scenarios 

used, there will be a decline ranging between -14% and -23% relative to the 2000 time horizon 

using the EMS whereas for the MMS decline in maize yield is between the range of -3% and 

-28%. Decline in yields as we move away from the current scenario are well explained by the 

projected future climate. In the future, South Africa is expected to experience temperature 

increase and rainfall decline, which will translate into negative implications for maize crop 

production (Nhemachena 2009; Zinyengere et al. 2013). Fluctuations on the median 

coefficient of variation between time horizons were observed across all four scenarios but the 

general trend shows a high grain yield coefficient of variation when simulated by MMS in 

comparison to EMS (Fig. 7).  This is an expected outcome, since EMS (which does not contain 

a specific module for the impact of extreme events) only simulates the effect of extreme events 

as normal stress events. Henceforth, this results in less crop yield variability over a period, in 

our case 20 years. In the case of MMS, the predicted crop yield showed more deviation from 

the average yield, thus increasing interannual variability. The rate of crop development 
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commonly exhibits a linear response to temperature (Porter and Semenov, 2005). However, 

crop physiological processes related to growth such as photosynthesis and respiration display 

continuous and nonlinear responses to temperature (Gornall et al. 2010). The ability of a 

model to capture a wide range of possible non-linear crop responses produces outputs that 

deviate much from the average yields (Zinyengere et al. 2013). Consequently, model 

simulation outputs exhibiting increased yield variability are likely more realistic. 

Comparison of aboveground biomass averages between EMS and MMS over different time 

horizons and under different scenarios. 

The aboveground biomass simulated by EMS under future climate scenarios was higher in 

comparison to that simulated by MMS (Fig. 8), with no substantial differences among 

scenarios and time horizons. At each time horizon, the median value of simulated yield by the 

MMS was smaller than using EMS. In general terms, there was a shift in the median 

aboveground biomass towards lower values when moving from 2000 to 2050 time horizons 

(Fig. 9). The box plot displaying the coefficient of variation shows contrasting results 

depending on the climate scenarios. In particular, a higher aboveground biomass coefficient 

of variation was observed with MMS in comparison to EMS at each time horizon and over 

the climate scenarios used (Fig. 10). EMS and MMS did not show any difference with respect 

to simulated flowering and maturity dates (see Appendix 3 and 4 respectively). The simulated 

times to reach flowering and maturity were not affected by the modelling solution used but 

they reduced in the far future.  

Research has shown that when crops are exposed to stress, such as a heat stress, they exhibit 

an escape mechanism (Sharp et al. 2009; Ivey and Carr, 2012). Such mechanisms stimulate a 

signal to cause an early transition of plant development from the vegetative to reproductive 

phase (Desclaux and Roumet, 1996). The triggering of such escape mechanisms increases the 

chances of forming seeds, which explains the reduction in the days needed to reach flowering 
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and maturity. This allows the crop to escape from a potentially lethal stress (Riboni et al. 

2014). Additionally, if a combination of drought and high temperature occurs around 

tasselling, it results in poor synchronization between silk emergence and pollen shedding. A 

reduction in the number of days needed to reach maturity also reduces the amount of dry 

matter accumulation, which results in reduced biomass and grain yield (Haverkort et al. 2013). 

This also explains the reductions in shift in the median grain and aboveground biomass 

towards the negative side as moving away from the current scenario to the far future time 

horizon (Fig. 6 and 9).  

In summary, the incorporation of a module explicitly taking into account the impact of 

extreme weather events has improved the predictive capability of CropSyst. This was shown 

by lower grain yield and aboveground biomass from MMS simulations in comparison to EMS. 

This was also shown by a higher variability in the output from MMS in comparison to EMS. 

High variability in MMS output entails the ability of MMS to capture responses from a wide 

range of environments characterized by unavailability of water and presence of high 

temperatures. Simulations under different scenarios have shown that maize production in 

South Africa will be likely under threat due to climate change, which is likely associated with 

increased frequency and severity of extreme weather events. This was shown by changes in 

crop phenology and reductions in grain yield. 

 

Conclusions 

Overall, the modified CropSyst model implementing extreme event module improved maize 

simulations under extreme heat and drought conditions in South Africa and appears as a 

promising tool for supporting agricultural management strategies and policy decisions. 

Currently, information about impacts of extreme events is exceedingly needed by agricultural 

policymakers around the globe to plan for the coming decades where the frequency and 
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intensity of extreme weather events are expected to increase. The general trend from the 

simulations made by EMS under future climate scenarios showed an overestimation of grain 

yield and aboveground biomass in comparison to MMS. The latter simulated more realistic 

values.  This is especially relevant in policy making because discrepancies in simulation 

outputs (as those observed with EMS) can be critical when applying modelling tools to support 

food and feed security actions. In addition, the improved CropSyst version has demonstrated 

that extreme weather events under climate change (as emerging in terms of drought and heat) 

may add remarkable pressure on maize production. Our study did not include the negative 

effects that are brought about by the effects of extreme precipitation. Modelling efforts should 

also be directed towards improving existing models so that they can be able to capture and 

represent such effects in climate change impact assessment studies. If such damages are 

ignored they might also lead to underestimations of the impacts of climate change on rainfed 

agriculture. We also recommend extending modelling works with the modified modelling 

solution of CropSyst to simulate various crops across all South African agro-ecological zones. 

In comparing these results with those of other studies, it must be taken into account that the 

experiments were conducted using one variety and this might vary when other varieties are 

used. 
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Tables 

Table 1 Units, values and sources of parameters that were used in calibrating the CropSyst 

models 

Parameter Unit Value Source 

Boolean value for C3 crops (1=C3, 0=C4) 
- 0 Manual 

Development Susceptibility To Water 

Stress unitless 1 Manual 

Thermal Time To Emergence °C day-1 85 Measured 

Thermal Time To Flowering °C day-1 1000 Measured 

Thermal Time To Begin Yield Formation 
°C day-1 1200 Measured 

Thermal Time To Maturity °C day-1 1700 Measured 

Base Temperature for Development 
oC 10 

Bunting (1976), Shaw 

(1983), Keeling and 

Greaves (1990) 

Cut-off Temperature for Development oC 30 Hensley et al. (1994) 

Initial Leaf Area Index m2 m-2 0.03 Measured value 

Minimum Initial Green Leaf Area Index 
m2 m-2 0.05 Measured value 

Leaf Area Index Initial Value Shape unitless 1.5 Measured value 

Development Stage Critical unitless 3 Default value 

Regrowth Development Stage Critical 
unitless 1.5 Default value 

Maximum Radiation Use Efficiency g MJ-1 3.7 Measured 

Base Temperature For Growth oC 10 Hensley et al. (1994) 

Optimum Temperature For Growth 
oC 25 

Kenny and Harrison 

(1992), McMaster and 

Wilhelm (1997) 

Extinction Coefficient Solar Radiation unitless 0.57 Default 

Full Canopy Water Uptake Maximum kg m-2d-1 10 Default 

Thermal Time To End Green Leaf Area 

Index °C day-1 1600 Measured 

Full Canopy Coefficient unitless 1 Measured  

Specific Leaf Area m2 kg-1 15 Measured 

Stem Leaf Partition unitless 4 Measured 

Biomass-transpiration coefficient  (Pa)a 7 Stöckle et al. (1997) 

Height Maximum m 3.20 Measured 

LAI Maximum m2 m-2 6 Measured 

Maximum Rooting Depth m 1.6 Measured 

Harvest Index unitless 0.47 Measured 

Leaf Duration °C day-1 1350 Measured 
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Table 2 Selected GCM-RCM simulations (horizontal resolution of ~50 km) used for the study 

Symbol Selected GCM-RCM simulation Short name 

A ICHEC-EC-EARTH_KNMI-RACMO22T ECEARTH-RACMO 

B MOHC-HadGEM2-ES_CLMcom-CCLM4-8-17 HadGem-CCLM 

C MPI-M-MPI-ESM-LR_CLMcom-CCLM4-8-17 MPIESM-CCLM 

D NOAA-GFDL-GFDL-ESM2M_SMHI-RCA4 GFDLESM-RCA 

 

Table 3 Performance measures of the existing and modified CropSyst versions for maize 

aboveground biomass and grain yield using combined data collected during the 2006/07 to 

2008/09 growing seasons 

Variable Model d RMSE EF r2 

Aboveground biomass EMS 0.84 1.25 0.86 0.93 

 MMS 0.94 0.85 0.95 0.97 

Grain yield EMS 0.86 3.63 0.89 0.94 

 MMS 0.96 1.79 0.94 0.97 

 

Table 4 Variation percentage of the simulated rain fed maize grain yields under different 

climate scenarios with A=ECEARTH-RACMO, B=HadGem-CCLM, C=MPIESM-CCLM 

and D=GFDLESM-RCA at different time horizons using the existing CropSyst modelling 

solution (EMS) and modified CropSyst modelling solutions (MMS) with reference to 2000 

time horizon yield 

 

 EMS MMS EMS MMS 

GCM Name 2030 2050 

ECEARTH-RACMO -26.18 -21.03 -28.8 -23.8 

HadGem-CCLM -15.91 -14.59 -20.32 -20.88 

MPIESM-CCLM -5.11 -20.96 -14.23 -27.56 

GFDLESM-RCA -3.73 -3.91 -10.71 -14.07 
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Figures 

 

 

Fig. 1 Analysis of the occurrence of extreme heat (number of days with maximum temperature 

(Tmax) > 30 °C) and extreme aridity (number of days with ARID ≥ 0.5) during November 

and April at East Rand Water Care Works (ERWAT), Johannesburg, Gauteng, South Africa 

(26◦ 01’ 01” S, 28◦ 16’ 55” E, 1577 m.a.s.l.), from growing seasons 2006/2007 to 2008/2009 

 

 

Fig. 2 Calibration simulations for A) grain yield and B) aboveground biomass of maize crop 

(by adjusting varietal phenology and growth coefficients) using existing modelling solution 

for 2004/05 season. 
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Fig. 3 Model corroboration (validation) of existing modelling solution and modified 

modelling solution for A) maize grain yield and B) aboveground biomass 

 

 
 

Fig. 4 Harvest index during corroboration (validation) of existing modelling solution and 

modified modelling solution for maize grain yield 
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Fig. 5 Comparison of simulated rain fed maize yields under different climate scenarios with 

A=ECEARTH-RACMO, B=HadGem-CCLM, C=MPIESM-CCLM and D=GFDLESM-RCA 

using the existing (EMS) and modified (MMS) CropSyst modelling solutions for different 

time horizons 

 
 

 

 
 

Fig. 6 Grain yield box plots of simulated rain fed maize yields under different climate 

scenarios with A=ECEARTH-RACMO, B=HadGem-CCLM, C=MPIESM-CCLM and 

D=GFDLESM-RCA using the existing (EMS) and modified (MMS) CropSyst modelling 

solution for different time horizons 
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Fig. 7 Comparisons of the coefficient of variation of simulated rain fed maize grain yields 

under different climate scenarios with A=ECEARTH-RACMO, B=HadGem-CCLM, 

C=MPIESM-CCLM and D=GFDLESM-RCA using the existing (EMS) and modified (MMS) 

CropSyst modelling solutions for different time horizons 
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Fig. 8 Comparison of simulated rain fed aboveground biomass under different climate 

scenarios with A=ECEARTH-RACMO, B=HadGem-CCLM, C=MPIESM-CCLM and 

D=GFDLESM-RCA using the existing (EMS) and modified (MMS) CropSyst modelling 

solutions for different time horizons 
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Fig. 9 Box plot showing dry aboveground biomass yield of simulated rain fed maize yields 

under different climate scenarios with A=ECEARTH-RACMO, B=HadGem-CCLM, 

C=MPIESM-CCLM and D=GFDLESM-RCA using the existing (EMS) and modified (MMS) 

CropSyst modelling solutions for different time horizons 

                                                                                                                          

 

 

Fig. 10 Box plots comparing the coefficient of variation of simulated rain fed maize 

aboveground biomass under different climate scenarios with A=ECEARTH-RACMO, 

B=HadGem-CCLM, C=MPIESM-CCLM and D=GFDLESM-RCA using the existing (EMS) 

and modified (MMS) CropSyst modelling solutions for different time horizons 
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Appendix 

 

Appendix 1 Metrics of model performance used in evaluation of the Existing and modified 

CropSyst models and reliability criteria (after De Jager, 1994). 
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Appendix 3 Box plots comparing the flowering dates of simulated rain fed maize yields under 

different climate scenarios with A=ECEARTH-RACMO, B=HadGem-CCLM, C=MPIESM-

CCLM and D=GFDLESM-RCA using the existing (EMS) and modified (MMS) CropSyst 

modelling solutions for different time horizons 
 
 

 

Appendix 4 Box plots comparing the maturity dates of simulated rain fed maize yields under 

different climate scenarios with A=ECEARTH-RACMO, B=HadGem-CCLM, C=MPIESM-

CCLM and D=GFDLESM-RCA using the existing (EMS) and modified (MMS) CropSyst 

modelling solutions for different time horizon 
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